Practical and theoretical considerations for the determination of δ 13 C VPDB values of methylmercury in the environment

Analytical methods that can identify the source and fate of mercury and organomecury compounds are likely to be useful tools to investigate mercury in the environment. Carbon isotope ratio analysis of methylmercury (MeHg) together with mercury isotope ratios may offer a robust tool to study environm...

Full description

Saved in:
Bibliographic Details
Published inRapid communications in mass spectrometry Vol. 33; no. 13; pp. 1122 - 1136
Main Authors Dunn, Philip J H, Bilsel, Mine, Şimşek, Adnan, Gören, Ahmet Ceyhan, Tunç, Murat, Ogrinc, Nives, Horvat, Milena, Goenaga-Infante, Heidi
Format Journal Article
LanguageEnglish
Published England 15.07.2019
Online AccessGet full text

Cover

Loading…
More Information
Summary:Analytical methods that can identify the source and fate of mercury and organomecury compounds are likely to be useful tools to investigate mercury in the environment. Carbon isotope ratio analysis of methylmercury (MeHg) together with mercury isotope ratios may offer a robust tool to study environmental cycling of organomercury compounds within fish tissues and other matrices. MeHg carbon isotope ratios were determined by gas chromatography/combustion-isotope ratio mass spectrometry (GC/C-IRMS) either directly or following derivatization using sodium tetraethylborate. The effects of normalisation protocol and of derivatization on the measurement uncertainty of the methylmercury δ C values were investigated. GC/C-IRMS analysis resulted in a δ C value for an in-house MeHg reference material of δ C = -68.3 ± 7.7 ‰ (combined standard uncertainty, k = 1). This agreed very well with the value obtained by offline flow-injection analysis-chemical oxidation-isotope ratio mass spectrometry of δ C = -68.85 ± 0.17 ‰ (combined standard uncertainty, k = 1) although the uncertainty was substantially larger. The minimum amount of MeHg required for analysis was determined to be 20 μg. While the δ C values of MeHg can be obtained by GC/C-IRMS methods with or without derivatization, the low abundance of MeHg precludes such analyses in fish tissues unless there is substantial MeHg contamination. Environmental samples with sufficient MeHg pollution can be studied using these methods provided that the MeHg can be quantitatively extracted. The more general findings from this study regarding derivatization protocol implementation within an autosampler vial as well as measurement uncertainty associated with derivatization, normalisation to reporting scales and integration are applicable to other GC/C-IRMS-based measurements.
ISSN:0951-4198
1097-0231
DOI:10.1002/rcm.8453