Detecting Fake News Using Hybrid Machine Learning Models

The increasing diffusion of misinformation in online media has raised alarm as a significant threat to information credibility and societal trust. The ease of disseminating false information across social media platforms, news websites, and digital forums has led to severe consequences, including po...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Innovative Research in Computer Science and Technology Vol. 13; no. 3; pp. 127 - 137
Main Authors Rahman, Abdur, Khan, Gulfam, Azad, Afzal, Ejaz, Ahmar, Maurya, Maruti
Format Journal Article
LanguageEnglish
Published 01.06.2025
Online AccessGet full text
ISSN2347-5552
2347-5552
DOI10.55524/ijircst.2025.13.3.20

Cover

Loading…
Abstract The increasing diffusion of misinformation in online media has raised alarm as a significant threat to information credibility and societal trust. The ease of disseminating false information across social media platforms, news websites, and digital forums has led to severe consequences, including political manipulation, financial fraud, and public misinformation. This research outlines a robust strategy for detecting misinformation using Natural Language Processing. To take the detection process a step further, the study analyses the implementation of ensemble models. Ensemble learning combines multiple classifiers to improve generalization and robustness, reducing the likelihood of misclassification and helps the model focus on critical words and phrases that contribute to determining the authenticity of news articles. The operational efficacy of the model is measured exploiting standard evaluation assessment metric fidelity, precision, recall, and F1-score to confirm consistent performance. Inclusion of ensemble learning further improves classification accuracy by reducing biases inherent in individual models. Future work in this domain can focus on Live Monitoring for Misinformation, multilingual analysis, and incorporation of context-aware models to further refine detection capabilities. By continuously evolving NLP-based approaches, researchers and technology developers can serve an important function in mitigating the effect of misinformation on social dynamics.
AbstractList The increasing diffusion of misinformation in online media has raised alarm as a significant threat to information credibility and societal trust. The ease of disseminating false information across social media platforms, news websites, and digital forums has led to severe consequences, including political manipulation, financial fraud, and public misinformation. This research outlines a robust strategy for detecting misinformation using Natural Language Processing. To take the detection process a step further, the study analyses the implementation of ensemble models. Ensemble learning combines multiple classifiers to improve generalization and robustness, reducing the likelihood of misclassification and helps the model focus on critical words and phrases that contribute to determining the authenticity of news articles. The operational efficacy of the model is measured exploiting standard evaluation assessment metric fidelity, precision, recall, and F1-score to confirm consistent performance. Inclusion of ensemble learning further improves classification accuracy by reducing biases inherent in individual models. Future work in this domain can focus on Live Monitoring for Misinformation, multilingual analysis, and incorporation of context-aware models to further refine detection capabilities. By continuously evolving NLP-based approaches, researchers and technology developers can serve an important function in mitigating the effect of misinformation on social dynamics.
Author Ejaz, Ahmar
Khan, Gulfam
Maurya, Maruti
Azad, Afzal
Rahman, Abdur
Author_xml – sequence: 1
  givenname: Abdur
  surname: Rahman
  fullname: Rahman, Abdur
– sequence: 2
  givenname: Gulfam
  surname: Khan
  fullname: Khan, Gulfam
– sequence: 3
  givenname: Afzal
  surname: Azad
  fullname: Azad, Afzal
– sequence: 4
  givenname: Ahmar
  surname: Ejaz
  fullname: Ejaz, Ahmar
– sequence: 5
  givenname: Maruti
  surname: Maurya
  fullname: Maurya, Maruti
BookMark eNpNkEFOwzAQRS1UJErbIyDlAgm2J5PES1QoRUph064txxmDoSTIjoR6exLogtV_fzT6i3fNZl3fEWM3gmeIKPNb_-6DjUMmucRMQAYjXbC5hLxMp4_ZP75iqxh9w3MEUQml5qy6p4Hs4LvXZGM-KHmm75gc4tS3pyb4NtkZ--Y7SmoyoZvuu76lY1yyS2eOkVbnXLD95mG_3qb1y-PT-q5OrQKeSmGddIoKlVtCJagqjOEWpXW8RDBFTrJtjCzGplRZNdJxQ7xsW0RwpYUFw79ZG_oYAzn9FfynCSctuP4VoM8C9CRAC9AwEvwACGpR4A
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.55524/ijircst.2025.13.3.20
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2347-5552
EndPage 137
ExternalDocumentID 10_55524_ijircst_2025_13_3_20
GroupedDBID AAYXX
ADWVC
CITATION
ID FETCH-LOGICAL-c930-21cf2f9e694ce591e86aa0c52cf0753a64e2dba260759978b2f0ae07dd553f7c3
ISSN 2347-5552
IngestDate Thu Jul 03 08:11:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c930-21cf2f9e694ce591e86aa0c52cf0753a64e2dba260759978b2f0ae07dd553f7c3
OpenAccessLink https://ijircst.org/DOC/20-Detecting-Fake-News-Using-Hybrid-Machine-Learning-Models.pdf
PageCount 11
ParticipantIDs crossref_primary_10_55524_ijircst_2025_13_3_20
PublicationCentury 2000
PublicationDate 2025-6-00
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-6-00
PublicationDecade 2020
PublicationTitle International Journal of Innovative Research in Computer Science and Technology
PublicationYear 2025
SSID ssib045318199
ssib025324101
Score 1.9130534
Snippet The increasing diffusion of misinformation in online media has raised alarm as a significant threat to information credibility and societal trust. The ease of...
SourceID crossref
SourceType Index Database
StartPage 127
Title Detecting Fake News Using Hybrid Machine Learning Models
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4FuPSCQG1FgaI9cKvs2rteP44RBEILHKpU4mbtU-EVUB5I5ND_wj9l1msvVogQ9GJZK2UU5_s0_mYyD4T2TZ4yBdI4KFgig4REKsgVyYNMk1yYjEoibHPy2Xna_5v8umAXnc5Tq2ppNhWhnC_tK_kfVOEMcLVdsh9A1huFA7gHfOEKCMP1XRgfavsXgA32j_h1Vas4-eFqAPqPthPLrhUaWhl52iRA7Oqzm0lbkb5OCdb69KTel_qgfXmeaxF0ayC8V7CZ99cJ-j98WOdWu0LNfAXw76E7PJ7dGH7r2TZ3ROuaOfcVH70rXiW3u2Bo3E5OEPZSROV8GKFJFjDmhtSGeslZ44Rpi2y05VFjNzqgfjnHbkLMot-31hJA6_LqciwntkSWsDCmIXWddgtzthfef74qEeKhylBZmymtmTKmJYW7FbRGIBKx20HO_vUal0UYCNI48i4yAZeWu62l_jFd31hl-eeyL9hSRC1pM9hA6zXmuOsItok6evQZ5Z5c2JILW3LhilzYkQvX5MINubAj1xc0OOoNDvpBvWYjkAWNAhJLQ0yh0yKxLXmxzlPOI8mINCAnKU8TTZTgEPdmrCiyXBATcR1lSjFGTSbpV7Q6uhvpLYRlpONCUSGMgUBAF9xAPAISlqYZl0rQbyhsnrS8d8NUyjd_9O2PfmAHfXqh4S5anY5n-juoxqnYq3B7BjCua38
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Fake+News+Using+Hybrid+Machine+Learning+Models&rft.jtitle=International+Journal+of+Innovative+Research+in+Computer+Science+and+Technology&rft.au=Rahman%2C+Abdur&rft.au=Khan%2C+Gulfam&rft.au=Azad%2C+Afzal&rft.au=Ejaz%2C+Ahmar&rft.date=2025-06-01&rft.issn=2347-5552&rft.eissn=2347-5552&rft.volume=13&rft.issue=3&rft.spage=127&rft.epage=137&rft_id=info:doi/10.55524%2Fijircst.2025.13.3.20&rft.externalDBID=n%2Fa&rft.externalDocID=10_55524_ijircst_2025_13_3_20
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2347-5552&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2347-5552&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2347-5552&client=summon