Age-dependent modulation of vascular niches for haematopoietic stem cells
Notch signalling in endothelial cells of the bone induces change in the capillaries and mesenchymal stem cells of the environment to support haematopoietic stem cell amplification. Age-linked changes in bone marrow Blood vessels in the bone marrow provide signals to the haematopoietic stem cells, ho...
Saved in:
Published in | Nature (London) Vol. 532; no. 7599; pp. 380 - 384 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.04.2016
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Notch signalling in endothelial cells of the bone induces change in the capillaries and mesenchymal stem cells of the environment to support haematopoietic stem cell amplification.
Age-linked changes in bone marrow
Blood vessels in the bone marrow provide signals to the haematopoietic stem cells, however, how these signals modulate haematopoietic stem cell (HSC) function and change as an organism age is unclear. Ralf Adams and colleagues used imaging and cell-type-specific genetic mouse models to investigate the nature of vascular niches for HSCs in bone. They find that Notch signalling in bone endothelial cells induces change in the capillaries and mesenchymal stem cells of the environment to support HSC amplification. These signals are reduced in aged organisms, but activation of Notch can restore some of these properties. Elsewhere in this issue (
page 323
), Tomer Itkin
et al
. show that the different functions of bone marrow endothelial cells are regulated by distinct types of endothelial blood vessels with different permeability properties, affecting levels of reactive oxygen species in their neighbouring stem cells.
Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells
1
,
2
,
3
,
4
,
5
,
6
. The properties of niche-forming vessels and their changes in the ageing organism remain incompletely understood. Here we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-β (PDGFRβ)-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor. Although endothelial hypoxia-inducible factor signalling promotes some of these changes, it fails to enhance vascular niche function because of a lack of arterialization and expansion of PDGFRβ-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings indicate that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes. |
---|---|
AbstractList | Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells. The properties of niche-forming vessels and their changes in the ageing organism remain incompletely understood. Here we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-β (PDGFRβ)-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor. Although endothelial hypoxia-inducible factor signalling promotes some of these changes, it fails to enhance vascular niche function because of a lack of arterialization and expansion of PDGFRβ-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings indicate that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes.Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells. The properties of niche-forming vessels and their changes in the ageing organism remain incompletely understood. Here we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-β (PDGFRβ)-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor. Although endothelial hypoxia-inducible factor signalling promotes some of these changes, it fails to enhance vascular niche function because of a lack of arterialization and expansion of PDGFRβ-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings indicate that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes. Notch signalling in endothelial cells of the bone induces change in the capillaries and mesenchymal stem cells of the environment to support haematopoietic stem cell amplification. Notch signalling in endothelial cells of the bone induces change in the capillaries and mesenchymal stem cells of the environment to support haematopoietic stem cell amplification. Age-linked changes in bone marrow Blood vessels in the bone marrow provide signals to the haematopoietic stem cells, however, how these signals modulate haematopoietic stem cell (HSC) function and change as an organism age is unclear. Ralf Adams and colleagues used imaging and cell-type-specific genetic mouse models to investigate the nature of vascular niches for HSCs in bone. They find that Notch signalling in bone endothelial cells induces change in the capillaries and mesenchymal stem cells of the environment to support HSC amplification. These signals are reduced in aged organisms, but activation of Notch can restore some of these properties. Elsewhere in this issue ( page 323 ), Tomer Itkin et al . show that the different functions of bone marrow endothelial cells are regulated by distinct types of endothelial blood vessels with different permeability properties, affecting levels of reactive oxygen species in their neighbouring stem cells. Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells 1 , 2 , 3 , 4 , 5 , 6 . The properties of niche-forming vessels and their changes in the ageing organism remain incompletely understood. Here we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-β (PDGFRβ)-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor. Although endothelial hypoxia-inducible factor signalling promotes some of these changes, it fails to enhance vascular niche function because of a lack of arterialization and expansion of PDGFRβ-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings indicate that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes. Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells(1-6). The properties of nicheforming vessels and their changes in the ageing organism remain incompletely understood. Here we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-beta (PDGFR beta)-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor. Although endothelial hypoxia-inducible factor signalling promotes some of these changes, it fails to enhance vascular niche function because of a lack of arterialization and expansion of PDGFR beta-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings indicate that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes. Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells 1 – 6 . The properties of niche-forming vessels and their changes in the ageing organism remain incompletely understood. Here, we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and PDGFRβ-positive perivascular cells, arteriole formation, and elevation of cellular stem cell factor levels. While endothelial hypoxia-inducible factor signalling promotes some of these aspects, it fails to enhance vascular niche function because of lacking arterialization and expansion of PDGFRβ-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings argue that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes. Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells1-6. The properties of nicheforming vessels and their changes in the ageing organism remain incompletely understood. Here we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-β (PDGFRβ)-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor. Although endothelial hypoxia-inducible factor signalling promotes some of these changes, it fails to enhance vascular niche function because of a lack of arterialization and expansion of PDGFRβ-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings indicate that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes. Notch signalling in endothelial cells of the bone induces change in the capillaries and mesenchymal stem cells of the environment to support haematopoietic stem cell amplification. Age-linked changes in bone marrow Blood vessels in the bone marrow provide signals to the haematopoietic stem cells, however, how these signals modulate haematopoietic stem cell (HSC) function and change as an organism age is unclear. Ralf Adams and colleagues used imaging and cell-type-specific genetic mouse models to investigate the nature of vascular niches for HSCs in bone. They find that Notch signalling in bone endothelial cells induces change in the capillaries and mesenchymal stem cells of the environment to support HSC amplification. These signals are reduced in aged organisms, but activation of Notch can restore some of these properties. Elsewhere in this issue (( Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells.sup.1,2,3,4,5,6. The properties of niche-forming vessels and their changes in the ageing organism remain incompletely understood. Here we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-[beta] (PDGFR[beta])-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor. Although endothelial hypoxia-inducible factor signalling promotes some of these changes, it fails to enhance vascular niche function because of a lack of arterialization and expansion of PDGFR[beta]-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings indicate that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes. Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells. The properties of niche-forming vessels and their changes in the ageing organism remain incompletely understood. Here we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-β (PDGFRβ)-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor. Although endothelial hypoxia-inducible factor signalling promotes some of these changes, it fails to enhance vascular niche function because of a lack of arterialization and expansion of PDGFRβ-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings indicate that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes. |
Audience | Academic |
Author | Ramasamy, Saravana K. Langen, Urs H. Betsholtz, Christer Lapidot, Tsvee Kusumbe, Anjali P. Itkin, Tomer Mäe, Maarja Andaloussi Adams, Ralf H. |
AuthorAffiliation | 3 Vascular Biology Program, Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden 2 Department of Immunology, The Weizmann Institute of Science, Rehovot , 76100, Israel 1 Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany 4 Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute, Scheeles väg 2, SE-171 77 Stockholm, Sweden |
AuthorAffiliation_xml | – name: 3 Vascular Biology Program, Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden – name: 2 Department of Immunology, The Weizmann Institute of Science, Rehovot , 76100, Israel – name: 4 Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute, Scheeles väg 2, SE-171 77 Stockholm, Sweden – name: 1 Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany |
Author_xml | – sequence: 1 givenname: Anjali P. surname: Kusumbe fullname: Kusumbe, Anjali P. email: anjali.kusumbe@mpi-muenster.mpg.de organization: Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and University of Münster, Faculty of Medicine – sequence: 2 givenname: Saravana K. surname: Ramasamy fullname: Ramasamy, Saravana K. organization: Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and University of Münster, Faculty of Medicine – sequence: 3 givenname: Tomer surname: Itkin fullname: Itkin, Tomer organization: Department of Immunology, The Weizmann Institute of Science – sequence: 4 givenname: Maarja Andaloussi surname: Mäe fullname: Mäe, Maarja Andaloussi organization: Department of Immunology, Vascular Biology Program, Genetics and Pathology, Uppsala University – sequence: 5 givenname: Urs H. surname: Langen fullname: Langen, Urs H. organization: Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and University of Münster, Faculty of Medicine – sequence: 6 givenname: Christer surname: Betsholtz fullname: Betsholtz, Christer organization: Department of Immunology, Vascular Biology Program, Genetics and Pathology, Uppsala University, Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute – sequence: 7 givenname: Tsvee surname: Lapidot fullname: Lapidot, Tsvee organization: Department of Immunology, The Weizmann Institute of Science – sequence: 8 givenname: Ralf H. surname: Adams fullname: Adams, Ralf H. email: ralf.adams@mpi-muenster.mpg.de organization: Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and University of Münster, Faculty of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27074508$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296853$$DView record from Swedish Publication Index http://kipublications.ki.se/Default.aspx?queryparsed=id:133373900$$DView record from Swedish Publication Index |
BookMark | eNqNlEtv1DAQgCNURLcLJ-4oohcQpNjxMxek1fKqVIEEBY6W1ztJXRJ7GycF_j1e-krQLq18SOx889mejL2X7DjvIEkeY3SAEZGvnO76FrDgRN5LJpgKnlEuxU4yQSiXGZKE7yZ7IZwihBgW9EGymwskKENykhzOKsiWsAK3BNeljV_2te6sd6kv03MdTOy2qbPmBEJa-jY90dDozq-8hc6aNHTQpAbqOjxM7pe6DvDo8jlNvr57ezz_kB19en84nx1lRkrZZULwAguiUY4Ey4VmJWaUa0TxgnJiMAcSG10IbbhgjBizYJSUi1ySslwgSqZJduENP2HVL9SqtY1ufyuvrboc-hHfQDHEpCwi_3Ir_8Z-mynfVqrvVV5wyUjEX1_gkW1gaWJWWl2PosZfnD1RlT-P0xHGKI6CZ5eC1p_1EDrV2LDOkHbg-6CwkFTEtcXdTpP9f9BT37cuZm9NkYIhjIsbqtI1KOtKH-c1a6macUI5R6yg_6XiryY8L-QgeSOqAgdxK7GsShuHR9a78EP_0w28WdkzNZRuhYamgw1QbEtorNm41DsFDGd4PgqITAe_ukr3IajDL5_H8tvYoffFdnZ2_H3-cWy-nR66nwyr87osrw50BPAFYFofQgulMrb7e6BjNmytMFLrS0MNLo2bJVzHXGk301fnKVKugnZQtBvwPzYkc_g |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1016_j_yexcr_2024_114211 crossref_primary_10_1084_jem_20220953 crossref_primary_10_1007_s12015_024_10761_z crossref_primary_10_1038_s41556_023_01240_7 crossref_primary_10_1021_acsomega_9b00869 crossref_primary_10_1007_s12015_021_10177_z crossref_primary_10_1161_CIRCRESAHA_120_315895 crossref_primary_10_1016_j_blre_2020_100771 crossref_primary_10_1038_s41598_020_63533_3 crossref_primary_10_14336_AD_2023_1115 crossref_primary_10_3892_mmr_2018_9691 crossref_primary_10_1038_bonekey_2016_84 crossref_primary_10_1016_j_devcel_2021_05_018 crossref_primary_10_3389_fcell_2020_602269 crossref_primary_10_1016_j_ijbiomac_2025_139835 crossref_primary_10_1038_s41467_018_04726_3 crossref_primary_10_1126_sciadv_abd7819 crossref_primary_10_3389_fbioe_2019_00318 crossref_primary_10_3390_ijms23084462 crossref_primary_10_1016_j_molmed_2019_04_006 crossref_primary_10_1038_nrm_2017_36 crossref_primary_10_1097_GME_0000000000001514 crossref_primary_10_1161_ATVBAHA_121_316235 crossref_primary_10_1093_gerona_glae271 crossref_primary_10_1097_MOH_0000000000000353 crossref_primary_10_1002_jbm4_10199 crossref_primary_10_1097_MOH_0000000000000350 crossref_primary_10_1016_j_stem_2023_03_005 crossref_primary_10_3390_jfb15040084 crossref_primary_10_1186_s13045_020_00994_z crossref_primary_10_14336_AD_2022_0421 crossref_primary_10_1007_s00223_020_00776_2 crossref_primary_10_1007_s40778_021_00203_8 crossref_primary_10_1084_jem_20210223 crossref_primary_10_1242_dev_136861 crossref_primary_10_1016_j_actbio_2019_02_046 crossref_primary_10_1089_wound_2021_0065 crossref_primary_10_3389_fcell_2020_602278 crossref_primary_10_1016_j_beem_2021_101564 crossref_primary_10_1038_s41467_022_28175_1 crossref_primary_10_1038_s41592_024_02172_2 crossref_primary_10_1111_pin_12870 crossref_primary_10_1242_dev_139691 crossref_primary_10_1111_imr_12973 crossref_primary_10_1016_j_stem_2019_10_006 crossref_primary_10_1016_j_yexcr_2020_112398 crossref_primary_10_3390_jcm11030706 crossref_primary_10_1002_stem_2692 crossref_primary_10_3389_fphys_2021_624928 crossref_primary_10_14336_AD_2018_1119 crossref_primary_10_3389_fcell_2017_00062 crossref_primary_10_1182_bloodadvances_2021005531 crossref_primary_10_3390_ijms22147253 crossref_primary_10_3390_ijms19092567 crossref_primary_10_1038_s41413_023_00249_w crossref_primary_10_3389_fimmu_2021_723055 crossref_primary_10_1038_ncb3475 crossref_primary_10_1155_2023_1512966 crossref_primary_10_1016_j_celrep_2017_12_070 crossref_primary_10_3389_fimmu_2016_00689 crossref_primary_10_4103_ejim_ejim_68_19 crossref_primary_10_1186_s40779_025_00596_1 crossref_primary_10_5435_JAAOS_D_17_00918 crossref_primary_10_1111_brv_12353 crossref_primary_10_1002_jbm4_10516 crossref_primary_10_1016_j_smim_2023_101835 crossref_primary_10_3390_jpm12050716 crossref_primary_10_1038_s41569_020_0431_7 crossref_primary_10_1038_s41584_021_00682_3 crossref_primary_10_1016_j_immuni_2018_03_024 crossref_primary_10_1016_j_immuni_2022_04_005 crossref_primary_10_1097_MOH_0000000000000818 crossref_primary_10_1371_journal_ppat_1006974 crossref_primary_10_1016_j_pharmthera_2016_09_006 crossref_primary_10_1101_gad_311068_117 crossref_primary_10_1002_bies_202200121 crossref_primary_10_1371_journal_pone_0250081 crossref_primary_10_1016_j_isci_2024_110306 crossref_primary_10_1002_stem_3286 crossref_primary_10_3389_fcell_2021_622519 crossref_primary_10_1016_j_yexcr_2024_114136 crossref_primary_10_1038_s43018_023_00607_x crossref_primary_10_1371_journal_pone_0158369 crossref_primary_10_1038_s41556_019_0444_9 crossref_primary_10_1007_s40778_021_00198_2 crossref_primary_10_1182_blood_2016_09_740563 crossref_primary_10_1038_s43587_023_00431_z crossref_primary_10_1016_j_devcel_2018_01_016 crossref_primary_10_1371_journal_pcbi_1006913 crossref_primary_10_1016_j_biomaterials_2021_121036 crossref_primary_10_1016_j_celrep_2021_109618 crossref_primary_10_1371_journal_pone_0168173 crossref_primary_10_1016_j_cell_2022_12_031 crossref_primary_10_1016_j_addr_2021_114069 crossref_primary_10_1016_j_stem_2019_08_008 crossref_primary_10_3390_cells10081849 crossref_primary_10_1016_j_celrep_2019_11_004 crossref_primary_10_1038_s41467_021_26556_6 crossref_primary_10_1016_j_stem_2017_11_006 crossref_primary_10_1016_j_ceb_2023_102284 crossref_primary_10_1055_a_2149_4431 crossref_primary_10_1016_j_cmet_2020_11_019 crossref_primary_10_1111_cpr_13499 crossref_primary_10_7554_eLife_50770 crossref_primary_10_3390_ijms23137285 crossref_primary_10_1126_scitranslmed_aba5942 crossref_primary_10_3389_fimmu_2019_00387 crossref_primary_10_1016_j_vesic_2024_100042 crossref_primary_10_1016_j_acthis_2020_151593 crossref_primary_10_1097_HS9_0000000000000896 crossref_primary_10_1016_j_copbio_2022_102750 crossref_primary_10_3390_cells9010221 crossref_primary_10_1016_j_mad_2020_111288 crossref_primary_10_1038_s41467_018_04770_z crossref_primary_10_1016_j_cell_2018_10_012 crossref_primary_10_1016_j_semcdb_2021_06_025 crossref_primary_10_1042_BSR20201262 crossref_primary_10_1038_s41586_024_08352_6 crossref_primary_10_1126_sciimmunol_aar3054 crossref_primary_10_1016_j_yexcr_2019_111541 crossref_primary_10_1155_2019_5150634 crossref_primary_10_1182_blood_2023021280 crossref_primary_10_1016_j_mad_2025_112041 crossref_primary_10_1016_j_bone_2018_04_022 crossref_primary_10_3390_pharmaceutics14081563 crossref_primary_10_1097_MOH_0000000000000621 crossref_primary_10_3390_cancers13122887 crossref_primary_10_1038_s43587_023_00513_y crossref_primary_10_2147_IJN_S351814 crossref_primary_10_3389_fonc_2018_00444 crossref_primary_10_1038_s42003_024_06971_3 crossref_primary_10_3390_ijms17101674 crossref_primary_10_1038_s44161_024_00482_4 crossref_primary_10_3390_ijms18010151 crossref_primary_10_1172_JCI93940 crossref_primary_10_1016_j_stem_2018_07_003 crossref_primary_10_1093_stmcls_sxac005 crossref_primary_10_1038_s41413_024_00387_9 crossref_primary_10_1155_2017_1960804 crossref_primary_10_1007_s11033_022_07898_w crossref_primary_10_1038_s41375_024_02226_6 crossref_primary_10_1016_j_exphem_2019_08_008 crossref_primary_10_1016_j_canlet_2020_05_026 crossref_primary_10_3389_fendo_2024_1465816 crossref_primary_10_3390_cancers13164116 crossref_primary_10_1073_pnas_1806019115 crossref_primary_10_3390_genes15010126 crossref_primary_10_1007_s00018_022_04356_5 crossref_primary_10_1007_s10522_025_10218_x crossref_primary_10_1155_2019_8171897 crossref_primary_10_3390_cancers12010103 crossref_primary_10_1016_j_stem_2017_12_014 crossref_primary_10_1002_jbmr_4150 crossref_primary_10_1016_j_stem_2017_01_008 crossref_primary_10_1038_nm_4448 crossref_primary_10_1182_blood_2017_07_794362 crossref_primary_10_1038_s41556_022_01053_0 crossref_primary_10_1093_cvr_cvy308 crossref_primary_10_1042_BSR20203258 crossref_primary_10_1016_j_celrep_2023_112304 crossref_primary_10_1007_s11033_023_08709_6 crossref_primary_10_1016_j_stemcr_2022_06_004 crossref_primary_10_1055_s_0043_1778039 crossref_primary_10_1038_nature19782 crossref_primary_10_1038_s41574_024_01039_y crossref_primary_10_1016_j_bbrc_2016_08_066 crossref_primary_10_1182_blood_2024024275 crossref_primary_10_1016_j_semcdb_2025_01_001 crossref_primary_10_1093_lifemedi_lnad045 crossref_primary_10_1016_j_scr_2020_101869 crossref_primary_10_15252_embr_201947895 crossref_primary_10_3389_fimmu_2022_934624 crossref_primary_10_1002_bies_201700190 crossref_primary_10_1002_ar_24580 crossref_primary_10_1186_s13287_024_04008_4 crossref_primary_10_1016_j_stemcr_2020_06_007 crossref_primary_10_3389_frhem_2025_1525132 crossref_primary_10_1101_cshperspect_a031344 crossref_primary_10_1172_jci_insight_124213 crossref_primary_10_1155_2022_2713483 crossref_primary_10_3389_fimmu_2016_00502 crossref_primary_10_1016_j_mce_2016_12_008 crossref_primary_10_1007_s12185_017_2262_9 crossref_primary_10_1016_j_jdent_2023_104695 crossref_primary_10_1016_j_devcel_2020_05_024 crossref_primary_10_1093_stmcls_sxae046 crossref_primary_10_1038_s41467_021_27161_3 crossref_primary_10_1097_MOH_0000000000000513 crossref_primary_10_1182_blood_2023023788 crossref_primary_10_1002_jsp2_70039 crossref_primary_10_1016_j_stem_2023_09_013 crossref_primary_10_1007_s12018_019_09259_x crossref_primary_10_1016_j_stem_2024_11_003 crossref_primary_10_1084_jem_20191212 crossref_primary_10_2139_ssrn_4116172 crossref_primary_10_1016_j_jbc_2021_100563 crossref_primary_10_1038_nri_2017_53 crossref_primary_10_1038_s41580_019_0103_9 crossref_primary_10_1038_ncomms13601 crossref_primary_10_1038_s41586_024_08163_9 crossref_primary_10_4236_aar_2019_81002 crossref_primary_10_3390_cancers14092089 crossref_primary_10_1038_cr_2016_71 crossref_primary_10_1002_adhm_202300019 crossref_primary_10_1002_jbmr_4171 crossref_primary_10_1172_jci_insight_125679 crossref_primary_10_1093_stcltm_szac070 crossref_primary_10_1016_j_stem_2021_01_006 crossref_primary_10_1111_cei_13654 crossref_primary_10_1182_bloodadvances_2020002127 crossref_primary_10_1016_j_cell_2019_04_040 crossref_primary_10_1016_j_stemcr_2020_06_022 crossref_primary_10_1016_j_semcdb_2021_08_011 crossref_primary_10_3390_cancers13061366 crossref_primary_10_1111_cpr_12874 crossref_primary_10_1016_j_celrep_2020_107572 crossref_primary_10_1161_CIRCRESAHA_124_323778 crossref_primary_10_1038_s41568_021_00406_5 crossref_primary_10_1097_MOH_0000000000000425 crossref_primary_10_3389_fcell_2020_606448 crossref_primary_10_3389_fcell_2023_1244372 crossref_primary_10_1038_s41422_025_01087_7 crossref_primary_10_1002_ca_23917 crossref_primary_10_15252_embj_2020105242 crossref_primary_10_1016_j_jbo_2018_09_002 crossref_primary_10_1016_j_exphem_2017_08_003 crossref_primary_10_1182_blood_2016_11_696070 crossref_primary_10_1038_s41556_019_0418_y crossref_primary_10_1007_s10456_021_09780_y crossref_primary_10_3390_ijms222011117 crossref_primary_10_3389_fcell_2021_635189 crossref_primary_10_3389_frhem_2024_1334807 crossref_primary_10_1159_000536152 crossref_primary_10_1089_ars_2017_7419 crossref_primary_10_1182_blood_2021012663 crossref_primary_10_1097_MOH_0000000000000656 crossref_primary_10_1038_s41467_022_28775_x crossref_primary_10_3389_fimmu_2021_798211 crossref_primary_10_1038_cddis_2017_36 crossref_primary_10_1038_s41467_021_24045_4 crossref_primary_10_1101_cshperspect_a031559 crossref_primary_10_2174_1381612825666190329153626 crossref_primary_10_1038_nature21388 crossref_primary_10_3389_fimmu_2021_768439 crossref_primary_10_1146_annurev_cellbio_111315_124936 crossref_primary_10_1182_blood_2020005865 crossref_primary_10_3389_fcell_2024_1441381 crossref_primary_10_1007_s10456_017_9577_2 crossref_primary_10_1002_adfm_202314120 crossref_primary_10_1155_2017_5046953 crossref_primary_10_1182_blood_2019000721 crossref_primary_10_1007_s10456_017_9541_1 crossref_primary_10_1038_nm_4400 crossref_primary_10_1089_scd_2021_0337 crossref_primary_10_1038_s41467_017_01538_9 crossref_primary_10_1016_j_mad_2020_111329 crossref_primary_10_1016_j_bone_2018_12_006 crossref_primary_10_1038_s41467_021_26455_w crossref_primary_10_1101_cshperspect_a041180 crossref_primary_10_1038_s41556_019_0304_7 crossref_primary_10_1007_s40778_018_0128_6 crossref_primary_10_1016_j_exphem_2021_08_004 crossref_primary_10_1007_s00109_021_02155_2 crossref_primary_10_1098_rsob_190144 crossref_primary_10_1182_bloodadvances_2016003194 crossref_primary_10_1007_s40778_018_0143_7 crossref_primary_10_1038_s41467_022_29701_x crossref_primary_10_1038_s41413_021_00138_0 crossref_primary_10_1038_s41598_019_44039_z crossref_primary_10_1002_jcp_30296 crossref_primary_10_1038_s41413_024_00346_4 crossref_primary_10_3390_ijms241310912 crossref_primary_10_1016_j_ibmb_2024_104176 crossref_primary_10_1038_s41467_022_30440_2 crossref_primary_10_1016_j_exphem_2025_104749 crossref_primary_10_1038_s44161_022_00139_0 crossref_primary_10_1096_fj_202100069RR crossref_primary_10_3324_haematol_2021_280451 crossref_primary_10_3389_fimmu_2022_780945 crossref_primary_10_1155_2018_6740408 crossref_primary_10_1016_j_regen_2018_12_001 crossref_primary_10_1016_j_stem_2019_06_007 crossref_primary_10_1186_s13045_020_00864_8 crossref_primary_10_18632_aging_202361 crossref_primary_10_1002_jcb_27589 crossref_primary_10_1038_s41568_020_0245_2 crossref_primary_10_1016_j_exphem_2024_104686 crossref_primary_10_1038_s41413_021_00166_w crossref_primary_10_1084_jem_20192070 crossref_primary_10_7554_eLife_66275 crossref_primary_10_1016_j_arr_2020_101072 crossref_primary_10_1038_s41586_021_03298_5 crossref_primary_10_1152_ajpheart_00039_2019 crossref_primary_10_1038_s41467_022_34425_z crossref_primary_10_1038_s41467_024_45827_6 crossref_primary_10_1126_science_aar4800 crossref_primary_10_1111_cpr_13406 crossref_primary_10_1038_s41467_020_14478_8 crossref_primary_10_1126_scitranslmed_abo5217 crossref_primary_10_1007_s11657_019_0677_z crossref_primary_10_1101_cshperspect_a041166 crossref_primary_10_1016_j_devcel_2021_10_020 crossref_primary_10_3389_fmolb_2024_1488199 crossref_primary_10_1016_j_biomaterials_2020_120284 crossref_primary_10_1038_s41467_021_27263_y crossref_primary_10_1002_wdev_279 crossref_primary_10_1172_JCI92571 crossref_primary_10_1360_SSV_2021_0345 crossref_primary_10_1007_s40778_018_0142_8 crossref_primary_10_3390_ijms23041948 crossref_primary_10_1016_j_immuni_2022_01_004 crossref_primary_10_1172_JCI123946 crossref_primary_10_1172_JCI133187 crossref_primary_10_1038_s41574_018_0069_2 crossref_primary_10_1038_s41375_024_02453_x crossref_primary_10_1371_journal_pone_0165946 crossref_primary_10_2174_1574888X14666190123161447 crossref_primary_10_1016_j_exphem_2018_04_006 crossref_primary_10_1038_s41591_018_0030_x crossref_primary_10_3389_fimmu_2021_738204 crossref_primary_10_1053_j_seminhematol_2016_10_001 crossref_primary_10_1155_2021_8896226 crossref_primary_10_3389_fbioe_2022_892661 crossref_primary_10_3389_fendo_2020_00065 crossref_primary_10_1038_s41467_020_20801_0 crossref_primary_10_1038_s41581_023_00706_z crossref_primary_10_3389_fphys_2022_863265 crossref_primary_10_1126_science_aal2379 crossref_primary_10_1152_physrev_00005_2017 crossref_primary_10_1016_j_bone_2024_117272 crossref_primary_10_1016_j_ccell_2017_08_012 crossref_primary_10_1016_j_xfss_2020_09_003 crossref_primary_10_3389_fimmu_2021_674093 crossref_primary_10_1002_jbmr_4678 crossref_primary_10_1007_s40778_018_0132_x crossref_primary_10_1038_s41580_024_00770_8 crossref_primary_10_3389_fcell_2019_00189 crossref_primary_10_1007_s40820_023_01187_2 crossref_primary_10_1186_s41232_020_00138_3 |
Cites_doi | 10.1359/jbmr.070415 10.1038/nature09522 10.1073/pnas.2436557100 10.1038/nature13145 10.1182/blood.V85.3.641.bloodjournal853641 10.1038/nature15250 10.1016/0092-8674(90)90302-U 10.1371/journal.pbio.0040315 10.1038/nrm2183 10.1242/dev.02733 10.1038/74651 10.1016/j.cell.2005.05.026 10.1182/blood.V83.4.1033.bloodjournal8341033 10.1038/nn.2644 10.1038/nature13146 10.1128/MCB.21.21.7403-7415.2001 10.1101/gad.1589207 10.1016/j.celrep.2013.07.048 10.1084/jem.20111490 10.1073/pnas.98.4.1583 10.1038/nature10783 10.1038/nm0996-1011 10.1006/dbio.2000.0106 10.1038/nature08873 10.1371/journal.pbio.0050201 10.1038/ncomms6758 10.1182/blood-2011-11-394692 10.1002/dvg.20335 10.1101/gad.13.3.295 10.1038/nature09002 10.1038/ncomms3609 10.1111/j.1474-9728.2004.00127.x 10.1016/j.ccr.2004.09.026 10.1038/nature12612 10.1093/intimm/dxf030 10.1016/j.stem.2009.01.006 10.1084/jem.20080829 10.1038/nature09262 10.1007/s10522-012-9373-8 10.1038/nrc1187 10.1242/dev.126.14.3047 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2016 COPYRIGHT 2016 Nature Publishing Group Copyright Nature Publishing Group Apr 21, 2016 |
Copyright_xml | – notice: Springer Nature Limited 2016 – notice: COPYRIGHT 2016 Nature Publishing Group – notice: Copyright Nature Publishing Group Apr 21, 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM ADTPV AOWAS DF2 |
DOI | 10.1038/nature17638 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale in Context: Middle School (subscription) ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary Curriculum ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Earth, Atmospheric & Aquatic Science Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database ProQuest Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database (subscripiton) Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Uppsala universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 384 |
ExternalDocumentID | oai_swepub_ki_se_505889 oai_DiVA_org_uu_296853 PMC5035541 4033917791 A634660594 A450362984 27074508 10_1038_nature17638 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: European Research Council grantid: 339409 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH ADZCM AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EJD EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AFANA ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 5PM TUS .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADTPV ADYSU AEZWR AFBBN AFFDN AFHIU AFHKK AFKWF AGCDD AGGDT AGQPQ AHWEU AIXLP AIYXT AJUXI AOWAS APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC DB5 DF2 DO4 EAD EAS EAZ EBC EBD EBO ECC EMB EMF EMK EMOBN EPL ESE ESN FA8 FAC J5H L-9 LGEZI LOTEE MVM N4W NADUK NFIDA NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT TH9 TUD UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZGI ZHY ZKB ZY4 ~8M ~G0 PUEGO |
ID | FETCH-LOGICAL-c888t-7769173a0207527a5f1546a041b463c16e3e3e4b7ac67553ccb543fb283ffb043 |
IEDL.DBID | 8FG |
ISSN | 0028-0836 1476-4687 |
IngestDate | Mon Aug 25 03:37:16 EDT 2025 Thu Aug 21 07:30:06 EDT 2025 Thu Aug 21 13:47:57 EDT 2025 Thu Jul 10 19:26:33 EDT 2025 Fri Jul 25 08:49:49 EDT 2025 Tue Jun 17 22:04:48 EDT 2025 Tue Jun 17 21:14:32 EDT 2025 Fri Jun 13 00:02:52 EDT 2025 Thu Jun 12 22:50:34 EDT 2025 Tue Jun 10 15:35:21 EDT 2025 Tue Jun 10 15:31:30 EDT 2025 Tue Jun 10 21:00:56 EDT 2025 Tue Jun 10 20:26:42 EDT 2025 Fri Jun 27 05:46:21 EDT 2025 Fri Jun 27 03:47:01 EDT 2025 Fri Jun 27 06:01:33 EDT 2025 Fri Jun 27 03:56:36 EDT 2025 Mon Jul 21 05:51:17 EDT 2025 Tue Jul 01 03:21:46 EDT 2025 Thu Apr 24 23:10:04 EDT 2025 Fri Feb 21 02:37:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7599 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c888t-7769173a0207527a5f1546a041b463c16e3e3e4b7ac67553ccb543fb283ffb043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 27074508 |
PQID | 1783950119 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_505889 swepub_primary_oai_DiVA_org_uu_296853 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5035541 proquest_miscellaneous_1784750546 proquest_journals_1783950119 gale_infotracmisc_A634660594 gale_infotracmisc_A450362984 gale_infotracgeneralonefile_A634660594 gale_infotracgeneralonefile_A450362984 gale_infotraccpiq_634660594 gale_infotraccpiq_450362984 gale_infotracacademiconefile_A634660594 gale_infotracacademiconefile_A450362984 gale_incontextgauss_ISR_A634660594 gale_incontextgauss_ISR_A450362984 gale_incontextgauss_ATWCN_A634660594 gale_incontextgauss_ATWCN_A450362984 pubmed_primary_27074508 crossref_citationtrail_10_1038_nature17638 crossref_primary_10_1038_nature17638 springer_journals_10_1038_nature17638 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-21 |
PublicationDateYYYYMMDD | 2016-04-21 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2016 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Hellström, Kalén, Lindahl, Abramsson, Betsholtz (CR14) 1999; 126 Poulos (CR29) 2013; 4 Prisby (CR17) 2007; 22 Morrison, Wandycz, Akashi, Globerson, Weissman (CR16) 1996; 2 Xu (CR26) 2014; 5 Kiel (CR3) 2005; 121 Adams, Alitalo (CR11) 2007; 8 Wu (CR22) 2001; 21 Tang (CR35) 2004; 6 Vooijs (CR20) 2007; 134 Koch (CR34) 2008; 205 Ding, Saunders, Enikolopov, Morrison (CR1) 2012; 481 Méndez-Ferrer (CR13) 2010; 466 Murtaugh, Stanger, Kwan, Melton (CR37) 2003; 100 Han (CR31) 2002; 14 Itkin (CR40) 2012; 120 Hooper (CR2) 2009; 4 Red-Horse, Ueno, Weissman, Krasnow (CR25) 2010; 464 Dykstra, Olthof, Schreuder, Ritsema, de Haan (CR30) 2011; 208 Kisanuki (CR39) 2001; 230 Davy, Bush, Soriano (CR8) 2006; 4 Hoeck (CR33) 2010; 13 Moerman, Teng, Lipschitz, Lecka-Czernik (CR18) 2004; 3 Miyazawa (CR28) 1995; 85 Haase, Glickman, Socolovsky, Jaenisch (CR36) 2001; 98 Semenza (CR24) 2003; 3 Carmeliet (CR12) 2000; 6 Kusumbe, Ramasamy, Adams (CR4) 2014; 507 Roca, Adams (CR23) 2007; 21 Zsebo (CR19) 1990; 63 Miller, Dykstra, Eaves (CR41) 2008; 22 Wang (CR32) 2010; 465 Adams (CR9) 1999; 13 Kinashi, Springer (CR27) 1994; 83 Armulik (CR38) 2010; 468 Kunisaki (CR7) 2013; 502 Corada (CR10) 2013; 4 Muzumdar, Tasic, Miyamichi, Li, Luo (CR21) 2007; 45 Gomez, Knutson, Clifton, Schreiber, Vuk-Pavlović (CR42) 2012; 13 Acar (CR5) 2015; 526 Ramasamy, Kusumbe, Wang, Adams (CR6) 2014; 507 Chambers (CR15) 2007; 5 RH Adams (BFnature17638_CR11) 2007; 8 G Wu (BFnature17638_CR22) 2001; 21 MG Poulos (BFnature17638_CR29) 2013; 4 H Han (BFnature17638_CR31) 2002; 14 A Armulik (BFnature17638_CR38) 2010; 468 P Carmeliet (BFnature17638_CR12) 2000; 6 K Miyazawa (BFnature17638_CR28) 1995; 85 MD Muzumdar (BFnature17638_CR21) 2007; 45 YY Kisanuki (BFnature17638_CR39) 2001; 230 SM Chambers (BFnature17638_CR15) 2007; 5 Y Kunisaki (BFnature17638_CR7) 2013; 502 M Vooijs (BFnature17638_CR20) 2007; 134 S Méndez-Ferrer (BFnature17638_CR13) 2010; 466 JD Hoeck (BFnature17638_CR33) 2010; 13 RH Adams (BFnature17638_CR9) 1999; 13 CL Miller (BFnature17638_CR41) 2008; 22 U Koch (BFnature17638_CR34) 2008; 205 SJ Morrison (BFnature17638_CR16) 1996; 2 M Corada (BFnature17638_CR10) 2013; 4 C Xu (BFnature17638_CR26) 2014; 5 M Hellström (BFnature17638_CR14) 1999; 126 M Acar (BFnature17638_CR5) 2015; 526 C Roca (BFnature17638_CR23) 2007; 21 VH Haase (BFnature17638_CR36) 2001; 98 MJ Kiel (BFnature17638_CR3) 2005; 121 SK Ramasamy (BFnature17638_CR6) 2014; 507 A Davy (BFnature17638_CR8) 2006; 4 AT Hooper (BFnature17638_CR2) 2009; 4 T Kinashi (BFnature17638_CR27) 1994; 83 AP Kusumbe (BFnature17638_CR4) 2014; 507 LC Murtaugh (BFnature17638_CR37) 2003; 100 KM Zsebo (BFnature17638_CR19) 1990; 63 T Itkin (BFnature17638_CR40) 2012; 120 K Red-Horse (BFnature17638_CR25) 2010; 464 Y Wang (BFnature17638_CR32) 2010; 465 GL Semenza (BFnature17638_CR24) 2003; 3 RD Prisby (BFnature17638_CR17) 2007; 22 N Tang (BFnature17638_CR35) 2004; 6 L Ding (BFnature17638_CR1) 2012; 481 EJ Moerman (BFnature17638_CR18) 2004; 3 B Dykstra (BFnature17638_CR30) 2011; 208 CR Gomez (BFnature17638_CR42) 2012; 13 27626373 - Nature. 2016 Nov 10;539(7628):314. doi: 10.1038/nature19782. |
References_xml | – volume: 22 start-page: 22B.2.1 year: 2008 end-page: 22B.2.31 ident: CR41 article-title: Characterization of mouse hematopoietic stem and progenitor cells publication-title: Curr. Protoc. Immunol. – volume: 22 start-page: 1280 year: 2007 end-page: 1288 ident: CR17 article-title: Aging reduces skeletal blood flow, endothelium-dependent vasodilation, and NO bioavailability in rats publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.070415 – volume: 468 start-page: 557 year: 2010 end-page: 561 ident: CR38 article-title: Pericytes regulate the blood–brain barrier publication-title: Nature doi: 10.1038/nature09522 – volume: 100 start-page: 14920 year: 2003 end-page: 14925 ident: CR37 article-title: Notch signaling controls multiple steps of pancreatic differentiation publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2436557100 – volume: 507 start-page: 323 year: 2014 end-page: 328 ident: CR4 article-title: Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone publication-title: Nature doi: 10.1038/nature13145 – volume: 85 start-page: 641 year: 1995 end-page: 649 ident: CR28 article-title: Membrane-bound Steel factor induces more persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein than its soluble form publication-title: Blood doi: 10.1182/blood.V85.3.641.bloodjournal853641 – volume: 526 start-page: 126 year: 2015 end-page: 130 ident: CR5 article-title: Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal publication-title: Nature doi: 10.1038/nature15250 – volume: 63 start-page: 213 year: 1990 end-page: 224 ident: CR19 article-title: Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor publication-title: Cell doi: 10.1016/0092-8674(90)90302-U – volume: 4 start-page: e315 year: 2006 ident: CR8 article-title: Inhibition of gap junction communication at ectopic Eph/ephrin boundaries underlies craniofrontonasal syndrome publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0040315 – volume: 8 start-page: 464 year: 2007 end-page: 478 ident: CR11 article-title: Molecular regulation of angiogenesis and lymphangiogenesis publication-title: Nature Rev. Mol. Cell Biol. doi: 10.1038/nrm2183 – volume: 134 start-page: 535 year: 2007 end-page: 544 ident: CR20 article-title: Mapping the consequence of Notch1 proteolysis with NIP-CRE publication-title: Development doi: 10.1242/dev.02733 – volume: 6 start-page: 389 year: 2000 end-page: 395 ident: CR12 article-title: Mechanisms of angiogenesis and arteriogenesis publication-title: Nature Med. doi: 10.1038/74651 – volume: 121 start-page: 1109 year: 2005 end-page: 1121 ident: CR3 article-title: SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells publication-title: Cell doi: 10.1016/j.cell.2005.05.026 – volume: 83 start-page: 1033 year: 1994 end-page: 1038 ident: CR27 article-title: Steel factor and c-kit regulate cell-matrix adhesion publication-title: Blood doi: 10.1182/blood.V83.4.1033.bloodjournal8341033 – volume: 13 start-page: 1365 year: 2010 end-page: 1372 ident: CR33 article-title: Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun publication-title: Nature Neurosci. doi: 10.1038/nn.2644 – volume: 507 start-page: 376 year: 2014 end-page: 380 ident: CR6 article-title: Endothelial Notch activity promotes angiogenesis and osteogenesis in bone publication-title: Nature doi: 10.1038/nature13146 – volume: 21 start-page: 7403 year: 2001 end-page: 7415 ident: CR22 article-title: SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.21.21.7403-7415.2001 – volume: 21 start-page: 2511 year: 2007 end-page: 2524 ident: CR23 article-title: Regulation of vascular morphogenesis by Notch signaling publication-title: Genes Dev. doi: 10.1101/gad.1589207 – volume: 4 start-page: 1022 year: 2013 end-page: 1034 ident: CR29 article-title: Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis publication-title: Cell Reports doi: 10.1016/j.celrep.2013.07.048 – volume: 208 start-page: 2691 year: 2011 end-page: 2703 ident: CR30 article-title: Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells publication-title: J. Exp. Med. doi: 10.1084/jem.20111490 – volume: 98 start-page: 1583 year: 2001 end-page: 1588 ident: CR36 article-title: Vascular tumors in livers with targeted inactivation of the von Hippel-Lindau tumor suppressor publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.98.4.1583 – volume: 481 start-page: 457 year: 2012 end-page: 462 ident: CR1 article-title: Endothelial and perivascular cells maintain haematopoietic stem cells publication-title: Nature doi: 10.1038/nature10783 – volume: 2 start-page: 1011 year: 1996 end-page: 1016 ident: CR16 article-title: The aging of hematopoietic stem cells publication-title: Nature Med. doi: 10.1038/nm0996-1011 – volume: 230 start-page: 230 year: 2001 end-page: 242 ident: CR39 article-title: Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis publication-title: Dev. Biol. doi: 10.1006/dbio.2000.0106 – volume: 464 start-page: 549 year: 2010 end-page: 553 ident: CR25 article-title: Coronary arteries form by developmental reprogramming of venous cells publication-title: Nature doi: 10.1038/nature08873 – volume: 5 start-page: e201 year: 2007 ident: CR15 article-title: Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050201 – volume: 5 start-page: 5758 year: 2014 ident: CR26 article-title: Arteries are formed by vein-derived endothelial tip cells publication-title: Nature Commun doi: 10.1038/ncomms6758 – volume: 120 start-page: 1843 year: 2012 end-page: 1855 ident: CR40 article-title: FGF-2 expands murine hematopoietic stem and progenitor cells via proliferation of stromal cells, c-Kit activation, and CXCL12 down-regulation publication-title: Blood doi: 10.1182/blood-2011-11-394692 – volume: 45 start-page: 593 year: 2007 end-page: 605 ident: CR21 article-title: A global double-fluorescent Cre reporter mouse publication-title: Genesis doi: 10.1002/dvg.20335 – volume: 13 start-page: 295 year: 1999 end-page: 306 ident: CR9 article-title: Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis publication-title: Genes Dev. doi: 10.1101/gad.13.3.295 – volume: 465 start-page: 483 year: 2010 end-page: 486 ident: CR32 article-title: Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis publication-title: Nature doi: 10.1038/nature09002 – volume: 4 start-page: 2609 year: 2013 ident: CR10 article-title: Sox17 is indispensable for acquisition and maintenance of arterial identity publication-title: Nature Commun doi: 10.1038/ncomms3609 – volume: 3 start-page: 379 year: 2004 end-page: 389 ident: CR18 article-title: Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-γ2 transcription factor and TGF-beta/BMP signaling pathways publication-title: Aging Cell doi: 10.1111/j.1474-9728.2004.00127.x – volume: 6 start-page: 485 year: 2004 end-page: 495 ident: CR35 article-title: Loss of HIF-1α in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis publication-title: Cancer Cell doi: 10.1016/j.ccr.2004.09.026 – volume: 502 start-page: 637 year: 2013 end-page: 643 ident: CR7 article-title: Arteriolar niches maintain haematopoietic stem cell quiescence publication-title: Nature doi: 10.1038/nature12612 – volume: 14 start-page: 637 year: 2002 end-page: 645 ident: CR31 article-title: Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision publication-title: Int. Immunol. doi: 10.1093/intimm/dxf030 – volume: 4 start-page: 263 year: 2009 end-page: 274 ident: CR2 article-title: Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.01.006 – volume: 205 start-page: 2515 year: 2008 end-page: 2523 ident: CR34 article-title: Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment publication-title: J. Exp. Med. doi: 10.1084/jem.20080829 – volume: 466 start-page: 829 year: 2010 end-page: 834 ident: CR13 article-title: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche publication-title: Nature doi: 10.1038/nature09262 – volume: 13 start-page: 287 year: 2012 end-page: 297 ident: CR42 article-title: Age-dependent response of murine female bone marrow cells to hyperbaric oxygen publication-title: Biogerontology doi: 10.1007/s10522-012-9373-8 – volume: 3 start-page: 721 year: 2003 end-page: 732 ident: CR24 article-title: Targeting HIF-1 for cancer therapy publication-title: Nature Rev. Cancer doi: 10.1038/nrc1187 – volume: 126 start-page: 3047 year: 1999 end-page: 3055 ident: CR14 article-title: Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse publication-title: Development doi: 10.1242/dev.126.14.3047 – volume: 45 start-page: 593 year: 2007 ident: BFnature17638_CR21 publication-title: Genesis doi: 10.1002/dvg.20335 – volume: 502 start-page: 637 year: 2013 ident: BFnature17638_CR7 publication-title: Nature doi: 10.1038/nature12612 – volume: 13 start-page: 287 year: 2012 ident: BFnature17638_CR42 publication-title: Biogerontology doi: 10.1007/s10522-012-9373-8 – volume: 2 start-page: 1011 year: 1996 ident: BFnature17638_CR16 publication-title: Nature Med. doi: 10.1038/nm0996-1011 – volume: 83 start-page: 1033 year: 1994 ident: BFnature17638_CR27 publication-title: Blood doi: 10.1182/blood.V83.4.1033.bloodjournal8341033 – volume: 205 start-page: 2515 year: 2008 ident: BFnature17638_CR34 publication-title: J. Exp. Med. doi: 10.1084/jem.20080829 – volume: 507 start-page: 323 year: 2014 ident: BFnature17638_CR4 publication-title: Nature doi: 10.1038/nature13145 – volume: 4 start-page: 263 year: 2009 ident: BFnature17638_CR2 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.01.006 – volume: 466 start-page: 829 year: 2010 ident: BFnature17638_CR13 publication-title: Nature doi: 10.1038/nature09262 – volume: 13 start-page: 295 year: 1999 ident: BFnature17638_CR9 publication-title: Genes Dev. doi: 10.1101/gad.13.3.295 – volume: 134 start-page: 535 year: 2007 ident: BFnature17638_CR20 publication-title: Development doi: 10.1242/dev.02733 – volume: 208 start-page: 2691 year: 2011 ident: BFnature17638_CR30 publication-title: J. Exp. Med. doi: 10.1084/jem.20111490 – volume: 120 start-page: 1843 year: 2012 ident: BFnature17638_CR40 publication-title: Blood doi: 10.1182/blood-2011-11-394692 – volume: 526 start-page: 126 year: 2015 ident: BFnature17638_CR5 publication-title: Nature doi: 10.1038/nature15250 – volume: 85 start-page: 641 year: 1995 ident: BFnature17638_CR28 publication-title: Blood doi: 10.1182/blood.V85.3.641.bloodjournal853641 – volume: 63 start-page: 213 year: 1990 ident: BFnature17638_CR19 publication-title: Cell doi: 10.1016/0092-8674(90)90302-U – volume: 465 start-page: 483 year: 2010 ident: BFnature17638_CR32 publication-title: Nature doi: 10.1038/nature09002 – volume: 5 start-page: e201 year: 2007 ident: BFnature17638_CR15 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050201 – volume: 126 start-page: 3047 year: 1999 ident: BFnature17638_CR14 publication-title: Development doi: 10.1242/dev.126.14.3047 – volume: 100 start-page: 14920 year: 2003 ident: BFnature17638_CR37 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2436557100 – volume: 98 start-page: 1583 year: 2001 ident: BFnature17638_CR36 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.98.4.1583 – volume: 14 start-page: 637 year: 2002 ident: BFnature17638_CR31 publication-title: Int. Immunol. doi: 10.1093/intimm/dxf030 – volume: 121 start-page: 1109 year: 2005 ident: BFnature17638_CR3 publication-title: Cell doi: 10.1016/j.cell.2005.05.026 – volume: 3 start-page: 379 year: 2004 ident: BFnature17638_CR18 publication-title: Aging Cell doi: 10.1111/j.1474-9728.2004.00127.x – volume: 6 start-page: 485 year: 2004 ident: BFnature17638_CR35 publication-title: Cancer Cell doi: 10.1016/j.ccr.2004.09.026 – volume: 481 start-page: 457 year: 2012 ident: BFnature17638_CR1 publication-title: Nature doi: 10.1038/nature10783 – volume: 4 start-page: 1022 year: 2013 ident: BFnature17638_CR29 publication-title: Cell Reports doi: 10.1016/j.celrep.2013.07.048 – volume: 6 start-page: 389 year: 2000 ident: BFnature17638_CR12 publication-title: Nature Med. doi: 10.1038/74651 – volume: 468 start-page: 557 year: 2010 ident: BFnature17638_CR38 publication-title: Nature doi: 10.1038/nature09522 – volume: 22 start-page: 1280 year: 2007 ident: BFnature17638_CR17 publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.070415 – volume: 3 start-page: 721 year: 2003 ident: BFnature17638_CR24 publication-title: Nature Rev. Cancer doi: 10.1038/nrc1187 – volume: 230 start-page: 230 year: 2001 ident: BFnature17638_CR39 publication-title: Dev. Biol. doi: 10.1006/dbio.2000.0106 – volume: 22 start-page: 22B.2.1 year: 2008 ident: BFnature17638_CR41 publication-title: Curr. Protoc. Immunol. – volume: 507 start-page: 376 year: 2014 ident: BFnature17638_CR6 publication-title: Nature doi: 10.1038/nature13146 – volume: 8 start-page: 464 year: 2007 ident: BFnature17638_CR11 publication-title: Nature Rev. Mol. Cell Biol. doi: 10.1038/nrm2183 – volume: 21 start-page: 2511 year: 2007 ident: BFnature17638_CR23 publication-title: Genes Dev. doi: 10.1101/gad.1589207 – volume: 13 start-page: 1365 year: 2010 ident: BFnature17638_CR33 publication-title: Nature Neurosci. doi: 10.1038/nn.2644 – volume: 4 start-page: e315 year: 2006 ident: BFnature17638_CR8 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0040315 – volume: 4 start-page: 2609 year: 2013 ident: BFnature17638_CR10 publication-title: Nature Commun doi: 10.1038/ncomms3609 – volume: 5 start-page: 5758 year: 2014 ident: BFnature17638_CR26 publication-title: Nature Commun doi: 10.1038/ncomms6758 – volume: 21 start-page: 7403 year: 2001 ident: BFnature17638_CR22 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.21.21.7403-7415.2001 – volume: 464 start-page: 549 year: 2010 ident: BFnature17638_CR25 publication-title: Nature doi: 10.1038/nature08873 – reference: 27626373 - Nature. 2016 Nov 10;539(7628):314. doi: 10.1038/nature19782. |
SSID | ssj0005174 |
Score | 2.6298873 |
Snippet | Notch signalling in endothelial cells of the bone induces change in the capillaries and mesenchymal stem cells of the environment to support haematopoietic... Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells. The... Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells1-6.... Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells 1 – 6... Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells(1-6).... |
SourceID | swepub pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 380 |
SubjectTerms | 631/136/16 631/532/1542 Aging Aging - physiology Animals Arterioles - cytology Arterioles - physiology Bone and Bones - blood supply Bone and Bones - cytology Bone and Bones - metabolism Bones Capillaries - cytology Capillaries - physiology Cell Count Cellular signal transduction Endothelial Cells - metabolism Endothelium Gene expression Growth Hematopoietic stem cells Hematopoietic Stem Cells - cytology Humanities and Social Sciences Hypoxia Hypoxia-Inducible Factor 1 - metabolism letter Ligands Male Mice Microenvironments multidisciplinary Observations Osteogenesis Physiological research Platelet Endothelial Cell Adhesion Molecule-1 - metabolism Platelet-derived growth factor Properties Receptor, Platelet-Derived Growth Factor beta - metabolism Receptors, Notch - metabolism Science Signal Transduction Skeletal system Stem Cell Factor - metabolism Stem Cell Niche Stem cell research Stem cells Veins & arteries |
Title | Age-dependent modulation of vascular niches for haematopoietic stem cells |
URI | https://link.springer.com/article/10.1038/nature17638 https://www.ncbi.nlm.nih.gov/pubmed/27074508 https://www.proquest.com/docview/1783950119 https://www.proquest.com/docview/1784750546 https://pubmed.ncbi.nlm.nih.gov/PMC5035541 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296853 http://kipublications.ki.se/Default.aspx?queryparsed=id:133373900 |
Volume | 532 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLbYJiReEBu3sFEFtHGTotXxJckTKmVlQ6JCY4O-WYnrdBWQdEv7_zkndbqkyooqVVX95dR1fI4_2yefCTkUOu0anxpgblJ4nHVTLxK-9iiTKdMsSIzBBf1vQ3l6yb-OxMguuBU2rbKKiWWgHuca18iPaQBDuUCFso-zaw9PjcLdVXuExhbZoTDSYEpXOPhym-KxpsJsn8_rsvB4KZtJwbvCxoi0HpdrA9N60uRq53RNZbQcmQaPyENLKd3esg_sknsm2yP3y9ROXeyRXeu-hfvOaky_f0zOehPjVQfgzt2_-dge4-XmqVtlp7oZ5okWLvBa9ypGcdd8lk_xqUcX5Z9dXPQvnpDLwclF_9Szpyp4Gma7c7wpMEVjMfDEQPhBLFJgUTLucppwyTSVhsGLJ0GsYTIhmNaJ4CxNgIekadLl7CnZzvLMPCeuoTGLDISIdEy5CeMolEIHPlIckXLfd8iHqmWVtpLjePLFH1VufbNQ1W6DQw5X4NlSaeMOGN4ihdoVGSbHTOJFUajexa_-UPW4wBE5CvlmmGRcSlSqccjrNtjZj_OGrbtBNUtvLSjN4T_q2D7eAC2FClsNc_9B1mzuN5B6Nr1WNTstpbVr3zRKJ8se1ladzcCaxYMGEOKQbthpK65fXfmUsmGyULdO7ZBXq2K8ElP_MpMvSgwHWgt91CHPli646h9-AAwYphgOCRrOuQKgeHqzJJtelSLqUG1g0tQhR5Ub16rV1u2Olj7eMP15-rOn8puJWiyUH0mgvtCaLTj71W_4ZOCXRRhGLza3xz55ANRc4r6lTw_I9vxmYV4C_Z0nHbIVjAJ4D_u0U8a7Dtn5dDL8fv4PwG-v4Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIIXxMYtbEBAKwykaE18SfKAULVRWrb1ATrYm0lcp6uApFtaIf4Uv5FzcumSKitPU1-q-suJ69jnfI6PPxOyw1XU1o6tgbkJbjHajiyfO8qyqYioom6oNb7QPx6I3gn7dMpP18jfci8MplWWPjFz1KNE4TvyPduFUM5Roez99NzCU6NwdbU8QiPvFof6z2-YsqXv-gfwfFuO0_0w3O9ZxakCloLZ3gwrBVMUGgBPcrnjBjwCFiGCNrNDJqiyhabwYaEbKCDTnCoVckajEOJwFIVtRsHuDXKTUYjkuDO9-_EypWRJ9bnYD9im3l4u02nDaPZqEXA5DlQC4XKS5mKldknVNIuE3XvkbkFhzU7e5zbImo43ya0slVSlm2SjcBepuVtoWr-5T_qdsbbKA3dn5q9kVBwbZiaRWWbDmjHmpaYm8GjzLEAx2WSaTHCXpYly0yYuMqQPyMm1tPdDsh4nsX5MTG0H1NfgkqKRzbQX-J7gynWQUvGIOY5B3pYtK1UhcY4nbfyU2VI79WTlMRhkZwGe5soeV8DwEUnUyogxGWcczNNUdobf9geywzgyAN9jq2GCMiFQGccgL5tg_S-fa7auBlUsvS5AUQL_UQXFdgpoKVT0qpn7D7Jic6uGVNPJuazYaSitXPuqVjrOe1hTdVYDKxa3a0Dwe6pmp6m4enU5pmThllN56UQM8mJRjFdiqmGsk3mGYUCjoY8a5FE-BBf9w3GBccOUxiBubXAuACjWXi-JJ2eZaDtUG5i7bZBWOYwr1Wrqdq18jNdMH0y-dmRyMZbzuXR8AVQbWrMBV_z0A75puDP3PP_J6vZ4Tm73hsdH8qg_ONwid2BaIHDN1LG3yfrsYq6fAvWehc8yf2eS79ftYP8BYcPnuQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxMYtbEBAKzcpahPbuTwgVLVUK4MKwQZ7M4lrdxWQdEsrxF_j13FO4pSk6sbT1Jeq_nLiOsfHn-Pjz4Tscak7ynMVMDefO4x2tBNxTzou9TWVNEiUwhf6H0b-_hF7d8yPN8ifai8MplVWMbEI1ONM4jvythvAUM5RoaytTVrEx_7gzezUwROkcKW1Ok6jdJED9fsXTN_y18M-POuW5w3eHvb2HXPCgCNh5jfHCsJ0hcbAmQLuBTHXwCj8uMPchPlUur6i8GFJEEsg1pxKmXBGdQJjstZJh1Gwe4VcDShUDnep92rpJSsK0GZvYIeG7VKy04WeHTZGw9UxoTYoriZsLldtVxROi1FxcIvcNHTW7pb-t0U2VLpNrhVppTLfJlsmdOT2C6Nv_fI2GXYnyqkO353bP7OxOULMzrRdZcbaKeao5jZwavskRmHZbJZNcceljdLTNi445HfI0aW0912ymWapuk9s5cY0UhCe9NhlKoyj0Ocy8JBecc08zyKvqpYV0sid46kbP0Sx7E5DUXsMFtlbgmelysc5MHxEAnUzUvTASbzIc9E9_NobiS7jyAaikF0M8ynzfVTJscjTdbDh508NW-eDapaeG5DO4D_K2GytgJZCda-Guf8gazZ3Gkg5m56Kmp01pbVrnzVKJ6WHravOxcCaxd0GEGKgbNhZV1y_uupTwoToXPwLKBZ5sizGKzHtMFXZosAwoNTgoxa5V3bBpX94AbBvmN5YJGh0ziUAhdubJen0pBBwh2oDi3ct0qq6ca1a69yuVfbxhun-9EtXZGcTsVgIL_KBdkNrrsGZn77DNwV35mEYPbi4PR6T6xBaxfvh6GCH3IAZgo_Lp567SzbnZwv1EFj4PHlUhDubfLvs-PoXHVDrug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Age-dependent+modulation+of+vascular+niches+for+haematopoietic+stem+cells&rft.jtitle=Nature+%28London%29&rft.au=Kusumbe%2C+Anjali+P&rft.au=Ramasamy%2C+Saravana+K&rft.au=Itkin%2C+Tomer&rft.au=Mae%2C+Maarja+Andaloussi&rft.date=2016-04-21&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.spage=380&rft_id=info:doi/10.1038%2Fnature17638&rft.externalDBID=ISR&rft.externalDocID=A450362984 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |