Age-dependent modulation of vascular niches for haematopoietic stem cells

Notch signalling in endothelial cells of the bone induces change in the capillaries and mesenchymal stem cells of the environment to support haematopoietic stem cell amplification. Age-linked changes in bone marrow Blood vessels in the bone marrow provide signals to the haematopoietic stem cells, ho...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 532; no. 7599; pp. 380 - 384
Main Authors Kusumbe, Anjali P., Ramasamy, Saravana K., Itkin, Tomer, Mäe, Maarja Andaloussi, Langen, Urs H., Betsholtz, Christer, Lapidot, Tsvee, Adams, Ralf H.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.04.2016
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Notch signalling in endothelial cells of the bone induces change in the capillaries and mesenchymal stem cells of the environment to support haematopoietic stem cell amplification. Age-linked changes in bone marrow Blood vessels in the bone marrow provide signals to the haematopoietic stem cells, however, how these signals modulate haematopoietic stem cell (HSC) function and change as an organism age is unclear. Ralf Adams and colleagues used imaging and cell-type-specific genetic mouse models to investigate the nature of vascular niches for HSCs in bone. They find that Notch signalling in bone endothelial cells induces change in the capillaries and mesenchymal stem cells of the environment to support HSC amplification. These signals are reduced in aged organisms, but activation of Notch can restore some of these properties. Elsewhere in this issue ( page 323 ), Tomer Itkin et al . show that the different functions of bone marrow endothelial cells are regulated by distinct types of endothelial blood vessels with different permeability properties, affecting levels of reactive oxygen species in their neighbouring stem cells. Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells 1 , 2 , 3 , 4 , 5 , 6 . The properties of niche-forming vessels and their changes in the ageing organism remain incompletely understood. Here we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-β (PDGFRβ)-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor. Although endothelial hypoxia-inducible factor signalling promotes some of these changes, it fails to enhance vascular niche function because of a lack of arterialization and expansion of PDGFRβ-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings indicate that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes.
AbstractList Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells. The properties of niche-forming vessels and their changes in the ageing organism remain incompletely understood. Here we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-β (PDGFRβ)-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor. Although endothelial hypoxia-inducible factor signalling promotes some of these changes, it fails to enhance vascular niche function because of a lack of arterialization and expansion of PDGFRβ-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings indicate that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes.Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells. The properties of niche-forming vessels and their changes in the ageing organism remain incompletely understood. Here we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-β (PDGFRβ)-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor. Although endothelial hypoxia-inducible factor signalling promotes some of these changes, it fails to enhance vascular niche function because of a lack of arterialization and expansion of PDGFRβ-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings indicate that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes.
Notch signalling in endothelial cells of the bone induces change in the capillaries and mesenchymal stem cells of the environment to support haematopoietic stem cell amplification.
Notch signalling in endothelial cells of the bone induces change in the capillaries and mesenchymal stem cells of the environment to support haematopoietic stem cell amplification. Age-linked changes in bone marrow Blood vessels in the bone marrow provide signals to the haematopoietic stem cells, however, how these signals modulate haematopoietic stem cell (HSC) function and change as an organism age is unclear. Ralf Adams and colleagues used imaging and cell-type-specific genetic mouse models to investigate the nature of vascular niches for HSCs in bone. They find that Notch signalling in bone endothelial cells induces change in the capillaries and mesenchymal stem cells of the environment to support HSC amplification. These signals are reduced in aged organisms, but activation of Notch can restore some of these properties. Elsewhere in this issue ( page 323 ), Tomer Itkin et al . show that the different functions of bone marrow endothelial cells are regulated by distinct types of endothelial blood vessels with different permeability properties, affecting levels of reactive oxygen species in their neighbouring stem cells. Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells 1 , 2 , 3 , 4 , 5 , 6 . The properties of niche-forming vessels and their changes in the ageing organism remain incompletely understood. Here we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-β (PDGFRβ)-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor. Although endothelial hypoxia-inducible factor signalling promotes some of these changes, it fails to enhance vascular niche function because of a lack of arterialization and expansion of PDGFRβ-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings indicate that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes.
Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells(1-6). The properties of nicheforming vessels and their changes in the ageing organism remain incompletely understood. Here we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-beta (PDGFR beta)-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor. Although endothelial hypoxia-inducible factor signalling promotes some of these changes, it fails to enhance vascular niche function because of a lack of arterialization and expansion of PDGFR beta-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings indicate that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes.
Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells 1 – 6 . The properties of niche-forming vessels and their changes in the ageing organism remain incompletely understood. Here, we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and PDGFRβ-positive perivascular cells, arteriole formation, and elevation of cellular stem cell factor levels. While endothelial hypoxia-inducible factor signalling promotes some of these aspects, it fails to enhance vascular niche function because of lacking arterialization and expansion of PDGFRβ-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings argue that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes.
Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells1-6. The properties of nicheforming vessels and their changes in the ageing organism remain incompletely understood. Here we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-β (PDGFRβ)-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor. Although endothelial hypoxia-inducible factor signalling promotes some of these changes, it fails to enhance vascular niche function because of a lack of arterialization and expansion of PDGFRβ-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings indicate that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes.
Notch signalling in endothelial cells of the bone induces change in the capillaries and mesenchymal stem cells of the environment to support haematopoietic stem cell amplification. Age-linked changes in bone marrow Blood vessels in the bone marrow provide signals to the haematopoietic stem cells, however, how these signals modulate haematopoietic stem cell (HSC) function and change as an organism age is unclear. Ralf Adams and colleagues used imaging and cell-type-specific genetic mouse models to investigate the nature of vascular niches for HSCs in bone. They find that Notch signalling in bone endothelial cells induces change in the capillaries and mesenchymal stem cells of the environment to support HSC amplification. These signals are reduced in aged organisms, but activation of Notch can restore some of these properties. Elsewhere in this issue (( Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells.sup.1,2,3,4,5,6. The properties of niche-forming vessels and their changes in the ageing organism remain incompletely understood. Here we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-[beta] (PDGFR[beta])-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor. Although endothelial hypoxia-inducible factor signalling promotes some of these changes, it fails to enhance vascular niche function because of a lack of arterialization and expansion of PDGFR[beta]-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings indicate that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes.
Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells. The properties of niche-forming vessels and their changes in the ageing organism remain incompletely understood. Here we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-β (PDGFRβ)-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor. Although endothelial hypoxia-inducible factor signalling promotes some of these changes, it fails to enhance vascular niche function because of a lack of arterialization and expansion of PDGFRβ-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings indicate that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes.
Audience Academic
Author Ramasamy, Saravana K.
Langen, Urs H.
Betsholtz, Christer
Lapidot, Tsvee
Kusumbe, Anjali P.
Itkin, Tomer
Mäe, Maarja Andaloussi
Adams, Ralf H.
AuthorAffiliation 3 Vascular Biology Program, Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
2 Department of Immunology, The Weizmann Institute of Science, Rehovot , 76100, Israel
1 Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
4 Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute, Scheeles väg 2, SE-171 77 Stockholm, Sweden
AuthorAffiliation_xml – name: 3 Vascular Biology Program, Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
– name: 2 Department of Immunology, The Weizmann Institute of Science, Rehovot , 76100, Israel
– name: 4 Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute, Scheeles väg 2, SE-171 77 Stockholm, Sweden
– name: 1 Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
Author_xml – sequence: 1
  givenname: Anjali P.
  surname: Kusumbe
  fullname: Kusumbe, Anjali P.
  email: anjali.kusumbe@mpi-muenster.mpg.de
  organization: Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and University of Münster, Faculty of Medicine
– sequence: 2
  givenname: Saravana K.
  surname: Ramasamy
  fullname: Ramasamy, Saravana K.
  organization: Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and University of Münster, Faculty of Medicine
– sequence: 3
  givenname: Tomer
  surname: Itkin
  fullname: Itkin, Tomer
  organization: Department of Immunology, The Weizmann Institute of Science
– sequence: 4
  givenname: Maarja Andaloussi
  surname: Mäe
  fullname: Mäe, Maarja Andaloussi
  organization: Department of Immunology, Vascular Biology Program, Genetics and Pathology, Uppsala University
– sequence: 5
  givenname: Urs H.
  surname: Langen
  fullname: Langen, Urs H.
  organization: Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and University of Münster, Faculty of Medicine
– sequence: 6
  givenname: Christer
  surname: Betsholtz
  fullname: Betsholtz, Christer
  organization: Department of Immunology, Vascular Biology Program, Genetics and Pathology, Uppsala University, Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute
– sequence: 7
  givenname: Tsvee
  surname: Lapidot
  fullname: Lapidot, Tsvee
  organization: Department of Immunology, The Weizmann Institute of Science
– sequence: 8
  givenname: Ralf H.
  surname: Adams
  fullname: Adams, Ralf H.
  email: ralf.adams@mpi-muenster.mpg.de
  organization: Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and University of Münster, Faculty of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27074508$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296853$$DView record from Swedish Publication Index
http://kipublications.ki.se/Default.aspx?queryparsed=id:133373900$$DView record from Swedish Publication Index
BookMark eNqNlEtv1DAQgCNURLcLJ-4oohcQpNjxMxek1fKqVIEEBY6W1ztJXRJ7GycF_j1e-krQLq18SOx889mejL2X7DjvIEkeY3SAEZGvnO76FrDgRN5LJpgKnlEuxU4yQSiXGZKE7yZ7IZwihBgW9EGymwskKENykhzOKsiWsAK3BNeljV_2te6sd6kv03MdTOy2qbPmBEJa-jY90dDozq-8hc6aNHTQpAbqOjxM7pe6DvDo8jlNvr57ezz_kB19en84nx1lRkrZZULwAguiUY4Ey4VmJWaUa0TxgnJiMAcSG10IbbhgjBizYJSUi1ySslwgSqZJduENP2HVL9SqtY1ufyuvrboc-hHfQDHEpCwi_3Ir_8Z-mynfVqrvVV5wyUjEX1_gkW1gaWJWWl2PosZfnD1RlT-P0xHGKI6CZ5eC1p_1EDrV2LDOkHbg-6CwkFTEtcXdTpP9f9BT37cuZm9NkYIhjIsbqtI1KOtKH-c1a6macUI5R6yg_6XiryY8L-QgeSOqAgdxK7GsShuHR9a78EP_0w28WdkzNZRuhYamgw1QbEtorNm41DsFDGd4PgqITAe_ukr3IajDL5_H8tvYoffFdnZ2_H3-cWy-nR66nwyr87osrw50BPAFYFofQgulMrb7e6BjNmytMFLrS0MNLo2bJVzHXGk301fnKVKugnZQtBvwPzYkc_g
CODEN NATUAS
CitedBy_id crossref_primary_10_1016_j_yexcr_2024_114211
crossref_primary_10_1084_jem_20220953
crossref_primary_10_1007_s12015_024_10761_z
crossref_primary_10_1038_s41556_023_01240_7
crossref_primary_10_1021_acsomega_9b00869
crossref_primary_10_1007_s12015_021_10177_z
crossref_primary_10_1161_CIRCRESAHA_120_315895
crossref_primary_10_1016_j_blre_2020_100771
crossref_primary_10_1038_s41598_020_63533_3
crossref_primary_10_14336_AD_2023_1115
crossref_primary_10_3892_mmr_2018_9691
crossref_primary_10_1038_bonekey_2016_84
crossref_primary_10_1016_j_devcel_2021_05_018
crossref_primary_10_3389_fcell_2020_602269
crossref_primary_10_1016_j_ijbiomac_2025_139835
crossref_primary_10_1038_s41467_018_04726_3
crossref_primary_10_1126_sciadv_abd7819
crossref_primary_10_3389_fbioe_2019_00318
crossref_primary_10_3390_ijms23084462
crossref_primary_10_1016_j_molmed_2019_04_006
crossref_primary_10_1038_nrm_2017_36
crossref_primary_10_1097_GME_0000000000001514
crossref_primary_10_1161_ATVBAHA_121_316235
crossref_primary_10_1093_gerona_glae271
crossref_primary_10_1097_MOH_0000000000000353
crossref_primary_10_1002_jbm4_10199
crossref_primary_10_1097_MOH_0000000000000350
crossref_primary_10_1016_j_stem_2023_03_005
crossref_primary_10_3390_jfb15040084
crossref_primary_10_1186_s13045_020_00994_z
crossref_primary_10_14336_AD_2022_0421
crossref_primary_10_1007_s00223_020_00776_2
crossref_primary_10_1007_s40778_021_00203_8
crossref_primary_10_1084_jem_20210223
crossref_primary_10_1242_dev_136861
crossref_primary_10_1016_j_actbio_2019_02_046
crossref_primary_10_1089_wound_2021_0065
crossref_primary_10_3389_fcell_2020_602278
crossref_primary_10_1016_j_beem_2021_101564
crossref_primary_10_1038_s41467_022_28175_1
crossref_primary_10_1038_s41592_024_02172_2
crossref_primary_10_1111_pin_12870
crossref_primary_10_1242_dev_139691
crossref_primary_10_1111_imr_12973
crossref_primary_10_1016_j_stem_2019_10_006
crossref_primary_10_1016_j_yexcr_2020_112398
crossref_primary_10_3390_jcm11030706
crossref_primary_10_1002_stem_2692
crossref_primary_10_3389_fphys_2021_624928
crossref_primary_10_14336_AD_2018_1119
crossref_primary_10_3389_fcell_2017_00062
crossref_primary_10_1182_bloodadvances_2021005531
crossref_primary_10_3390_ijms22147253
crossref_primary_10_3390_ijms19092567
crossref_primary_10_1038_s41413_023_00249_w
crossref_primary_10_3389_fimmu_2021_723055
crossref_primary_10_1038_ncb3475
crossref_primary_10_1155_2023_1512966
crossref_primary_10_1016_j_celrep_2017_12_070
crossref_primary_10_3389_fimmu_2016_00689
crossref_primary_10_4103_ejim_ejim_68_19
crossref_primary_10_1186_s40779_025_00596_1
crossref_primary_10_5435_JAAOS_D_17_00918
crossref_primary_10_1111_brv_12353
crossref_primary_10_1002_jbm4_10516
crossref_primary_10_1016_j_smim_2023_101835
crossref_primary_10_3390_jpm12050716
crossref_primary_10_1038_s41569_020_0431_7
crossref_primary_10_1038_s41584_021_00682_3
crossref_primary_10_1016_j_immuni_2018_03_024
crossref_primary_10_1016_j_immuni_2022_04_005
crossref_primary_10_1097_MOH_0000000000000818
crossref_primary_10_1371_journal_ppat_1006974
crossref_primary_10_1016_j_pharmthera_2016_09_006
crossref_primary_10_1101_gad_311068_117
crossref_primary_10_1002_bies_202200121
crossref_primary_10_1371_journal_pone_0250081
crossref_primary_10_1016_j_isci_2024_110306
crossref_primary_10_1002_stem_3286
crossref_primary_10_3389_fcell_2021_622519
crossref_primary_10_1016_j_yexcr_2024_114136
crossref_primary_10_1038_s43018_023_00607_x
crossref_primary_10_1371_journal_pone_0158369
crossref_primary_10_1038_s41556_019_0444_9
crossref_primary_10_1007_s40778_021_00198_2
crossref_primary_10_1182_blood_2016_09_740563
crossref_primary_10_1038_s43587_023_00431_z
crossref_primary_10_1016_j_devcel_2018_01_016
crossref_primary_10_1371_journal_pcbi_1006913
crossref_primary_10_1016_j_biomaterials_2021_121036
crossref_primary_10_1016_j_celrep_2021_109618
crossref_primary_10_1371_journal_pone_0168173
crossref_primary_10_1016_j_cell_2022_12_031
crossref_primary_10_1016_j_addr_2021_114069
crossref_primary_10_1016_j_stem_2019_08_008
crossref_primary_10_3390_cells10081849
crossref_primary_10_1016_j_celrep_2019_11_004
crossref_primary_10_1038_s41467_021_26556_6
crossref_primary_10_1016_j_stem_2017_11_006
crossref_primary_10_1016_j_ceb_2023_102284
crossref_primary_10_1055_a_2149_4431
crossref_primary_10_1016_j_cmet_2020_11_019
crossref_primary_10_1111_cpr_13499
crossref_primary_10_7554_eLife_50770
crossref_primary_10_3390_ijms23137285
crossref_primary_10_1126_scitranslmed_aba5942
crossref_primary_10_3389_fimmu_2019_00387
crossref_primary_10_1016_j_vesic_2024_100042
crossref_primary_10_1016_j_acthis_2020_151593
crossref_primary_10_1097_HS9_0000000000000896
crossref_primary_10_1016_j_copbio_2022_102750
crossref_primary_10_3390_cells9010221
crossref_primary_10_1016_j_mad_2020_111288
crossref_primary_10_1038_s41467_018_04770_z
crossref_primary_10_1016_j_cell_2018_10_012
crossref_primary_10_1016_j_semcdb_2021_06_025
crossref_primary_10_1042_BSR20201262
crossref_primary_10_1038_s41586_024_08352_6
crossref_primary_10_1126_sciimmunol_aar3054
crossref_primary_10_1016_j_yexcr_2019_111541
crossref_primary_10_1155_2019_5150634
crossref_primary_10_1182_blood_2023021280
crossref_primary_10_1016_j_mad_2025_112041
crossref_primary_10_1016_j_bone_2018_04_022
crossref_primary_10_3390_pharmaceutics14081563
crossref_primary_10_1097_MOH_0000000000000621
crossref_primary_10_3390_cancers13122887
crossref_primary_10_1038_s43587_023_00513_y
crossref_primary_10_2147_IJN_S351814
crossref_primary_10_3389_fonc_2018_00444
crossref_primary_10_1038_s42003_024_06971_3
crossref_primary_10_3390_ijms17101674
crossref_primary_10_1038_s44161_024_00482_4
crossref_primary_10_3390_ijms18010151
crossref_primary_10_1172_JCI93940
crossref_primary_10_1016_j_stem_2018_07_003
crossref_primary_10_1093_stmcls_sxac005
crossref_primary_10_1038_s41413_024_00387_9
crossref_primary_10_1155_2017_1960804
crossref_primary_10_1007_s11033_022_07898_w
crossref_primary_10_1038_s41375_024_02226_6
crossref_primary_10_1016_j_exphem_2019_08_008
crossref_primary_10_1016_j_canlet_2020_05_026
crossref_primary_10_3389_fendo_2024_1465816
crossref_primary_10_3390_cancers13164116
crossref_primary_10_1073_pnas_1806019115
crossref_primary_10_3390_genes15010126
crossref_primary_10_1007_s00018_022_04356_5
crossref_primary_10_1007_s10522_025_10218_x
crossref_primary_10_1155_2019_8171897
crossref_primary_10_3390_cancers12010103
crossref_primary_10_1016_j_stem_2017_12_014
crossref_primary_10_1002_jbmr_4150
crossref_primary_10_1016_j_stem_2017_01_008
crossref_primary_10_1038_nm_4448
crossref_primary_10_1182_blood_2017_07_794362
crossref_primary_10_1038_s41556_022_01053_0
crossref_primary_10_1093_cvr_cvy308
crossref_primary_10_1042_BSR20203258
crossref_primary_10_1016_j_celrep_2023_112304
crossref_primary_10_1007_s11033_023_08709_6
crossref_primary_10_1016_j_stemcr_2022_06_004
crossref_primary_10_1055_s_0043_1778039
crossref_primary_10_1038_nature19782
crossref_primary_10_1038_s41574_024_01039_y
crossref_primary_10_1016_j_bbrc_2016_08_066
crossref_primary_10_1182_blood_2024024275
crossref_primary_10_1016_j_semcdb_2025_01_001
crossref_primary_10_1093_lifemedi_lnad045
crossref_primary_10_1016_j_scr_2020_101869
crossref_primary_10_15252_embr_201947895
crossref_primary_10_3389_fimmu_2022_934624
crossref_primary_10_1002_bies_201700190
crossref_primary_10_1002_ar_24580
crossref_primary_10_1186_s13287_024_04008_4
crossref_primary_10_1016_j_stemcr_2020_06_007
crossref_primary_10_3389_frhem_2025_1525132
crossref_primary_10_1101_cshperspect_a031344
crossref_primary_10_1172_jci_insight_124213
crossref_primary_10_1155_2022_2713483
crossref_primary_10_3389_fimmu_2016_00502
crossref_primary_10_1016_j_mce_2016_12_008
crossref_primary_10_1007_s12185_017_2262_9
crossref_primary_10_1016_j_jdent_2023_104695
crossref_primary_10_1016_j_devcel_2020_05_024
crossref_primary_10_1093_stmcls_sxae046
crossref_primary_10_1038_s41467_021_27161_3
crossref_primary_10_1097_MOH_0000000000000513
crossref_primary_10_1182_blood_2023023788
crossref_primary_10_1002_jsp2_70039
crossref_primary_10_1016_j_stem_2023_09_013
crossref_primary_10_1007_s12018_019_09259_x
crossref_primary_10_1016_j_stem_2024_11_003
crossref_primary_10_1084_jem_20191212
crossref_primary_10_2139_ssrn_4116172
crossref_primary_10_1016_j_jbc_2021_100563
crossref_primary_10_1038_nri_2017_53
crossref_primary_10_1038_s41580_019_0103_9
crossref_primary_10_1038_ncomms13601
crossref_primary_10_1038_s41586_024_08163_9
crossref_primary_10_4236_aar_2019_81002
crossref_primary_10_3390_cancers14092089
crossref_primary_10_1038_cr_2016_71
crossref_primary_10_1002_adhm_202300019
crossref_primary_10_1002_jbmr_4171
crossref_primary_10_1172_jci_insight_125679
crossref_primary_10_1093_stcltm_szac070
crossref_primary_10_1016_j_stem_2021_01_006
crossref_primary_10_1111_cei_13654
crossref_primary_10_1182_bloodadvances_2020002127
crossref_primary_10_1016_j_cell_2019_04_040
crossref_primary_10_1016_j_stemcr_2020_06_022
crossref_primary_10_1016_j_semcdb_2021_08_011
crossref_primary_10_3390_cancers13061366
crossref_primary_10_1111_cpr_12874
crossref_primary_10_1016_j_celrep_2020_107572
crossref_primary_10_1161_CIRCRESAHA_124_323778
crossref_primary_10_1038_s41568_021_00406_5
crossref_primary_10_1097_MOH_0000000000000425
crossref_primary_10_3389_fcell_2020_606448
crossref_primary_10_3389_fcell_2023_1244372
crossref_primary_10_1038_s41422_025_01087_7
crossref_primary_10_1002_ca_23917
crossref_primary_10_15252_embj_2020105242
crossref_primary_10_1016_j_jbo_2018_09_002
crossref_primary_10_1016_j_exphem_2017_08_003
crossref_primary_10_1182_blood_2016_11_696070
crossref_primary_10_1038_s41556_019_0418_y
crossref_primary_10_1007_s10456_021_09780_y
crossref_primary_10_3390_ijms222011117
crossref_primary_10_3389_fcell_2021_635189
crossref_primary_10_3389_frhem_2024_1334807
crossref_primary_10_1159_000536152
crossref_primary_10_1089_ars_2017_7419
crossref_primary_10_1182_blood_2021012663
crossref_primary_10_1097_MOH_0000000000000656
crossref_primary_10_1038_s41467_022_28775_x
crossref_primary_10_3389_fimmu_2021_798211
crossref_primary_10_1038_cddis_2017_36
crossref_primary_10_1038_s41467_021_24045_4
crossref_primary_10_1101_cshperspect_a031559
crossref_primary_10_2174_1381612825666190329153626
crossref_primary_10_1038_nature21388
crossref_primary_10_3389_fimmu_2021_768439
crossref_primary_10_1146_annurev_cellbio_111315_124936
crossref_primary_10_1182_blood_2020005865
crossref_primary_10_3389_fcell_2024_1441381
crossref_primary_10_1007_s10456_017_9577_2
crossref_primary_10_1002_adfm_202314120
crossref_primary_10_1155_2017_5046953
crossref_primary_10_1182_blood_2019000721
crossref_primary_10_1007_s10456_017_9541_1
crossref_primary_10_1038_nm_4400
crossref_primary_10_1089_scd_2021_0337
crossref_primary_10_1038_s41467_017_01538_9
crossref_primary_10_1016_j_mad_2020_111329
crossref_primary_10_1016_j_bone_2018_12_006
crossref_primary_10_1038_s41467_021_26455_w
crossref_primary_10_1101_cshperspect_a041180
crossref_primary_10_1038_s41556_019_0304_7
crossref_primary_10_1007_s40778_018_0128_6
crossref_primary_10_1016_j_exphem_2021_08_004
crossref_primary_10_1007_s00109_021_02155_2
crossref_primary_10_1098_rsob_190144
crossref_primary_10_1182_bloodadvances_2016003194
crossref_primary_10_1007_s40778_018_0143_7
crossref_primary_10_1038_s41467_022_29701_x
crossref_primary_10_1038_s41413_021_00138_0
crossref_primary_10_1038_s41598_019_44039_z
crossref_primary_10_1002_jcp_30296
crossref_primary_10_1038_s41413_024_00346_4
crossref_primary_10_3390_ijms241310912
crossref_primary_10_1016_j_ibmb_2024_104176
crossref_primary_10_1038_s41467_022_30440_2
crossref_primary_10_1016_j_exphem_2025_104749
crossref_primary_10_1038_s44161_022_00139_0
crossref_primary_10_1096_fj_202100069RR
crossref_primary_10_3324_haematol_2021_280451
crossref_primary_10_3389_fimmu_2022_780945
crossref_primary_10_1155_2018_6740408
crossref_primary_10_1016_j_regen_2018_12_001
crossref_primary_10_1016_j_stem_2019_06_007
crossref_primary_10_1186_s13045_020_00864_8
crossref_primary_10_18632_aging_202361
crossref_primary_10_1002_jcb_27589
crossref_primary_10_1038_s41568_020_0245_2
crossref_primary_10_1016_j_exphem_2024_104686
crossref_primary_10_1038_s41413_021_00166_w
crossref_primary_10_1084_jem_20192070
crossref_primary_10_7554_eLife_66275
crossref_primary_10_1016_j_arr_2020_101072
crossref_primary_10_1038_s41586_021_03298_5
crossref_primary_10_1152_ajpheart_00039_2019
crossref_primary_10_1038_s41467_022_34425_z
crossref_primary_10_1038_s41467_024_45827_6
crossref_primary_10_1126_science_aar4800
crossref_primary_10_1111_cpr_13406
crossref_primary_10_1038_s41467_020_14478_8
crossref_primary_10_1126_scitranslmed_abo5217
crossref_primary_10_1007_s11657_019_0677_z
crossref_primary_10_1101_cshperspect_a041166
crossref_primary_10_1016_j_devcel_2021_10_020
crossref_primary_10_3389_fmolb_2024_1488199
crossref_primary_10_1016_j_biomaterials_2020_120284
crossref_primary_10_1038_s41467_021_27263_y
crossref_primary_10_1002_wdev_279
crossref_primary_10_1172_JCI92571
crossref_primary_10_1360_SSV_2021_0345
crossref_primary_10_1007_s40778_018_0142_8
crossref_primary_10_3390_ijms23041948
crossref_primary_10_1016_j_immuni_2022_01_004
crossref_primary_10_1172_JCI123946
crossref_primary_10_1172_JCI133187
crossref_primary_10_1038_s41574_018_0069_2
crossref_primary_10_1038_s41375_024_02453_x
crossref_primary_10_1371_journal_pone_0165946
crossref_primary_10_2174_1574888X14666190123161447
crossref_primary_10_1016_j_exphem_2018_04_006
crossref_primary_10_1038_s41591_018_0030_x
crossref_primary_10_3389_fimmu_2021_738204
crossref_primary_10_1053_j_seminhematol_2016_10_001
crossref_primary_10_1155_2021_8896226
crossref_primary_10_3389_fbioe_2022_892661
crossref_primary_10_3389_fendo_2020_00065
crossref_primary_10_1038_s41467_020_20801_0
crossref_primary_10_1038_s41581_023_00706_z
crossref_primary_10_3389_fphys_2022_863265
crossref_primary_10_1126_science_aal2379
crossref_primary_10_1152_physrev_00005_2017
crossref_primary_10_1016_j_bone_2024_117272
crossref_primary_10_1016_j_ccell_2017_08_012
crossref_primary_10_1016_j_xfss_2020_09_003
crossref_primary_10_3389_fimmu_2021_674093
crossref_primary_10_1002_jbmr_4678
crossref_primary_10_1007_s40778_018_0132_x
crossref_primary_10_1038_s41580_024_00770_8
crossref_primary_10_3389_fcell_2019_00189
crossref_primary_10_1007_s40820_023_01187_2
crossref_primary_10_1186_s41232_020_00138_3
Cites_doi 10.1359/jbmr.070415
10.1038/nature09522
10.1073/pnas.2436557100
10.1038/nature13145
10.1182/blood.V85.3.641.bloodjournal853641
10.1038/nature15250
10.1016/0092-8674(90)90302-U
10.1371/journal.pbio.0040315
10.1038/nrm2183
10.1242/dev.02733
10.1038/74651
10.1016/j.cell.2005.05.026
10.1182/blood.V83.4.1033.bloodjournal8341033
10.1038/nn.2644
10.1038/nature13146
10.1128/MCB.21.21.7403-7415.2001
10.1101/gad.1589207
10.1016/j.celrep.2013.07.048
10.1084/jem.20111490
10.1073/pnas.98.4.1583
10.1038/nature10783
10.1038/nm0996-1011
10.1006/dbio.2000.0106
10.1038/nature08873
10.1371/journal.pbio.0050201
10.1038/ncomms6758
10.1182/blood-2011-11-394692
10.1002/dvg.20335
10.1101/gad.13.3.295
10.1038/nature09002
10.1038/ncomms3609
10.1111/j.1474-9728.2004.00127.x
10.1016/j.ccr.2004.09.026
10.1038/nature12612
10.1093/intimm/dxf030
10.1016/j.stem.2009.01.006
10.1084/jem.20080829
10.1038/nature09262
10.1007/s10522-012-9373-8
10.1038/nrc1187
10.1242/dev.126.14.3047
ContentType Journal Article
Copyright Springer Nature Limited 2016
COPYRIGHT 2016 Nature Publishing Group
Copyright Nature Publishing Group Apr 21, 2016
Copyright_xml – notice: Springer Nature Limited 2016
– notice: COPYRIGHT 2016 Nature Publishing Group
– notice: Copyright Nature Publishing Group Apr 21, 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
ADTPV
AOWAS
DF2
DOI 10.1038/nature17638
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale in Context: Middle School (subscription)
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary Curriculum
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database (subscripiton)
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic







Agricultural Science Database


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 384
ExternalDocumentID oai_swepub_ki_se_505889
oai_DiVA_org_uu_296853
PMC5035541
4033917791
A634660594
A450362984
27074508
10_1038_nature17638
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: European Research Council
  grantid: 339409
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
ADZCM
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EJD
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
5PM
TUS
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAVBQ
ABAWZ
ABDBF
ABDPE
ABEFU
ABNNU
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADTPV
ADYSU
AEZWR
AFBBN
AFFDN
AFHIU
AFHKK
AFKWF
AGCDD
AGGDT
AGQPQ
AHWEU
AIXLP
AIYXT
AJUXI
AOWAS
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
DB5
DF2
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
FA8
FAC
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NFIDA
NXXTH
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
TH9
TUD
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZGI
ZHY
ZKB
ZY4
~8M
~G0
PUEGO
ID FETCH-LOGICAL-c888t-7769173a0207527a5f1546a041b463c16e3e3e4b7ac67553ccb543fb283ffb043
IEDL.DBID 8FG
ISSN 0028-0836
1476-4687
IngestDate Mon Aug 25 03:37:16 EDT 2025
Thu Aug 21 07:30:06 EDT 2025
Thu Aug 21 13:47:57 EDT 2025
Thu Jul 10 19:26:33 EDT 2025
Fri Jul 25 08:49:49 EDT 2025
Tue Jun 17 22:04:48 EDT 2025
Tue Jun 17 21:14:32 EDT 2025
Fri Jun 13 00:02:52 EDT 2025
Thu Jun 12 22:50:34 EDT 2025
Tue Jun 10 15:35:21 EDT 2025
Tue Jun 10 15:31:30 EDT 2025
Tue Jun 10 21:00:56 EDT 2025
Tue Jun 10 20:26:42 EDT 2025
Fri Jun 27 05:46:21 EDT 2025
Fri Jun 27 03:47:01 EDT 2025
Fri Jun 27 06:01:33 EDT 2025
Fri Jun 27 03:56:36 EDT 2025
Mon Jul 21 05:51:17 EDT 2025
Tue Jul 01 03:21:46 EDT 2025
Thu Apr 24 23:10:04 EDT 2025
Fri Feb 21 02:37:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7599
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c888t-7769173a0207527a5f1546a041b463c16e3e3e4b7ac67553ccb543fb283ffb043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27074508
PQID 1783950119
PQPubID 40569
PageCount 5
ParticipantIDs swepub_primary_oai_swepub_ki_se_505889
swepub_primary_oai_DiVA_org_uu_296853
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5035541
proquest_miscellaneous_1784750546
proquest_journals_1783950119
gale_infotracmisc_A634660594
gale_infotracmisc_A450362984
gale_infotracgeneralonefile_A634660594
gale_infotracgeneralonefile_A450362984
gale_infotraccpiq_634660594
gale_infotraccpiq_450362984
gale_infotracacademiconefile_A634660594
gale_infotracacademiconefile_A450362984
gale_incontextgauss_ISR_A634660594
gale_incontextgauss_ISR_A450362984
gale_incontextgauss_ATWCN_A634660594
gale_incontextgauss_ATWCN_A450362984
pubmed_primary_27074508
crossref_citationtrail_10_1038_nature17638
crossref_primary_10_1038_nature17638
springer_journals_10_1038_nature17638
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-21
PublicationDateYYYYMMDD 2016-04-21
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-21
  day: 21
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2016
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Hellström, Kalén, Lindahl, Abramsson, Betsholtz (CR14) 1999; 126
Poulos (CR29) 2013; 4
Prisby (CR17) 2007; 22
Morrison, Wandycz, Akashi, Globerson, Weissman (CR16) 1996; 2
Xu (CR26) 2014; 5
Kiel (CR3) 2005; 121
Adams, Alitalo (CR11) 2007; 8
Wu (CR22) 2001; 21
Tang (CR35) 2004; 6
Vooijs (CR20) 2007; 134
Koch (CR34) 2008; 205
Ding, Saunders, Enikolopov, Morrison (CR1) 2012; 481
Méndez-Ferrer (CR13) 2010; 466
Murtaugh, Stanger, Kwan, Melton (CR37) 2003; 100
Han (CR31) 2002; 14
Itkin (CR40) 2012; 120
Hooper (CR2) 2009; 4
Red-Horse, Ueno, Weissman, Krasnow (CR25) 2010; 464
Dykstra, Olthof, Schreuder, Ritsema, de Haan (CR30) 2011; 208
Kisanuki (CR39) 2001; 230
Davy, Bush, Soriano (CR8) 2006; 4
Hoeck (CR33) 2010; 13
Moerman, Teng, Lipschitz, Lecka-Czernik (CR18) 2004; 3
Miyazawa (CR28) 1995; 85
Haase, Glickman, Socolovsky, Jaenisch (CR36) 2001; 98
Semenza (CR24) 2003; 3
Carmeliet (CR12) 2000; 6
Kusumbe, Ramasamy, Adams (CR4) 2014; 507
Roca, Adams (CR23) 2007; 21
Zsebo (CR19) 1990; 63
Miller, Dykstra, Eaves (CR41) 2008; 22
Wang (CR32) 2010; 465
Adams (CR9) 1999; 13
Kinashi, Springer (CR27) 1994; 83
Armulik (CR38) 2010; 468
Kunisaki (CR7) 2013; 502
Corada (CR10) 2013; 4
Muzumdar, Tasic, Miyamichi, Li, Luo (CR21) 2007; 45
Gomez, Knutson, Clifton, Schreiber, Vuk-Pavlović (CR42) 2012; 13
Acar (CR5) 2015; 526
Ramasamy, Kusumbe, Wang, Adams (CR6) 2014; 507
Chambers (CR15) 2007; 5
RH Adams (BFnature17638_CR11) 2007; 8
G Wu (BFnature17638_CR22) 2001; 21
MG Poulos (BFnature17638_CR29) 2013; 4
H Han (BFnature17638_CR31) 2002; 14
A Armulik (BFnature17638_CR38) 2010; 468
P Carmeliet (BFnature17638_CR12) 2000; 6
K Miyazawa (BFnature17638_CR28) 1995; 85
MD Muzumdar (BFnature17638_CR21) 2007; 45
YY Kisanuki (BFnature17638_CR39) 2001; 230
SM Chambers (BFnature17638_CR15) 2007; 5
Y Kunisaki (BFnature17638_CR7) 2013; 502
M Vooijs (BFnature17638_CR20) 2007; 134
S Méndez-Ferrer (BFnature17638_CR13) 2010; 466
JD Hoeck (BFnature17638_CR33) 2010; 13
RH Adams (BFnature17638_CR9) 1999; 13
CL Miller (BFnature17638_CR41) 2008; 22
U Koch (BFnature17638_CR34) 2008; 205
SJ Morrison (BFnature17638_CR16) 1996; 2
M Corada (BFnature17638_CR10) 2013; 4
C Xu (BFnature17638_CR26) 2014; 5
M Hellström (BFnature17638_CR14) 1999; 126
M Acar (BFnature17638_CR5) 2015; 526
C Roca (BFnature17638_CR23) 2007; 21
VH Haase (BFnature17638_CR36) 2001; 98
MJ Kiel (BFnature17638_CR3) 2005; 121
SK Ramasamy (BFnature17638_CR6) 2014; 507
A Davy (BFnature17638_CR8) 2006; 4
AT Hooper (BFnature17638_CR2) 2009; 4
T Kinashi (BFnature17638_CR27) 1994; 83
AP Kusumbe (BFnature17638_CR4) 2014; 507
LC Murtaugh (BFnature17638_CR37) 2003; 100
KM Zsebo (BFnature17638_CR19) 1990; 63
T Itkin (BFnature17638_CR40) 2012; 120
K Red-Horse (BFnature17638_CR25) 2010; 464
Y Wang (BFnature17638_CR32) 2010; 465
GL Semenza (BFnature17638_CR24) 2003; 3
RD Prisby (BFnature17638_CR17) 2007; 22
N Tang (BFnature17638_CR35) 2004; 6
L Ding (BFnature17638_CR1) 2012; 481
EJ Moerman (BFnature17638_CR18) 2004; 3
B Dykstra (BFnature17638_CR30) 2011; 208
CR Gomez (BFnature17638_CR42) 2012; 13
27626373 - Nature. 2016 Nov 10;539(7628):314. doi: 10.1038/nature19782.
References_xml – volume: 22
  start-page: 22B.2.1
  year: 2008
  end-page: 22B.2.31
  ident: CR41
  article-title: Characterization of mouse hematopoietic stem and progenitor cells
  publication-title: Curr. Protoc. Immunol.
– volume: 22
  start-page: 1280
  year: 2007
  end-page: 1288
  ident: CR17
  article-title: Aging reduces skeletal blood flow, endothelium-dependent vasodilation, and NO bioavailability in rats
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.070415
– volume: 468
  start-page: 557
  year: 2010
  end-page: 561
  ident: CR38
  article-title: Pericytes regulate the blood–brain barrier
  publication-title: Nature
  doi: 10.1038/nature09522
– volume: 100
  start-page: 14920
  year: 2003
  end-page: 14925
  ident: CR37
  article-title: Notch signaling controls multiple steps of pancreatic differentiation
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2436557100
– volume: 507
  start-page: 323
  year: 2014
  end-page: 328
  ident: CR4
  article-title: Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone
  publication-title: Nature
  doi: 10.1038/nature13145
– volume: 85
  start-page: 641
  year: 1995
  end-page: 649
  ident: CR28
  article-title: Membrane-bound Steel factor induces more persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein than its soluble form
  publication-title: Blood
  doi: 10.1182/blood.V85.3.641.bloodjournal853641
– volume: 526
  start-page: 126
  year: 2015
  end-page: 130
  ident: CR5
  article-title: Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal
  publication-title: Nature
  doi: 10.1038/nature15250
– volume: 63
  start-page: 213
  year: 1990
  end-page: 224
  ident: CR19
  article-title: Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90302-U
– volume: 4
  start-page: e315
  year: 2006
  ident: CR8
  article-title: Inhibition of gap junction communication at ectopic Eph/ephrin boundaries underlies craniofrontonasal syndrome
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0040315
– volume: 8
  start-page: 464
  year: 2007
  end-page: 478
  ident: CR11
  article-title: Molecular regulation of angiogenesis and lymphangiogenesis
  publication-title: Nature Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2183
– volume: 134
  start-page: 535
  year: 2007
  end-page: 544
  ident: CR20
  article-title: Mapping the consequence of Notch1 proteolysis with NIP-CRE
  publication-title: Development
  doi: 10.1242/dev.02733
– volume: 6
  start-page: 389
  year: 2000
  end-page: 395
  ident: CR12
  article-title: Mechanisms of angiogenesis and arteriogenesis
  publication-title: Nature Med.
  doi: 10.1038/74651
– volume: 121
  start-page: 1109
  year: 2005
  end-page: 1121
  ident: CR3
  article-title: SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2005.05.026
– volume: 83
  start-page: 1033
  year: 1994
  end-page: 1038
  ident: CR27
  article-title: Steel factor and c-kit regulate cell-matrix adhesion
  publication-title: Blood
  doi: 10.1182/blood.V83.4.1033.bloodjournal8341033
– volume: 13
  start-page: 1365
  year: 2010
  end-page: 1372
  ident: CR33
  article-title: Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2644
– volume: 507
  start-page: 376
  year: 2014
  end-page: 380
  ident: CR6
  article-title: Endothelial Notch activity promotes angiogenesis and osteogenesis in bone
  publication-title: Nature
  doi: 10.1038/nature13146
– volume: 21
  start-page: 7403
  year: 2001
  end-page: 7415
  ident: CR22
  article-title: SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.21.21.7403-7415.2001
– volume: 21
  start-page: 2511
  year: 2007
  end-page: 2524
  ident: CR23
  article-title: Regulation of vascular morphogenesis by Notch signaling
  publication-title: Genes Dev.
  doi: 10.1101/gad.1589207
– volume: 4
  start-page: 1022
  year: 2013
  end-page: 1034
  ident: CR29
  article-title: Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2013.07.048
– volume: 208
  start-page: 2691
  year: 2011
  end-page: 2703
  ident: CR30
  article-title: Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20111490
– volume: 98
  start-page: 1583
  year: 2001
  end-page: 1588
  ident: CR36
  article-title: Vascular tumors in livers with targeted inactivation of the von Hippel-Lindau tumor suppressor
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.98.4.1583
– volume: 481
  start-page: 457
  year: 2012
  end-page: 462
  ident: CR1
  article-title: Endothelial and perivascular cells maintain haematopoietic stem cells
  publication-title: Nature
  doi: 10.1038/nature10783
– volume: 2
  start-page: 1011
  year: 1996
  end-page: 1016
  ident: CR16
  article-title: The aging of hematopoietic stem cells
  publication-title: Nature Med.
  doi: 10.1038/nm0996-1011
– volume: 230
  start-page: 230
  year: 2001
  end-page: 242
  ident: CR39
  article-title: Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.2000.0106
– volume: 464
  start-page: 549
  year: 2010
  end-page: 553
  ident: CR25
  article-title: Coronary arteries form by developmental reprogramming of venous cells
  publication-title: Nature
  doi: 10.1038/nature08873
– volume: 5
  start-page: e201
  year: 2007
  ident: CR15
  article-title: Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050201
– volume: 5
  start-page: 5758
  year: 2014
  ident: CR26
  article-title: Arteries are formed by vein-derived endothelial tip cells
  publication-title: Nature Commun
  doi: 10.1038/ncomms6758
– volume: 120
  start-page: 1843
  year: 2012
  end-page: 1855
  ident: CR40
  article-title: FGF-2 expands murine hematopoietic stem and progenitor cells via proliferation of stromal cells, c-Kit activation, and CXCL12 down-regulation
  publication-title: Blood
  doi: 10.1182/blood-2011-11-394692
– volume: 45
  start-page: 593
  year: 2007
  end-page: 605
  ident: CR21
  article-title: A global double-fluorescent Cre reporter mouse
  publication-title: Genesis
  doi: 10.1002/dvg.20335
– volume: 13
  start-page: 295
  year: 1999
  end-page: 306
  ident: CR9
  article-title: Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.3.295
– volume: 465
  start-page: 483
  year: 2010
  end-page: 486
  ident: CR32
  article-title: Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis
  publication-title: Nature
  doi: 10.1038/nature09002
– volume: 4
  start-page: 2609
  year: 2013
  ident: CR10
  article-title: Sox17 is indispensable for acquisition and maintenance of arterial identity
  publication-title: Nature Commun
  doi: 10.1038/ncomms3609
– volume: 3
  start-page: 379
  year: 2004
  end-page: 389
  ident: CR18
  article-title: Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-γ2 transcription factor and TGF-beta/BMP signaling pathways
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9728.2004.00127.x
– volume: 6
  start-page: 485
  year: 2004
  end-page: 495
  ident: CR35
  article-title: Loss of HIF-1α in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2004.09.026
– volume: 502
  start-page: 637
  year: 2013
  end-page: 643
  ident: CR7
  article-title: Arteriolar niches maintain haematopoietic stem cell quiescence
  publication-title: Nature
  doi: 10.1038/nature12612
– volume: 14
  start-page: 637
  year: 2002
  end-page: 645
  ident: CR31
  article-title: Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision
  publication-title: Int. Immunol.
  doi: 10.1093/intimm/dxf030
– volume: 4
  start-page: 263
  year: 2009
  end-page: 274
  ident: CR2
  article-title: Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.01.006
– volume: 205
  start-page: 2515
  year: 2008
  end-page: 2523
  ident: CR34
  article-title: Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20080829
– volume: 466
  start-page: 829
  year: 2010
  end-page: 834
  ident: CR13
  article-title: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
  publication-title: Nature
  doi: 10.1038/nature09262
– volume: 13
  start-page: 287
  year: 2012
  end-page: 297
  ident: CR42
  article-title: Age-dependent response of murine female bone marrow cells to hyperbaric oxygen
  publication-title: Biogerontology
  doi: 10.1007/s10522-012-9373-8
– volume: 3
  start-page: 721
  year: 2003
  end-page: 732
  ident: CR24
  article-title: Targeting HIF-1 for cancer therapy
  publication-title: Nature Rev. Cancer
  doi: 10.1038/nrc1187
– volume: 126
  start-page: 3047
  year: 1999
  end-page: 3055
  ident: CR14
  article-title: Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse
  publication-title: Development
  doi: 10.1242/dev.126.14.3047
– volume: 45
  start-page: 593
  year: 2007
  ident: BFnature17638_CR21
  publication-title: Genesis
  doi: 10.1002/dvg.20335
– volume: 502
  start-page: 637
  year: 2013
  ident: BFnature17638_CR7
  publication-title: Nature
  doi: 10.1038/nature12612
– volume: 13
  start-page: 287
  year: 2012
  ident: BFnature17638_CR42
  publication-title: Biogerontology
  doi: 10.1007/s10522-012-9373-8
– volume: 2
  start-page: 1011
  year: 1996
  ident: BFnature17638_CR16
  publication-title: Nature Med.
  doi: 10.1038/nm0996-1011
– volume: 83
  start-page: 1033
  year: 1994
  ident: BFnature17638_CR27
  publication-title: Blood
  doi: 10.1182/blood.V83.4.1033.bloodjournal8341033
– volume: 205
  start-page: 2515
  year: 2008
  ident: BFnature17638_CR34
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20080829
– volume: 507
  start-page: 323
  year: 2014
  ident: BFnature17638_CR4
  publication-title: Nature
  doi: 10.1038/nature13145
– volume: 4
  start-page: 263
  year: 2009
  ident: BFnature17638_CR2
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.01.006
– volume: 466
  start-page: 829
  year: 2010
  ident: BFnature17638_CR13
  publication-title: Nature
  doi: 10.1038/nature09262
– volume: 13
  start-page: 295
  year: 1999
  ident: BFnature17638_CR9
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.3.295
– volume: 134
  start-page: 535
  year: 2007
  ident: BFnature17638_CR20
  publication-title: Development
  doi: 10.1242/dev.02733
– volume: 208
  start-page: 2691
  year: 2011
  ident: BFnature17638_CR30
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20111490
– volume: 120
  start-page: 1843
  year: 2012
  ident: BFnature17638_CR40
  publication-title: Blood
  doi: 10.1182/blood-2011-11-394692
– volume: 526
  start-page: 126
  year: 2015
  ident: BFnature17638_CR5
  publication-title: Nature
  doi: 10.1038/nature15250
– volume: 85
  start-page: 641
  year: 1995
  ident: BFnature17638_CR28
  publication-title: Blood
  doi: 10.1182/blood.V85.3.641.bloodjournal853641
– volume: 63
  start-page: 213
  year: 1990
  ident: BFnature17638_CR19
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90302-U
– volume: 465
  start-page: 483
  year: 2010
  ident: BFnature17638_CR32
  publication-title: Nature
  doi: 10.1038/nature09002
– volume: 5
  start-page: e201
  year: 2007
  ident: BFnature17638_CR15
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050201
– volume: 126
  start-page: 3047
  year: 1999
  ident: BFnature17638_CR14
  publication-title: Development
  doi: 10.1242/dev.126.14.3047
– volume: 100
  start-page: 14920
  year: 2003
  ident: BFnature17638_CR37
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2436557100
– volume: 98
  start-page: 1583
  year: 2001
  ident: BFnature17638_CR36
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.98.4.1583
– volume: 14
  start-page: 637
  year: 2002
  ident: BFnature17638_CR31
  publication-title: Int. Immunol.
  doi: 10.1093/intimm/dxf030
– volume: 121
  start-page: 1109
  year: 2005
  ident: BFnature17638_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2005.05.026
– volume: 3
  start-page: 379
  year: 2004
  ident: BFnature17638_CR18
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9728.2004.00127.x
– volume: 6
  start-page: 485
  year: 2004
  ident: BFnature17638_CR35
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2004.09.026
– volume: 481
  start-page: 457
  year: 2012
  ident: BFnature17638_CR1
  publication-title: Nature
  doi: 10.1038/nature10783
– volume: 4
  start-page: 1022
  year: 2013
  ident: BFnature17638_CR29
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2013.07.048
– volume: 6
  start-page: 389
  year: 2000
  ident: BFnature17638_CR12
  publication-title: Nature Med.
  doi: 10.1038/74651
– volume: 468
  start-page: 557
  year: 2010
  ident: BFnature17638_CR38
  publication-title: Nature
  doi: 10.1038/nature09522
– volume: 22
  start-page: 1280
  year: 2007
  ident: BFnature17638_CR17
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.070415
– volume: 3
  start-page: 721
  year: 2003
  ident: BFnature17638_CR24
  publication-title: Nature Rev. Cancer
  doi: 10.1038/nrc1187
– volume: 230
  start-page: 230
  year: 2001
  ident: BFnature17638_CR39
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.2000.0106
– volume: 22
  start-page: 22B.2.1
  year: 2008
  ident: BFnature17638_CR41
  publication-title: Curr. Protoc. Immunol.
– volume: 507
  start-page: 376
  year: 2014
  ident: BFnature17638_CR6
  publication-title: Nature
  doi: 10.1038/nature13146
– volume: 8
  start-page: 464
  year: 2007
  ident: BFnature17638_CR11
  publication-title: Nature Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2183
– volume: 21
  start-page: 2511
  year: 2007
  ident: BFnature17638_CR23
  publication-title: Genes Dev.
  doi: 10.1101/gad.1589207
– volume: 13
  start-page: 1365
  year: 2010
  ident: BFnature17638_CR33
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2644
– volume: 4
  start-page: e315
  year: 2006
  ident: BFnature17638_CR8
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0040315
– volume: 4
  start-page: 2609
  year: 2013
  ident: BFnature17638_CR10
  publication-title: Nature Commun
  doi: 10.1038/ncomms3609
– volume: 5
  start-page: 5758
  year: 2014
  ident: BFnature17638_CR26
  publication-title: Nature Commun
  doi: 10.1038/ncomms6758
– volume: 21
  start-page: 7403
  year: 2001
  ident: BFnature17638_CR22
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.21.21.7403-7415.2001
– volume: 464
  start-page: 549
  year: 2010
  ident: BFnature17638_CR25
  publication-title: Nature
  doi: 10.1038/nature08873
– reference: 27626373 - Nature. 2016 Nov 10;539(7628):314. doi: 10.1038/nature19782.
SSID ssj0005174
Score 2.6298873
Snippet Notch signalling in endothelial cells of the bone induces change in the capillaries and mesenchymal stem cells of the environment to support haematopoietic...
Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells. The...
Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells1-6....
Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells 1 – 6...
Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells(1-6)....
SourceID swepub
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 380
SubjectTerms 631/136/16
631/532/1542
Aging
Aging - physiology
Animals
Arterioles - cytology
Arterioles - physiology
Bone and Bones - blood supply
Bone and Bones - cytology
Bone and Bones - metabolism
Bones
Capillaries - cytology
Capillaries - physiology
Cell Count
Cellular signal transduction
Endothelial Cells - metabolism
Endothelium
Gene expression
Growth
Hematopoietic stem cells
Hematopoietic Stem Cells - cytology
Humanities and Social Sciences
Hypoxia
Hypoxia-Inducible Factor 1 - metabolism
letter
Ligands
Male
Mice
Microenvironments
multidisciplinary
Observations
Osteogenesis
Physiological research
Platelet Endothelial Cell Adhesion Molecule-1 - metabolism
Platelet-derived growth factor
Properties
Receptor, Platelet-Derived Growth Factor beta - metabolism
Receptors, Notch - metabolism
Science
Signal Transduction
Skeletal system
Stem Cell Factor - metabolism
Stem Cell Niche
Stem cell research
Stem cells
Veins & arteries
Title Age-dependent modulation of vascular niches for haematopoietic stem cells
URI https://link.springer.com/article/10.1038/nature17638
https://www.ncbi.nlm.nih.gov/pubmed/27074508
https://www.proquest.com/docview/1783950119
https://www.proquest.com/docview/1784750546
https://pubmed.ncbi.nlm.nih.gov/PMC5035541
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296853
http://kipublications.ki.se/Default.aspx?queryparsed=id:133373900
Volume 532
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLbYJiReEBu3sFEFtHGTotXxJckTKmVlQ6JCY4O-WYnrdBWQdEv7_zkndbqkyooqVVX95dR1fI4_2yefCTkUOu0anxpgblJ4nHVTLxK-9iiTKdMsSIzBBf1vQ3l6yb-OxMguuBU2rbKKiWWgHuca18iPaQBDuUCFso-zaw9PjcLdVXuExhbZoTDSYEpXOPhym-KxpsJsn8_rsvB4KZtJwbvCxoi0HpdrA9N60uRq53RNZbQcmQaPyENLKd3esg_sknsm2yP3y9ROXeyRXeu-hfvOaky_f0zOehPjVQfgzt2_-dge4-XmqVtlp7oZ5okWLvBa9ypGcdd8lk_xqUcX5Z9dXPQvnpDLwclF_9Szpyp4Gma7c7wpMEVjMfDEQPhBLFJgUTLucppwyTSVhsGLJ0GsYTIhmNaJ4CxNgIekadLl7CnZzvLMPCeuoTGLDISIdEy5CeMolEIHPlIckXLfd8iHqmWVtpLjePLFH1VufbNQ1W6DQw5X4NlSaeMOGN4ihdoVGSbHTOJFUajexa_-UPW4wBE5CvlmmGRcSlSqccjrNtjZj_OGrbtBNUtvLSjN4T_q2D7eAC2FClsNc_9B1mzuN5B6Nr1WNTstpbVr3zRKJ8se1ladzcCaxYMGEOKQbthpK65fXfmUsmGyULdO7ZBXq2K8ElP_MpMvSgwHWgt91CHPli646h9-AAwYphgOCRrOuQKgeHqzJJtelSLqUG1g0tQhR5Ub16rV1u2Olj7eMP15-rOn8puJWiyUH0mgvtCaLTj71W_4ZOCXRRhGLza3xz55ANRc4r6lTw_I9vxmYV4C_Z0nHbIVjAJ4D_u0U8a7Dtn5dDL8fv4PwG-v4Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIIXxMYtbEBAKwykaE18SfKAULVRWrb1ATrYm0lcp6uApFtaIf4Uv5FzcumSKitPU1-q-suJ69jnfI6PPxOyw1XU1o6tgbkJbjHajiyfO8qyqYioom6oNb7QPx6I3gn7dMpP18jfci8MplWWPjFz1KNE4TvyPduFUM5Roez99NzCU6NwdbU8QiPvFof6z2-YsqXv-gfwfFuO0_0w3O9ZxakCloLZ3gwrBVMUGgBPcrnjBjwCFiGCNrNDJqiyhabwYaEbKCDTnCoVckajEOJwFIVtRsHuDXKTUYjkuDO9-_EypWRJ9bnYD9im3l4u02nDaPZqEXA5DlQC4XKS5mKldknVNIuE3XvkbkFhzU7e5zbImo43ya0slVSlm2SjcBepuVtoWr-5T_qdsbbKA3dn5q9kVBwbZiaRWWbDmjHmpaYm8GjzLEAx2WSaTHCXpYly0yYuMqQPyMm1tPdDsh4nsX5MTG0H1NfgkqKRzbQX-J7gynWQUvGIOY5B3pYtK1UhcY4nbfyU2VI79WTlMRhkZwGe5soeV8DwEUnUyogxGWcczNNUdobf9geywzgyAN9jq2GCMiFQGccgL5tg_S-fa7auBlUsvS5AUQL_UQXFdgpoKVT0qpn7D7Jic6uGVNPJuazYaSitXPuqVjrOe1hTdVYDKxa3a0Dwe6pmp6m4enU5pmThllN56UQM8mJRjFdiqmGsk3mGYUCjoY8a5FE-BBf9w3GBccOUxiBubXAuACjWXi-JJ2eZaDtUG5i7bZBWOYwr1Wrqdq18jNdMH0y-dmRyMZbzuXR8AVQbWrMBV_z0A75puDP3PP_J6vZ4Tm73hsdH8qg_ONwid2BaIHDN1LG3yfrsYq6fAvWehc8yf2eS79ftYP8BYcPnuQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxMYtbEBAKzcpahPbuTwgVLVUK4MKwQZ7M4lrdxWQdEsrxF_j13FO4pSk6sbT1Jeq_nLiOsfHn-Pjz4Tscak7ynMVMDefO4x2tBNxTzou9TWVNEiUwhf6H0b-_hF7d8yPN8ifai8MplVWMbEI1ONM4jvythvAUM5RoaytTVrEx_7gzezUwROkcKW1Ok6jdJED9fsXTN_y18M-POuW5w3eHvb2HXPCgCNh5jfHCsJ0hcbAmQLuBTHXwCj8uMPchPlUur6i8GFJEEsg1pxKmXBGdQJjstZJh1Gwe4VcDShUDnep92rpJSsK0GZvYIeG7VKy04WeHTZGw9UxoTYoriZsLldtVxROi1FxcIvcNHTW7pb-t0U2VLpNrhVppTLfJlsmdOT2C6Nv_fI2GXYnyqkO353bP7OxOULMzrRdZcbaKeao5jZwavskRmHZbJZNcceljdLTNi445HfI0aW0912ymWapuk9s5cY0UhCe9NhlKoyj0Ocy8JBecc08zyKvqpYV0sid46kbP0Sx7E5DUXsMFtlbgmelysc5MHxEAnUzUvTASbzIc9E9_NobiS7jyAaikF0M8ynzfVTJscjTdbDh508NW-eDapaeG5DO4D_K2GytgJZCda-Guf8gazZ3Gkg5m56Kmp01pbVrnzVKJ6WHravOxcCaxd0GEGKgbNhZV1y_uupTwoToXPwLKBZ5sizGKzHtMFXZosAwoNTgoxa5V3bBpX94AbBvmN5YJGh0ziUAhdubJen0pBBwh2oDi3ct0qq6ca1a69yuVfbxhun-9EtXZGcTsVgIL_KBdkNrrsGZn77DNwV35mEYPbi4PR6T6xBaxfvh6GCH3IAZgo_Lp567SzbnZwv1EFj4PHlUhDubfLvs-PoXHVDrug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Age-dependent+modulation+of+vascular+niches+for+haematopoietic+stem+cells&rft.jtitle=Nature+%28London%29&rft.au=Kusumbe%2C+Anjali+P&rft.au=Ramasamy%2C+Saravana+K&rft.au=Itkin%2C+Tomer&rft.au=Mae%2C+Maarja+Andaloussi&rft.date=2016-04-21&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.spage=380&rft_id=info:doi/10.1038%2Fnature17638&rft.externalDBID=ISR&rft.externalDocID=A450362984
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon