关系挖掘驱动的视频描述自动生成
Video description has received increased interest in the field of computer vision. The process of generating video descriptions needs the technology of natural language processing, and the capacity to allow both the lengths of input (sequence of video frames) and output (sequence of description word...
Saved in:
Published in | Nanjing Xinxi Gongcheng Daxue Xuebao Vol. 9; no. 6; pp. 642 - 649 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Chinese |
Published |
Nanjing
Nanjing University of Information Science & Technology
01.12.2017
中国科学院自动化研究所 模式识别国家重点实验室,北京,100190 中国科学院大学,北京,100049 |
Subjects | |
Online Access | Get full text |
ISSN | 1674-7070 |
DOI | 10.13878/j.cnki.jnuist.2017.06.008 |
Cover
Abstract | Video description has received increased interest in the field of computer vision. The process of generating video descriptions needs the technology of natural language processing, and the capacity to allow both the lengths of input (sequence of video frames) and output (sequence of description words) to be variable. To this end, this paper uses the recent advances in machine translation ,and designs a two-layer LSTM (Long Short-Term Memory) model based on the encoder-decoder architecture. Since the deep neural network can learn appropriate representation of input data, we extract the feature vectors of the video frames by convolution neural network (CNN) and take them as the input sequence of the LSTM model. Finally, we compare the influences of different feature extraction methods on the LSTM video description model. The results show that the model in this paper is able to learn to transform sequence of knowledge representation to natural language. |
---|---|
AbstractList | TP391.41%TP183; 视频的自动描述任务是计算机视觉领域的一个热点问题.视频描述语句的生成过程需要自然语言处理的知识,并且能够满足输入(视频帧序列)和输出(文本词序列)的长度可变.为此本文结合了最近机器翻译领域取得的进展,设计了基于编码-解码框架的双层LSTM模型.在实验过程中,本文基于构建深度学习框架时重要的表示学习思想,利用卷积神经网络(CNN)提取视频帧的特征向量作为序列转换模型的输入,并比较了不同特征提取方法下对双层LSTM视频描述模型的影响.实验结果表明,本文的模型具有学习序列知识并转化为文本表示的能力. Video description has received increased interest in the field of computer vision. The process of generating video descriptions needs the technology of natural language processing, and the capacity to allow both the lengths of input (sequence of video frames) and output (sequence of description words) to be variable. To this end, this paper uses the recent advances in machine translation ,and designs a two-layer LSTM (Long Short-Term Memory) model based on the encoder-decoder architecture. Since the deep neural network can learn appropriate representation of input data, we extract the feature vectors of the video frames by convolution neural network (CNN) and take them as the input sequence of the LSTM model. Finally, we compare the influences of different feature extraction methods on the LSTM video description model. The results show that the model in this paper is able to learn to transform sequence of knowledge representation to natural language. |
Abstract_FL | Video description has received increased interest in the field of computer vision. The process of genera-ting video descriptions needs the technology of natural language processing, and the capacity to allow both the lengths of input (sequence of video frames) and output (sequence of description words) to be variable.To this end, this paper uses the recent advances in machine translation,and designs a two-layer LSTM ( Long Short-Term Memory) model based on the encoder-decoder architecture.Since the deep neural network can learn appropriate representation of input data,we extract the feature vectors of the video frames by convolution neural network ( CNN) and take them as the input sequence of the LSTM model. Finally, we compare the influences of different feature extraction methods on the LSTM video description model. The results show that the model in this paper is able to learn to transform sequence of knowledge representation to natural language. |
Author | Xu, Changsheng Huang, Yi Bao, Bingkun |
AuthorAffiliation | 中国科学院自动化研究所 模式识别国家重点实验室,北京,100190;中国科学院大学,北京,100049 |
AuthorAffiliation_xml | – name: 中国科学院自动化研究所 模式识别国家重点实验室,北京,100190;中国科学院大学,北京,100049 |
Author_FL | XU Changsheng BAO Bingkun HUANG Yi |
Author_FL_xml | – sequence: 1 fullname: HUANG Yi – sequence: 2 fullname: BAO Bingkun – sequence: 3 fullname: XU Changsheng |
Author_xml | – sequence: 1 givenname: Yi surname: Huang fullname: Huang, Yi – sequence: 2 givenname: Bingkun surname: Bao fullname: Bao, Bingkun – sequence: 3 givenname: Changsheng surname: Xu fullname: Xu, Changsheng |
BookMark | eNpFj8tKw0AYhWdRwVr7ErqUxP-fTDIzSyneoOCm-zKdZkqjTLRpMQ_gDSlWQUTcCG68rJQuXfg0TdO3MKWCqwOHj3NZISUb25CQNQQXPcHFZuRqe9h1IzvoJn2XAnIXAhdAlEgZA84cDhyWSTVJui0ARjkXVJaJMzkfT8ff2fAhu3mcvX9Nrt-mT2f568Xs5S4bjfKfz_zyY27eP2dXt6tkyaijJKz-aYU0drYbtT2nfrC7X9uqO1qidKQKjE9bmoUSQDKF1Bg_9A1VQnttEAaKWZJrycBTiIbxEKjxGWrNeJujVyEbi9hTZY2ynWYUD3q2KGzaKE07up2mrflDCIr8gl5f0Me9-GQQJv1_HKXAIECPSe8Xi09mGQ |
ClassificationCodes | TP391.41%TP183 |
ContentType | Journal Article |
Copyright | Copyright Nanjing University of Information Science & Technology 2017 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright Nanjing University of Information Science & Technology 2017 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 7SC 7SP 7TB 7TG 7U5 8FD ABUWG AEUYN AFKRA BENPR BHPHI BKSAR BVBZV CCPQU DWQXO FR3 HCIFZ JQ2 KL. KR7 L7M L~C L~D PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.13878/j.cnki.jnuist.2017.06.008 |
DatabaseName | Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Natural Science Collection ProQuest SciTech Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection East & South Asia Database ProQuest One ProQuest Central Engineering Research Database SciTech Premium Collection (via ProQuest) ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database East & South Asia Database Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Video description based on relationship feature embedding |
EndPage | 649 |
ExternalDocumentID | njxxgcdxxb201706009 |
GrantInformation_xml | – fundername: 国家自然科学基金; 北京市自然科学基金 funderid: (61572503,61432019); (4152053) |
GroupedDBID | 7SC 7SP 7TB 7TG 7U5 8FD 8FE 8FH ABUWG ACIWK AEUYN AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BHPHI BKSAR BPHCQ BVBZV CCPQU D1K DWQXO FR3 HCIFZ JQ2 K6- KL. KR7 L7M L~C L~D PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS PROAC 2B. 4A8 92I 93N PMFND PSX TCJ |
ID | FETCH-LOGICAL-c919-9a6f52bc4e90094a12ff5e5f2a8c3d08f000897c9403a11f47e02f541cc47d713 |
IEDL.DBID | BENPR |
ISSN | 1674-7070 |
IngestDate | Thu May 29 04:01:02 EDT 2025 Sun Jun 29 15:35:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | representation learning 视频描述 LSTM model video description 表示学习 特征嵌入 LSTM模型 feature embedding |
Language | Chinese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c919-9a6f52bc4e90094a12ff5e5f2a8c3d08f000897c9403a11f47e02f541cc47d713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1981661349 |
PQPubID | 396471 |
PageCount | 8 |
ParticipantIDs | wanfang_journals_njxxgcdxxb201706009 proquest_journals_1981661349 |
PublicationCentury | 2000 |
PublicationDate | 20171201 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 20171201 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Nanjing |
PublicationPlace_xml | – name: Nanjing |
PublicationSubtitle | Journal of Nanjing University of Information Science & Technology |
PublicationTitle | Nanjing Xinxi Gongcheng Daxue Xuebao |
PublicationTitle_FL | Journal of Nanjing University of Information Science & Technology |
PublicationYear | 2017 |
Publisher | Nanjing University of Information Science & Technology 中国科学院自动化研究所 模式识别国家重点实验室,北京,100190 中国科学院大学,北京,100049 |
Publisher_xml | – name: Nanjing University of Information Science & Technology – name: 中国科学院自动化研究所 模式识别国家重点实验室,北京,100190 – name: 中国科学院大学,北京,100049 |
SSID | ssib004277829 ssj0003009640 ssib007693286 ssib024215495 ssib036435925 ssib041908383 ssib007123825 ssib006564251 ssib007453199 ssib007693731 ssib052002897 ssib051370506 |
Score | 2.0978582 |
Snippet | Video description has received increased interest in the field of computer vision. The process of generating video descriptions needs the technology of natural... TP391.41%TP183;... |
SourceID | wanfang proquest |
SourceType | Aggregation Database |
StartPage | 642 |
SubjectTerms | Artificial neural networks Computer vision Convolution Feature extraction Frames Knowledge representation Machine translation Natural language Natural language processing Neural networks |
Title | 关系挖掘驱动的视频描述自动生成 |
URI | https://www.proquest.com/docview/1981661349 https://d.wanfangdata.com.cn/periodical/njxxgcdxxb201706009 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JSxxBFC5cELwEg0pc8eC1tbtrPwUNigQiIkYkF-mprlIn0MaNDDmbRERcQELIJZCLyynBYw7-GsfxX-Q9p7TaS05NdxcFRX313vfqbYSMqjQTQksdJbmwEQMFiEcqjRw1wjIhrFSYjfxmVsy8Za-X-JK_cNvyYZUPMvFeUOfrBu_Ix8E4TkCXUKZfftiIsGsUeld9C41W0g4iWAHO2yenZufmS4iUUpUIALAXAGlAtATBrUqIlgwxGcZjp8C0VGAN32Xwm6E_lbOQ2UpBv3Md5mOgbhUNCpwnVMY8-DWx5hFYPPLxVoiiSdHM4hQYKAkH0ldKpUqq8eqYKd6vjVWLHcAAxqXJ--KjsXrCjzs-ZoXLipWSopzuIs88wx2ZaELyOWn5tNpNopvPV7dXf-sH3-qH3-8u_tzsn9_-2G2cfbn7dVI_Ompc_258vcSPpz_re8c9ZGF6auHVTOQ7NURGJzrSmXA8rRhmNUYqZknqHLfcpZkyNI-VQ6ahpdEsplmSOCZtnDrOEmOYzMFM7iVtxXphX5ARSoWCIUDbNGPO6qwiHGyY4NrlMZOujww-LHTZn7at5YCNPjLqFx_-FtVabcXktVolbRYLinX__2cZIJ04tBm1Mkjatjd37BBwj-3KsAcYPhcn3y3-A2lX08Y |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEG7iBjEXUVSMRt1DPE4y0-8-iPhI2JhkEVkht2W2pzu6wiSahKyefSFiFETEi-DFBwhKjh78Ndls_oVVmVl7vHjLcWZ6mmm6vqmvul6ETGqaSmmUiZJMuoiDAkRI0cgzKx2X0imN2ciLTdm4zW8siaUR8n2YC4NhlcN_4v6POluxeEY-DcZxArqEcXN59X6EXaPQuzpsoVGIxbx7uAkm29qlueuwvxcpnZ1pXWtEZVeByJrERCaVXtCO5c5gVF2aUO-FE56m2rIs1h61olHW8JilSeK5cjH1gifWcpWBSQfTHiKjHBNaa2T06kzz5q0KAJTSFb4BZAkwEQCkQE_oCoAURwiE8diYkFbqueG1Cm46dN8KHhJpmcTPCPNx0O6aBb4gEqZiEdyoWGIJDCz19xCKoQVTJI1KjMsE_JeFWZlWero7ZfN7d6e6-QaIHIbBqf1ap7H-h44f3kxzn-bLFb08e4wcLQl1_UqBgONk5NGdEyTaebK9u_2r__Jd_9X7va8_d1582f3wePD56d6nN_2trcHvH4Nn3_Dm24_9569PktZBbOEpUstXcnea1BmTGoYASzSce2fSjvSwYVIYn8Vc-XEyMVxouwT3WjuI4jiZLBcfnubdXm_ZZr1ehxa1iWJz5v-zXCBHGq3FhfbCXHP-LBnD14qAmQlSW3-w4c4B7VnvnC-FrU7aByzefwDZWA0t |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V27TxRBGJ_gEQ2NjygRRb0Cy73bnfcUxoh4AVFigYTYXHZnZ5AjWVTuwkntK8aIJsYYGxMbH5WGilD4f9hzHP-F37C77EphR2G5uzOTzXzz-x7zvRAakzjkXAnlBTE3HgUB6CCFPUs0N5RzI6TLRr49wyfv0pvzbH4Abea5MC6sMueJe4w6XtbujrwOxnEAsoRQVbdZWMSdicbVBw8910HKeVrzdhrpEZk2j1fBfFu5MjUBtL6McePG7PVJL-sw4GkVKE-F3DIcaWqUi7ALA2wtM8ziUGoS-9I6CamEVtQnYRBYKoyPLaOB1lTEYN7BskfQoOSS4QoaHJ8bvzdXAoMQsqR7gOIE-CjAJEBmyBKYBHVwKMa7JoW4VNvNPYvCZedcuYwWSbUEVAumivUoSHpJCt2BBUT4rHCpunJLYGyJ_Qsp4qyZNIGUuxhN4AVZkVYihay3ajpZWqy1kg4cPxcSJ_bqnvryL9X86GqY2DBZKMnoxgn0O6duGpqzVOu0o5peO1D48r8k_0l0PLMcqtdSqJ9CA2v3TyNv--nGzsZW79X73usPu99-br_8uvPxSf_Ls93Pb3vr6_1fP_rPv7uX7z71Xrw5g2YP4weHUSVZTsxZVCWESxgC6rCi1BoVRtzCaeRM2dinwo6g0XzfmxkXW2kWmz6CxjLKFl-TVre7oONuN8JpESZfnfv3KpfQMSBa89bUzPR5NORmpYFBo6jSftQxF0C9a0cXMyBVUfOQafcH3Z5YGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%85%B3%E7%B3%BB%E6%8C%96%E6%8E%98%E9%A9%B1%E5%8A%A8%E7%9A%84%E8%A7%86%E9%A2%91%E6%8F%8F%E8%BF%B0%E8%87%AA%E5%8A%A8%E7%94%9F%E6%88%90&rft.jtitle=%E5%8D%97%E4%BA%AC%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E9%BB%84%E6%AF%85&rft.au=%E9%B2%8D%E7%A7%89%E5%9D%A4&rft.au=%E5%BE%90%E5%B8%B8%E8%83%9C&rft.date=2017-12-01&rft.pub=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E8%87%AA%E5%8A%A8%E5%8C%96%E7%A0%94%E7%A9%B6%E6%89%80+%E6%A8%A1%E5%BC%8F%E8%AF%86%E5%88%AB%E5%9B%BD%E5%AE%B6%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%8C%97%E4%BA%AC%2C100190&rft.issn=1674-7070&rft.volume=9&rft.issue=6&rft.spage=642&rft.epage=649&rft_id=info:doi/10.13878%2Fj.cnki.jnuist.2017.06.008&rft.externalDocID=njxxgcdxxb201706009 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnjxxgcdxxb%2Fnjxxgcdxxb.jpg |