Machine Learning-Based Detection of Wormhole Attacks in IoT Networks Using Classification Models
The widespread adoption of Internet of Things (IoT) networks has introduced new cybersecurity challenges, particularly wormhole attacks. These attacks pose a significant threat to IoT environments by manipulating network routing without altering packet contents, making them difficult to detect using...
Saved in:
Published in | International journal of recent technology and engineering Vol. 14; no. 1; pp. 31 - 40 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
30.05.2025
|
Online Access | Get full text |
ISSN | 2277-3878 2277-3878 |
DOI | 10.35940/ijrte.A8226.14010525 |
Cover
Loading…
Abstract | The widespread adoption of Internet of Things (IoT) networks has introduced new cybersecurity challenges, particularly wormhole attacks. These attacks pose a significant threat to IoT environments by manipulating network routing without altering packet contents, making them difficult to detect using traditional intrusion detection systems (IDS). This study explores the application of machine learning (ML) techniques for detecting wormhole attacks in IoT networks. The research compares five machine learning classifiers: Sparse Representation Classifier (SRC), Multi-Layer Perceptron (MLP), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), and XGBoost, based on metrics such as accuracy, precision, recall, F1-score, and computational efficiency. Data preprocessing techniques were applied to a publicly available IoT dataset to improve the performance of these models. Among the classifiers tested, XGBoost demonstrated superior performance with a detection accuracy of 99.97%, outpacing both traditional and deep learning models. The results highlight the potential of ensemble learning approaches in enhancing IoT security, especially for real-time applications in resource-constrained environments. The study underscores the importance of balancing detection accuracy with computational efficiency when selecting models for dynamic IoT networks. Future work will explore federated learning and hybrid deep learning models to further improve the detection capabilities of wormhole attacks in IoT settings. |
---|---|
AbstractList | The widespread adoption of Internet of Things (IoT) networks has introduced new cybersecurity challenges, particularly wormhole attacks. These attacks pose a significant threat to IoT environments by manipulating network routing without altering packet contents, making them difficult to detect using traditional intrusion detection systems (IDS). This study explores the application of machine learning (ML) techniques for detecting wormhole attacks in IoT networks. The research compares five machine learning classifiers: Sparse Representation Classifier (SRC), Multi-Layer Perceptron (MLP), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), and XGBoost, based on metrics such as accuracy, precision, recall, F1-score, and computational efficiency. Data preprocessing techniques were applied to a publicly available IoT dataset to improve the performance of these models. Among the classifiers tested, XGBoost demonstrated superior performance with a detection accuracy of 99.97%, outpacing both traditional and deep learning models. The results highlight the potential of ensemble learning approaches in enhancing IoT security, especially for real-time applications in resource-constrained environments. The study underscores the importance of balancing detection accuracy with computational efficiency when selecting models for dynamic IoT networks. Future work will explore federated learning and hybrid deep learning models to further improve the detection capabilities of wormhole attacks in IoT settings. |
Author | Alajmani, Samah Hazzaa Almalki, Manar Mishal |
Author_xml | – sequence: 1 givenname: Manar Mishal orcidid: 0009-0002-0678-5083 surname: Almalki fullname: Almalki, Manar Mishal – sequence: 2 givenname: Samah Hazzaa orcidid: 0009-0000-7152-9559 surname: Alajmani fullname: Alajmani, Samah Hazzaa |
BookMark | eNpNkMlOwzAARC1UJErpJyD5B1K8Jz6WsFVq4RLEMTheqEtqIzsS4u-JAkhoDjNzmDm8czALMVgALjFaUS4ZuvKHNNjVuiJErDBDGHHCT8CckLIsaFVWs3_5DCxzPiCEMBWYUTEHrzul9z5YuLUqBR_eimuVrYE3drB68DHA6OBLTMd97C1cD4PS7xn6ADexgY92-Ixp7M95XMK6Vzl757WahrtobJ8vwKlTfbbLX1-A5u62qR-K7dP9pl5vCy0pL6gQThjjpOJSyNIR1qmSsU7KkghRGT3KMOGMoBXBHbLcCEVR12nJBekYXQD-c6tTzDlZ134kf1Tpq8WonUC1E6h2AtX-gaLf4sZf5Q |
Cites_doi | 10.1155/2022/2375702 10.24996/ijs.2022.63.10.36 10.1109/UBMK52708.2021.9558996 10.3390/s22186765 10.35940/ijrte.F8230.038620 10.53555/AJBR.v27i3.5445 10.35940/ijese.D2547.0311423 10.1007/978-3-031-03918-8_4 10.3389/fpubh.2021.737149 10.1016/j.cose.2022.103014 10.1155/2020/8838571 10.35940/ijeat.A9707.109119 10.1109/ICCCNT45670.2019.8944634 10.1016/j.ijcce.2023.01.002 10.35940/ijitee.B1230.1292S419 10.7717/peerj-cs.2257 10.3390/electronics11152324 10.3390/s19091977 10.62411/jcta.11901 10.1515/comp-2022-0245 10.32628/IJSRST52411150 10.37934/araset.51.2.153176 10.1007/s40998-020-00351-3 |
ContentType | Journal Article |
CorporateAuthor | Department of Cybersecurity, Taif University, Taif, Saudi Arabia Assistant Professor, Department of Information Technology, Taif University, Taif, Saudi Arabia |
CorporateAuthor_xml | – name: Assistant Professor, Department of Information Technology, Taif University, Taif, Saudi Arabia – name: Department of Cybersecurity, Taif University, Taif, Saudi Arabia |
DBID | AAYXX CITATION |
DOI | 10.35940/ijrte.A8226.14010525 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2277-3878 |
EndPage | 40 |
ExternalDocumentID | 10_35940_ijrte_A8226_14010525 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E OK1 RNS |
ID | FETCH-LOGICAL-c935-366f6ddf9a59697f24ba744b9972668dcdcdd46fd63821b0e5d6a30bbc9562b43 |
ISSN | 2277-3878 |
IngestDate | Sun Jul 06 05:09:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c935-366f6ddf9a59697f24ba744b9972668dcdcdd46fd63821b0e5d6a30bbc9562b43 |
ORCID | 0009-0002-0678-5083 0009-0000-7152-9559 |
OpenAccessLink | https://doi.org/10.35940/ijrte.a8226.14010525 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_35940_ijrte_A8226_14010525 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-30 |
PublicationDateYYYYMMDD | 2025-05-30 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | International journal of recent technology and engineering |
PublicationYear | 2025 |
References | ref13 ref35 ref12 ref15 ref37 ref14 ref36 ref31 ref11 ref33 ref10 ref0 ref2 ref1 ref17 ref16 ref19 ref18 Ntayagabiri (ref28) 2025; 2 Murty (ref34) 2023 Thapar (ref32) 2020 Selladevi (ref30) 2019 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref13 doi: 10.1155/2022/2375702 – ident: ref25 doi: 10.24996/ijs.2022.63.10.36 – ident: ref4 doi: 10.1109/UBMK52708.2021.9558996 – ident: ref18 doi: 10.3390/s22186765 – ident: ref33 doi: 10.35940/ijrte.F8230.038620 – ident: ref2 doi: 10.53555/AJBR.v27i3.5445 – ident: ref35 doi: 10.35940/ijese.D2547.0311423 – ident: ref7 – ident: ref23 doi: 10.1007/978-3-031-03918-8_4 – ident: ref26 doi: 10.3389/fpubh.2021.737149 – ident: ref1 doi: 10.1016/j.cose.2022.103014 – ident: ref27 doi: 10.1155/2020/8838571 – year: 2019 ident: ref30 article-title: A Hybridized Immune System for Avoidance of Wormhole Attacks in Manet publication-title: In International Journal of Engineering and Advanced Technology (Vol doi: 10.35940/ijeat.A9707.109119 – year: 2020 ident: ref32 article-title: Wormhole Attack Isolation Access from Mobile Ad hoc Network with Delay Prediction Method publication-title: In International Journal of Recent Technology and Engineering (IJRTE) (Vol doi: 10.35940/ijrte.F8230.038620 – ident: ref11 doi: 10.1109/ICCCNT45670.2019.8944634 – ident: ref12 doi: 10.1109/ICCCNT45670.2019.8944634 – ident: ref19 doi: 10.1016/j.ijcce.2023.01.002 – ident: ref36 doi: 10.35940/ijitee.B1230.1292S419 – ident: ref20 doi: 10.1016/j.ijcce.2023.01.002 – ident: ref6 doi: 10.7717/peerj-cs.2257 – ident: ref8 doi: 10.1109/ICCCNT45670.2019.8944634 – ident: ref9 doi: 10.1109/ICCCNT45670.2019.8944634 – ident: ref17 doi: 10.3390/electronics11152324 – ident: ref0 doi: 10.3390/s19091977 – volume: 2 start-page: 395 issue: 3 year: 2025 ident: ref28 article-title: A comparative analysis of supervised Machine learning algorithms for IoT attack detection and Classification publication-title: Journal of Computing Theories and Applications doi: 10.62411/jcta.11901 – ident: ref3 doi: 10.53555/AJBR.v27i3.5445 – ident: ref10 doi: 10.1515/comp-2022-0245 – year: 2023 ident: ref34 article-title: Neighbour Node Ratio AODV (NNR-AODV) Routing Protocol for Wormhole Attack Detection in MANETs publication-title: In International Journal of Emerging Science and Engineering (Vol doi: 10.35940/ijese.D2547.0311423 – ident: ref21 doi: 10.32628/IJSRST52411150 – ident: ref24 doi: 10.1007/978-3-031-03918-8_4 – ident: ref14 doi: 10.37934/araset.51.2.153176 – ident: ref22 doi: 10.1007/s40998-020-00351-3 – ident: ref15 doi: 10.37934/araset.51.2.153176 – ident: ref16 doi: 10.3390/electronics11152324 – ident: ref5 doi: 10.3390/s19091977 – ident: ref31 doi: 10.35940/ijeat.A9707.109119 – ident: ref37 doi: 10.35940/ijitee.B1230.1292S419 – ident: ref29 doi: 10.62411/jcta.11901 |
SSID | ssj0001361436 |
Score | 2.2932334 |
Snippet | The widespread adoption of Internet of Things (IoT) networks has introduced new cybersecurity challenges, particularly wormhole attacks. These attacks pose a... |
SourceID | crossref |
SourceType | Index Database |
StartPage | 31 |
Title | Machine Learning-Based Detection of Wormhole Attacks in IoT Networks Using Classification Models |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5UIPCChVSwHtgZtl49jrtX1Mq6KAFC6kam9m17tuG-WBEueSAz-kv7Yzu36ljRBFkaxoLY-czKd57M7MR8jnpIiVr3Xf7YO3dVkRSzfRgXAloAUZ3bk23ICjH3x4yb5fR9e93n2namldSi_f7Owr-R-twhroFbtkn6HZRigswHfQL1xBw3D9Jx2PTCWkroek3rhn4JOwsrjUeR0JXkFQihy4zqAssZ8eNzi-LcbY6Ys1WSvHFg0YckwsG7KAQIq06aobuW5vHXYGToDJxHqCstmjN-cRup1z2GBqOhNTy5KNRTdLZ4TMz9P2tpjMLMOU81PMxK0zFJuNEN19iSAyR-p-a74CPBwOE0vQ4-kda7X9ZU9wZo1p5R6sW7ZDnR4b_DBKGZZI3k2WpfYGEO1wD1NGZOdrPVx9qv_I8TXliJAIGUGZEZMZMVktZo-8gLcO0OiP_nT270IIbAwDZfOjbIOYkfRl1wt1Qp9ODDN-TV5VyQcdWCS9IT09f0sOOiMpD8mvClN0G1O0wRRdFLTGFK0wRe_mFDBFa0xRgym6jSlqMfWOjL9ejM-HbsXC4eZpCCrlvOBKFamIUp7GRcCkiBmT2HDNeaJy-CjGCwWGPOhLX0eKi9CXMofMO5AsPCL788VcHxMKmQP3NUbgYcQKkSRK-YpHoUwSCWlEfEK8-v_JfttZK9lfVfP-uQ-ckpctVD-Q_XK51h8hqCzlJ6PdB_LRd7g |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Detection+of+Wormhole+Attacks+in+IoT+Networks+Using+Classification+Models&rft.jtitle=International+journal+of+recent+technology+and+engineering&rft.au=Almalki%2C+Manar+Mishal&rft.au=Alajmani%2C+Samah+Hazzaa&rft.date=2025-05-30&rft.issn=2277-3878&rft.eissn=2277-3878&rft.volume=14&rft.issue=1&rft.spage=31&rft.epage=40&rft_id=info:doi/10.35940%2Fijrte.A8226.14010525&rft.externalDBID=n%2Fa&rft.externalDocID=10_35940_ijrte_A8226_14010525 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2277-3878&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2277-3878&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2277-3878&client=summon |