基于正态反高斯模型的自适应小波消噪方法

A locally adaptive wavelet de-noising method based on normal inverse Gaussian modal is proposed.Firstly,the db5 wavelet is used to decompose the signal.For those wavelet coefficients which contain a lot of noise,the normal inverse Gaussian modal with good approximation property is constructed as the...

Full description

Saved in:
Bibliographic Details
Published inJixie Chuandong Vol. 36; pp. 82 - 85+95
Main Author 吴国洋
Format Journal Article
LanguageChinese
Published Editorial Office of Journal of Mechanical Transmission 01.01.2012
Online AccessGet full text
ISSN1004-2539

Cover

Abstract A locally adaptive wavelet de-noising method based on normal inverse Gaussian modal is proposed.Firstly,the db5 wavelet is used to decompose the signal.For those wavelet coefficients which contain a lot of noise,the normal inverse Gaussian modal with good approximation property is constructed as the prior distribution model of those coefficients,on the basis of the model,Bayesian maximum a posteriori estimator is used to estimate the noisy wavelet coefficients and got the realistic wavelet coefficients.Then in the process of posteriori estimation,in order to get the best posteriori approximation model,the particle swarm optimization algorithm is used to select the key coefficient of the model.Finally,new wavelet coefficients are used for the reconstruction of the de-noised signal,and the de-noised signal is gotten.The algorithm is analyzed by simulation and bearing fault signal respectively.Analysis results show that this algorithm has good noise reduction effect,and can efficiently reduce the noise.
AbstractList A locally adaptive wavelet de-noising method based on normal inverse Gaussian modal is proposed.Firstly,the db5 wavelet is used to decompose the signal.For those wavelet coefficients which contain a lot of noise,the normal inverse Gaussian modal with good approximation property is constructed as the prior distribution model of those coefficients,on the basis of the model,Bayesian maximum a posteriori estimator is used to estimate the noisy wavelet coefficients and got the realistic wavelet coefficients.Then in the process of posteriori estimation,in order to get the best posteriori approximation model,the particle swarm optimization algorithm is used to select the key coefficient of the model.Finally,new wavelet coefficients are used for the reconstruction of the de-noised signal,and the de-noised signal is gotten.The algorithm is analyzed by simulation and bearing fault signal respectively.Analysis results show that this algorithm has good noise reduction effect,and can efficiently reduce the noise.
Author 吴国洋
Author_xml – sequence: 1
  fullname: 吴国洋
BookMark eNotjrtKA0EYRqeIYIx5lMA_l52Zv5TgJRCwSb_M7s7KSszKro1dFEFBNI0GtVDURiKiEBDc53FG8xYGtfrgFOd8S6Q2yAe2RuoUQLRYwHGRNMsyiwCASVQa6wTdXfVZnfuXRz88cKOz2fOVH7_6p3t3e_p1c_R9PJkND1114d5Gfvrg30_c9cSPP_z0cpkspKZf2ub_NkhvbbXX3mh1N9c77ZVuK0YG86phSONEBipRXFgEoEpKJQWlknNAYRQaa1MdQRJQMFxJtBBZLWLFU8MbpPOnTXKzHe4W2Y4p9sPcZOEvyIut0BR7Wdy3oUaIBEu10jwQnDFDGUVJZSCVYvMz_AcRU2E9
ContentType Journal Article
DBID DOA
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EndPage 85+95
ExternalDocumentID oai_doaj_org_article_890b42f878354322a121961656772920
GroupedDBID -03
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
ID FETCH-LOGICAL-c920-25a291cd657d734e900176676411633094a79aeef8b0d510a3769e0be84c73fa3
IEDL.DBID DOA
ISSN 1004-2539
IngestDate Wed Aug 27 01:29:44 EDT 2025
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language Chinese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c920-25a291cd657d734e900176676411633094a79aeef8b0d510a3769e0be84c73fa3
OpenAccessLink https://doaj.org/article/890b42f878354322a121961656772920
ParticipantIDs doaj_primary_oai_doaj_org_article_890b42f878354322a121961656772920
PublicationCentury 2000
PublicationDate 2012-01-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Jixie Chuandong
PublicationYear 2012
Publisher Editorial Office of Journal of Mechanical Transmission
Publisher_xml – name: Editorial Office of Journal of Mechanical Transmission
SSID ssib000269789
ssib002264257
ssib001129495
ssj0002912140
ssib036435760
ssib051372994
Score 1.8630809
Snippet A locally adaptive wavelet de-noising method based on normal inverse Gaussian modal is proposed.Firstly,the db5 wavelet is used to decompose the signal.For...
SourceID doaj
SourceType Open Website
StartPage 82
Title 基于正态反高斯模型的自适应小波消噪方法
URI https://doaj.org/article/890b42f878354322a121961656772920
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07SwNBEF4klY0oKr5JYXu42dt7bKliCIJWEdIdu3e7WEWR2FhFERRE02hQC0VtJCIKAcH8Hm81_8LZu0Ovs7G9Yh83szvf7Mx8g9C8oSyXRDGrJCm2KFPKEp6Qlsex5JLbJFSmUHht3a1s0NWaU8u1-jI5YSk9cPrjFnyGBSXKT14oQPt4Cc6YazhjDC4kibeOGc45U2n8zGV5HnWDKmieyAtwAPmN99lglwF4_2iuUzLRrExTzZ1OGEybVleazA3imObiOZL_xBqVh9FQBiOLi-nyR9DA3uYoYvFt76N3pp8fdHM_bp32ny51-0U_3sU3J5_Xh19HnX7zIO6dx68t3b3Xb8fxVUe333X3YgxVyyvV5YqVtUawQtgzzM9hRWHkOl7k2VQyY2xMtiotAb6ywWXjHuNSKl_gCE4dh2uESSykT0PPVtweR4X6Vl1OoGJEwaXAmDtKAriIuClljbgnGBfU9YU7iZbMNoPtlPwiMHTUyQcQUpAJKfhLSFP_Mcg0GgS0QtL3jxlUaOzsyllABA0xlwj_G6AZulI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%AD%A3%E6%80%81%E5%8F%8D%E9%AB%98%E6%96%AF%E6%A8%A1%E5%9E%8B%E7%9A%84%E8%87%AA%E9%80%82%E5%BA%94%E5%B0%8F%E6%B3%A2%E6%B6%88%E5%99%AA%E6%96%B9%E6%B3%95&rft.jtitle=Jixie+Chuandong&rft.au=%E5%90%B4%E5%9B%BD%E6%B4%8B&rft.date=2012-01-01&rft.pub=Editorial+Office+of+Journal+of+Mechanical+Transmission&rft.issn=1004-2539&rft.volume=36&rft.spage=82&rft.epage=85%2B95&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_890b42f878354322a121961656772920
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1004-2539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1004-2539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1004-2539&client=summon