关系挖掘驱动的视频描述自动生成

Video description has received increased interest in the field of computer vision. The process of generating video descriptions needs the technology of natural language processing, and the capacity to allow both the lengths of input (sequence of video frames) and output (sequence of description word...

Full description

Saved in:
Bibliographic Details
Published inNanjing Xinxi Gongcheng Daxue Xuebao Vol. 9; no. 6; pp. 642 - 649
Main Authors Huang, Yi, Bao, Bingkun, Xu, Changsheng
Format Journal Article
LanguageChinese
Published Nanjing Nanjing University of Information Science & Technology 01.12.2017
中国科学院自动化研究所 模式识别国家重点实验室,北京,100190
中国科学院大学,北京,100049
Subjects
Online AccessGet full text
ISSN1674-7070
DOI10.13878/j.cnki.jnuist.2017.06.008

Cover

Abstract Video description has received increased interest in the field of computer vision. The process of generating video descriptions needs the technology of natural language processing, and the capacity to allow both the lengths of input (sequence of video frames) and output (sequence of description words) to be variable. To this end, this paper uses the recent advances in machine translation ,and designs a two-layer LSTM (Long Short-Term Memory) model based on the encoder-decoder architecture. Since the deep neural network can learn appropriate representation of input data, we extract the feature vectors of the video frames by convolution neural network (CNN) and take them as the input sequence of the LSTM model. Finally, we compare the influences of different feature extraction methods on the LSTM video description model. The results show that the model in this paper is able to learn to transform sequence of knowledge representation to natural language.
AbstractList TP391.41%TP183; 视频的自动描述任务是计算机视觉领域的一个热点问题.视频描述语句的生成过程需要自然语言处理的知识,并且能够满足输入(视频帧序列)和输出(文本词序列)的长度可变.为此本文结合了最近机器翻译领域取得的进展,设计了基于编码-解码框架的双层LSTM模型.在实验过程中,本文基于构建深度学习框架时重要的表示学习思想,利用卷积神经网络(CNN)提取视频帧的特征向量作为序列转换模型的输入,并比较了不同特征提取方法下对双层LSTM视频描述模型的影响.实验结果表明,本文的模型具有学习序列知识并转化为文本表示的能力.
Video description has received increased interest in the field of computer vision. The process of generating video descriptions needs the technology of natural language processing, and the capacity to allow both the lengths of input (sequence of video frames) and output (sequence of description words) to be variable. To this end, this paper uses the recent advances in machine translation ,and designs a two-layer LSTM (Long Short-Term Memory) model based on the encoder-decoder architecture. Since the deep neural network can learn appropriate representation of input data, we extract the feature vectors of the video frames by convolution neural network (CNN) and take them as the input sequence of the LSTM model. Finally, we compare the influences of different feature extraction methods on the LSTM video description model. The results show that the model in this paper is able to learn to transform sequence of knowledge representation to natural language.
Abstract_FL Video description has received increased interest in the field of computer vision. The process of genera-ting video descriptions needs the technology of natural language processing, and the capacity to allow both the lengths of input (sequence of video frames) and output (sequence of description words) to be variable.To this end, this paper uses the recent advances in machine translation,and designs a two-layer LSTM ( Long Short-Term Memory) model based on the encoder-decoder architecture.Since the deep neural network can learn appropriate representation of input data,we extract the feature vectors of the video frames by convolution neural network ( CNN) and take them as the input sequence of the LSTM model. Finally, we compare the influences of different feature extraction methods on the LSTM video description model. The results show that the model in this paper is able to learn to transform sequence of knowledge representation to natural language.
Author Xu, Changsheng
Huang, Yi
Bao, Bingkun
AuthorAffiliation 中国科学院自动化研究所 模式识别国家重点实验室,北京,100190;中国科学院大学,北京,100049
AuthorAffiliation_xml – name: 中国科学院自动化研究所 模式识别国家重点实验室,北京,100190;中国科学院大学,北京,100049
Author_FL XU Changsheng
BAO Bingkun
HUANG Yi
Author_FL_xml – sequence: 1
  fullname: HUANG Yi
– sequence: 2
  fullname: BAO Bingkun
– sequence: 3
  fullname: XU Changsheng
Author_xml – sequence: 1
  givenname: Yi
  surname: Huang
  fullname: Huang, Yi
– sequence: 2
  givenname: Bingkun
  surname: Bao
  fullname: Bao, Bingkun
– sequence: 3
  givenname: Changsheng
  surname: Xu
  fullname: Xu, Changsheng
BookMark eNpFj8tKw0AYhWdRwVr7ErqUxP-fTDIzSyneoOCm-zKdZkqjTLRpMQ_gDSlWQUTcCG68rJQuXfg0TdO3MKWCqwOHj3NZISUb25CQNQQXPcHFZuRqe9h1IzvoJn2XAnIXAhdAlEgZA84cDhyWSTVJui0ARjkXVJaJMzkfT8ff2fAhu3mcvX9Nrt-mT2f568Xs5S4bjfKfz_zyY27eP2dXt6tkyaijJKz-aYU0drYbtT2nfrC7X9uqO1qidKQKjE9bmoUSQDKF1Bg_9A1VQnttEAaKWZJrycBTiIbxEKjxGWrNeJujVyEbi9hTZY2ynWYUD3q2KGzaKE07up2mrflDCIr8gl5f0Me9-GQQJv1_HKXAIECPSe8Xi09mGQ
ClassificationCodes TP391.41%TP183
ContentType Journal Article
Copyright Copyright Nanjing University of Information Science & Technology 2017
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright Nanjing University of Information Science & Technology 2017
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 7SC
7SP
7TB
7TG
7U5
8FD
ABUWG
AEUYN
AFKRA
BENPR
BHPHI
BKSAR
BVBZV
CCPQU
DWQXO
FR3
HCIFZ
JQ2
KL.
KR7
L7M
L~C
L~D
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13878/j.cnki.jnuist.2017.06.008
DatabaseName Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
East & South Asia Database
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
East & South Asia Database
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Video description based on relationship feature embedding
EndPage 649
ExternalDocumentID njxxgcdxxb201706009
GrantInformation_xml – fundername: 国家自然科学基金; 北京市自然科学基金
  funderid: (61572503,61432019); (4152053)
GroupedDBID 7SC
7SP
7TB
7TG
7U5
8FD
8FE
8FH
ABUWG
ACIWK
AEUYN
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
BHPHI
BKSAR
BPHCQ
BVBZV
CCPQU
D1K
DWQXO
FR3
HCIFZ
JQ2
K6-
KL.
KR7
L7M
L~C
L~D
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PROAC
2B.
4A8
92I
93N
PMFND
PSX
TCJ
ID FETCH-LOGICAL-c919-9a6f52bc4e90094a12ff5e5f2a8c3d08f000897c9403a11f47e02f541cc47d713
IEDL.DBID BENPR
ISSN 1674-7070
IngestDate Thu May 29 04:01:02 EDT 2025
Sun Jun 29 15:35:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords representation learning
视频描述
LSTM model
video description
表示学习
特征嵌入
LSTM模型
feature embedding
Language Chinese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c919-9a6f52bc4e90094a12ff5e5f2a8c3d08f000897c9403a11f47e02f541cc47d713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1981661349
PQPubID 396471
PageCount 8
ParticipantIDs wanfang_journals_njxxgcdxxb201706009
proquest_journals_1981661349
PublicationCentury 2000
PublicationDate 20171201
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 20171201
  day: 01
PublicationDecade 2010
PublicationPlace Nanjing
PublicationPlace_xml – name: Nanjing
PublicationSubtitle Journal of Nanjing University of Information Science & Technology
PublicationTitle Nanjing Xinxi Gongcheng Daxue Xuebao
PublicationTitle_FL Journal of Nanjing University of Information Science & Technology
PublicationYear 2017
Publisher Nanjing University of Information Science & Technology
中国科学院自动化研究所 模式识别国家重点实验室,北京,100190
中国科学院大学,北京,100049
Publisher_xml – name: Nanjing University of Information Science & Technology
– name: 中国科学院自动化研究所 模式识别国家重点实验室,北京,100190
– name: 中国科学院大学,北京,100049
SSID ssib004277829
ssj0003009640
ssib007693286
ssib024215495
ssib036435925
ssib041908383
ssib007123825
ssib006564251
ssib007453199
ssib007693731
ssib052002897
ssib051370506
Score 2.0978582
Snippet Video description has received increased interest in the field of computer vision. The process of generating video descriptions needs the technology of natural...
TP391.41%TP183;...
SourceID wanfang
proquest
SourceType Aggregation Database
StartPage 642
SubjectTerms Artificial neural networks
Computer vision
Convolution
Feature extraction
Frames
Knowledge representation
Machine translation
Natural language
Natural language processing
Neural networks
Title 关系挖掘驱动的视频描述自动生成
URI https://www.proquest.com/docview/1981661349
https://d.wanfangdata.com.cn/periodical/njxxgcdxxb201706009
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JSxxBFC5cELwEg0pc8eC1tbtrPwUNigQiIkYkF-mprlIn0MaNDDmbRERcQELIJZCLyynBYw7-GsfxX-Q9p7TaS05NdxcFRX313vfqbYSMqjQTQksdJbmwEQMFiEcqjRw1wjIhrFSYjfxmVsy8Za-X-JK_cNvyYZUPMvFeUOfrBu_Ix8E4TkCXUKZfftiIsGsUeld9C41W0g4iWAHO2yenZufmS4iUUpUIALAXAGlAtATBrUqIlgwxGcZjp8C0VGAN32Xwm6E_lbOQ2UpBv3Md5mOgbhUNCpwnVMY8-DWx5hFYPPLxVoiiSdHM4hQYKAkH0ldKpUqq8eqYKd6vjVWLHcAAxqXJ--KjsXrCjzs-ZoXLipWSopzuIs88wx2ZaELyOWn5tNpNopvPV7dXf-sH3-qH3-8u_tzsn9_-2G2cfbn7dVI_Ompc_258vcSPpz_re8c9ZGF6auHVTOQ7NURGJzrSmXA8rRhmNUYqZknqHLfcpZkyNI-VQ6ahpdEsplmSOCZtnDrOEmOYzMFM7iVtxXphX5ARSoWCIUDbNGPO6qwiHGyY4NrlMZOujww-LHTZn7at5YCNPjLqFx_-FtVabcXktVolbRYLinX__2cZIJ04tBm1Mkjatjd37BBwj-3KsAcYPhcn3y3-A2lX08Y
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEG7iBjEXUVSMRt1DPE4y0-8-iPhI2JhkEVkht2W2pzu6wiSahKyefSFiFETEi-DFBwhKjh78Ndls_oVVmVl7vHjLcWZ6mmm6vqmvul6ETGqaSmmUiZJMuoiDAkRI0cgzKx2X0imN2ciLTdm4zW8siaUR8n2YC4NhlcN_4v6POluxeEY-DcZxArqEcXN59X6EXaPQuzpsoVGIxbx7uAkm29qlueuwvxcpnZ1pXWtEZVeByJrERCaVXtCO5c5gVF2aUO-FE56m2rIs1h61olHW8JilSeK5cjH1gifWcpWBSQfTHiKjHBNaa2T06kzz5q0KAJTSFb4BZAkwEQCkQE_oCoAURwiE8diYkFbqueG1Cm46dN8KHhJpmcTPCPNx0O6aBb4gEqZiEdyoWGIJDCz19xCKoQVTJI1KjMsE_JeFWZlWero7ZfN7d6e6-QaIHIbBqf1ap7H-h44f3kxzn-bLFb08e4wcLQl1_UqBgONk5NGdEyTaebK9u_2r__Jd_9X7va8_d1582f3wePD56d6nN_2trcHvH4Nn3_Dm24_9569PktZBbOEpUstXcnea1BmTGoYASzSce2fSjvSwYVIYn8Vc-XEyMVxouwT3WjuI4jiZLBcfnubdXm_ZZr1ehxa1iWJz5v-zXCBHGq3FhfbCXHP-LBnD14qAmQlSW3-w4c4B7VnvnC-FrU7aByzefwDZWA0t
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V27TxRBGJ_gEQ2NjygRRb0Cy73bnfcUxoh4AVFigYTYXHZnZ5AjWVTuwkntK8aIJsYYGxMbH5WGilD4f9hzHP-F37C77EphR2G5uzOTzXzz-x7zvRAakzjkXAnlBTE3HgUB6CCFPUs0N5RzI6TLRr49wyfv0pvzbH4Abea5MC6sMueJe4w6XtbujrwOxnEAsoRQVbdZWMSdicbVBw8910HKeVrzdhrpEZk2j1fBfFu5MjUBtL6McePG7PVJL-sw4GkVKE-F3DIcaWqUi7ALA2wtM8ziUGoS-9I6CamEVtQnYRBYKoyPLaOB1lTEYN7BskfQoOSS4QoaHJ8bvzdXAoMQsqR7gOIE-CjAJEBmyBKYBHVwKMa7JoW4VNvNPYvCZedcuYwWSbUEVAumivUoSHpJCt2BBUT4rHCpunJLYGyJ_Qsp4qyZNIGUuxhN4AVZkVYihay3ajpZWqy1kg4cPxcSJ_bqnvryL9X86GqY2DBZKMnoxgn0O6duGpqzVOu0o5peO1D48r8k_0l0PLMcqtdSqJ9CA2v3TyNv--nGzsZW79X73usPu99-br_8uvPxSf_Ls93Pb3vr6_1fP_rPv7uX7z71Xrw5g2YP4weHUSVZTsxZVCWESxgC6rCi1BoVRtzCaeRM2dinwo6g0XzfmxkXW2kWmz6CxjLKFl-TVre7oONuN8JpESZfnfv3KpfQMSBa89bUzPR5NORmpYFBo6jSftQxF0C9a0cXMyBVUfOQafcH3Z5YGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%85%B3%E7%B3%BB%E6%8C%96%E6%8E%98%E9%A9%B1%E5%8A%A8%E7%9A%84%E8%A7%86%E9%A2%91%E6%8F%8F%E8%BF%B0%E8%87%AA%E5%8A%A8%E7%94%9F%E6%88%90&rft.jtitle=%E5%8D%97%E4%BA%AC%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E9%BB%84%E6%AF%85&rft.au=%E9%B2%8D%E7%A7%89%E5%9D%A4&rft.au=%E5%BE%90%E5%B8%B8%E8%83%9C&rft.date=2017-12-01&rft.pub=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E8%87%AA%E5%8A%A8%E5%8C%96%E7%A0%94%E7%A9%B6%E6%89%80+%E6%A8%A1%E5%BC%8F%E8%AF%86%E5%88%AB%E5%9B%BD%E5%AE%B6%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%8C%97%E4%BA%AC%2C100190&rft.issn=1674-7070&rft.volume=9&rft.issue=6&rft.spage=642&rft.epage=649&rft_id=info:doi/10.13878%2Fj.cnki.jnuist.2017.06.008&rft.externalDocID=njxxgcdxxb201706009
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnjxxgcdxxb%2Fnjxxgcdxxb.jpg