Effects of fire on CO 2 , CH 4 , and N 2 O exchange in a well‐drained Arctic heath ecosystem
Wildfire frequency and expanse in the Arctic have increased in recent years and are projected to increase further with changes in climatic conditions due to warmer and drier summers. Yet, there is a lack of knowledge about the impacts such events may have on the net greenhouse gas (GHG) balances in...
Saved in:
Published in | Global change biology Vol. 28; no. 16; pp. 4882 - 4899 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wildfire frequency and expanse in the Arctic have increased in recent years and are projected to increase further with changes in climatic conditions due to warmer and drier summers. Yet, there is a lack of knowledge about the impacts such events may have on the net greenhouse gas (GHG) balances in Arctic ecosystems. We investigated in situ effects of an experimental fire in 2017 on carbon dioxide (CO
2
), methane (CH
4
), and nitrous oxide (N
2
O) surface fluxes in the most abundant tundra ecosystem in West Greenland in ambient and warmer conditions. Measurements from the growing seasons 2017 to 2019 showed that burnt areas became significant net CO
2
sources for the entire study period, driven by increased ecosystem respiration (ER) immediately after the fire and decreased gross ecosystem production (GEP). Warming by open‐top chambers significantly increased both ER and GEP in control, but not in burnt plots. In contrast to CO
2
, measurements suggest that the overall sink capacity of atmospheric CH
4
, as well as net N
2
O emissions, were not affected by fire in the short term, but only immediately after the fire. The minor effects on CH
4
and N
2
O, which was surprising given the significantly higher nitrate availability observed in burnt plots. However, the minor effects are aligned with the lack of significant effects of fire on soil moisture and soil temperature. Net uptake and emissions of all three GHG from burnt soils were less temperature‐sensitive than in the undisturbed control plots. Overall, this study highlights that wildfires in a typical tundra ecosystem in Greenland may not lead to markedly increased net GHG emissions other than CO
2
. Additional investigations are needed to assess the consequences of more severe fires. |
---|---|
AbstractList | Wildfire frequency and expanse in the Arctic have increased in recent years and are projected to increase further with changes in climatic conditions due to warmer and drier summers. Yet, there is a lack of knowledge about the impacts such events may have on the net greenhouse gas (GHG) balances in Arctic ecosystems. We investigated in situ effects of an experimental fire in 2017 on carbon dioxide (CO
2
), methane (CH
4
), and nitrous oxide (N
2
O) surface fluxes in the most abundant tundra ecosystem in West Greenland in ambient and warmer conditions. Measurements from the growing seasons 2017 to 2019 showed that burnt areas became significant net CO
2
sources for the entire study period, driven by increased ecosystem respiration (ER) immediately after the fire and decreased gross ecosystem production (GEP). Warming by open‐top chambers significantly increased both ER and GEP in control, but not in burnt plots. In contrast to CO
2
, measurements suggest that the overall sink capacity of atmospheric CH
4
, as well as net N
2
O emissions, were not affected by fire in the short term, but only immediately after the fire. The minor effects on CH
4
and N
2
O, which was surprising given the significantly higher nitrate availability observed in burnt plots. However, the minor effects are aligned with the lack of significant effects of fire on soil moisture and soil temperature. Net uptake and emissions of all three GHG from burnt soils were less temperature‐sensitive than in the undisturbed control plots. Overall, this study highlights that wildfires in a typical tundra ecosystem in Greenland may not lead to markedly increased net GHG emissions other than CO
2
. Additional investigations are needed to assess the consequences of more severe fires. Wildfire frequency and expanse in the Arctic have increased in recent years and are projected to increase further with changes in climatic conditions due to warmer and drier summers. Yet, there is a lack of knowledge about the impacts such events may have on the net greenhouse gas (GHG) balances in Arctic ecosystems. We investigated in situ effects of an experimental fire in 2017 on carbon dioxide (CO ), methane (CH ), and nitrous oxide (N O) surface fluxes in the most abundant tundra ecosystem in West Greenland in ambient and warmer conditions. Measurements from the growing seasons 2017 to 2019 showed that burnt areas became significant net CO sources for the entire study period, driven by increased ecosystem respiration (ER) immediately after the fire and decreased gross ecosystem production (GEP). Warming by open-top chambers significantly increased both ER and GEP in control, but not in burnt plots. In contrast to CO , measurements suggest that the overall sink capacity of atmospheric CH , as well as net N O emissions, were not affected by fire in the short term, but only immediately after the fire. The minor effects on CH and N O, which was surprising given the significantly higher nitrate availability observed in burnt plots. However, the minor effects are aligned with the lack of significant effects of fire on soil moisture and soil temperature. Net uptake and emissions of all three GHG from burnt soils were less temperature-sensitive than in the undisturbed control plots. Overall, this study highlights that wildfires in a typical tundra ecosystem in Greenland may not lead to markedly increased net GHG emissions other than CO . Additional investigations are needed to assess the consequences of more severe fires. |
Author | D'Imperio, Ludovica Ambus, Per L. Xu, Wenyi Elberling, Bo Hermesdorf, Lena Lambæk, Anders |
Author_xml | – sequence: 1 givenname: Lena orcidid: 0000-0002-4977-0810 surname: Hermesdorf fullname: Hermesdorf, Lena organization: Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management University of Copenhagen Copenhagen Denmark – sequence: 2 givenname: Bo surname: Elberling fullname: Elberling, Bo organization: Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management University of Copenhagen Copenhagen Denmark – sequence: 3 givenname: Ludovica orcidid: 0000-0002-6751-145X surname: D'Imperio fullname: D'Imperio, Ludovica organization: Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management University of Copenhagen Copenhagen Denmark, University of Copenhagen, IGN, Section for Forest, Nature and Biomass Frederiksberg C Denmark – sequence: 4 givenname: Wenyi surname: Xu fullname: Xu, Wenyi organization: Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management University of Copenhagen Copenhagen Denmark – sequence: 5 givenname: Anders surname: Lambæk fullname: Lambæk, Anders organization: Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management University of Copenhagen Copenhagen Denmark – sequence: 6 givenname: Per L. surname: Ambus fullname: Ambus, Per L. organization: Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management University of Copenhagen Copenhagen Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35543023$$D View this record in MEDLINE/PubMed |
BookMark | eNplUMtOwzAQtFARfcCBH0B7RSKtX3n4WEWFIlX00jOR42zaoNSp4iDojU_gG_kSXEovsJdZrWZGOzMkPdtYJOSa0THzM1mbfMwizvkZGTARhQGXSdQ77KEMGGWiT4bOvVBKBafRBemLMJSCcjEgz7OyRNM5aEooqxahsZAugcMdpHOQHrQt4MkfloDvZqPtGqGyoOEN6_rr47NodWWxgGlrusrABnW3ATSN27sOt5fkvNS1w6tfHJHV_WyVzoPF8uExnS4Co2IR8FIji5MEVRIbrZBKxoVCplDQQiNnIkauUMvCh2Q5VTzMCxkbk8ucUqXEiNwcbXev-RaLbNdWW93us1NOT5gcCaZtnGuxzEzV6a5qbOf_rzNGs0OTmW8y-2nSK27_KE6m_7nfsa1wPA |
CitedBy_id | crossref_primary_10_1111_gcb_16309 crossref_primary_10_1111_1365_2745_70022 crossref_primary_10_1111_gcb_17549 crossref_primary_10_1371_journal_pclm_0000570 crossref_primary_10_1111_njb_04062 crossref_primary_10_1016_j_agrformet_2023_109823 crossref_primary_10_1029_2023GB007969 crossref_primary_10_1007_s10533_023_01072_5 crossref_primary_10_1038_s41558_023_01785_3 crossref_primary_10_1016_j_agrformet_2024_110362 crossref_primary_10_1029_2023GB007953 crossref_primary_10_1029_2022JG007322 crossref_primary_10_1016_j_scitotenv_2024_174708 crossref_primary_10_1016_j_geoderma_2023_116627 crossref_primary_10_1080_00102202_2024_2365258 crossref_primary_10_1111_gcb_17087 |
Cites_doi | 10.1088/1748‐9326/aa9a76 10.1016/j.agrformet.2019.02.021 10.1111/gcb.14455 10.1016/j.scitotenv.2021.150990 10.1029/2006jf000554 10.1016/j.soilbio.2019.107676 10.1098/rstb.2013.0122 10.1038/s43017‐020‐0063‐9 10.1029/2001jd000663 10.1890/14‐1921.1 10.1016/j.soilbio.2021.108346 10.1111/j.1574‐6941.2007.00370.x 10.1177/0309133317745784 10.1007/s11104‐016‐2801‐9 10.1016/s0038‐0717(97)00038‐2 10.2307/1551412 10.1007/s10533‐007‐9104‐4 10.1016/j.soilbio.2009.09.010 10.1007/s00484‐011‐0517‐3 10.1016/s0038‐0717(96)00139‐3 10.1126/science.1117368 10.1134/s1064229318060108 10.1111/j.1747‐0765.2008.00309.x 10.1038/nature14338 10.1890/150063 10.1016/j.agrformet.2013.12.003 10.1016/j.ecoleng.2017.05.033 10.3390/rs8010054 10.1038/ngeo2305 10.1016/j.scitotenv.2020.140363 10.5194/bg‐11‐6573‐2014 10.1016/j.soilbio.2010.07.011 10.1023/a:1010507414994 10.1111/ecog.02205 10.1111/gcb.13400 10.1890/0012-9658(1998)079[1526:TROTPB]2.0.CO;2 10.1890/11‐0875.1 10.1098/rstb.2012.0490 10.1007/s10021‐017‐0209‐x 10.1111/gcb.14388 10.1016/j.soilbio.2019.107605 10.3390/geosciences10090355 10.1111/j.1365‐2486.2004.00868.x 10.1016/j.scitotenv.2021.148847 10.1139/as‐2018‐0018 10.1002/2014jg002872 10.1016/j.envres.2020.109328 10.1111/gcb.13563 10.1111/gcb.15451 10.1890/10‐0255.1 10.1016/s0378‐1127(99)00032‐8 10.1038/s41558‐020‐00920‐8 10.1016/j.scitotenv.2017.05.246 10.1002/2016jg003511 10.1002/2017jg003782 10.1111/gcb.13032 10.1080/00380768.2014.963666 10.1002/grl.50299 10.5194/bg‐12‐4017‐2015 10.1111/gcb.15721 10.1007/s00374‐011‐0660‐3 10.1016/j.soilbio.2013.09.034 10.1016/j.soilbio.2016.07.015 10.3402/tellusa.v68.28234 10.1111/j.1365‐2486.1997.gcb132.x 10.1016/j.soilbio.2019.107698 10.1007/978-3-319-24277-4 10.1038/ismej.2015.13 10.1038/nature10283 10.1007/s10021‐015‐9924‐3 10.1038/nature04514 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd. |
DBID | AAYXX CITATION NPM |
DOI | 10.1111/gcb.16222 |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 4899 |
ExternalDocumentID | 35543023 10_1111_gcb_16222 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Danish National Research Foundation grantid: CENPERM DNRF100 |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CITATION COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAMMB AEFGJ AGXDD AIDQK AIDYY NPM |
ID | FETCH-LOGICAL-c973-2fae1788e987ca9e041239e19e30dae2137e29ea4d6221b0925bd47ccb4b00993 |
ISSN | 1354-1013 |
IngestDate | Mon Jul 21 05:52:58 EDT 2025 Thu Apr 24 23:11:12 EDT 2025 Tue Jul 01 03:53:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | tundra carbon dioxide nitrous oxide methane GHG balance Greenland NEE |
Language | English |
License | 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c973-2fae1788e987ca9e041239e19e30dae2137e29ea4d6221b0925bd47ccb4b00993 |
ORCID | 0000-0002-4977-0810 0000-0002-6751-145X |
PMID | 35543023 |
PageCount | 18 |
ParticipantIDs | pubmed_primary_35543023 crossref_citationtrail_10_1111_gcb_16222 crossref_primary_10_1111_gcb_16222 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-00 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-00 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Chang Biol |
PublicationYear | 2022 |
References | e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 Myhre G. D. (e_1_2_9_48_1) 2013 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 Meredith M. (e_1_2_9_45_1) 2019 e_1_2_9_70_1 Haeussler S. (e_1_2_9_19_1) 1986 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_3_1 Firestone M. K. (e_1_2_9_18_1) 1989 e_1_2_9_9_1 Beyers J. L. B. (e_1_2_9_6_1) 2005 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – ident: e_1_2_9_56_1 – ident: e_1_2_9_44_1 doi: 10.1088/1748‐9326/aa9a76 – ident: e_1_2_9_80_1 doi: 10.1016/j.agrformet.2019.02.021 – ident: e_1_2_9_40_1 doi: 10.1111/gcb.14455 – ident: e_1_2_9_78_1 doi: 10.1016/j.scitotenv.2021.150990 – ident: e_1_2_9_38_1 doi: 10.1029/2006jf000554 – ident: e_1_2_9_58_1 doi: 10.1016/j.soilbio.2019.107676 – ident: e_1_2_9_10_1 doi: 10.1098/rstb.2013.0122 – ident: e_1_2_9_72_1 doi: 10.1038/s43017‐020‐0063‐9 – ident: e_1_2_9_32_1 doi: 10.1029/2001jd000663 – ident: e_1_2_9_27_1 doi: 10.1890/14‐1921.1 – volume-title: Wildland fire in ecosystems effects of fire on soil and water year: 2005 ident: e_1_2_9_6_1 – ident: e_1_2_9_34_1 doi: 10.1016/j.soilbio.2021.108346 – ident: e_1_2_9_46_1 doi: 10.1111/j.1574‐6941.2007.00370.x – ident: e_1_2_9_70_1 doi: 10.1177/0309133317745784 – ident: e_1_2_9_42_1 doi: 10.1007/s11104‐016‐2801‐9 – ident: e_1_2_9_55_1 doi: 10.1016/s0038‐0717(97)00038‐2 – ident: e_1_2_9_57_1 doi: 10.2307/1551412 – ident: e_1_2_9_33_1 doi: 10.1007/s10533‐007‐9104‐4 – ident: e_1_2_9_3_1 doi: 10.1016/j.soilbio.2009.09.010 – ident: e_1_2_9_52_1 doi: 10.1007/s00484‐011‐0517‐3 – ident: e_1_2_9_75_1 doi: 10.1016/s0038‐0717(96)00139‐3 – ident: e_1_2_9_11_1 doi: 10.1126/science.1117368 – ident: e_1_2_9_43_1 doi: 10.1134/s1064229318060108 – volume-title: IPCC special report on the ocean and cryosphere in a changing climate year: 2019 ident: e_1_2_9_45_1 – ident: e_1_2_9_68_1 doi: 10.1111/j.1747‐0765.2008.00309.x – ident: e_1_2_9_63_1 doi: 10.1038/nature14338 – ident: e_1_2_9_25_1 doi: 10.1890/150063 – ident: e_1_2_9_36_1 doi: 10.1016/j.agrformet.2013.12.003 – ident: e_1_2_9_64_1 doi: 10.1016/j.ecoleng.2017.05.033 – ident: e_1_2_9_20_1 doi: 10.3390/rs8010054 – ident: e_1_2_9_29_1 doi: 10.1038/ngeo2305 – ident: e_1_2_9_39_1 doi: 10.1016/j.scitotenv.2020.140363 – ident: e_1_2_9_26_1 doi: 10.5194/bg‐11‐6573‐2014 – ident: e_1_2_9_2_1 doi: 10.1016/j.soilbio.2010.07.011 – ident: e_1_2_9_31_1 doi: 10.1023/a:1010507414994 – ident: e_1_2_9_79_1 doi: 10.1111/ecog.02205 – ident: e_1_2_9_16_1 doi: 10.1111/gcb.13400 – ident: e_1_2_9_24_1 doi: 10.1890/0012-9658(1998)079[1526:TROTPB]2.0.CO;2 – ident: e_1_2_9_69_1 doi: 10.1890/11‐0875.1 – ident: e_1_2_9_8_1 doi: 10.1098/rstb.2012.0490 – ident: e_1_2_9_67_1 doi: 10.1007/s10021‐017‐0209‐x – ident: e_1_2_9_14_1 doi: 10.1111/gcb.14388 – ident: e_1_2_9_65_1 doi: 10.1016/j.soilbio.2019.107605 – volume-title: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change year: 2013 ident: e_1_2_9_48_1 – ident: e_1_2_9_4_1 doi: 10.3390/geosciences10090355 – ident: e_1_2_9_5_1 doi: 10.1111/j.1365‐2486.2004.00868.x – ident: e_1_2_9_77_1 doi: 10.1016/j.scitotenv.2021.148847 – ident: e_1_2_9_73_1 doi: 10.1139/as‐2018‐0018 – ident: e_1_2_9_62_1 – ident: e_1_2_9_49_1 doi: 10.1002/2014jg002872 – ident: e_1_2_9_60_1 doi: 10.1016/j.envres.2020.109328 – ident: e_1_2_9_71_1 doi: 10.1111/gcb.13563 – ident: e_1_2_9_12_1 doi: 10.1111/gcb.15451 – ident: e_1_2_9_61_1 doi: 10.1890/10‐0255.1 – ident: e_1_2_9_50_1 doi: 10.1016/s0378‐1127(99)00032‐8 – ident: e_1_2_9_74_1 doi: 10.1038/s41558‐020‐00920‐8 – ident: e_1_2_9_35_1 doi: 10.1016/j.scitotenv.2017.05.246 – ident: e_1_2_9_51_1 doi: 10.1002/2016jg003511 – ident: e_1_2_9_54_1 doi: 10.1002/2017jg003782 – volume-title: Autecological characteristics of selected species that 695 compete with conifers in British Columbia: A literature review year: 1986 ident: e_1_2_9_19_1 – ident: e_1_2_9_22_1 doi: 10.1111/gcb.13032 – ident: e_1_2_9_47_1 doi: 10.1080/00380768.2014.963666 – ident: e_1_2_9_66_1 doi: 10.1002/grl.50299 – ident: e_1_2_9_13_1 doi: 10.5194/bg‐12‐4017‐2015 – ident: e_1_2_9_30_1 doi: 10.1111/gcb.15721 – ident: e_1_2_9_17_1 doi: 10.1007/s00374‐011‐0660‐3 – start-page: 7 volume-title: Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere year: 1989 ident: e_1_2_9_18_1 – ident: e_1_2_9_9_1 doi: 10.1016/j.soilbio.2013.09.034 – ident: e_1_2_9_23_1 doi: 10.1016/j.soilbio.2016.07.015 – ident: e_1_2_9_28_1 doi: 10.3402/tellusa.v68.28234 – ident: e_1_2_9_21_1 doi: 10.1111/j.1365‐2486.1997.gcb132.x – ident: e_1_2_9_59_1 doi: 10.1016/j.soilbio.2019.107698 – ident: e_1_2_9_76_1 doi: 10.1007/978-3-319-24277-4 – ident: e_1_2_9_37_1 doi: 10.1038/ismej.2015.13 – ident: e_1_2_9_41_1 doi: 10.1038/nature10283 – ident: e_1_2_9_7_1 doi: 10.1007/s10021‐015‐9924‐3 – ident: e_1_2_9_15_1 doi: 10.1038/nature04514 – ident: e_1_2_9_53_1 |
SSID | ssj0003206 |
Score | 2.391782 |
Snippet | Wildfire frequency and expanse in the Arctic have increased in recent years and are projected to increase further with changes in climatic conditions due to... |
SourceID | pubmed crossref |
SourceType | Index Database Enrichment Source |
StartPage | 4882 |
Title | Effects of fire on CO 2 , CH 4 , and N 2 O exchange in a well‐drained Arctic heath ecosystem |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35543023 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fi9NAEF70RLmXQ6t31l8MoiLEHMnutsk-nqFS5a4FqdAHoewmGy20yZFrD8-_3tnd_OjBHagvabvZpJBvmMw3zHxDyJsgVCFXqfAZVcLnMXLWOGS5z1UWyZTFmmnT73w2GY6_8S_zwbyb0me7SzbqOP19Y1_J_6CKa4ir6ZL9B2Tbm-ICfkd88YgI4_GvMB51xRg5ui6T-E-mHvVs9nPsca-pzZzg4tTTv1ybr8lxSM9k7fzMTIjAmPOkMr1SJmzc_PSQkTqB593I1Q0HqBuFvVq7qcukVmt9kZWVlXg81UXr7EdGQ2tVD075WLZx81safV4blWWbqj3dZuXlTtXQfGtr_3RxtdxNSyCjbYri8K3iXKmtn-NO6PoWR_0jVcfhkLrO5B3AztcWMRMLmaFG3buqrSBsTt0l9ygSBEumv3bCYYwGw1pHytRttf-zTx40V14LRK5RChtazB6Sg5oTwIkD-BG5o4seue-mhF71yOGoa0bEbbU3vuiR_hkynrKy2-AdJKsl0g_76zH5XtsGlDkY24CygGQKFD5AMgaOH2gXMMGFKTR2AcsCJOzaBTi7AGsX0NrFEzL7NJolY7-epOGnImI-zaUOozjWIo5SKbTRWGNCh0KzIJOahizSVGjJM3xGoQoEHaiMR2mquDIUgh2SvaIs9FMCuRhwKZFkMhlzjF1lIPBOEcY4XKcBz_vkffNUF2mtMm-GnawWDdtELBYWiz553W49d9IqN206ctC0Wxr8nt165jnZ7yzyBdnbVFv9EkPHjXplreQPVxNnDw |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+fire+on+CO+2+%2C+CH+4+%2C+and+N+2+O+exchange+in+a+well-drained+Arctic+heath+ecosystem&rft.jtitle=Global+change+biology&rft.au=Hermesdorf%2C+Lena&rft.au=Elberling%2C+Bo&rft.au=D%27Imperio%2C+Ludovica&rft.au=Xu%2C+Wenyi&rft.date=2022-08-01&rft.eissn=1365-2486&rft_id=info:doi/10.1111%2Fgcb.16222&rft_id=info%3Apmid%2F35543023&rft.externalDocID=35543023 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |