QCResUNet: Joint subject-level and voxel-level segmentation quality prediction
Saved in:
Published in | Medical image analysis p. 103718 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.08.2025
|
Online Access | Get full text |
ISSN | 1361-8415 |
DOI | 10.1016/j.media.2025.103718 |
Cover
ArticleNumber | 103718 |
---|---|
Author | Qiu, Peijie Chakrabarty, Satrajit Sotiras, Aristeidis Ghosh, Soumyendu Sekhar Nguyen, Phuc |
Author_xml | – sequence: 1 givenname: Peijie orcidid: 0000-0002-1591-5436 surname: Qiu fullname: Qiu, Peijie – sequence: 2 givenname: Satrajit orcidid: 0000-0002-9664-4470 surname: Chakrabarty fullname: Chakrabarty, Satrajit – sequence: 3 givenname: Phuc surname: Nguyen fullname: Nguyen, Phuc – sequence: 4 givenname: Soumyendu Sekhar surname: Ghosh fullname: Ghosh, Soumyendu Sekhar – sequence: 5 givenname: Aristeidis orcidid: 0000-0003-0795-8820 surname: Sotiras fullname: Sotiras, Aristeidis |
BookMark | eNotkMtOwzAURL0oEm3hC9j4BxJ84yR22KGKR1FVBCpry7WvUaLEKbFb0b-noV2N5ixmpDMjE997JOQOWAoMyvsm7dDWOs1YVpwIFyAnZAq8hETmUFyTWQgNY0zkOZuS9cfiE8PXGuMDfetrH2nYbxs0MWnxgC3V3tJD_4vtpQf87tBHHeve05-9but4pLvh9GhGdEOunG4D3l5yTjbPT5vFa7J6f1kuHleJkZVMSjSIjpVOVCI3ma5QOm4YMC0tWlcYwytbaSfKXArNtyAFF2gLzTMHHASfE36eNUMfwoBO7Ya608NRAVOjBdWofwtqtKDOFvgfwO9XRQ |
Cites_doi | 10.1038/sdata.2017.117 10.1186/s12968-019-0523-x 10.1002/hbm.20906 10.1109/CVPR.2019.00231 10.3389/fnins.2020.00282 10.1109/ICCV.2017.74 10.1109/CVPR52729.2023.01524 10.1109/TMI.2018.2837502 10.1109/CVPR.2016.90 10.1016/j.media.2017.10.001 10.1016/j.media.2022.102426 10.1038/s41598-020-77733-4 10.1016/j.media.2021.102035 10.1109/CVPR42600.2020.01155 10.1016/j.media.2018.10.004 10.1109/CVPR.2019.00233 10.1016/j.media.2017.07.005 10.1109/TMI.2017.2665165 10.1016/j.media.2016.10.004 10.1186/s12968-018-0471-x 10.1016/j.media.2021.102213 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1016/j.media.2025.103718 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
ExternalDocumentID | 10_1016_j_media_2025_103718 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO AAYXX ABBOA ABBQC ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADTZH ADVLN AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG CITATION COF CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- |
ID | FETCH-LOGICAL-c898-6eceef06f7974c2a9e8f3c010a8dedf5cc39d9af76487a3b18737ed5a32f13173 |
ISSN | 1361-8415 |
IngestDate | Wed Sep 03 16:40:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c898-6eceef06f7974c2a9e8f3c010a8dedf5cc39d9af76487a3b18737ed5a32f13173 |
ORCID | 0000-0002-9664-4470 0000-0002-1591-5436 0000-0003-0795-8820 |
OpenAccessLink | https://doi.org/10.1016/j.media.2025.103718 |
ParticipantIDs | crossref_primary_10_1016_j_media_2025_103718 |
PublicationCentury | 2000 |
PublicationDate | 2025-8-00 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-8-00 |
PublicationDecade | 2020 |
PublicationTitle | Medical image analysis |
PublicationYear | 2025 |
References | Jungo (10.1016/j.media.2025.103718_b24) 2020 Roy (10.1016/j.media.2025.103718_b49) 2018 Kalkhof (10.1016/j.media.2025.103718_b25) 2023 Robinson (10.1016/j.media.2025.103718_b45) 2019; 21 Liaw (10.1016/j.media.2025.103718_b34) 2018 Baid (10.1016/j.media.2025.103718_b6) 2021 Isensee (10.1016/j.media.2025.103718_b23) 2018 Kingma (10.1016/j.media.2025.103718_b28) 2014 Robinson (10.1016/j.media.2025.103718_b46) 2017 Bakas (10.1016/j.media.2025.103718_b7) 2017; 4 Qiu (10.1016/j.media.2025.103718_b43) 2023 Adewole (10.1016/j.media.2025.103718_b1) 2023 Cao (10.1016/j.media.2025.103718_b9) 2022 Li (10.1016/j.media.2025.103718_b31) 2018; 18 Ganin (10.1016/j.media.2025.103718_b17) 2016; 17 Fournel (10.1016/j.media.2025.103718_b15) 2021; 74 Kofler (10.1016/j.media.2025.103718_b29) 2022 Gal (10.1016/j.media.2025.103718_b16) 2016 Isensee (10.1016/j.media.2025.103718_b22) 2018 Wang (10.1016/j.media.2025.103718_b59) 2020 Zhou (10.1016/j.media.2025.103718_b62) 2021 Ashukha (10.1016/j.media.2025.103718_b4) 2020 Dorent (10.1016/j.media.2025.103718_b13) 2019 Albà (10.1016/j.media.2025.103718_b3) 2018; 43 Litjens (10.1016/j.media.2025.103718_b35) 2017; 42 Li (10.1016/j.media.2025.103718_b32) 2020; 2 Maas (10.1016/j.media.2025.103718_b37) 2013; vol. 30 Maier-Hein (10.1016/j.media.2025.103718_b38) 2024 Kohlberger (10.1016/j.media.2025.103718_b30) 2012 Visser (10.1016/j.media.2025.103718_b57) 2019; 22 10.1016/j.media.2025.103718_b41 Bai (10.1016/j.media.2025.103718_b5) 2018; 20 10.1016/j.media.2025.103718_b55 10.1016/j.media.2025.103718_b58 Shen (10.1016/j.media.2025.103718_b52) 2019 Khened (10.1016/j.media.2025.103718_b27) 2019; 51 Li (10.1016/j.media.2025.103718_b33) 2022; 78 Mehta (10.1016/j.media.2025.103718_b39) 2022; 2022 Tompson (10.1016/j.media.2025.103718_b53) 2015 Garcia-Garcia (10.1016/j.media.2025.103718_b18) 2017 Ioffe (10.1016/j.media.2025.103718_b21) 2015 Robinson (10.1016/j.media.2025.103718_b44) 2018 10.1016/j.media.2025.103718_b2 Ng (10.1016/j.media.2025.103718_b40) 2020 Chakrabarty (10.1016/j.media.2025.103718_b11) 2022 Grady (10.1016/j.media.2025.103718_b19) 2012 Ronneberger (10.1016/j.media.2025.103718_b48) 2015 Wen (10.1016/j.media.2025.103718_b61) 2020 Drozdzal (10.1016/j.media.2025.103718_b14) 2016 10.1016/j.media.2025.103718_b51 10.1016/j.media.2025.103718_b10 10.1016/j.media.2025.103718_b54 Ma (10.1016/j.media.2025.103718_b36) 2021; 71 Valindria (10.1016/j.media.2025.103718_b56) 2017; 36 Qi (10.1016/j.media.2025.103718_b42) 2020; PP Chen (10.1016/j.media.2025.103718_b12) 2021 Sander (10.1016/j.media.2025.103718_b50) 2020; 10 Rohlfing (10.1016/j.media.2025.103718_b47) 2010; 31 10.1016/j.media.2025.103718_b60 Kamnitsas (10.1016/j.media.2025.103718_b26) 2017; 36 Bernard (10.1016/j.media.2025.103718_b8) 2018; 37 10.1016/j.media.2025.103718_b20 |
References_xml | – start-page: 169 year: 2023 ident: 10.1016/j.media.2025.103718_b25 article-title: M3D-NCA: Robust 3D segmentation with built-in quality control – start-page: 88 year: 2020 ident: 10.1016/j.media.2025.103718_b59 article-title: Deep generative model-based quality control for cardiac mri segmentation – start-page: 664 year: 2018 ident: 10.1016/j.media.2025.103718_b49 article-title: Inherent brain segmentation quality control from fully ConvNet Monte Carlo sampling – volume: 4 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.media.2025.103718_b7 article-title: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features publication-title: Sci. Data doi: 10.1038/sdata.2017.117 – volume: 17 start-page: 1 issue: 59 year: 2016 ident: 10.1016/j.media.2025.103718_b17 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. Learn. Res. – start-page: 173 year: 2023 ident: 10.1016/j.media.2025.103718_b43 article-title: QcResUNet: Joint subject-level and voxel-level prediction of segmentation quality – start-page: 287 year: 2018 ident: 10.1016/j.media.2025.103718_b22 article-title: Brain tumor segmentation and radiomics survival prediction: Contribution to the BRATS 2017 challenge – start-page: 528 year: 2012 ident: 10.1016/j.media.2025.103718_b30 article-title: Evaluating segmentation error without ground truth – year: 2021 ident: 10.1016/j.media.2025.103718_b62 – start-page: 448 year: 2015 ident: 10.1016/j.media.2025.103718_b21 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Int. Conf. Mach. Learn. – ident: 10.1016/j.media.2025.103718_b41 – start-page: 74 year: 2019 ident: 10.1016/j.media.2025.103718_b13 article-title: Hetero-modal variational encoder-decoder for joint modality completion and segmentation – start-page: 430 year: 2012 ident: 10.1016/j.media.2025.103718_b19 article-title: Automatic segmentation of unknown objects, with application to baggage security – volume: 21 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.media.2025.103718_b45 article-title: Automated quality control in image segmentation: application to the UK biobank cardiovascular magnetic resonance imaging study publication-title: J. Cardiovasc. Magn. Reson. doi: 10.1186/s12968-019-0523-x – volume: 31 start-page: 798 issue: 5 year: 2010 ident: 10.1016/j.media.2025.103718_b47 article-title: The SRI24 multichannel atlas of normal adult human brain structure publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20906 – year: 2022 ident: 10.1016/j.media.2025.103718_b11 – ident: 10.1016/j.media.2025.103718_b55 – ident: 10.1016/j.media.2025.103718_b2 doi: 10.1109/CVPR.2019.00231 – year: 2021 ident: 10.1016/j.media.2025.103718_b6 – start-page: 282 year: 2020 ident: 10.1016/j.media.2025.103718_b24 article-title: Analyzing the quality and challenges of uncertainty estimations for brain tumor segmentation publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00282 – ident: 10.1016/j.media.2025.103718_b51 doi: 10.1109/ICCV.2017.74 – start-page: 179 year: 2016 ident: 10.1016/j.media.2025.103718_b14 article-title: The importance of skip connections in biomedical image segmentation – year: 2020 ident: 10.1016/j.media.2025.103718_b40 – ident: 10.1016/j.media.2025.103718_b58 doi: 10.1109/CVPR52729.2023.01524 – start-page: 234 year: 2015 ident: 10.1016/j.media.2025.103718_b48 article-title: U-net: Convolutional networks for biomedical image segmentation – volume: 37 start-page: 2514 issue: 11 year: 2018 ident: 10.1016/j.media.2025.103718_b8 article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2837502 – ident: 10.1016/j.media.2025.103718_b20 doi: 10.1109/CVPR.2016.90 – year: 2020 ident: 10.1016/j.media.2025.103718_b4 – start-page: 720 year: 2017 ident: 10.1016/j.media.2025.103718_b46 article-title: Automatic quality control of cardiac MRI segmentation in large-scale population imaging – year: 2021 ident: 10.1016/j.media.2025.103718_b12 – volume: 2022 year: 2022 ident: 10.1016/j.media.2025.103718_b39 article-title: QU-brats: MICCAI brats 2020 challenge on quantifying uncertainty in brain tumor segmentation-analysis of ranking scores and benchmarking results publication-title: J. Mach. Learn. Biomed. Imaging – start-page: 578 year: 2018 ident: 10.1016/j.media.2025.103718_b44 article-title: Real-time prediction of segmentation quality – volume: 43 start-page: 129 issn: 1361-8415 year: 2018 ident: 10.1016/j.media.2025.103718_b3 article-title: Automatic initialization and quality control of large-scale cardiac MRI segmentations publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.10.001 – start-page: 417 year: 2019 ident: 10.1016/j.media.2025.103718_b52 article-title: Brain tumor segmentation on MRI with missing modalities – volume: 2 start-page: 230 year: 2020 ident: 10.1016/j.media.2025.103718_b32 article-title: A system for massively parallel hyperparameter tuning publication-title: Proc. Mach. Learn. Syst. – volume: 22 year: 2019 ident: 10.1016/j.media.2025.103718_b57 article-title: Inter-rater agreement in glioma segmentations on longitudinal MRI publication-title: NeuroImage: Clin. – volume: 78 year: 2022 ident: 10.1016/j.media.2025.103718_b33 article-title: Towards reliable cardiac image segmentation: Assessing image-level and pixel-level segmentation quality via self-reflective references publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102426 – year: 2017 ident: 10.1016/j.media.2025.103718_b18 – year: 2018 ident: 10.1016/j.media.2025.103718_b23 – start-page: 3 year: 2022 ident: 10.1016/j.media.2025.103718_b29 article-title: Deep quality estimation: Creating surrogate models for human quality ratings – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.media.2025.103718_b50 article-title: Automatic segmentation with detection of local segmentation failures in cardiac MRI publication-title: Sci. Rep. doi: 10.1038/s41598-020-77733-4 – volume: 71 year: 2021 ident: 10.1016/j.media.2025.103718_b36 article-title: Loss odyssey in medical image segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102035 – ident: 10.1016/j.media.2025.103718_b60 doi: 10.1109/CVPR42600.2020.01155 – year: 2014 ident: 10.1016/j.media.2025.103718_b28 – volume: 51 start-page: 21 year: 2019 ident: 10.1016/j.media.2025.103718_b27 article-title: Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.10.004 – ident: 10.1016/j.media.2025.103718_b10 doi: 10.1109/CVPR.2019.00233 – volume: PP year: 2020 ident: 10.1016/j.media.2025.103718_b42 article-title: On mean absolute error for deep neural network based vector-to-vector regression publication-title: IEEE Signal Process. Lett. – volume: 42 start-page: 60 year: 2017 ident: 10.1016/j.media.2025.103718_b35 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – volume: 36 start-page: 1597 issue: 8 year: 2017 ident: 10.1016/j.media.2025.103718_b56 article-title: Reverse classification accuracy: predicting segmentation performance in the absence of ground truth publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2665165 – year: 2023 ident: 10.1016/j.media.2025.103718_b1 – year: 2020 ident: 10.1016/j.media.2025.103718_b61 – year: 2018 ident: 10.1016/j.media.2025.103718_b34 – volume: 36 start-page: 61 issn: 1361-8415 year: 2017 ident: 10.1016/j.media.2025.103718_b26 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.10.004 – start-page: 1050 year: 2016 ident: 10.1016/j.media.2025.103718_b16 article-title: Dropout as a bayesian approximation: Representing model uncertainty in deep learning – volume: 18 start-page: 1 issue: 185 year: 2018 ident: 10.1016/j.media.2025.103718_b31 article-title: Hyperband: A novel bandit-based approach to hyperparameter optimization publication-title: J. Mach. Learn. Res. – start-page: 1 year: 2024 ident: 10.1016/j.media.2025.103718_b38 article-title: Metrics reloaded: recommendations for image analysis validation publication-title: Nature Methods – start-page: 648 year: 2015 ident: 10.1016/j.media.2025.103718_b53 article-title: Efficient object localization using convolutional networks publication-title: Proc. the IEEE Conf. Comput. Vis. Pattern Recognit. – start-page: 205 year: 2022 ident: 10.1016/j.media.2025.103718_b9 article-title: Swin-unet: Unet-like pure transformer for medical image segmentation – ident: 10.1016/j.media.2025.103718_b54 – volume: 20 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.media.2025.103718_b5 article-title: Automated cardiovascular magnetic resonance image analysis with fully convolutional networks publication-title: J. Cardiovasc. Magn. Reson. doi: 10.1186/s12968-018-0471-x – volume: vol. 30 start-page: 3 year: 2013 ident: 10.1016/j.media.2025.103718_b37 article-title: Rectifier nonlinearities improve neural network acoustic models – volume: 74 year: 2021 ident: 10.1016/j.media.2025.103718_b15 article-title: Medical image segmentation automatic quality control: A multi-dimensional approach publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102213 |
SSID | ssj0007440 |
Score | 2.4504313 |
SourceID | crossref |
SourceType | Index Database |
StartPage | 103718 |
Title | QCResUNet: Joint subject-level and voxel-level segmentation quality prediction |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9RAEN4oJEYfiKAGBM0--Ia9XLvXbusbEJUQuYgehrdmuz-4Hlxr7loj_PXMdrfbAsaIL82110yaztfpzOz3TRF6RxlRgWDKy5Tg3khwAXGQDb0hhVyDxQogpIXCx-Po8HR0dBaedeMJGnVJlQ349R91Jf_jVTgGftUq2Qd41hmFA_Ab_Atb8DBs_8nHJwff5PJ0LJv23lGZF9Xuss50Z8W71GSgZmXgV_lbXtr9pTyfW7FRYfWUV3pMgMi5c1D7eSe7gpPPNauH2dklrk-a14bdm89yB42OImAIZKxasFnueDXj8_rKBLmv05o74s-0XDatne9lPYf_RQ3x62LKFv1-RBA6NlwbQknke_HID3thUYsRTZi9F7FN82A2aIQyA21w0J19ez72nfeWYxO2RLVZ2hhJtZHUGHmMVgNK9fr96uf9Lz_23Etaz0U0kjxzse1Aqob6d-9aeklLL_uYPEdrtmzAewYD6-iRLDbQs94wyQ305NjSJF6gsQPGB9zAAt-CBQZY4B4scB8W2MICd7B4iSafPk4ODj374QyPx0nsRRIyHzWMFIVikQcskbEiHApvFgspVMg5SUTCFI2gWmUk82NKqBQhI4HyIZ8kr9BKURZyE2Ga-SryfUm0AhmK7SxTSqfIIYFnOwnUFnrf3pj0pxmPkv7FHa8fdvo2etohbAetVItavoEcsMreWn_eAGA8Xt0 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QCResUNet%3A+Joint+subject-level+and+voxel-level+segmentation+quality+prediction&rft.jtitle=Medical+image+analysis&rft.au=Qiu%2C+Peijie&rft.au=Chakrabarty%2C+Satrajit&rft.au=Nguyen%2C+Phuc&rft.au=Ghosh%2C+Soumyendu+Sekhar&rft.date=2025-08-01&rft.issn=1361-8415&rft.spage=103718&rft_id=info:doi/10.1016%2Fj.media.2025.103718&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2025_103718 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |