Cyclic projective planes and Wada dessins

Bipartite graphs occur in many parts of mathematics, and their embeddings into orientable compact surfaces are an old subject. A new interest comes from the fact that these embeddings give dessins d'enfants providing the surface with a unique structure as a Riemann surface and algebraic curve....

Full description

Saved in:
Bibliographic Details
Published inDocumenta mathematica Journal der Deutschen Mathematiker-Vereinigung. Vol. 6; pp. 37 - 66
Main Authors Streit, Manfred, Wolfart, Jürgen
Format Journal Article
LanguageEnglish
Published 2001
Online AccessGet full text

Cover

Loading…
Abstract Bipartite graphs occur in many parts of mathematics, and their embeddings into orientable compact surfaces are an old subject. A new interest comes from the fact that these embeddings give dessins d'enfants providing the surface with a unique structure as a Riemann surface and algebraic curve. In this paper, we study the (surprisingly many different) dessins coming from the graphs of finite cyclic projective planes. It turns out that all reasonable questions about these dessins – uniformity, regularity, automorphism groups, cartographic groups, defining equations of the algebraic curves, their fields of definition, Galois actions – depend on cyclic orderings of difference sets for the projective planes. We explain the interplay between number theoretic problems concerning these cyclic ordered difference sets and topological properties of the dessin like e.g. the Wada property that every vertex lies on the border of every cell.
AbstractList Bipartite graphs occur in many parts of mathematics, and their embeddings into orientable compact surfaces are an old subject. A new interest comes from the fact that these embeddings give dessins d'enfants providing the surface with a unique structure as a Riemann surface and algebraic curve. In this paper, we study the (surprisingly many different) dessins coming from the graphs of finite cyclic projective planes. It turns out that all reasonable questions about these dessins – uniformity, regularity, automorphism groups, cartographic groups, defining equations of the algebraic curves, their fields of definition, Galois actions – depend on cyclic orderings of difference sets for the projective planes. We explain the interplay between number theoretic problems concerning these cyclic ordered difference sets and topological properties of the dessin like e.g. the Wada property that every vertex lies on the border of every cell.
Author Streit, Manfred
Wolfart, Jürgen
Author_xml – sequence: 1
  givenname: Manfred
  surname: Streit
  fullname: Streit, Manfred
– sequence: 2
  givenname: Jürgen
  surname: Wolfart
  fullname: Wolfart, Jürgen
BookMark eNo9j0tLAzEUhYO0YF__IRsXLsbmmtdkKYNaoeCm4DLkcQNTZjJDIkL_vRVFOHC-1eE7a7LIU0ZCdsAeBGjYx3Fv1A1ZgeDQMCX44p-5vCXrWs-MgVFarsh9dwlDH-hcpjOGz_4L6Ty4jJW6HOmHi45GrLXPdUuWyQ0Vd3-9IaeX51N3aI7vr2_d07EJRqsGISrPeFCQvHSGJ0ytD4o79FIziByckAoQddu2KUUV5aPXHK8RAq6uG3L3OxvKVGvBZOfSj65cLDD7c8_G0RrFvwFbOEMc
CitedBy_id crossref_primary_10_1017_S0017089509004972
crossref_primary_10_1016_j_jalgebra_2006_10_009
crossref_primary_10_1007_s13366_017_0330_1
crossref_primary_10_1016_j_disc_2009_02_031
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.4171/dm/96
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1431-0643
EndPage 66
ExternalDocumentID 10_4171_dm_96
GroupedDBID -~9
29G
2WC
5GY
AAFWJ
AAYXX
ACGFO
ACIPV
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
C1A
CITATION
EBS
EJD
GROUPED_DOAJ
LO0
M~E
OK1
P2P
REM
REW
RKJ
RNS
SJN
TR2
XSB
ID FETCH-LOGICAL-c976-e1d6b03c61fb5a93fef8bc63aeb5701d31a4561ee7888ffd6d52b73e73e441643
ISSN 1431-0635
IngestDate Wed Oct 23 14:23:16 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c976-e1d6b03c61fb5a93fef8bc63aeb5701d31a4561ee7888ffd6d52b73e73e441643
OpenAccessLink https://ems.press/content/serial-article-files/25879
PageCount 30
ParticipantIDs crossref_primary_10_4171_dm_96
PublicationCentury 2000
PublicationDate 2001-00-00
PublicationDateYYYYMMDD 2001-01-01
PublicationDate_xml – year: 2001
  text: 2001-00-00
PublicationDecade 2000
PublicationTitle Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung.
PublicationYear 2001
SSID ssj0019675
Score 1.527667
Snippet Bipartite graphs occur in many parts of mathematics, and their embeddings into orientable compact surfaces are an old subject. A new interest comes from the...
SourceID crossref
SourceType Aggregation Database
StartPage 37
Title Cyclic projective planes and Wada dessins
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEF60giginniWPPgiJW2ubppHrUopHi8V-1Z2s7tSNLFo-qC_3pnsJj0oeEBYypK0zXxk9svszDeEnKmQoyoataPQY3YgYIiY69s8FExyQQOp8izfe9p5DLr9Zn_SqTCvLsl4Pf5aWFfyH1RhDnDFKtk_IFt-KUzAZ8AXRkAYxl9h3P6MUaPaRFMwB2iEuatadvmJCVYTmOVqAnKGgsKyMs4zxmtJKdnKim3pGkpLXMlxBi-9Mq3dFWe86NCfHKbDZ3AP9TIwk8GcKfpJVdH2M0_1fVVMlwN1cTP-so1VnjMxBnfKIQLBsIHG6J1nOT2n5ZUKLzrtBbWMi1lPdVOVeU8duCF6apFghsYCLey5NarMHIR3Frx0IJJBRJfJigf-BTM5bx-ccvMoorm-cvnXV8mG-cWGSBrYnqGkIFNcordFNo2trQuN6DZZkukOWS-NHX_sknONrTXB1tLYWoCthdhaBts90ru57rU7tmlrYcfA_WzpCsodP6au4k0W-UqqFo-pD49GM3Rc4bsMSa2UGJxQSlDR9HjoSziAuoLV90klfUvlAbEo5bEXOS0GHD6IAsZYHDIfHjOPssgJvUNSLW50MNLiJYMZAx79dMIxWdNJd3ickEr2PpanwMIyXs2jF9Xc8t-rmjcb
link.rule.ids 315,783,787,867,4031,27935,27936,27937
linkProvider EuDML: The European Digital Mathematics Library
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclic+projective+planes+and+Wada+dessins&rft.jtitle=Documenta+mathematica+Journal+der+Deutschen+Mathematiker-Vereinigung.&rft.au=Streit%2C+Manfred&rft.au=Wolfart%2C+J%C3%BCrgen&rft.date=2001&rft.issn=1431-0635&rft.eissn=1431-0643&rft.volume=6&rft.spage=37&rft.epage=66&rft_id=info:doi/10.4171%2Fdm%2F96&rft.externalDBID=n%2Fa&rft.externalDocID=10_4171_dm_96
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1431-0635&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1431-0635&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1431-0635&client=summon