基于正态反高斯模型的自适应小波消噪方法
A locally adaptive wavelet de-noising method based on normal inverse Gaussian modal is proposed.Firstly,the db5 wavelet is used to decompose the signal.For those wavelet coefficients which contain a lot of noise,the normal inverse Gaussian modal with good approximation property is constructed as the...
Saved in:
Published in | Jixie Chuandong Vol. 36; pp. 82 - 85+95 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
Editorial Office of Journal of Mechanical Transmission
01.01.2012
|
Online Access | Get full text |
ISSN | 1004-2539 |
Cover
Abstract | A locally adaptive wavelet de-noising method based on normal inverse Gaussian modal is proposed.Firstly,the db5 wavelet is used to decompose the signal.For those wavelet coefficients which contain a lot of noise,the normal inverse Gaussian modal with good approximation property is constructed as the prior distribution model of those coefficients,on the basis of the model,Bayesian maximum a posteriori estimator is used to estimate the noisy wavelet coefficients and got the realistic wavelet coefficients.Then in the process of posteriori estimation,in order to get the best posteriori approximation model,the particle swarm optimization algorithm is used to select the key coefficient of the model.Finally,new wavelet coefficients are used for the reconstruction of the de-noised signal,and the de-noised signal is gotten.The algorithm is analyzed by simulation and bearing fault signal respectively.Analysis results show that this algorithm has good noise reduction effect,and can efficiently reduce the noise. |
---|---|
AbstractList | A locally adaptive wavelet de-noising method based on normal inverse Gaussian modal is proposed.Firstly,the db5 wavelet is used to decompose the signal.For those wavelet coefficients which contain a lot of noise,the normal inverse Gaussian modal with good approximation property is constructed as the prior distribution model of those coefficients,on the basis of the model,Bayesian maximum a posteriori estimator is used to estimate the noisy wavelet coefficients and got the realistic wavelet coefficients.Then in the process of posteriori estimation,in order to get the best posteriori approximation model,the particle swarm optimization algorithm is used to select the key coefficient of the model.Finally,new wavelet coefficients are used for the reconstruction of the de-noised signal,and the de-noised signal is gotten.The algorithm is analyzed by simulation and bearing fault signal respectively.Analysis results show that this algorithm has good noise reduction effect,and can efficiently reduce the noise. |
Author | 吴国洋 |
Author_xml | – sequence: 1 fullname: 吴国洋 |
BookMark | eNotjrtKA0EYRqeIYIx5lMA_l52Zv5TgJRCwSb_M7s7KSszKro1dFEFBNI0GtVDURiKiEBDc53FG8xYGtfrgFOd8S6Q2yAe2RuoUQLRYwHGRNMsyiwCASVQa6wTdXfVZnfuXRz88cKOz2fOVH7_6p3t3e_p1c_R9PJkND1114d5Gfvrg30_c9cSPP_z0cpkspKZf2ub_NkhvbbXX3mh1N9c77ZVuK0YG86phSONEBipRXFgEoEpKJQWlknNAYRQaa1MdQRJQMFxJtBBZLWLFU8MbpPOnTXKzHe4W2Y4p9sPcZOEvyIut0BR7Wdy3oUaIBEu10jwQnDFDGUVJZSCVYvMz_AcRU2E9 |
ContentType | Journal Article |
DBID | DOA |
DatabaseName | DOAJ Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EndPage | 85+95 |
ExternalDocumentID | oai_doaj_org_article_890b42f878354322a121961656772920 |
GroupedDBID | -03 ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB GROUPED_DOAJ |
ID | FETCH-LOGICAL-c920-25a291cd657d734e900176676411633094a79aeef8b0d510a3769e0be84c73fa3 |
IEDL.DBID | DOA |
ISSN | 1004-2539 |
IngestDate | Wed Aug 27 01:29:44 EDT 2025 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | Chinese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c920-25a291cd657d734e900176676411633094a79aeef8b0d510a3769e0be84c73fa3 |
OpenAccessLink | https://doaj.org/article/890b42f878354322a121961656772920 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_890b42f878354322a121961656772920 |
PublicationCentury | 2000 |
PublicationDate | 2012-01-01 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Jixie Chuandong |
PublicationYear | 2012 |
Publisher | Editorial Office of Journal of Mechanical Transmission |
Publisher_xml | – name: Editorial Office of Journal of Mechanical Transmission |
SSID | ssib000269789 ssib002264257 ssib001129495 ssj0002912140 ssib036435760 ssib051372994 |
Score | 1.8630809 |
Snippet | A locally adaptive wavelet de-noising method based on normal inverse Gaussian modal is proposed.Firstly,the db5 wavelet is used to decompose the signal.For... |
SourceID | doaj |
SourceType | Open Website |
StartPage | 82 |
Title | 基于正态反高斯模型的自适应小波消噪方法 |
URI | https://doaj.org/article/890b42f878354322a121961656772920 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07SwNBEF4klY0oKr5JYXu42dt7bKliCIJWEdIdu3e7WEWR2FhFERRE02hQC0VtJCIKAcH8Hm81_8LZu0Ovs7G9Yh83szvf7Mx8g9C8oSyXRDGrJCm2KFPKEp6Qlsex5JLbJFSmUHht3a1s0NWaU8u1-jI5YSk9cPrjFnyGBSXKT14oQPt4Cc6YazhjDC4kibeOGc45U2n8zGV5HnWDKmieyAtwAPmN99lglwF4_2iuUzLRrExTzZ1OGEybVleazA3imObiOZL_xBqVh9FQBiOLi-nyR9DA3uYoYvFt76N3pp8fdHM_bp32ny51-0U_3sU3J5_Xh19HnX7zIO6dx68t3b3Xb8fxVUe333X3YgxVyyvV5YqVtUawQtgzzM9hRWHkOl7k2VQyY2xMtiotAb6ywWXjHuNSKl_gCE4dh2uESSykT0PPVtweR4X6Vl1OoGJEwaXAmDtKAriIuClljbgnGBfU9YU7iZbMNoPtlPwiMHTUyQcQUpAJKfhLSFP_Mcg0GgS0QtL3jxlUaOzsyllABA0xlwj_G6AZulI |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%AD%A3%E6%80%81%E5%8F%8D%E9%AB%98%E6%96%AF%E6%A8%A1%E5%9E%8B%E7%9A%84%E8%87%AA%E9%80%82%E5%BA%94%E5%B0%8F%E6%B3%A2%E6%B6%88%E5%99%AA%E6%96%B9%E6%B3%95&rft.jtitle=Jixie+Chuandong&rft.au=%E5%90%B4%E5%9B%BD%E6%B4%8B&rft.date=2012-01-01&rft.pub=Editorial+Office+of+Journal+of+Mechanical+Transmission&rft.issn=1004-2539&rft.volume=36&rft.spage=82&rft.epage=85%2B95&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_890b42f878354322a121961656772920 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1004-2539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1004-2539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1004-2539&client=summon |