Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis
Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target dis...
Saved in:
Published in | Genome Biology Vol. 23; no. 1; pp. 268 - 42 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
27.12.2022
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.
To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.
Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk. |
---|---|
AbstractList | Abstract Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk. Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk. Abstract Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis ( N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk. Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk. Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk. Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.BACKGROUNDGenetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.RESULTSTo expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.CONCLUSIONSTaken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk. Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk. Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk. © 2022, The Author(s). |
ArticleNumber | 268 |
Author | Yin, Xianyong Brumpton, Ben M Lingren, Todd Helgadottir, Anna Luan, Jian'an Terao, Chikashi Clarke, Shoa L Bradford, Yuki Hunt, Karen A Bhatti, Konain Fatima Ji, Yingji Pacheco, Jennifer Allen Graham, Sarah E Miller, Jason E Graff, Mariaelisa Locke, Adam E Veturi, Yogasudha Trivedi, Bhavi Medina-Gomez, Carolina Winkler, Thomas W Bork-Jensen, Jette Martin, Hilary C Yousri, Noha A Hwu, Chii-Min Pandit, Anita Han, Sohee Sakaue, Saori Rasheed, Asif Vedantam, Sailaja Gustafsson, Stefan Gudbjartsson, Daniel F Holm, Hilma Wang, Zeyuan Hindy, George Warren, Helen R Zhao, Wei Yao, Jie Zhou, Wei Hilliard, Austin T Wood, Andrew R Surakka, Ida Takayama, Jun Hottenga, Jouke Jan Goel, Anuj Faul, Jessica D Mitchell, Ruth E Brown, Michael R Thorleifsson, Gudmar Hwang, Mi Yeong Mauro, Pala Yu, Ketian Akiyama, Masato Matsuda, Fumihiko Feng, QiPing Noordam, Raymond Olafsson, Isleifur Zhao, Jing-Hua Wang, Yuxuan Campbell, Archie Chai, Jin Fang Kårhus, Line L Kullo, Iftikhar J Millwood, Iona Y Lin, Kuang Manichaikul, Ani Sengupta, Dhriti Zhang, Weihua Ramirez, Julia Havuli |
Author_xml | – sequence: 1 givenname: Stavroula surname: Kanoni fullname: Kanoni, Stavroula organization: William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK – sequence: 2 givenname: Sarah E surname: Graham fullname: Graham, Sarah E organization: Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, 48109, USA – sequence: 3 givenname: Yuxuan surname: Wang fullname: Wang, Yuxuan organization: Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Ave, Boston, MA, 02118, USA – sequence: 4 givenname: Ida surname: Surakka fullname: Surakka, Ida organization: Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, 48109, USA – sequence: 5 givenname: Shweta surname: Ramdas fullname: Ramdas, Shweta organization: Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA – sequence: 6 givenname: Xiang surname: Zhu fullname: Zhu, Xiang organization: Department of Statistics, Stanford University, Stanford, CA, USA – sequence: 7 givenname: Shoa L surname: Clarke fullname: Clarke, Shoa L organization: Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA – sequence: 8 givenname: Konain Fatima surname: Bhatti fullname: Bhatti, Konain Fatima organization: William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK – sequence: 9 givenname: Sailaja surname: Vedantam fullname: Vedantam, Sailaja organization: Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA – sequence: 10 givenname: Thomas W surname: Winkler fullname: Winkler, Thomas W organization: Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany – sequence: 11 givenname: Adam E surname: Locke fullname: Locke, Adam E organization: McDonnell Genome Institute and Department of Medicine, Washington University, St. Louis, MO, 63108, USA – sequence: 12 givenname: Eirini surname: Marouli fullname: Marouli, Eirini organization: William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK – sequence: 13 givenname: Greg J M surname: Zajac fullname: Zajac, Greg J M organization: Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA – sequence: 14 givenname: Kuan-Han H surname: Wu fullname: Wu, Kuan-Han H organization: Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA – sequence: 15 givenname: Ioanna surname: Ntalla fullname: Ntalla, Ioanna organization: Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK – sequence: 16 givenname: Qin surname: Hui fullname: Hui, Qin organization: Atlanta VA Health Care System, Decatur, GA, USA – sequence: 17 givenname: Derek surname: Klarin fullname: Klarin, Derek organization: Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA – sequence: 18 givenname: Austin T surname: Hilliard fullname: Hilliard, Austin T organization: VA Palo Alto Health Care Systems, Palo Alto, CA, USA – sequence: 19 givenname: Zeyuan surname: Wang fullname: Wang, Zeyuan organization: Atlanta VA Health Care System, Decatur, GA, USA – sequence: 20 givenname: Chao surname: Xue fullname: Xue, Chao organization: Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, 48109, USA – sequence: 21 givenname: Gudmar surname: Thorleifsson fullname: Thorleifsson, Gudmar organization: deCODE Genetics/Amgen, Inc. Sturlugata 8, Reykjavik, 102, Iceland – sequence: 22 givenname: Anna surname: Helgadottir fullname: Helgadottir, Anna organization: deCODE Genetics/Amgen, Inc. Sturlugata 8, Reykjavik, 102, Iceland – sequence: 23 givenname: Daniel F surname: Gudbjartsson fullname: Gudbjartsson, Daniel F organization: School of Engineering and Natural Sciences, University of Iceland, Sæmundargötu 2, Reykjavik, 102, Iceland – sequence: 24 givenname: Hilma surname: Holm fullname: Holm, Hilma organization: deCODE Genetics/Amgen, Inc. Sturlugata 8, Reykjavik, 102, Iceland – sequence: 25 givenname: Isleifur surname: Olafsson fullname: Olafsson, Isleifur organization: Department of Clinical Biochemistry, Landspitali - National University Hospital of Iceland, Hringbraut, Reykjavik, 101, Iceland – sequence: 26 givenname: Mi Yeong surname: Hwang fullname: Hwang, Mi Yeong organization: Division of Genome Science, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-Do, South Korea – sequence: 27 givenname: Sohee surname: Han fullname: Han, Sohee organization: Division of Genome Science, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-Do, South Korea – sequence: 28 givenname: Masato surname: Akiyama fullname: Akiyama, Masato organization: Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan – sequence: 29 givenname: Saori surname: Sakaue fullname: Sakaue, Saori organization: Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan – sequence: 30 givenname: Chikashi surname: Terao fullname: Terao, Chikashi organization: Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan – sequence: 31 givenname: Masahiro surname: Kanai fullname: Kanai, Masahiro organization: Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA – sequence: 32 givenname: Wei surname: Zhou fullname: Zhou, Wei organization: Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA – sequence: 33 givenname: Ben M surname: Brumpton fullname: Brumpton, Ben M organization: Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway – sequence: 34 givenname: Humaira surname: Rasheed fullname: Rasheed, Humaira organization: Division of Medicine and Laboratory Sciences, University of Oslo, Oslo, Norway – sequence: 35 givenname: Aki S surname: Havulinna fullname: Havulinna, Aki S organization: Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland – sequence: 36 givenname: Yogasudha surname: Veturi fullname: Veturi, Yogasudha organization: Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA – sequence: 37 givenname: Jennifer Allen surname: Pacheco fullname: Pacheco, Jennifer Allen organization: Center for Genetic Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60618, USA – sequence: 38 givenname: Elisabeth A surname: Rosenthal fullname: Rosenthal, Elisabeth A organization: Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA – sequence: 39 givenname: Todd surname: Lingren fullname: Lingren, Todd organization: Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA – sequence: 40 givenname: QiPing surname: Feng fullname: Feng, QiPing organization: Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA – sequence: 41 givenname: Iftikhar J surname: Kullo fullname: Kullo, Iftikhar J organization: Department of Cardiovascular Medicine and the Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA – sequence: 42 givenname: Akira surname: Narita fullname: Narita, Akira organization: Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan – sequence: 43 givenname: Jun surname: Takayama fullname: Takayama, Jun organization: Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan – sequence: 44 givenname: Hilary C surname: Martin fullname: Martin, Hilary C organization: Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK – sequence: 45 givenname: Karen A surname: Hunt fullname: Hunt, Karen A organization: Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK – sequence: 46 givenname: Bhavi surname: Trivedi fullname: Trivedi, Bhavi organization: Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK – sequence: 47 givenname: Jeffrey surname: Haessler fullname: Haessler, Jeffrey organization: Fred Hutchinson Cancer Center, Division of Public Health Sciences, Seattle, WA, 9810, USA – sequence: 48 givenname: Franco surname: Giulianini fullname: Giulianini, Franco organization: Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA – sequence: 49 givenname: Yuki surname: Bradford fullname: Bradford, Yuki organization: Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA – sequence: 50 givenname: Jason E surname: Miller fullname: Miller, Jason E organization: Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA – sequence: 51 givenname: Archie surname: Campbell fullname: Campbell, Archie organization: Usher Institute, The University of Edinburgh, Nine, Edinburgh Bioquarter, 9 Little France Road, Edinburgh, EH16 4UX, UK – sequence: 52 givenname: Kuang surname: Lin fullname: Lin, Kuang organization: Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK – sequence: 53 givenname: Iona Y surname: Millwood fullname: Millwood, Iona Y organization: Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK – sequence: 54 givenname: Asif surname: Rasheed fullname: Rasheed, Asif organization: Center for Non-Communicable Diseases, Karachi, Sindh, Pakistan – sequence: 55 givenname: George surname: Hindy fullname: Hindy, George organization: Department of Population Medicine, Qatar University College of Medicine, QU Health, Doha, Qatar – sequence: 56 givenname: Jessica D surname: Faul fullname: Faul, Jessica D organization: Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA – sequence: 57 givenname: Wei surname: Zhao fullname: Zhao, Wei organization: Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA – sequence: 58 givenname: David R surname: Weir fullname: Weir, David R organization: Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA – sequence: 59 givenname: Constance surname: Turman fullname: Turman, Constance organization: Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA – sequence: 60 givenname: Hongyan surname: Huang fullname: Huang, Hongyan organization: Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA – sequence: 61 givenname: Mariaelisa surname: Graff fullname: Graff, Mariaelisa organization: Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA – sequence: 62 givenname: Ananyo surname: Choudhury fullname: Choudhury, Ananyo organization: Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa – sequence: 63 givenname: Dhriti surname: Sengupta fullname: Sengupta, Dhriti organization: Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa – sequence: 64 givenname: Anubha surname: Mahajan fullname: Mahajan, Anubha organization: Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK – sequence: 65 givenname: Michael R surname: Brown fullname: Brown, Michael R organization: Human Genetics Center, Department of Epidemiology, School of Public Health, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA – sequence: 66 givenname: Weihua surname: Zhang fullname: Zhang, Weihua organization: Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK – sequence: 67 givenname: Ketian surname: Yu fullname: Yu, Ketian organization: Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA – sequence: 68 givenname: Ellen M surname: Schmidt fullname: Schmidt, Ellen M organization: Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA – sequence: 69 givenname: Anita surname: Pandit fullname: Pandit, Anita organization: Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA – sequence: 70 givenname: Stefan surname: Gustafsson fullname: Gustafsson, Stefan organization: Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden – sequence: 71 givenname: Xianyong surname: Yin fullname: Yin, Xianyong organization: Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA – sequence: 72 givenname: Jian'an surname: Luan fullname: Luan, Jian'an organization: MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK – sequence: 73 givenname: Jing-Hua surname: Zhao fullname: Zhao, Jing-Hua organization: Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge, CB1 8RN, UK – sequence: 74 givenname: Fumihiko surname: Matsuda fullname: Matsuda, Fumihiko organization: Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan – sequence: 75 givenname: Hye-Mi surname: Jang fullname: Jang, Hye-Mi organization: Division of Genome Science, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-Do, South Korea – sequence: 76 givenname: Kyungheon surname: Yoon fullname: Yoon, Kyungheon organization: Division of Genome Science, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-Do, South Korea – sequence: 77 givenname: Carolina surname: Medina-Gomez fullname: Medina-Gomez, Carolina organization: Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands – sequence: 78 givenname: Achilleas surname: Pitsillides fullname: Pitsillides, Achilleas organization: Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Ave, Boston, MA, 02118, USA – sequence: 79 givenname: Jouke Jan surname: Hottenga fullname: Hottenga, Jouke Jan organization: Amsterdam Public Health Research Institute, Amsterdam UMC, the Netherlands – sequence: 80 givenname: Andrew R surname: Wood fullname: Wood, Andrew R organization: Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK – sequence: 81 givenname: Yingji surname: Ji fullname: Ji, Yingji organization: Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK – sequence: 82 givenname: Zishan surname: Gao fullname: Gao, Zishan organization: Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany – sequence: 83 givenname: Simon surname: Haworth fullname: Haworth, Simon organization: Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK – sequence: 84 givenname: Noha A surname: Yousri fullname: Yousri, Noha A organization: Department of Computer and Systems Engineering, Alexandria University, Alexandria, Egypt – sequence: 85 givenname: Ruth E surname: Mitchell fullname: Mitchell, Ruth E organization: Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield Grove, Bristol, BS8 2BN, UK – sequence: 86 givenname: Jin Fang surname: Chai fullname: Chai, Jin Fang organization: Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, 117549, Singapore – sequence: 87 givenname: Mette surname: Aadahl fullname: Aadahl, Mette organization: Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark – sequence: 88 givenname: Anne A surname: Bjerregaard fullname: Bjerregaard, Anne A organization: Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark – sequence: 89 givenname: Jie surname: Yao fullname: Yao, Jie organization: The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA – sequence: 90 givenname: Ani surname: Manichaikul fullname: Manichaikul, Ani organization: Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22903, USA – sequence: 91 givenname: Chii-Min surname: Hwu fullname: Hwu, Chii-Min organization: Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan – sequence: 92 givenname: Yi-Jen surname: Hung fullname: Hung, Yi-Jen organization: Institute of Preventive Medicine, National Defense Medical Center, Postbox 90048~700, Sanhsia Dist, New Taipei City, 237101, Taiwan – sequence: 93 givenname: Helen R surname: Warren fullname: Warren, Helen R organization: NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK – sequence: 94 givenname: Julia surname: Ramirez fullname: Ramirez, Julia organization: Aragon Institute of Engineering Research, University of Zaragoza and Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales Y Nanomedicina, Spain – sequence: 95 givenname: Jette surname: Bork-Jensen fullname: Bork-Jensen, Jette organization: Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark – sequence: 96 givenname: Line L surname: Kårhus fullname: Kårhus, Line L organization: Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark – sequence: 97 givenname: Anuj surname: Goel fullname: Goel, Anuj organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK – sequence: 98 givenname: Maria surname: Sabater-Lleal fullname: Sabater-Lleal, Maria organization: Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden – sequence: 99 givenname: Raymond surname: Noordam fullname: Noordam, Raymond organization: Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands – sequence: 100 givenname: Pala surname: Mauro fullname: Mauro, Pala organization: Istituto Di Ricerca Genetica E Biomedica, Consiglio Nazionale Delle Ricerche, Rome, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36575460$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-498949$$DView record from Swedish Publication Index https://gup.ub.gu.se/publication/325849$$DView record from Swedish Publication Index https://lup.lub.lu.se/record/2892d8c3-156f-46d0-bbaf-84669e3b9936$$DView record from Swedish Publication Index http://kipublications.ki.se/Default.aspx?queryparsed=id:151971555$$DView record from Swedish Publication Index |
BookMark | eNp9U8tu1DAUjVARfcAPsEBZsmjA78cGqSqvSiOxAcTOcmwn4-LEwU4K8_d4ZjqlXZTFdZybc47vde45rY7GOLqqegnBGwgFe5shBlQ2AKESAvMGPqlOIOGk4Qz8OLq3P65Oc74GAEqC2LPqGDPKKWHgpBquhil4o2c_9nXvRpfP6yk4H-cUp815rUdbZ_dn0aG2fohpWvs81Hqu2xCjrYOffFmj8fW8TnHp1_WwhNk3ejQuz2lTD27W5U2HTfb5efW00yG7F7fPs-rbxw9fLz83qy-fri4vVo2RiM1NazjllhkBmcMQAtpxhnTLqGyR40Q4SIjoGLLCMCEl4wwSpq1xxmkMtcVn1dVe10Z9rabkB502KmqvdomYeqXT7E1wShorubCcYWCJtloLRCAArcHQQtehotXstfJvNy3tA7Xb1M-yc6rUxLEoePkofkrR_iMdiJBCySGltHBXj3LDMpVoS2w5SMht-7iQWacIs0C1re6UIIxJh1spMftv6X2RK6l-p4YRFUQW_Pmj-Pf--8Xu4pZFESnkDv5uDy_YwZXrH-ekw8OGH3wZ_Vr18UZJLjHlW4F6L2CSz2UC1RiTVhAIisoKACIF8vr2jBR_LWWk1OCzcSHo0cUlK8SpLHNN2PZHoYNazDm57q4SCNTWMGpvGFUMo3aGUbCQXt3v4Y5ycAj-C2K-Fc4 |
CitedBy_id | crossref_primary_10_1007_s00335_023_10017_0 crossref_primary_10_3389_fnins_2023_1179611 crossref_primary_10_18632_oncotarget_28438 crossref_primary_10_3389_fendo_2023_1301163 crossref_primary_10_1186_s13148_023_01447_3 crossref_primary_10_1186_s13293_024_00602_6 crossref_primary_10_1016_j_joca_2024_01_002 crossref_primary_10_1177_10870547231222219 crossref_primary_10_1016_j_atherosclerosis_2023_117274 crossref_primary_10_1038_s41598_023_41130_4 crossref_primary_10_1161_JAHA_122_029090 crossref_primary_10_1111_dom_15298 crossref_primary_10_1016_j_mad_2023_111792 crossref_primary_10_1016_j_ajhg_2023_09_003 crossref_primary_10_3390_cells12172143 crossref_primary_10_1093_nar_gkad751 |
Cites_doi | 10.2147/VHRM.S209830 10.1097/FPC.0b013e32834eb313 10.1016/j.amsu.2019.04.003 10.1038/ncomms3872 10.1038/s41586-021-04064-3 10.1038/nrg.2015.36 10.1038/s41467-019-09718-5 10.1016/j.jhep.2020.03.006 10.1097/FPC.0000000000000135 10.1186/1756-0500-7-548 10.1186/s12859-018-2135-0 10.1038/s41588-018-0184-y 10.1056/NEJMoa0706728 10.1097/MOL.0000000000000742 10.1056/NEJMoa1615664 10.1371/journal.pgen.1004383 10.1056/NEJMoa1002926 10.1126/science.aaz1776 10.1007/s11154-021-09628-2 10.1038/s41588-018-0064-5 10.1186/1471-2350-8-S1-S17 10.1002/hep.32183 10.1038/s41467-019-10462-z 10.1038/s41467-020-20086-3 10.1016/S2213-8587(19)30264-5 10.1001/jama.2009.1619 10.1016/j.cca.2013.11.010 10.1038/ncomms6890 10.1016/j.ajhg.2008.10.006 10.1038/ng.3913 10.1016/j.annepidem.2016.01.005 10.1101/2020.09.08.20190561 10.1038/nature09266 10.1038/nature09270 10.1016/j.ajhg.2014.01.009 10.1038/ng.3977 10.1093/bioinformatics/btq126 10.1016/j.ajhg.2012.08.032 10.1161/CIRCGEN.119.002711 10.1038/nprot.2014.071 10.1038/s41467-021-22339-1 10.1038/s41588-021-00852-9 10.1038/s41588-018-0047-6 10.1038/s41431-020-00712-w 10.1016/j.jacc.2013.01.100 10.1007/s00125-012-2756-1 10.1038/ng.3300 10.1038/ng.3978 10.1038/s41591-022-01891-3 10.1007/s10557-021-07187-x 10.3390/brainsci10060386 10.2337/dc18-1712 10.1038/ng.2797 10.1126/science.1142358 10.1038/s41588-021-00846-7 10.1161/CIRCGEN.118.002196 10.1038/s41398-020-0822-x 10.1371/journal.pone.0181038 10.1101/2022.03.07.483314 10.1093/nar/gkab953 10.1093/hmg/ddy271 10.5281/zenodo.7130299 10.1016/j.ijcard.2018.05.051 10.1056/NEJMoa1801174 10.1093/hmg/ddx280 10.1155/2021/5529256 10.1038/s41588-021-00879-y 10.1155/2018/1286170 10.1056/NEJMoa1912387 10.1038/ng.3668 10.1038/ng1955 10.1093/bioinformatics/btq340 10.1161/01.ATV.3.3.260 10.1038/ng.2926 10.1186/s13059-019-1801-5 10.1093/eurheartj/ehx373 10.1016/j.jacl.2020.04.011 10.1016/1047-2797(92)90033-M 10.1371/journal.pmed.1003062 10.1016/j.ajhg.2021.11.021 10.1038/s41588-018-0222-9 10.1038/ncomms7065 10.1086/519795 10.1186/s12944-019-1184-3 10.1056/NEJMoa1701488 10.1038/ng.2852 10.1161/CIRCGENETICS.109.907873 10.1038/s41591-020-0751-5 10.1016/j.atherosclerosis.2012.02.020 10.1038/s41467-021-24491-0 10.1038/ncomms10206 10.1177/2042018817692296 10.1038/s41588-021-00912-0 10.1016/j.ajhg.2016.05.007 10.1038/s41588-018-0241-6 10.1016/j.molmet.2018.04.003 10.1016/j.ajhg.2019.05.010 10.1124/dmd.118.080952 10.1046/j.1365-2362.2000.00740.x 10.1093/hmg/ddx439 10.3389/fmed.2021.798334 |
ContentType | Journal Article |
Copyright | 2022. The Author(s). info:eu-repo/semantics/openAccess The Author(s) 2022 |
Copyright_xml | – notice: 2022. The Author(s). – notice: info:eu-repo/semantics/openAccess – notice: The Author(s) 2022 |
CorporateAuthor | et al |
CorporateAuthor_xml | – name: et al |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 3HK 5PM ACNBI ADTPV AOWAS D8T DF2 ZZAVC F1U AGCHP D95 DOA |
DOI | 10.1186/s13059-022-02837-1 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic NORA - Norwegian Open Research Archives PubMed Central (Full Participant titles) SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text SWEPUB Göteborgs universitet SWEPUB Lunds universitet full text SWEPUB Lunds universitet Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1474-760X 1465-6914 |
EndPage | 42 |
ExternalDocumentID | oai_doaj_org_article_9cd978d7630d4adaa824100bc31d1ef2 oai_swepub_ki_se_448738 oai_prod_swepub_kib_ki_se_151971555 oai_lup_lub_lu_se_2892d8c3_156f_46d0_bbaf_84669e3b9936 oai_gup_ub_gu_se_325849 oai_DiVA_org_uu_498949 10852_100024 10_1186_s13059_022_02837_1 36575460 |
Genre | Meta-Analysis Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 201543/B/16/Z – fundername: NIA NIH HHS grantid: R01 AG065357 – fundername: NICHD NIH HHS grantid: R01 HD030880 – fundername: NIDDK NIH HHS grantid: R01 DK062370 – fundername: Medical Research Council grantid: MC_UU_00019/1 – fundername: NIA NIH HHS grantid: R01 AG015819 – fundername: NIDDK NIH HHS grantid: R01 DK072193 – fundername: Medical Research Council grantid: MC_UU_00006/1 – fundername: NHLBI NIH HHS grantid: R03 HL154284 – fundername: NHLBI NIH HHS grantid: R01 HL142711 – fundername: ; grantid: R01HL127564 |
GroupedDBID | --- 0R~ 29H 3V. 4.4 53G 5GY 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACJQM ACPRK ACRMQ ADBBV ADINQ ADUKV AEGXH AFKRA AHBYD AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C24 C6C CCPQU CGR CUY CVF EBD EBLON EBS ECM EIF EMOBN FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK IAO IGS IHR ISR ITC KPI LK8 M1P M7P NPM PIMPY PQQKQ PROAC PSQYO ROL RPM RSV SJN SOJ SV3 UKHRP AAYXX AFPKN CITATION 7X8 2WC 3HK AENEX AHYZX C1A CS3 DIK E3Z EJD F5P HYE HZ~ KQ8 O5R O5S O9- OK1 RBZ SBL TR2 WOQ ZA5 5PM 123 8R4 8R5 ACNBI ADTPV AHSBF AOWAS D8T DF2 H13 ZZAVC F1U AGCHP D95 |
ID | FETCH-LOGICAL-c926t-bc757d6c816e31105f762ab659b2e748e1448f62d8c6899676146adcecea31ad3 |
IEDL.DBID | RPM |
ISSN | 1474-760X 1465-6906 1474-7596 |
IngestDate | Tue Oct 22 15:06:25 EDT 2024 Tue Nov 12 03:39:17 EST 2024 Wed Oct 30 05:06:30 EDT 2024 Thu Oct 31 04:23:27 EDT 2024 Thu Oct 31 04:27:48 EDT 2024 Thu Oct 31 04:23:31 EDT 2024 Tue Sep 17 21:30:09 EDT 2024 Wed Jul 10 03:06:54 EDT 2024 Sat Oct 26 04:00:42 EDT 2024 Thu Sep 26 16:55:10 EDT 2024 Sat Nov 02 12:24:15 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Genetics Lipids GWAS Genome-wide association study Cholesterol |
Language | English |
License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c926t-bc757d6c816e31105f762ab659b2e748e1448f62d8c6899676146adcecea31ad3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793579/ |
PMID | 36575460 |
PQID | 2759001462 |
PQPubID | 23479 |
PageCount | 42 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9cd978d7630d4adaa824100bc31d1ef2 swepub_primary_oai_swepub_ki_se_448738 swepub_primary_oai_prod_swepub_kib_ki_se_151971555 swepub_primary_oai_lup_lub_lu_se_2892d8c3_156f_46d0_bbaf_84669e3b9936 swepub_primary_oai_gup_ub_gu_se_325849 swepub_primary_oai_DiVA_org_uu_498949 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9793579 cristin_nora_10852_100024 proquest_miscellaneous_2759001462 crossref_primary_10_1186_s13059_022_02837_1 pubmed_primary_36575460 |
PublicationCentury | 2000 |
PublicationDate | 2022-12-27 |
PublicationDateYYYYMMDD | 2022-12-27 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Genome Biology |
PublicationTitleAlternate | Genome Biol |
PublicationYear | 2022 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | AD Joshi (2837_CR47) 2016; 151 A Verma (2837_CR103) 2018; 19 A Leong (2837_CR77) 2019; 42 TM Teslovich (2837_CR7) 2010; 466 D Klarin (2837_CR22) 2018; 50 2837_CR92 SE Graham (2837_CR24) 2021; 600 WP Castelli (2837_CR1) 1992; 2 B Gencer (2837_CR83) 2021; 22 D Teupser (2837_CR72) 2010; 3 T Ge (2837_CR100) 2019; 10 EM van Leeuwen (2837_CR16) 2015; 6 SM Grundy (2837_CR3) 2019; 139 The GTEx Consortium (2837_CR41) 2020; 369 S Kathiresan (2837_CR5) 2007; 8 JS Tan (2837_CR45) 2021; 8 GM Peloso (2837_CR13) 2014; 94 J Wang (2837_CR66) 2020; 19 CN Spracklen (2837_CR23) 2018; 27 CJ Willer (2837_CR89) 2010; 26 Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, Frayling TM, Hirschhorn J, Yang J, Visscher PM, Consortium G (2837_CR51) 2018; 27 G Silbernagel (2837_CR71) 2013; 62 CM Schooling (2837_CR85) 2018; 267 I Surakka (2837_CR14) 2015; 47 M Kanai (2837_CR21) 2018; 50 K Musunuru (2837_CR26) 2010; 363 E Di Angelantonio (2837_CR30) 2009; 302 RA Hegele (2837_CR98) 2020; 8 CP Nelson (2837_CR60) 2019; 12 2837_CR108 2837_CR107 W Zhou (2837_CR106) 2018; 50 2837_CR109 JC Denny (2837_CR102) 2010; 26 RS Spielman (2837_CR80) 2007; 39 KK Ray (2837_CR59) 2020; 382 DK Bhatt (2837_CR52) 2018; 46 MS Sabatine (2837_CR57) 2017; 376 PM Ridker (2837_CR63) 2017; 376 KJ Stanzick (2837_CR29) 2021; 12 MP Dore (2837_CR79) 2021; 2021 2837_CR28 L Chen (2837_CR69) 2022; 75 EM McDonagh (2837_CR78) 2012; 22 V Iotchkova (2837_CR17) 2016; 48 E Flynn (2837_CR36) 2021; 29 K Musunuru (2837_CR25) 2010; 466 E Allara (2837_CR42) 2019; 12 S Deb (2837_CR46) 2018; 2018 JB Nielsen (2837_CR53) 2020; 11 WS Bush (2837_CR34) 2016; 17 Y AlSiraj (2837_CR38) 2019; 10 AN Barbeira (2837_CR95) 1825; 2018 L Jiang (2837_CR40) 2019; 20 TW Winkler (2837_CR91) 2017; 12 2837_CR111 TH Pers (2837_CR27) 2015; 6 2837_CR110 A Albrechtsen (2837_CR9) 2013; 56 2837_CR112 CJ Willer (2837_CR11) 2013; 45 GG Schwartz (2837_CR58) 2018; 379 JA Votava (2837_CR55) 2021; 32 TJ Hoffmann (2837_CR20) 2018; 50 X Lu (2837_CR19) 2017; 49 A Mahajan (2837_CR61) 2018; 50 HT Weerakoon (2837_CR68) 2014; 7 U Gustafsson (2837_CR67) 2000; 30 A Hussain (2837_CR74) 2017; 8 P Natarajan (2837_CR39) 2021; 12 2837_CR43 E Bernabeu (2837_CR48) 2021; 53 SL Au Yeung (2837_CR86) 2016; 26 CS Tang (2837_CR15) 2015; 6 N Pirastu (2837_CR50) 2021; 53 J Chen (2837_CR75) 2021; 53 TL Yang (2837_CR82) 2008; 83 S Purcell (2837_CR101) 2007; 81 KS Ruth (2837_CR49) 2020; 26 JC Hopewell (2837_CR64) 2018; 39 DJ Liu (2837_CR18) 2017; 49 XH Yu (2837_CR70) 2014; 428 Y Veturi (2837_CR33) 2021; 53 2837_CR32 EE Brown (2837_CR97) 2020; 14 CP Nelson (2837_CR104) 2017; 49 Z Liu (2837_CR105) 2020; 73 S Kathiresan (2837_CR6) 2008; 358 I Tachmazidou (2837_CR10) 2013; 4 X Zhang (2837_CR44) 2020; 10 GBD (2837_CR2) 2019; 2020 RD Abbott (2837_CR35) 1983; 3 2837_CR62 TW Winkler (2837_CR87) 2014; 9 S Firtser (2837_CR84) 2012; 222 T Zore (2837_CR37) 2018; 15 DJ Liu (2837_CR90) 2014; 46 AZ Zhu (2837_CR81) 2015; 25 Y Zhou (2837_CR99) 2022; 50 Magi R, Horikoshi M, Sofer T, Mahajan A, Kitajima H, Franceschini N, McCarthy MI, Cogent-Kidney Consortium TDGC, Morris AP (2837_CR88) 2017; 26 G Hindy (2837_CR96) 2022; 109 I Artha (2837_CR73) 2019; 15 OL Holmen (2837_CR12) 2014; 46 2837_CR54 C Giambartolomei (2837_CR93) 2014; 10 2837_CR56 R Saxena (2837_CR4) 2007; 316 FW Asselbergs (2837_CR8) 2012; 91 S Hayat (2837_CR65) 2019; 42 M Caliskan (2837_CR94) 2019; 105 TG Richardson (2837_CR31) 2020; 17 N Chami (2837_CR76) 2016; 99 |
References_xml | – volume: 15 start-page: 149 year: 2019 ident: 2837_CR73 publication-title: Vasc Health Risk Manag doi: 10.2147/VHRM.S209830 contributor: fullname: I Artha – ident: 2837_CR54 – volume: 22 start-page: 219 year: 2012 ident: 2837_CR78 publication-title: Pharmacogenet Genomics doi: 10.1097/FPC.0b013e32834eb313 contributor: fullname: EM McDonagh – volume: 42 start-page: 11 year: 2019 ident: 2837_CR65 publication-title: Ann Med Surg (Lond) doi: 10.1016/j.amsu.2019.04.003 contributor: fullname: S Hayat – volume: 4 start-page: 2872 year: 2013 ident: 2837_CR10 publication-title: Nat Commun doi: 10.1038/ncomms3872 contributor: fullname: I Tachmazidou – volume: 600 start-page: 675 year: 2021 ident: 2837_CR24 publication-title: Nature doi: 10.1038/s41586-021-04064-3 contributor: fullname: SE Graham – volume: 17 start-page: 129 year: 2016 ident: 2837_CR34 publication-title: Nat Rev Genet doi: 10.1038/nrg.2015.36 contributor: fullname: WS Bush – volume: 10 start-page: 1776 year: 2019 ident: 2837_CR100 publication-title: Nat Commun doi: 10.1038/s41467-019-09718-5 contributor: fullname: T Ge – volume: 73 start-page: 263 year: 2020 ident: 2837_CR105 publication-title: J Hepatol doi: 10.1016/j.jhep.2020.03.006 contributor: fullname: Z Liu – volume: 25 start-page: 263 year: 2015 ident: 2837_CR81 publication-title: Pharmacogenet Genomics doi: 10.1097/FPC.0000000000000135 contributor: fullname: AZ Zhu – volume: 7 start-page: 548 year: 2014 ident: 2837_CR68 publication-title: BMC Res Notes doi: 10.1186/1756-0500-7-548 contributor: fullname: HT Weerakoon – volume: 19 start-page: 120 year: 2018 ident: 2837_CR103 publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2135-0 contributor: fullname: A Verma – volume: 2020 start-page: 1204 issue: 396 year: 2019 ident: 2837_CR2 publication-title: Lancet contributor: fullname: GBD – volume: 50 start-page: 1335 year: 2018 ident: 2837_CR106 publication-title: Nat Genet doi: 10.1038/s41588-018-0184-y contributor: fullname: W Zhou – volume: 358 start-page: 1240 year: 2008 ident: 2837_CR6 publication-title: N Engl J Med doi: 10.1056/NEJMoa0706728 contributor: fullname: S Kathiresan – volume: 32 start-page: 141 year: 2021 ident: 2837_CR55 publication-title: Curr Opin Lipidol doi: 10.1097/MOL.0000000000000742 contributor: fullname: JA Votava – volume: 376 start-page: 1713 year: 2017 ident: 2837_CR57 publication-title: N Engl J Med doi: 10.1056/NEJMoa1615664 contributor: fullname: MS Sabatine – volume: 10 start-page: e1004383 year: 2014 ident: 2837_CR93 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004383 contributor: fullname: C Giambartolomei – volume: 139 start-page: e1082 year: 2019 ident: 2837_CR3 publication-title: Circulation contributor: fullname: SM Grundy – volume: 363 start-page: 2220 year: 2010 ident: 2837_CR26 publication-title: N Engl J Med doi: 10.1056/NEJMoa1002926 contributor: fullname: K Musunuru – volume: 369 start-page: 1318 year: 2020 ident: 2837_CR41 publication-title: Science doi: 10.1126/science.aaz1776 contributor: fullname: The GTEx Consortium – volume: 22 start-page: 257 year: 2021 ident: 2837_CR83 publication-title: Rev Endocr Metab Disord doi: 10.1007/s11154-021-09628-2 contributor: fullname: B Gencer – ident: 2837_CR111 – volume: 50 start-page: 401 year: 2018 ident: 2837_CR20 publication-title: Nat Genet doi: 10.1038/s41588-018-0064-5 contributor: fullname: TJ Hoffmann – volume: 8 start-page: S17 issue: Suppl 1 year: 2007 ident: 2837_CR5 publication-title: BMC Med Genet doi: 10.1186/1471-2350-8-S1-S17 contributor: fullname: S Kathiresan – volume: 75 start-page: 785 year: 2022 ident: 2837_CR69 publication-title: Hepatology doi: 10.1002/hep.32183 contributor: fullname: L Chen – volume: 10 start-page: 2631 year: 2019 ident: 2837_CR38 publication-title: Nat Commun doi: 10.1038/s41467-019-10462-z contributor: fullname: Y AlSiraj – volume: 11 start-page: 6417 year: 2020 ident: 2837_CR53 publication-title: Nat Commun doi: 10.1038/s41467-020-20086-3 contributor: fullname: JB Nielsen – volume: 8 start-page: 50 year: 2020 ident: 2837_CR98 publication-title: Lancet Diabetes Endocrinol doi: 10.1016/S2213-8587(19)30264-5 contributor: fullname: RA Hegele – volume: 302 start-page: 1993 year: 2009 ident: 2837_CR30 publication-title: JAMA doi: 10.1001/jama.2009.1619 contributor: fullname: E Di Angelantonio – volume: 428 start-page: 82 year: 2014 ident: 2837_CR70 publication-title: Clin Chim Acta doi: 10.1016/j.cca.2013.11.010 contributor: fullname: XH Yu – volume: 6 start-page: 5890 year: 2015 ident: 2837_CR27 publication-title: Nat Commun doi: 10.1038/ncomms6890 contributor: fullname: TH Pers – volume: 83 start-page: 663 year: 2008 ident: 2837_CR82 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2008.10.006 contributor: fullname: TL Yang – volume: 49 start-page: 1385 year: 2017 ident: 2837_CR104 publication-title: Nat Genet doi: 10.1038/ng.3913 contributor: fullname: CP Nelson – volume: 26 start-page: 171 year: 2016 ident: 2837_CR86 publication-title: Ann Epidemiol doi: 10.1016/j.annepidem.2016.01.005 contributor: fullname: SL Au Yeung – ident: 2837_CR28 doi: 10.1101/2020.09.08.20190561 – volume: 466 start-page: 714 year: 2010 ident: 2837_CR25 publication-title: Nature doi: 10.1038/nature09266 contributor: fullname: K Musunuru – ident: 2837_CR108 – volume: 466 start-page: 707 year: 2010 ident: 2837_CR7 publication-title: Nature doi: 10.1038/nature09270 contributor: fullname: TM Teslovich – volume: 94 start-page: 223 year: 2014 ident: 2837_CR13 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2014.01.009 contributor: fullname: GM Peloso – volume: 49 start-page: 1758 year: 2017 ident: 2837_CR18 publication-title: Nat Genet doi: 10.1038/ng.3977 contributor: fullname: DJ Liu – volume: 26 start-page: 1205 year: 2010 ident: 2837_CR102 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq126 contributor: fullname: JC Denny – volume: 91 start-page: 823 year: 2012 ident: 2837_CR8 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2012.08.032 contributor: fullname: FW Asselbergs – ident: 2837_CR32 doi: 10.1161/CIRCGEN.119.002711 – volume: 9 start-page: 1192 year: 2014 ident: 2837_CR87 publication-title: Nat Protoc doi: 10.1038/nprot.2014.071 contributor: fullname: TW Winkler – volume: 12 start-page: 2182 year: 2021 ident: 2837_CR39 publication-title: Nat Commun doi: 10.1038/s41467-021-22339-1 contributor: fullname: P Natarajan – volume: 53 start-page: 840 year: 2021 ident: 2837_CR75 publication-title: Nat Genet doi: 10.1038/s41588-021-00852-9 contributor: fullname: J Chen – volume: 50 start-page: 390 year: 2018 ident: 2837_CR21 publication-title: Nat Genet doi: 10.1038/s41588-018-0047-6 contributor: fullname: M Kanai – volume: 29 start-page: 154 year: 2021 ident: 2837_CR36 publication-title: Eur J Hum Genet doi: 10.1038/s41431-020-00712-w contributor: fullname: E Flynn – volume: 62 start-page: 291 year: 2013 ident: 2837_CR71 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2013.01.100 contributor: fullname: G Silbernagel – ident: 2837_CR107 – volume: 56 start-page: 298 year: 2013 ident: 2837_CR9 publication-title: Diabetologia doi: 10.1007/s00125-012-2756-1 contributor: fullname: A Albrechtsen – volume: 47 start-page: 589 year: 2015 ident: 2837_CR14 publication-title: Nat Genet doi: 10.1038/ng.3300 contributor: fullname: I Surakka – volume: 49 start-page: 1722 year: 2017 ident: 2837_CR19 publication-title: Nat Genet doi: 10.1038/ng.3978 contributor: fullname: X Lu – ident: 2837_CR62 doi: 10.1038/s41591-022-01891-3 – ident: 2837_CR56 doi: 10.1007/s10557-021-07187-x – ident: 2837_CR43 doi: 10.3390/brainsci10060386 – volume: 42 start-page: 1202 year: 2019 ident: 2837_CR77 publication-title: Diabetes Care doi: 10.2337/dc18-1712 contributor: fullname: A Leong – volume: 45 start-page: 1274 year: 2013 ident: 2837_CR11 publication-title: Nat Genet doi: 10.1038/ng.2797 contributor: fullname: CJ Willer – volume: 316 start-page: 1331 year: 2007 ident: 2837_CR4 publication-title: Science doi: 10.1126/science.1142358 contributor: fullname: R Saxena – volume: 53 start-page: 663 year: 2021 ident: 2837_CR50 publication-title: Nat Genet doi: 10.1038/s41588-021-00846-7 contributor: fullname: N Pirastu – volume: 12 start-page: e002196 year: 2019 ident: 2837_CR60 publication-title: Circ Genom Precis Med doi: 10.1161/CIRCGEN.118.002196 contributor: fullname: CP Nelson – ident: 2837_CR110 – volume: 10 start-page: 145 year: 2020 ident: 2837_CR44 publication-title: Transl Psychiatry doi: 10.1038/s41398-020-0822-x contributor: fullname: X Zhang – volume: 12 start-page: e0181038 year: 2017 ident: 2837_CR91 publication-title: PLoS ONE doi: 10.1371/journal.pone.0181038 contributor: fullname: TW Winkler – ident: 2837_CR92 doi: 10.1101/2022.03.07.483314 – volume: 50 start-page: D1398 year: 2022 ident: 2837_CR99 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab953 contributor: fullname: Y Zhou – volume: 27 start-page: 3641 year: 2018 ident: 2837_CR51 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddy271 contributor: fullname: Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, Frayling TM, Hirschhorn J, Yang J, Visscher PM, Consortium G – ident: 2837_CR112 doi: 10.5281/zenodo.7130299 – volume: 2018 start-page: 9 year: 1825 ident: 2837_CR95 publication-title: Nat Commun contributor: fullname: AN Barbeira – volume: 267 start-page: 171 year: 2018 ident: 2837_CR85 publication-title: Int J Cardiol doi: 10.1016/j.ijcard.2018.05.051 contributor: fullname: CM Schooling – volume: 379 start-page: 2097 year: 2018 ident: 2837_CR58 publication-title: N Engl J Med doi: 10.1056/NEJMoa1801174 contributor: fullname: GG Schwartz – volume: 26 start-page: 3639 year: 2017 ident: 2837_CR88 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddx280 contributor: fullname: Magi R, Horikoshi M, Sofer T, Mahajan A, Kitajima H, Franceschini N, McCarthy MI, Cogent-Kidney Consortium TDGC, Morris AP – volume: 2021 start-page: 5529256 year: 2021 ident: 2837_CR79 publication-title: Oxid Med Cell Longev doi: 10.1155/2021/5529256 contributor: fullname: MP Dore – volume: 53 start-page: 972 year: 2021 ident: 2837_CR33 publication-title: Nat Genet doi: 10.1038/s41588-021-00879-y contributor: fullname: Y Veturi – volume: 2018 start-page: 1286170 year: 2018 ident: 2837_CR46 publication-title: Int J Hepatol doi: 10.1155/2018/1286170 contributor: fullname: S Deb – volume: 382 start-page: 1507 year: 2020 ident: 2837_CR59 publication-title: N Engl J Med doi: 10.1056/NEJMoa1912387 contributor: fullname: KK Ray – volume: 48 start-page: 1303 year: 2016 ident: 2837_CR17 publication-title: Nat Genet doi: 10.1038/ng.3668 contributor: fullname: V Iotchkova – volume: 39 start-page: 226 year: 2007 ident: 2837_CR80 publication-title: Nat Genet doi: 10.1038/ng1955 contributor: fullname: RS Spielman – volume: 26 start-page: 2190 year: 2010 ident: 2837_CR89 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq340 contributor: fullname: CJ Willer – volume: 3 start-page: 260 year: 1983 ident: 2837_CR35 publication-title: Arteriosclerosis doi: 10.1161/01.ATV.3.3.260 contributor: fullname: RD Abbott – volume: 46 start-page: 345 year: 2014 ident: 2837_CR12 publication-title: Nat Genet doi: 10.1038/ng.2926 contributor: fullname: OL Holmen – volume: 20 start-page: 233 year: 2019 ident: 2837_CR40 publication-title: Genome Biol doi: 10.1186/s13059-019-1801-5 contributor: fullname: L Jiang – volume: 151 start-page: e328 issue: 351–363 year: 2016 ident: 2837_CR47 publication-title: Gastroenterology contributor: fullname: AD Joshi – volume: 39 start-page: 354 year: 2018 ident: 2837_CR64 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehx373 contributor: fullname: JC Hopewell – volume: 14 start-page: 398 year: 2020 ident: 2837_CR97 publication-title: J Clin Lipidol doi: 10.1016/j.jacl.2020.04.011 contributor: fullname: EE Brown – ident: 2837_CR109 – volume: 2 start-page: 23 year: 1992 ident: 2837_CR1 publication-title: Ann Epidemiol doi: 10.1016/1047-2797(92)90033-M contributor: fullname: WP Castelli – volume: 17 start-page: e1003062 year: 2020 ident: 2837_CR31 publication-title: PLoS Med doi: 10.1371/journal.pmed.1003062 contributor: fullname: TG Richardson – volume: 109 start-page: 81 year: 2022 ident: 2837_CR96 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2021.11.021 contributor: fullname: G Hindy – volume: 50 start-page: 1514 year: 2018 ident: 2837_CR22 publication-title: Nat Genet doi: 10.1038/s41588-018-0222-9 contributor: fullname: D Klarin – volume: 6 start-page: 6065 year: 2015 ident: 2837_CR16 publication-title: Nat Commun doi: 10.1038/ncomms7065 contributor: fullname: EM van Leeuwen – volume: 81 start-page: 559 year: 2007 ident: 2837_CR101 publication-title: Am J Hum Genet doi: 10.1086/519795 contributor: fullname: S Purcell – volume: 19 start-page: 50 year: 2020 ident: 2837_CR66 publication-title: Lipids Health Dis doi: 10.1186/s12944-019-1184-3 contributor: fullname: J Wang – volume: 376 start-page: 1527 year: 2017 ident: 2837_CR63 publication-title: N Engl J Med doi: 10.1056/NEJMoa1701488 contributor: fullname: PM Ridker – volume: 46 start-page: 200 year: 2014 ident: 2837_CR90 publication-title: Nat Genet doi: 10.1038/ng.2852 contributor: fullname: DJ Liu – volume: 3 start-page: 331 year: 2010 ident: 2837_CR72 publication-title: Circulation Cardiovasc Genet. doi: 10.1161/CIRCGENETICS.109.907873 contributor: fullname: D Teupser – volume: 26 start-page: 252 year: 2020 ident: 2837_CR49 publication-title: Nat Med doi: 10.1038/s41591-020-0751-5 contributor: fullname: KS Ruth – volume: 222 start-page: 257 year: 2012 ident: 2837_CR84 publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2012.02.020 contributor: fullname: S Firtser – volume: 12 start-page: 4350 year: 2021 ident: 2837_CR29 publication-title: Nature Communications doi: 10.1038/s41467-021-24491-0 contributor: fullname: KJ Stanzick – volume: 6 start-page: 10206 year: 2015 ident: 2837_CR15 publication-title: Nat Commun doi: 10.1038/ncomms10206 contributor: fullname: CS Tang – volume: 8 start-page: 51 year: 2017 ident: 2837_CR74 publication-title: Ther Adv Endocrinol Metab doi: 10.1177/2042018817692296 contributor: fullname: A Hussain – volume: 53 start-page: 1283 year: 2021 ident: 2837_CR48 publication-title: Nat Genet doi: 10.1038/s41588-021-00912-0 contributor: fullname: E Bernabeu – volume: 99 start-page: 8 year: 2016 ident: 2837_CR76 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2016.05.007 contributor: fullname: N Chami – volume: 50 start-page: 1505 year: 2018 ident: 2837_CR61 publication-title: Nat Genet doi: 10.1038/s41588-018-0241-6 contributor: fullname: A Mahajan – volume: 15 start-page: 35 year: 2018 ident: 2837_CR37 publication-title: Mol Metab doi: 10.1016/j.molmet.2018.04.003 contributor: fullname: T Zore – volume: 105 start-page: 89 year: 2019 ident: 2837_CR94 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2019.05.010 contributor: fullname: M Caliskan – volume: 46 start-page: 888 year: 2018 ident: 2837_CR52 publication-title: Drug Metab Dispos doi: 10.1124/dmd.118.080952 contributor: fullname: DK Bhatt – volume: 12 start-page: e002711 year: 2019 ident: 2837_CR42 publication-title: Circ Genom Precis Med doi: 10.1161/CIRCGEN.119.002711 contributor: fullname: E Allara – volume: 30 start-page: 1099 year: 2000 ident: 2837_CR67 publication-title: Eur J Clin Invest doi: 10.1046/j.1365-2362.2000.00740.x contributor: fullname: U Gustafsson – volume: 27 start-page: 1122 year: 2018 ident: 2837_CR23 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddx439 contributor: fullname: CN Spracklen – volume: 8 start-page: 798334 year: 2021 ident: 2837_CR45 publication-title: Front Med (Lausanne) doi: 10.3389/fmed.2021.798334 contributor: fullname: JS Tan |
SSID | ssj0019426 ssj0017866 |
Score | 2.5444384 |
SecondaryResourceType | review_article |
Snippet | Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these... Abstract Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways... Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying... Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying... Abstract Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways... |
SourceID | doaj swepub pubmedcentral cristin proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 268 |
SubjectTerms | Basic Medicine Cholesterol Endocrinology and Diabetes Endokrinologi och diabetes Genetic Pleiotropy genetic predisposition Genetic Predisposition to Disease Genetics Genome-Wide Association Study GWAS human Humans lipid Lipids Lipids - genetics Medical and Health Sciences Medical Genetics Medicin och hälsovetenskap Medicinsk genetik Medicinska och farmaceutiska grundvetenskaper meta analysis Phenotype pleiotropy Polymorphism Polymorphism, Single Nucleotide Sex Characteristics sexual characteristics Single Nucleotide single nucleotide polymorphism |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQSkhcEG_CS0YCLmy0SRw_clxgVwsSnFi0N8uvlIg0rbbJYf89M05aERGJC4dWqjt1Hc9bHn9DyJuQWytLG1LGnEwh3yhTpRxLXS0LE7jLWSyi-fpNXFyWX6741R-tvrAmbIQHHjfupHIeEh0PapD50nhjFPicLLOO5T4P9Wh9s2qfTE3nBxU4nv0VGSVOdmCpeZVi5Tr6U5livyAXtaibOaSI278UbP5dMzlDFo3e6PweuTuFkfR0XP59cit0D8jtsbHkzUOy_rwvFO9WdIXm7Jhu29Bs-uvN9uaYms7TXQRbph6YBXvd7NbU9DTWsdO22TbwDnyjUx8fGgsPUxQR7A5H16E38GkENHlELs_Pvn-8SKfGCqmrCtGn1kkuvXAqF4GB_-c1mERjBa9sEWSpAmRZqhaFV05APiYk-HBh4NFdMCw3nj0mR92mC08J5UVpebBlvJTrFLOiloxhHiIdBDt5QpJpn3UHMo14pLxAoGSIDRLyfr_zejtia-iYkyihR45p4JiOHNMw0wdkzoEScbHjAEiLnqRF_0taEvJ6z1oNeoSHI6YLm2GnC4n9U-E5gebJyOrDXzE8nSpFlhA5E4LZWubfdM3PiNVdgf3jskrI21FcZj_51Pw4jcsfBl0iEj7QvVugWw1bDUOrQe-CZgXEjEB4tkDYAmELY22khFwaWcg05Oi1LoXPtLWm1hByiiowC6GpSEixMA86bz2N_2rwhfPleMkZ4k--vMoDPdKCAEmmnv0Pnj0ndwrU3Bzvkb0gR_31EF5CJNjbV1HpfwP8rV-E priority: 102 providerName: Directory of Open Access Journals |
Title | Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36575460 https://www.proquest.com/docview/2759001462 http://hdl.handle.net/10852/100024 https://pubmed.ncbi.nlm.nih.gov/PMC9793579 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-498949 https://gup.ub.gu.se/publication/325849 https://lup.lub.lu.se/record/2892d8c3-156f-46d0-bbaf-84669e3b9936 http://kipublications.ki.se/Default.aspx?queryparsed=id:151971555 https://doaj.org/article/9cd978d7630d4adaa824100bc31d1ef2 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdtx2AvY9_zPoIG215WN7FlSfZj06V0g5ZS1lH2IiRZzswcJyTOQ__73cl2wCxPe4jBykWWdOfT76L7IOSji4yRiXEhY1aGYG8kYZpaFtpCxtpxGzHvRHN5JS5uk-93_O6A8D4WxjvtW1Oe1NXipC5_e9_K1cKOez-x8fXlWQZCxWU2PiSHIKC9id4dHcgUAUp3kyVxG1-EXoc8E33YTCrGG9DePAvRmx33WBliDSHr36x6sEn5XP77AOi_fpSDbKN-hzp_Qh530JKetlN4Sg5c_Yw8bItN3j8ni2-983g9p3NUccd0Vbly2ayXq_tjquucbnwCZpoDA2H9y82C6oZ633ZalasSrsBL2tX2od4ZMUSxwYpxdOEaDXdtkpMX5PZ89uPsIuyKLYQ2i0UTGiu5zIVNI-EYYAJegJrURvDMxE4mqQPLKy1EnKdWgI0mJOzrQsPUrdMs0jl7SY7qZe1eE8rjxHBnEh-oa1NmRCEZQ9tEWgBAUUCCbp1VDXKOOUp5jMmTAS8E5Eu_8mrV5ttQ3k5JhWo5poBjynNMQU9TZM6OEnNl-4bleq46iVGZzcFUzkGRTvJE51qngFomE2NZlEeuiAPyoWetgncLD0x07ZbbjYol1lSFeQLNq5bVu0cxPLFKxCQgciAEg7EMvwFx9vm7O_ENyKdWXAY_-Vr-PPXD325Vgtnxge7zHrr5dqWgab5VG6dYDDgSCGd7CCsgrKCt8pRgXyMLmQK7vVCJyCfKGF0ogKEic8wAXBUBiff0gxu66tr_lPjB_iIMfAZMyvePckePtCBAkqVv_nvB3pJHMb6uEQaUvSNHzXrr3gMkbMwIFMGdHJEH09nV9c3I_7EC15vpr5FXDn8BWqpnPg |
link.rule.ids | 230,315,730,783,787,867,888,2109,27936,27937,31732,33757,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGEIIL3x_h00jAhaVt4thOjmNs6mCbOGzTbpbtOCVam1Ztchh_Pe85SaVCL3BopTivrhP__Px78vsg5IOLjJGJcSFjVoZgbyRhmloW2kLG2nEbMe9Ec3omxhfJtyt-tUN4HwvjnfatKQfVdDaoyp_et3Ixs8PeT2z44_QgA1BxmQ1vkduwXkdJb6R3hwcyRYrSXWRJ3EYYod8hz0QfOJOK4Qr0N89C9GfHXVaGWEXI-rVVbWxTPpv_Ngr6tyflRr5Rv0cdPSCX_dO1rinXg6Y2A_vrj8SP__z4D8n9jrXS_fb2I7LjqsfkTlvH8uYJmR33funVhE5Qe-7RxdSV83o5X9zsUV3ldOVzO9McsAFTW65mVNfUu83Tabko4RtgQruyQdT7OYaISCxGR2eu1nDV5k95Si6ODs8PxmFXxyG0WSzq0FjJZS5sGgnHgG7wAjSwNoJnJnYySR0YdWkh4jy1Asw_IYEyCA3v1DrNIp2zZ2S3mlfuBaE8Tgx3JvExwDZlRhSSMTR7pAVuFQUk6CZQVbCEMP0pjzEvM1CRgHzup1Qt2lQeyptAqVAtFBRAQXkoKOjpC876WhLTcPuG-XKiutlQmc3BCs9BR4_yROdap0CIRiNjWZRHrogD8r7HjIJli2cxunLzZqViieVa4TlB5nmLofVfMTwMS8QoIHIDXRtj2bwDUPGpwTtoBORji8ONn3wtL_f98JtGJZh4H-Q-bZGbNAsFTZNGrZxiMVBUEDzcIjgFwSm0Tb0kmO44hUxFXBQqEflIGaMLBQxXZI4ZYMIiIPGWfpArqK79usQP9hdhTDXQXb59lGt5lAUASZa-_O8X9o7cHZ-fnqiT47Pvr8i9GHVChHFrr8luvWzcG2CetXnr9cxvs8mEwA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgEYgL70d4Ggm4sGmbOLaT47IP7QK72gOLVlws23FKtG0atclh-fXMOMmKQk97aKW4U8fJfB5_I49nCHnvImNkYlzImJUh-BtJmKaWhbaQsXbcRswH0RyfiMOz5Ms5P_-r1JcP2remHFWz-agqf_nYynpux0Oc2Pj0eDcDUHGZjeu8GN8kt2DOTsTgqPcbCDJFmtJfZEncnTLC2EOeieHwTCrGK7DhPAsxph1XWhliJSHr51e1tlT5jP6baOj_0ZRrOUf9OnVwn_wcnrALT7kYtY0Z2d__JH-81it4QO717JXudCIPyQ1XPSK3u3qWl4_J_GiIT6-mdIpWdJvWM1cumuWivtymusrpyud4pjlgBFRcruZUN9SHz9NZWZfwDXChffkg6uMdQ0QmFqWjc9douOryqDwhZwf733cPw76eQ2izWDShsZLLXNg0Eo4B7eAFWGJtBM9M7GSSOnDu0kLEeWoFuIFCAnUQGt6rdZpFOmdPyVa1qNxzQnmcGO5M4s8C25QZUUjG0P2RFjhWFJCgV6KqYCphGlQeY35moCQB-TSoVdVdSg_lXaFUqA4OCuCgPBwU9PQZNX8liem4fcNiOVW9RlRmc_DGc7DVkzzRudYpEKPJxFgW5ZEr4oC8G3CjYPrinoyu3KJdqVhi2VZ4TpB51uHo6lYMN8USMQmIXEPY2ljWfwG4-BThPTwC8qHD4tpf9sofO374basSTMAPch83yE3bWkHTtFUrp1gMVBUE9zcIzkBwBm0zLwkuPKqQqYiLQiUinyhjdKGA6YrMMQOMWAQk3tAPcgbVt1-U-MH-IjxbDbSXbx7llTzKAoAkS19c-4W9JXdO9w7Ut6OTry_J3RjNQoTH116RrWbZutdAQBvzxpuaP5a3h0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implicating+genes%2C+pleiotropy%2C+and+sexual+dimorphism+at+blood+lipid+loci+through+multi-ancestry+meta-analysis&rft.jtitle=Genome+Biology&rft.au=Kanoni%2C+Stavroula&rft.au=Graham%2C+Sarah+E.&rft.au=Wang%2C+Yuxuan&rft.au=Surakka%2C+Ida&rft.date=2022-12-27&rft.pub=BioMed+Central&rft.issn=1474-7596&rft.eissn=1474-760X&rft.volume=23&rft_id=info:doi/10.1186%2Fs13059-022-02837-1&rft.externalDBID=PMC9793579 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |