Expediting hit-to-lead progression in drug discovery through reaction prediction and multi-objective molecular optimization

The rapid and economical synthesis of novel bioactive compounds remains a significant hurdle in drug discovery efforts. This study demonstrates an integrated medicinal chemistry workflow that effectively diversifies hit and lead structures, enabling an efficient acceleration of the critical hit-to-l...

Full description

Saved in:
Bibliographic Details
Published inChemRxiv
Main Authors Nippa, David F., Atz, Kenneth, Stenzhorn, Yannick, Müller, Alex T., Tosstorff, Andreas, Benz, Jörg, Binch, Hayley, Bürkler, Markus, Haider, Achi, Heer, Dominik, Hochstrasser, Remo, Kramer, Christian, Reutlinger, Michael, Schneider, Petra, Shema, Thierry, Topp, Andreas, Walter, Alexander, Wittwer, Matthias B., Wolfard, Jens, Kuhn, Bernd, van der Stelt, Mario, Martin, Rainer E., Grether, Uwe, Schneider, Gisbert
Format Paper
LanguageEnglish
Edition2
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rapid and economical synthesis of novel bioactive compounds remains a significant hurdle in drug discovery efforts. This study demonstrates an integrated medicinal chemistry workflow that effectively diversifies hit and lead structures, enabling an efficient acceleration of the critical hit-to-lead optimization phase. Employing high-throughput experimentation (HTE), we generated a comprehensive data set encompassing 13,490 novel Minisci-type C-H alkylation reactions. This data set served as the foundation for training deep graph neural networks to accurately predict reaction outcomes. Scaffold-based enumeration of potential Minisci reaction products, starting from moderate inhibitors of monoacylglycerol lipase (MAGL), yielded a virtual library containing 26,375 molecules. This virtual chemical library was evaluated using reaction prediction, physicochemical property assessment, and structure-based scoring, identifying 212 potential MAGL inhibitor candidates. Of these, 14 ligands were synthesized and exhibited subnanomolar activity, representing a potency improvement of up to 4500 times over the original hit compound. These compounds also displayed favorable pharmacological profiles. Co-crystallization of three computationally designed ligands with the MAGL protein provided valuable structural insights into their preferred binding poses. This study demonstrates the potential of combining miniaturized HTE with deep learning and molecular property optimization to reduce cycle times in drug discovery.
AbstractList The rapid and economical synthesis of novel bioactive compounds remains a significant hurdle in drug discovery efforts. This study demonstrates an integrated medicinal chemistry workflow that effectively diversifies hit and lead structures, enabling an efficient acceleration of the critical hit-to-lead optimization phase. Employing high-throughput experimentation (HTE), we generated a comprehensive data set encompassing 13,490 novel Minisci-type C-H alkylation reactions. This data set served as the foundation for training deep graph neural networks to accurately predict reaction outcomes. Scaffold-based enumeration of potential Minisci reaction products, starting from moderate inhibitors of monoacylglycerol lipase (MAGL), yielded a virtual library containing 26,375 molecules. This virtual chemical library was evaluated using reaction prediction, physicochemical property assessment, and structure-based scoring, identifying 212 potential MAGL inhibitor candidates. Of these, 14 ligands were synthesized and exhibited subnanomolar activity, representing a potency improvement of up to 4500 times over the original hit compound. These compounds also displayed favorable pharmacological profiles. Co-crystallization of three computationally designed ligands with the MAGL protein provided valuable structural insights into their preferred binding poses. This study demonstrates the potential of combining miniaturized HTE with deep learning and molecular property optimization to reduce cycle times in drug discovery.
Author Schneider, Gisbert
Benz, Jörg
Heer, Dominik
Shema, Thierry
Müller, Alex T.
Binch, Hayley
Hochstrasser, Remo
Wittwer, Matthias B.
van der Stelt, Mario
Schneider, Petra
Reutlinger, Michael
Walter, Alexander
Stenzhorn, Yannick
Topp, Andreas
Bürkler, Markus
Kramer, Christian
Haider, Achi
Atz, Kenneth
Grether, Uwe
Martin, Rainer E.
Nippa, David F.
Tosstorff, Andreas
Wolfard, Jens
Kuhn, Bernd
Author_xml – sequence: 1
  givenname: David F.
  orcidid: 0000-0002-0346-3786
  surname: Nippa
  fullname: Nippa, David F.
  organization: Roche (Switzerland)
– sequence: 2
  givenname: Kenneth
  orcidid: 0000-0002-2628-1619
  surname: Atz
  fullname: Atz, Kenneth
  organization: Roche (Switzerland)
– sequence: 3
  givenname: Yannick
  orcidid: 0009-0007-7444-3946
  surname: Stenzhorn
  fullname: Stenzhorn, Yannick
  organization: Roche (Switzerland)
– sequence: 4
  givenname: Alex T.
  orcidid: 0000-0001-8063-9952
  surname: Müller
  fullname: Müller, Alex T.
  organization: Roche (Switzerland)
– sequence: 5
  givenname: Andreas
  orcidid: 0000-0002-4969-3667
  surname: Tosstorff
  fullname: Tosstorff, Andreas
  organization: Roche (Switzerland)
– sequence: 6
  givenname: Jörg
  surname: Benz
  fullname: Benz, Jörg
  organization: Roche (Switzerland)
– sequence: 7
  givenname: Hayley
  surname: Binch
  fullname: Binch, Hayley
  organization: Roche (Switzerland)
– sequence: 8
  givenname: Markus
  surname: Bürkler
  fullname: Bürkler, Markus
  organization: Roche (Switzerland)
– sequence: 9
  givenname: Achi
  orcidid: 0000-0002-5204-4473
  surname: Haider
  fullname: Haider, Achi
  organization: Roche (Switzerland)
– sequence: 10
  givenname: Dominik
  orcidid: 0009-0003-2089-4339
  surname: Heer
  fullname: Heer, Dominik
  organization: Roche (Switzerland)
– sequence: 11
  givenname: Remo
  surname: Hochstrasser
  fullname: Hochstrasser, Remo
  organization: Roche (Switzerland)
– sequence: 12
  givenname: Christian
  orcidid: 0000-0001-8663-5266
  surname: Kramer
  fullname: Kramer, Christian
  organization: Roche (Switzerland)
– sequence: 13
  givenname: Michael
  orcidid: 0000-0001-9393-108X
  surname: Reutlinger
  fullname: Reutlinger, Michael
  organization: Roche (Switzerland)
– sequence: 14
  givenname: Petra
  surname: Schneider
  fullname: Schneider, Petra
  organization: ETH Zurich
– sequence: 15
  givenname: Thierry
  surname: Shema
  fullname: Shema, Thierry
  organization: Leiden University
– sequence: 16
  givenname: Andreas
  surname: Topp
  fullname: Topp, Andreas
  organization: Roche (Switzerland)
– sequence: 17
  givenname: Alexander
  surname: Walter
  fullname: Walter, Alexander
  organization: Roche (Switzerland)
– sequence: 18
  givenname: Matthias B.
  orcidid: 0000-0003-1359-4795
  surname: Wittwer
  fullname: Wittwer, Matthias B.
  organization: Roche (Switzerland)
– sequence: 19
  givenname: Jens
  orcidid: 0000-0001-7338-4103
  surname: Wolfard
  fullname: Wolfard, Jens
  organization: Roche (Switzerland)
– sequence: 20
  givenname: Bernd
  orcidid: 0000-0002-4301-562X
  surname: Kuhn
  fullname: Kuhn, Bernd
  organization: Roche (Switzerland)
– sequence: 21
  givenname: Mario
  surname: van der Stelt
  fullname: van der Stelt, Mario
  organization: Leiden University
– sequence: 22
  givenname: Rainer E.
  orcidid: 0000-0001-7895-497X
  surname: Martin
  fullname: Martin, Rainer E.
  organization: Roche (Switzerland)
– sequence: 23
  givenname: Uwe
  orcidid: 0000-0002-3164-9270
  surname: Grether
  fullname: Grether, Uwe
  organization: Roche (Switzerland)
– sequence: 24
  givenname: Gisbert
  orcidid: 0000-0001-6706-1084
  surname: Schneider
  fullname: Schneider, Gisbert
  organization: ETH Zurich
BookMark eNo1kMlOwzAYhC0EEqX0GfALGLwmzhFVbFIlLr1Xjv07cZXEkbPQwsvTqnCa0cynOcwduu5iBwg9MPrIMynkk62hTYcwE065IrQ51F9k5ldowVUuCOeFuEWrYdhTeuoZY1It0M_LoQcXxtBVuA4jGSNpwDjcp1glGIYQOxw67NJUYRcGG2dIRzzWKU5VjRMYO56RPp1GLtZ0DrdTMwYSyz2cshlwGxuwU2MSjv0Y2vBtzug9uvGmGWD1p0u0fX3Zrt_J5vPtY_28IbagnChwTFLneQle-FI4Lcosg1xrKKxQZWbBe8NKyF0BUubMO0u1KkTuKKjciyWil9n_f3Z9Cq1Jx12WF9oA15o5zhQzlEtVUKfEL0jra5g
ContentType Paper
DBID CQEMM
DOI 10.26434/chemrxiv-2025-0lxhw-v2
DatabaseName ChemRxiv
DatabaseTitleList
Database_xml – sequence: 1
  dbid: CQEMM
  name: ChemRxiv
  url: https://chemrxiv.org/engage/chemrxiv/public-dashboard
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2573-2293
Edition 2
ExternalDocumentID 6798ae2881d2151a024590d5
GroupedDBID AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CQEMM
PHGZT
PIMPY
ID FETCH-LOGICAL-c902-5ed140df2bef3fb3d83b66e788e9c35b6ceffa1be7d9e4471fdc085937d0e57f3
IEDL.DBID CQEMM
IngestDate Fri Mar 14 12:02:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c902-5ed140df2bef3fb3d83b66e788e9c35b6ceffa1be7d9e4471fdc085937d0e57f3
Notes G.S. and P.S. declare a potential financial conflict of interest as co-founders of inSili.com LLC, Zurich, and Xanadys LLC, Zurich. D.F.N., K.A., Y.S., A.T.M., A.T., J.B., H.B., M.B., A.H., D.H. R.H., C.K., M.R., T.S., A.T., A.W., M.B.W., J.W., B.K., R.E.M., and U.G. are full employees of F. Hoffmann-La Roche Ltd.
ORCID 0000-0002-3164-9270
0000-0002-4969-3667
0000-0001-8063-9952
0000-0002-0346-3786
0000-0002-5204-4473
0000-0001-8663-5266
0000-0002-4301-562X
0000-0001-7895-497X
0000-0001-9393-108X
0009-0007-7444-3946
0009-0003-2089-4339
0000-0001-6706-1084
0000-0003-1359-4795
0000-0002-2628-1619
0000-0001-7338-4103
OpenAccessLink https://chemrxiv.org/engage/chemrxiv/article-details/6798ae2881d2151a024590d5
ParticipantIDs chemrxiv_primary_6798ae2881d2151a024590d5
PublicationTitle ChemRxiv
SSID ssj0002511145
Score 1.2924032
SecondaryResourceType preprint
Snippet The rapid and economical synthesis of novel bioactive compounds remains a significant hurdle in drug discovery efforts. This study demonstrates an integrated...
SourceID chemrxiv
SourceType Open Access Repository
SubjectTerms Artificial Intelligence
Biological and Medicinal Chemistry
Chemistry
Chemoinformatics - Computational Chemistry
Machine Learning
Organic Chemistry
Theoretical and Computational Chemistry
Title Expediting hit-to-lead progression in drug discovery through reaction prediction and multi-objective molecular optimization
URI https://chemrxiv.org/engage/chemrxiv/article-details/6798ae2881d2151a024590d5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKOzDyFCBAHlgYrObhOMlctaqQgkAqUrfKji9tUJtUJS1F_HnOTlKxMLBFiWVFvvPd2ffdd4Q8cJAQC8VZBCplHGNwJlGXGKTcDVUcKmG5O5NnMX7jT9Ng2iFJWwuDf7ra7POdTeJDMcdNdXjXbxaT1ejKj77JIEjwIoy5jOeSJo0YOzo4Ij1UM867pDd4HSbJ4dLFxNMuD2qcF4YCPj9MjuriBcxZ7hefbGfvWJoPv9zN6IT0XuQaNqekA8UZOR60TdnOybehJta5wSrTRV6xqmRLlBK1MKuaYoPmBdWb7ZyaglsD0PyiTTMeigGiLWPA4SY_Yx9loalFFbJSvdfWj67anrm0RIuyako1L8hkNJwMxqzpn8DSGO1cABpPTzrzFGR-pnwd-UoIwDMvxKkfKJFClklXQahj4OikMp1a-rNQOxCEmX9JukVZwBWhqWH90q6jhOngJ6TkKsKtDjFXno_x-TV5bJdrtq5ZMmZ_CefmH2NvSbfabOEO_X6l7htp_gCVVLKr
linkProvider ChemRxiv
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b8IwELYoDIx9qq368NAOHSwgcV5DJwqC8lArUYkN2fEFqCBBvFH_Wn9cz3mgLh06sEWJFSXnz-c733d3hDxwEODZkjMXpM842uBMIJYY-LziSM-Rdly7s9O1Gx_8tW_1c-Q7y4XBL53Ot-N1HMSHcIiLan-vlAqTJezKRUlHEAQYLtpceucSOozolVXGsWzBboMe3OK5-YLT_WgY9Vqv2mBpkwHme6gMLFDoYqjAkBCYgTSVa0rbBnQMwfNNS9o-BIGoSHCUBxw1eaD8uEaYo8pgOYGJrz0iBUQ1d_OkUH2vdTr7Mx5tvle4ldDK0PIw-f5fEJ2GxcqT7WjD1vGRTvrg1-5WPyaFNzGD-QnJQXhKitWsB9wZ-dKVkNVYU6PpaLxky4hNEBQ0ZnUlFT3oOKRqvhpSnd-r-aA7mvb-oWiPxlkTOFyHg-JLESoakxhZJD8TZUunWYteGqECm6aZoeekdwhJXpB8GIVwSaivi4ypSlnaumGgLQSXLmoW8Lg0THQHrshTJq7BLCnKMfgLC9f_GHtPio1epz1oN7utG5JfzldwiybHUt6lM0vJ4MBY-gF7n_D_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3NT9swFMA9RiU4jgECxIYP7MDhLW3iJM2BU2kFY0VMYhLiUtnxCwTRJAppAe2f37ObZNUkDhy4RbIVRb882-_L7zF2KFBiFCgBfVQxCNLBQZIsAcaiF6ooVIGt3Tm-CE5_ix_X_vXKh5vmLgx96bR8Tuc2iI_ZLS0qRxZp42xqxx1SLbF6dPKyMFW2raPbNi9zTFhBotsnRcwcZ9LEFqOu9p2m05Rjaufr1GQVw11aQZXDA_EEmxC1KIYBaQa6nN2CuRprUilfoG6bA6TK2QsHNN1EUuwj2fxg8_8gV_eLfQqmTXdbyGntT-tLld8LndQZoOf48kT25ePx2QkJ4zfXHQ2vBqdQt0CAOKKtykdNBpBOXIWJlyhP9z0VBEhmK0ax56sgxiSRPYWhjlDQOZPo2FYwC3UX_TDx6LUfWYfWnCDDtDP4NRyPWw-UMS56wl8kvZFe5ImWLq0d14fuw_PdE8ytw6keWDp7R59Y51IWWG6wFcw-s_VB06Fuk_0Ztoj5EmK-hJinGTeIeYuY14h5g5j_Q8wJMf8PMW8R82XEW-zqPUhus9Usz3CH8diUQNO9rgpMO8NASqH6tO9hJJTrkbGyy44aXJNiUTJk8ppQ7r1h7gFbuzwZTX6eXZzvs9WqnOEX0ocq9bX-sZxN3lmU_gIGxS29
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expediting+hit-to-lead+progression+in+drug+discovery+through+reaction+prediction+and+multi-objective+molecular+optimization&rft.jtitle=ChemRxiv&rft.au=Nippa%2C+David+F.&rft.au=Atz%2C+Kenneth&rft.au=Stenzhorn%2C+Yannick&rft.au=M%C3%BCller%2C+Alex+T.&rft.eissn=2573-2293&rft_id=info:doi/10.26434%2Fchemrxiv-2025-0lxhw-v2&rft.externalDocID=6798ae2881d2151a024590d5
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fchemrxiv.org%2Fengage%2Fapi-gateway%2Fchemrxiv%2Fassets%2Forp%2Fresource%2Fitem%2F6798ae2881d2151a024590d5%2FsmallThumb%2Fexpediting-hit-to-lead-progression-in-drug-discovery-through-reaction-prediction-and-multi-objective-molecular-optimization.jpg