Robust Range Super-Resolution Imaging With Multicriteria Joint Constraints via Double Smoothed }-Norm Under Limited Resources
The radar's high-resolution range profile (HRRP) contains rich physical structural features of targets, making it of great value for target recognition and classification. However, in practical applications, the effective bandwidth of radar signals is limited due to the nonideal factors such as...
Saved in:
Published in | IEEE transactions on aerospace and electronic systems Vol. 61; no. 2; pp. 5145 - 5165 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9251 1557-9603 |
DOI | 10.1109/TAES.2024.3515941 |
Cover
Loading…
Abstract | The radar's high-resolution range profile (HRRP) contains rich physical structural features of targets, making it of great value for target recognition and classification. However, in practical applications, the effective bandwidth of radar signals is limited due to the nonideal factors such as spectrum control, limited hardware equipment capabilities, and spectrum electromagnetic interference. Thus, it is difficult to reach the requirement of high-resolution and accurate target characterization in range profiles under limited resources, which will reduce subsequent detection, imaging, and recognition performance. To address the problem, this article proposes a robust range profile super-resolution method with multicriteria joint constraints of sparsity, low-rank, and Doppler under a multiple measurement vector model. In this technique, based on compressed sensing theory and adaptive filtering framework, a sparse reconstruction algorithm via double smoothed {{l}_{0}}-norm is proposed, which constructs a continuously differentiable Gaussian class function to approximate the {{l}_{0}}-norm. It combines accelerated gradient algorithm and zero attractor to optimize the multicriteria cost function and iteratively reconstruct the super-resolution range profile. The algorithm improves the super-resolution performance of range profiles, enhances the robustness against noise and complex range profile configurations, and can obtain high-precision HRRP of targets with limited radar resources. Extensive simulation and real data experiments demonstrate that it not only improves the average reconstruction accuracy of super-resolution range profile sequence, but effectively reduces the fluctuation of reconstruction errors. In addition, it does not require high azimuth resolution, and is also highly effective with a small number of sequence echoes. |
---|---|
AbstractList | The radar's high-resolution range profile (HRRP) contains rich physical structural features of targets, making it of great value for target recognition and classification. However, in practical applications, the effective bandwidth of radar signals is limited due to the nonideal factors such as spectrum control, limited hardware equipment capabilities, and spectrum electromagnetic interference. Thus, it is difficult to reach the requirement of high-resolution and accurate target characterization in range profiles under limited resources, which will reduce subsequent detection, imaging, and recognition performance. To address the problem, this article proposes a robust range profile super-resolution method with multicriteria joint constraints of sparsity, low-rank, and Doppler under a multiple measurement vector model. In this technique, based on compressed sensing theory and adaptive filtering framework, a sparse reconstruction algorithm via double smoothed {{l}_{0}}-norm is proposed, which constructs a continuously differentiable Gaussian class function to approximate the {{l}_{0}}-norm. It combines accelerated gradient algorithm and zero attractor to optimize the multicriteria cost function and iteratively reconstruct the super-resolution range profile. The algorithm improves the super-resolution performance of range profiles, enhances the robustness against noise and complex range profile configurations, and can obtain high-precision HRRP of targets with limited radar resources. Extensive simulation and real data experiments demonstrate that it not only improves the average reconstruction accuracy of super-resolution range profile sequence, but effectively reduces the fluctuation of reconstruction errors. In addition, it does not require high azimuth resolution, and is also highly effective with a small number of sequence echoes. |
Author | Liu, Hongwei Su, Tao Liu, Zhexian Shao, Shuai |
Author_xml | – sequence: 1 givenname: Zhexian surname: Liu fullname: Liu, Zhexian email: ZhexianLiu@stu.xidianedu.cn organization: The National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China – sequence: 2 givenname: Shuai orcidid: 0000-0001-9842-3703 surname: Shao fullname: Shao, Shuai email: sshao@xidian.edu.cn organization: The National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China – sequence: 3 givenname: Hongwei orcidid: 0000-0003-4046-163X surname: Liu fullname: Liu, Hongwei email: hwliu@xidian.edu.cn organization: The National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China – sequence: 4 givenname: Tao orcidid: 0000-0003-1529-4198 surname: Su fullname: Su, Tao email: sutao@xidian.edu.cn organization: The National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China |
BookMark | eNpNUE1LAzEQDaJgrf4AwUPA89ZMPtzNUeo3VaFWPC7Z3bFGuklNsoIH_7sp9eBc5oP35s28A7LrvENCjoFNAJg-W1xcPU8443IiFCgtYYeMQKmy0OdM7JIRY1AVmivYJwcxfuRWVlKMyM_cN0NMdG7cEunzsMZQzDH61ZCsd_SuN0vrlvTVpnf6MKySbYNNGKyh9966RKfexRRMLiP9ytNLPzSrvKj3Pr1jR3-KRx96-uI6DHRm-0zu6EZgCC3GQ7L3ZlYRj_7ymCyurxbT22L2dHM3vZgVrQZRdBrzQ4jIwGDXleetVLJtOTLWlp0AwxveSM4r2TSVEaUQldLayEYr5AilGJPT7dp18J8DxlR_ZH2XFWsBVQ4BUmQUbFFt8DEGfKvXwfYmfNfA6o3J9cbkemNy_Wdy5pxsOTaf9w9fagW6FL_FfHvw |
CODEN | IEARAX |
Cites_doi | 10.1109/TSP.2016.2639467 10.1109/LGRS.2020.3003578 10.1109/TSP.2013.2295557 10.1109/TIT.2006.885507 10.1109/TCI.2017.2750330 10.1109/TSP.2009.2029715 10.1109/TGRS.2023.3323517 10.1109/TSP.2005.850882 10.1109/TIP.2019.2927458 10.1109/8.999623 10.1109/TGRS.2020.2994179 10.1109/JSTSP.2009.2039173 10.3390/s18124409 10.1109/TAES.2006.1603402 10.1109/78.485924 10.1109/TWC.2012.090312.111912 10.1049/iet-rsn.2015.0647 10.2528/PIER18082304 10.3390/s20185047 10.1109/TGRS.2022.3197439 10.1016/j.ins.2022.12.105 10.1109/8.489295 10.1109/7.220924 10.1016/j.sigpro.2017.04.011 10.1109/TGRS.2013.2286402 10.1109/78.558475 10.1109/TGRS.2021.3062486 10.1109/8.233138 10.1016/j.mri.2013.05.010 10.1109/TIM.2023.3318716 10.1109/TIT.2005.862083 10.1109/TSP.2008.2007606 10.1109/TSP.2010.2086452 10.1109/8.123348 10.1002/cpa.20124 10.1109/lsp.2009.2024736 10.1109/TSP.2010.2050477 10.1109/TSP.2012.2222378 10.1117/1.1431251 10.1109/TIT.2007.909108 10.24963/ijcai.2019/330 10.1109/LGRS.2013.2279402 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
DOI | 10.1109/TAES.2024.3515941 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9603 |
EndPage | 5165 |
ExternalDocumentID | 10_1109_TAES_2024_3515941 10795197 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key Lab of Microwave Imaging Technology – fundername: China Postdoctoral Science Foundation; Postdoctoral Science Foundation grantid: 2022M722502 funderid: 10.13039/501100002858 – fundername: Foundation of National Key Laboratory of Radar Signal Processing grantid: JKW202305 – fundername: Shaanxi Postdoctoral Sustentation Fund grantid: 2023BSHYDZZ94 – fundername: National Natural Science Foundation of China grantid: 62101407 funderid: 10.13039/501100001809 – fundername: Aeronautical Science Foundation of China funderid: 10.13039/501100004750 |
GroupedDBID | -~X 0R~ 29I 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 7TB 8FD FR3 H8D L7M |
ID | FETCH-LOGICAL-c913-d9e941eee01aedd76c454cc2e00c7d31a2b2b42284bb8a37338599a4b95e2e173 |
IEDL.DBID | RIE |
ISSN | 0018-9251 |
IngestDate | Tue Jul 22 18:41:16 EDT 2025 Sun Jul 06 05:07:46 EDT 2025 Wed Aug 27 01:53:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c913-d9e941eee01aedd76c454cc2e00c7d31a2b2b42284bb8a37338599a4b95e2e173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1529-4198 0000-0003-4046-163X 0000-0001-9842-3703 |
PQID | 3188883143 |
PQPubID | 85477 |
PageCount | 21 |
ParticipantIDs | proquest_journals_3188883143 ieee_primary_10795197 crossref_primary_10_1109_TAES_2024_3515941 |
PublicationCentury | 2000 |
PublicationDate | 2025-April |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-April |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on aerospace and electronic systems |
PublicationTitleAbbrev | T-AES |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 Lewis (ref48) 1995; 2 ref11 ref10 ref17 ref16 ref19 ref18 Li (ref25) 2015; 43 ref51 ref50 Qin (ref9) 2023; 57 ref45 ref47 ref42 ref44 ref43 ref49 ref8 ref7 Zeng (ref26) 2019; 46 ref3 Richard (ref40) 2012 Borison (ref4) 1992; 5 ref6 ref5 Jojic (ref41) 2011; 15 ref35 ref34 ref37 ref36 ref31 Yu (ref23) 2015; 13 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref20 ref22 ref21 ref28 ref27 ref29 Nesterov (ref46) 1983; 269 |
References_xml | – ident: ref13 doi: 10.1109/TSP.2016.2639467 – volume: 46 start-page: 123 issue: 3 year: 2019 ident: ref26 article-title: Sparse-aperture ISAR imaging algorithm publication-title: J. Xidian Univ. – ident: ref51 doi: 10.1109/LGRS.2020.3003578 – volume: 57 start-page: 1215 issue: 6 year: 2023 ident: ref9 article-title: Radar range super-resolution method based on deep neural network publication-title: J. Zhejiang Univ. (Eng. Sci.) – ident: ref47 doi: 10.1109/TSP.2013.2295557 – ident: ref10 doi: 10.1109/TIT.2006.885507 – ident: ref38 doi: 10.1109/TCI.2017.2750330 – ident: ref39 doi: 10.1109/TSP.2009.2029715 – ident: ref29 doi: 10.1109/TGRS.2023.3323517 – ident: ref20 doi: 10.1109/TSP.2005.850882 – ident: ref30 doi: 10.1109/TIP.2019.2927458 – volume: 15 start-page: 399 year: 2011 ident: ref41 article-title: Convex envelopes of complexity controlling penalties: The case against premature envelopment publication-title: J. Mach. Learn. Res. – ident: ref7 doi: 10.1109/8.999623 – ident: ref34 doi: 10.1109/TGRS.2020.2994179 – ident: ref22 doi: 10.1109/JSTSP.2009.2039173 – ident: ref33 doi: 10.3390/s18124409 – volume: 5 start-page: 441 year: 1992 ident: ref4 article-title: Super-resolution methods for wideband radar publication-title: Linc. Lab. J. – ident: ref24 doi: 10.1109/TAES.2006.1603402 – ident: ref6 doi: 10.1109/78.485924 – ident: ref17 doi: 10.1109/TWC.2012.090312.111912 – ident: ref32 doi: 10.1049/iet-rsn.2015.0647 – ident: ref8 doi: 10.2528/PIER18082304 – ident: ref37 doi: 10.3390/s20185047 – volume: 13 start-page: 522 issue: 5 year: 2015 ident: ref23 article-title: A new method for ship length estimation based on Doppler spectrum analysis publication-title: Radar Sci. Technol. – ident: ref16 doi: 10.1109/TGRS.2022.3197439 – year: 2012 ident: ref40 article-title: Estimation of simultane-ously sparse and low rank matrices publication-title: Statistics – ident: ref45 doi: 10.1016/j.ins.2022.12.105 – ident: ref3 doi: 10.1109/8.489295 – ident: ref2 doi: 10.1109/7.220924 – ident: ref42 doi: 10.1016/j.sigpro.2017.04.011 – ident: ref36 doi: 10.1109/TGRS.2013.2286402 – ident: ref14 doi: 10.1109/78.558475 – ident: ref28 doi: 10.1109/TGRS.2021.3062486 – ident: ref1 doi: 10.1109/8.233138 – ident: ref44 doi: 10.1016/j.mri.2013.05.010 – ident: ref19 doi: 10.1109/TIM.2023.3318716 – ident: ref11 doi: 10.1109/TIT.2005.862083 – ident: ref21 doi: 10.1109/TSP.2008.2007606 – volume: 43 start-page: 708 issue: 4 year: 2015 ident: ref25 article-title: Study on the fast sparse recovery algorithm via multiple measurement vectors of arbitrary sparse structure publication-title: Acta Electron. Sinica – ident: ref27 doi: 10.1109/TSP.2010.2086452 – ident: ref5 doi: 10.1109/8.123348 – ident: ref31 doi: 10.1002/cpa.20124 – ident: ref43 doi: 10.1109/lsp.2009.2024736 – volume: 269 start-page: 543 issue: 3 year: 1983 ident: ref46 article-title: A method for solving the convex programming problem with convergence rate O(1/$k^{2}$) publication-title: Dokl. Akad. Nauk SSSR – ident: ref15 doi: 10.1109/TSP.2010.2050477 – ident: ref18 doi: 10.1109/TSP.2012.2222378 – ident: ref35 doi: 10.1117/1.1431251 – volume: 2 start-page: 173 year: 1995 ident: ref48 article-title: The convex analysis of unitarily invariant matrix functions publication-title: J. Convex Anal. – ident: ref12 doi: 10.1109/TIT.2007.909108 – ident: ref49 doi: 10.24963/ijcai.2019/330 – ident: ref50 doi: 10.1109/LGRS.2013.2279402 |
SSID | ssj0014843 |
Score | 2.4501438 |
Snippet | The radar's high-resolution range profile (HRRP) contains rich physical structural features of targets, making it of great value for target recognition and... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 5145 |
SubjectTerms | Accuracy Adaptive filters Algorithms Compressed sensing (CS) Constraints Control theory Cost function Doppler effect double smoothed <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> {{l}_{0}}</tex-math> </inline-formula> </named-content>-norm (DSL0) Electromagnetic interference High resolution high-resolution range profile (HRRP) Image reconstruction Image resolution limited resource multicriteria joint constraints Multiple criterion Radar Radar imaging Reconstruction Robustness Scattering Signal processing algorithms Simulation super-resolution imaging Superresolution Target recognition Vectors |
Title | Robust Range Super-Resolution Imaging With Multicriteria Joint Constraints via Double Smoothed }-Norm Under Limited Resources |
URI | https://ieeexplore.ieee.org/document/10795197 https://www.proquest.com/docview/3188883143 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7Ukx58i_XFHjwJWze7m8YcRSxasAet2FvYV7FoE7GJB8H_7swmlaoI5hRCEpKd2Z1vduabIeTYaYvRNcNGLuFMSS8YoPCYKSux3pgCm4oE55t-5-pe9YbxsCGrBy6M9z4kn_k2noZYvitshVtlMMOTFImWi2QRPLearPUVMlBnTYpcBDMYrHYTwox4ejo4v7wDV1CotkTzraJvRih0Vfm1FAf70l0j_dmX1WklT-2qNG37_qNo478_fZ2sNkiTnteqsUEWfL5JVubqD26Rj9vCVNOS3iLDgN5VL_6V4X5-rY30ehJaGNGHcflIA1MXlhis7axprxjnJcVun6HHRDmlb3AV0Lh5hhdNCuR1OfrB-gCJaeitRBsqFZ0FDKbbZNC9HFxcsaYfA7NpJJlLPQwd_BmPtHcu6VgVK2uF59wmTkZaGGGwopgy5kzLBJzfOE21MmnshY8SuUOW8iL3u4RGVkirpQJ4xZVyXItEd2zstOd2BBCqRU5m8sle6qobWfBWeJqhMDMUZtYIs0W2cbznbqyHukUOZiLNmok5zUAD4ZCAEvf-eGyfLAvs8Ruycw7IUvla-UMAHqU5Cgr3CQpQ1X8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB61cGh74NGCujyKDz1V8taxnc36iCrQQmEPsFW5RX4hELBBbNJDpf3vzDjZCooqNacoSiLbM_Z89sw3A_A5WE_eNccvQyG4VlFyROE5115RvjGNNpUIzqfjweiHPr7ILzqyeuLCxBhT8Fns023y5YfKN3RUhjO8MES0fA3LaPi1aelaf5wGetgFyWU4h9Fud07MTJivk_2Dc9wMSt1XZMB19swMpboqLxbjZGEOV2G8aFsbWHLTb2rX97__Stv4341fg5UOa7L9VjnW4VWcvod3TzIQfoD5WeWaWc3OiGPAzpv7-MDpRL_VR3Z0l4oYsZ_X9RVLXF1cZCi7s2XH1fW0ZlTvM1WZqGfsFz5FPO5u8Ud3FTG7ApvzMYJilqorsY5MxRYug9kGTA4PJt9GvKvIwL3JFA8m4tBhz0RmYwjFwKMUvJdRCF8ElVnppKOcYtq5oVUFbn9zY6x2Jo8yZoXahKVpNY0fgWVeKm-VRoAltA7CysIOfB5sFP4SQVQPvizkU963eTfKtF8RpiRhliTMshNmDzZovJ-82A51D3YWIi27qTkrUQfxUogTt_7x2R68GU1OT8qTo_H3bXgrqeJvitXZgaX6oYm7CENq9ykp3yNnH9jP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Range+Super-Resolution+Imaging+With+Multicriteria+Joint+Constraints+via+Double+Smoothed+%7D-Norm+Under+Limited+Resources&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Liu%2C+Zhexian&rft.au=Shao%2C+Shuai&rft.au=Liu%2C+Hongwei&rft.au=Su%2C+Tao&rft.date=2025-04-01&rft.pub=IEEE&rft.issn=0018-9251&rft.volume=61&rft.issue=2&rft.spage=5145&rft.epage=5165&rft_id=info:doi/10.1109%2FTAES.2024.3515941&rft.externalDocID=10795197 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon |