Machine Learning-Based Detection of Wormhole Attacks in IoT Networks Using Classification Models

The widespread adoption of Internet of Things (IoT) networks has introduced new cybersecurity challenges, particularly wormhole attacks. These attacks pose a significant threat to IoT environments by manipulating network routing without altering packet contents, making them difficult to detect using...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of recent technology and engineering Vol. 14; no. 1; pp. 31 - 40
Main Authors Almalki, Manar Mishal, Alajmani, Samah Hazzaa
Format Journal Article
LanguageEnglish
Published 30.05.2025
Online AccessGet full text
ISSN2277-3878
2277-3878
DOI10.35940/ijrte.A8226.14010525

Cover

Loading…
Abstract The widespread adoption of Internet of Things (IoT) networks has introduced new cybersecurity challenges, particularly wormhole attacks. These attacks pose a significant threat to IoT environments by manipulating network routing without altering packet contents, making them difficult to detect using traditional intrusion detection systems (IDS). This study explores the application of machine learning (ML) techniques for detecting wormhole attacks in IoT networks. The research compares five machine learning classifiers: Sparse Representation Classifier (SRC), Multi-Layer Perceptron (MLP), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), and XGBoost, based on metrics such as accuracy, precision, recall, F1-score, and computational efficiency. Data preprocessing techniques were applied to a publicly available IoT dataset to improve the performance of these models. Among the classifiers tested, XGBoost demonstrated superior performance with a detection accuracy of 99.97%, outpacing both traditional and deep learning models. The results highlight the potential of ensemble learning approaches in enhancing IoT security, especially for real-time applications in resource-constrained environments. The study underscores the importance of balancing detection accuracy with computational efficiency when selecting models for dynamic IoT networks. Future work will explore federated learning and hybrid deep learning models to further improve the detection capabilities of wormhole attacks in IoT settings.
AbstractList The widespread adoption of Internet of Things (IoT) networks has introduced new cybersecurity challenges, particularly wormhole attacks. These attacks pose a significant threat to IoT environments by manipulating network routing without altering packet contents, making them difficult to detect using traditional intrusion detection systems (IDS). This study explores the application of machine learning (ML) techniques for detecting wormhole attacks in IoT networks. The research compares five machine learning classifiers: Sparse Representation Classifier (SRC), Multi-Layer Perceptron (MLP), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), and XGBoost, based on metrics such as accuracy, precision, recall, F1-score, and computational efficiency. Data preprocessing techniques were applied to a publicly available IoT dataset to improve the performance of these models. Among the classifiers tested, XGBoost demonstrated superior performance with a detection accuracy of 99.97%, outpacing both traditional and deep learning models. The results highlight the potential of ensemble learning approaches in enhancing IoT security, especially for real-time applications in resource-constrained environments. The study underscores the importance of balancing detection accuracy with computational efficiency when selecting models for dynamic IoT networks. Future work will explore federated learning and hybrid deep learning models to further improve the detection capabilities of wormhole attacks in IoT settings.
Author Alajmani, Samah Hazzaa
Almalki, Manar Mishal
Author_xml – sequence: 1
  givenname: Manar Mishal
  orcidid: 0009-0002-0678-5083
  surname: Almalki
  fullname: Almalki, Manar Mishal
– sequence: 2
  givenname: Samah Hazzaa
  orcidid: 0009-0000-7152-9559
  surname: Alajmani
  fullname: Alajmani, Samah Hazzaa
BookMark eNpNkMlOwzAARC1UJErpJyD5B1K8Jz6WsFVq4RLEMTheqEtqIzsS4u-JAkhoDjNzmDm8czALMVgALjFaUS4ZuvKHNNjVuiJErDBDGHHCT8CckLIsaFVWs3_5DCxzPiCEMBWYUTEHrzul9z5YuLUqBR_eimuVrYE3drB68DHA6OBLTMd97C1cD4PS7xn6ADexgY92-Ixp7M95XMK6Vzl757WahrtobJ8vwKlTfbbLX1-A5u62qR-K7dP9pl5vCy0pL6gQThjjpOJSyNIR1qmSsU7KkghRGT3KMOGMoBXBHbLcCEVR12nJBekYXQD-c6tTzDlZ134kf1Tpq8WonUC1E6h2AtX-gaLf4sZf5Q
Cites_doi 10.1155/2022/2375702
10.24996/ijs.2022.63.10.36
10.1109/UBMK52708.2021.9558996
10.3390/s22186765
10.35940/ijrte.F8230.038620
10.53555/AJBR.v27i3.5445
10.35940/ijese.D2547.0311423
10.1007/978-3-031-03918-8_4
10.3389/fpubh.2021.737149
10.1016/j.cose.2022.103014
10.1155/2020/8838571
10.35940/ijeat.A9707.109119
10.1109/ICCCNT45670.2019.8944634
10.1016/j.ijcce.2023.01.002
10.35940/ijitee.B1230.1292S419
10.7717/peerj-cs.2257
10.3390/electronics11152324
10.3390/s19091977
10.62411/jcta.11901
10.1515/comp-2022-0245
10.32628/IJSRST52411150
10.37934/araset.51.2.153176
10.1007/s40998-020-00351-3
ContentType Journal Article
CorporateAuthor Department of Cybersecurity, Taif University, Taif, Saudi Arabia
Assistant Professor, Department of Information Technology, Taif University, Taif, Saudi Arabia
CorporateAuthor_xml – name: Assistant Professor, Department of Information Technology, Taif University, Taif, Saudi Arabia
– name: Department of Cybersecurity, Taif University, Taif, Saudi Arabia
DBID AAYXX
CITATION
DOI 10.35940/ijrte.A8226.14010525
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2277-3878
EndPage 40
ExternalDocumentID 10_35940_ijrte_A8226_14010525
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
OK1
RNS
ID FETCH-LOGICAL-c935-366f6ddf9a59697f24ba744b9972668dcdcdd46fd63821b0e5d6a30bbc9562b43
ISSN 2277-3878
IngestDate Sun Jul 06 05:09:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c935-366f6ddf9a59697f24ba744b9972668dcdcdd46fd63821b0e5d6a30bbc9562b43
ORCID 0009-0002-0678-5083
0009-0000-7152-9559
OpenAccessLink https://doi.org/10.35940/ijrte.a8226.14010525
PageCount 10
ParticipantIDs crossref_primary_10_35940_ijrte_A8226_14010525
PublicationCentury 2000
PublicationDate 2025-05-30
PublicationDateYYYYMMDD 2025-05-30
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-30
  day: 30
PublicationDecade 2020
PublicationTitle International journal of recent technology and engineering
PublicationYear 2025
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
ref0
ref2
ref1
ref17
ref16
ref19
ref18
Ntayagabiri (ref28) 2025; 2
Murty (ref34) 2023
Thapar (ref32) 2020
Selladevi (ref30) 2019
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1155/2022/2375702
– ident: ref25
  doi: 10.24996/ijs.2022.63.10.36
– ident: ref4
  doi: 10.1109/UBMK52708.2021.9558996
– ident: ref18
  doi: 10.3390/s22186765
– ident: ref33
  doi: 10.35940/ijrte.F8230.038620
– ident: ref2
  doi: 10.53555/AJBR.v27i3.5445
– ident: ref35
  doi: 10.35940/ijese.D2547.0311423
– ident: ref7
– ident: ref23
  doi: 10.1007/978-3-031-03918-8_4
– ident: ref26
  doi: 10.3389/fpubh.2021.737149
– ident: ref1
  doi: 10.1016/j.cose.2022.103014
– ident: ref27
  doi: 10.1155/2020/8838571
– year: 2019
  ident: ref30
  article-title: A Hybridized Immune System for Avoidance of Wormhole Attacks in Manet
  publication-title: In International Journal of Engineering and Advanced Technology (Vol
  doi: 10.35940/ijeat.A9707.109119
– year: 2020
  ident: ref32
  article-title: Wormhole Attack Isolation Access from Mobile Ad hoc Network with Delay Prediction Method
  publication-title: In International Journal of Recent Technology and Engineering (IJRTE) (Vol
  doi: 10.35940/ijrte.F8230.038620
– ident: ref11
  doi: 10.1109/ICCCNT45670.2019.8944634
– ident: ref12
  doi: 10.1109/ICCCNT45670.2019.8944634
– ident: ref19
  doi: 10.1016/j.ijcce.2023.01.002
– ident: ref36
  doi: 10.35940/ijitee.B1230.1292S419
– ident: ref20
  doi: 10.1016/j.ijcce.2023.01.002
– ident: ref6
  doi: 10.7717/peerj-cs.2257
– ident: ref8
  doi: 10.1109/ICCCNT45670.2019.8944634
– ident: ref9
  doi: 10.1109/ICCCNT45670.2019.8944634
– ident: ref17
  doi: 10.3390/electronics11152324
– ident: ref0
  doi: 10.3390/s19091977
– volume: 2
  start-page: 395
  issue: 3
  year: 2025
  ident: ref28
  article-title: A comparative analysis of supervised Machine learning algorithms for IoT attack detection and Classification
  publication-title: Journal of Computing Theories and Applications
  doi: 10.62411/jcta.11901
– ident: ref3
  doi: 10.53555/AJBR.v27i3.5445
– ident: ref10
  doi: 10.1515/comp-2022-0245
– year: 2023
  ident: ref34
  article-title: Neighbour Node Ratio AODV (NNR-AODV) Routing Protocol for Wormhole Attack Detection in MANETs
  publication-title: In International Journal of Emerging Science and Engineering (Vol
  doi: 10.35940/ijese.D2547.0311423
– ident: ref21
  doi: 10.32628/IJSRST52411150
– ident: ref24
  doi: 10.1007/978-3-031-03918-8_4
– ident: ref14
  doi: 10.37934/araset.51.2.153176
– ident: ref22
  doi: 10.1007/s40998-020-00351-3
– ident: ref15
  doi: 10.37934/araset.51.2.153176
– ident: ref16
  doi: 10.3390/electronics11152324
– ident: ref5
  doi: 10.3390/s19091977
– ident: ref31
  doi: 10.35940/ijeat.A9707.109119
– ident: ref37
  doi: 10.35940/ijitee.B1230.1292S419
– ident: ref29
  doi: 10.62411/jcta.11901
SSID ssj0001361436
Score 2.2932334
Snippet The widespread adoption of Internet of Things (IoT) networks has introduced new cybersecurity challenges, particularly wormhole attacks. These attacks pose a...
SourceID crossref
SourceType Index Database
StartPage 31
Title Machine Learning-Based Detection of Wormhole Attacks in IoT Networks Using Classification Models
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5UIPCChVSwHtgZtl49jrtX1Mq6KAFC6kam9m17tuG-WBEueSAz-kv7Yzu36ljRBFkaxoLY-czKd57M7MR8jnpIiVr3Xf7YO3dVkRSzfRgXAloAUZ3bk23ICjH3x4yb5fR9e93n2namldSi_f7Owr-R-twhroFbtkn6HZRigswHfQL1xBw3D9Jx2PTCWkroek3rhn4JOwsrjUeR0JXkFQihy4zqAssZ8eNzi-LcbY6Ys1WSvHFg0YckwsG7KAQIq06aobuW5vHXYGToDJxHqCstmjN-cRup1z2GBqOhNTy5KNRTdLZ4TMz9P2tpjMLMOU81PMxK0zFJuNEN19iSAyR-p-a74CPBwOE0vQ4-kda7X9ZU9wZo1p5R6sW7ZDnR4b_DBKGZZI3k2WpfYGEO1wD1NGZOdrPVx9qv_I8TXliJAIGUGZEZMZMVktZo-8gLcO0OiP_nT270IIbAwDZfOjbIOYkfRl1wt1Qp9ODDN-TV5VyQcdWCS9IT09f0sOOiMpD8mvClN0G1O0wRRdFLTGFK0wRe_mFDBFa0xRgym6jSlqMfWOjL9ejM-HbsXC4eZpCCrlvOBKFamIUp7GRcCkiBmT2HDNeaJy-CjGCwWGPOhLX0eKi9CXMofMO5AsPCL788VcHxMKmQP3NUbgYcQKkSRK-YpHoUwSCWlEfEK8-v_JfttZK9lfVfP-uQ-ckpctVD-Q_XK51h8hqCzlJ6PdB_LRd7g
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Detection+of+Wormhole+Attacks+in+IoT+Networks+Using+Classification+Models&rft.jtitle=International+journal+of+recent+technology+and+engineering&rft.au=Almalki%2C+Manar+Mishal&rft.au=Alajmani%2C+Samah+Hazzaa&rft.date=2025-05-30&rft.issn=2277-3878&rft.eissn=2277-3878&rft.volume=14&rft.issue=1&rft.spage=31&rft.epage=40&rft_id=info:doi/10.35940%2Fijrte.A8226.14010525&rft.externalDBID=n%2Fa&rft.externalDocID=10_35940_ijrte_A8226_14010525
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2277-3878&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2277-3878&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2277-3878&client=summon