Large-Language-Model Copilots on the Trading Floor: Impacts on Price Discovery, Conduct Governance, and Desk Productivity

Major sell-side institutions have begun embedding large-language-model (LLM) “desk copilots” such as Bank of America’s Maestro and Goldman Sachs’ GS AI Assistant into sales-and-trading workflows to synthesize internal research, client flow data, and market-microstructure signals in real time (Financ...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Innovative Research in Engineering & Multidisciplinary Physical Sciences Vol. 13; no. 4
Main Author Jarunde, Nikhil
Format Journal Article
LanguageEnglish
Published 31.07.2025
Online AccessGet full text
ISSN2349-7300
2349-7300
DOI10.37082/IJIRMPS.v13.i4.232668

Cover

Loading…
Abstract Major sell-side institutions have begun embedding large-language-model (LLM) “desk copilots” such as Bank of America’s Maestro and Goldman Sachs’ GS AI Assistant into sales-and-trading workflows to synthesize internal research, client flow data, and market-microstructure signals in real time (Financial News London, 2024; Reuters, 2024). This review paper surveys the emerging body of academic, regulatory, and practitioner literature on generative-AI trade assistants (GATAs), framing their potential to reshape pre-trade analytics across equities, foreign exchange, and derivatives markets. We synthesize findings on three core dimensions—information asymmetry, order-routing efficiency, and conduct-risk controls—and propose a conceptual evaluation framework to guide regulators and market participants. The paper concludes by identifying open research questions around model governance, fairness, and systemic risk propagation.
AbstractList Major sell-side institutions have begun embedding large-language-model (LLM) “desk copilots” such as Bank of America’s Maestro and Goldman Sachs’ GS AI Assistant into sales-and-trading workflows to synthesize internal research, client flow data, and market-microstructure signals in real time (Financial News London, 2024; Reuters, 2024). This review paper surveys the emerging body of academic, regulatory, and practitioner literature on generative-AI trade assistants (GATAs), framing their potential to reshape pre-trade analytics across equities, foreign exchange, and derivatives markets. We synthesize findings on three core dimensions—information asymmetry, order-routing efficiency, and conduct-risk controls—and propose a conceptual evaluation framework to guide regulators and market participants. The paper concludes by identifying open research questions around model governance, fairness, and systemic risk propagation.
Author Jarunde, Nikhil
Author_xml – sequence: 1
  givenname: Nikhil
  orcidid: 0009-0004-1070-4623
  surname: Jarunde
  fullname: Jarunde, Nikhil
BookMark eNpNkFtPwjAYhhuDiYj8BdMfwGaPO3hnQHBmRKLcL13bYeNoSTtI9u8dwoVX3_vlPVw892BkndUAPGIU0xRl5Kl4Lz7Xm6_4hGlsWEwoSZLsBowJZXmUUoRG__QdmIZgakQ4JQwjOgZ9KfxOR6Wwu6MYxNop3cK5O5jWdQE6C7tvDbdeKGN3cNk6559hsT8IeXE33kgNFyZId9K-nw1Vq46yg6vzb4WVegaFVXChw8-QdmfTnEzXP4DbRrRBT693ArbL1-38LSo_VsX8pYxkzrNIYCoJlyzFmpFc8IYyxVFCaa2Y5CKVPBFplqaqbnJaZ6zWTOKEYM5qJjBjdAKSy6z0LgSvm-rgzV74vsKo-kNYXRFWA8LKsOqCkP4CRdBorQ
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.37082/IJIRMPS.v13.i4.232668
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2349-7300
ExternalDocumentID 10_37082_IJIRMPS_v13_i4_232668
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ID FETCH-LOGICAL-c958-a13c25c471e429a5f34d50633bd4c5a7c56a7877dbf93b84be4c162154b4a1443
ISSN 2349-7300
IngestDate Wed Aug 06 19:25:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c958-a13c25c471e429a5f34d50633bd4c5a7c56a7877dbf93b84be4c162154b4a1443
ORCID 0009-0004-1070-4623
OpenAccessLink https://www.ijirmps.org/papers/2025/4/232668.pdf
ParticipantIDs crossref_primary_10_37082_IJIRMPS_v13_i4_232668
PublicationCentury 2000
PublicationDate 2025-07-31
PublicationDateYYYYMMDD 2025-07-31
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-31
  day: 31
PublicationDecade 2020
PublicationTitle International Journal of Innovative Research in Engineering & Multidisciplinary Physical Sciences
PublicationYear 2025
SSID ssib025324103
Score 1.9193252
Snippet Major sell-side institutions have begun embedding large-language-model (LLM) “desk copilots” such as Bank of America’s Maestro and Goldman Sachs’ GS AI...
SourceID crossref
SourceType Index Database
Title Large-Language-Model Copilots on the Trading Floor: Impacts on Price Discovery, Conduct Governance, and Desk Productivity
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLY6dtllGmKIwZh84FiXJrabZjc0gSiiqBpF4hbZjiMqUFJVLdJ22K_hh_Ke46RhRAi4RJGtPEV9X-3PL--9j5CDOMJNzlj4I1nOhLGSKakFC7Io7utYa-nk28YXg9MrcXYtrzudh0bW0mqpe-Zva13Je7wKY-BXrJJ9g2drozAA9-BfuIKH4foqH59jGjc79yFHhrpmGAqYz-6K-jMAti93hSsnd0XhNCFHrjDSzTvRd-zAaTCTs8zDLXJsAetFeBETVYInHFFvsbAAp53kRJPYPo8sepo78rKr97bO8sMYS6MPokOfKwR-UiI8qRDkl591rqNaYOVbiePbG58j4iMXoaxCotUCF3IRM-yXX-5FLWPVCs0bSBRtCz-PgMqAu0Zno9_jyWXvPuC9megBXRyUqj1PO23_twPWeYlwInKWEm8nATvJTCSlnQ_kYwiHERQIGf87rlatUAInDZwEd_3yZSm6M3XY-koNFtSgM9Mv5LN3ED0qQbVJOjbfIn_aAEUrQNEipwAo6gFFHaB-Ug8nnHVwojWcutSDia7B1KUAJYpQok0ofSXTk-Ppr1PmtTmYieWQqYCbUBpgNhYIjZIZF6kEtst1KoxUkZEDBVtBlOos5nootBUmGAC9FFooOMPzbbKRF7ndwdw63c_CYWYDY0Uac9XXUahNKjMV2X7Kv5HD6qdK5mUHluRlP-2--Yk98mkN0O9kY7lY2X0gm0v9w_n6Ef9IgbY
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Language-Model+Copilots+on+the+Trading+Floor%3A+Impacts+on+Price+Discovery%2C+Conduct+Governance%2C+and+Desk+Productivity&rft.jtitle=International+Journal+of+Innovative+Research+in+Engineering+%26+Multidisciplinary+Physical+Sciences&rft.au=Jarunde%2C+Nikhil&rft.date=2025-07-31&rft.issn=2349-7300&rft.eissn=2349-7300&rft.volume=13&rft.issue=4&rft_id=info:doi/10.37082%2FIJIRMPS.v13.i4.232668&rft.externalDBID=n%2Fa&rft.externalDocID=10_37082_IJIRMPS_v13_i4_232668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-7300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-7300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-7300&client=summon