C^{1,{1}/{3}-}$$ very weak solutions to the two dimensional Monge–Ampère equation

For any $$\theta <\frac{1}{3}$$ θ < 1 3 , we show that very weak solutions to the two-dimensional Monge–Ampère equation with regularity $$C^{1,\theta }$$ C 1 , θ are dense in the space of continuous functions. This result is shown by a convex integration scheme involving a subtle decomposition...

Full description

Saved in:
Bibliographic Details
Published inCalculus of variations and partial differential equations Vol. 64; no. 5
Main Authors Cao, Wentao, Hirsch, Jonas, Inauen, Dominik
Format Journal Article
LanguageEnglish
Published 01.06.2025
Online AccessGet full text
ISSN0944-2669
1432-0835
DOI10.1007/s00526-025-03019-0

Cover

Abstract For any $$\theta <\frac{1}{3}$$ θ < 1 3 , we show that very weak solutions to the two-dimensional Monge–Ampère equation with regularity $$C^{1,\theta }$$ C 1 , θ are dense in the space of continuous functions. This result is shown by a convex integration scheme involving a subtle decomposition of the defect at each stage. The decomposition diagonalizes the defect and, in addition, incorporates some of the leading-order error terms of the first perturbation, effectively reducing the required amount of perturbations to one.
AbstractList For any $$\theta <\frac{1}{3}$$ θ < 1 3 , we show that very weak solutions to the two-dimensional Monge–Ampère equation with regularity $$C^{1,\theta }$$ C 1 , θ are dense in the space of continuous functions. This result is shown by a convex integration scheme involving a subtle decomposition of the defect at each stage. The decomposition diagonalizes the defect and, in addition, incorporates some of the leading-order error terms of the first perturbation, effectively reducing the required amount of perturbations to one.
ArticleNumber 160
Author Hirsch, Jonas
Cao, Wentao
Inauen, Dominik
Author_xml – sequence: 1
  givenname: Wentao
  surname: Cao
  fullname: Cao, Wentao
– sequence: 2
  givenname: Jonas
  surname: Hirsch
  fullname: Hirsch, Jonas
– sequence: 3
  givenname: Dominik
  orcidid: 0000-0003-3858-3291
  surname: Inauen
  fullname: Inauen, Dominik
BookMark eNotkEFOAjEYhRuDiYBewFUXLK387d92OktCFE0wLmTtpMy0isIUp4OEEBLv4CW8hzfxJA7i5r28l7y3-DqkVYbSEXLO4ZIDJP0IoIRmIBQDBJ4yOCJtLlEwMKhapA2plExonZ6QTowvAFwZIdtkMnzc8ost3_W3uGO7Xo--u2pD186-0hjmq3oWykjrQOtnR-t1oMVs4crYtHZO70L55H4-PgeL5fdX5ah7W9n94JQcezuP7uzfu-Th-moyvGHj-9HtcDBmuUmAeTQgVZ5MpccEhdQopt651CKkulCJ1VOhZO6VMl5j4XxujUEshG8CAnaJOLzmVYixcj5bVrOFrTYZh2xPJTtQyRoq2R-VRn8BNxVYnQ
Cites_doi 10.4171/cmh/564
10.1016/j.jfa.2024.110616
10.1007/978-3-642-25361-4_5
10.1090/surv/130
10.4171/rmi/1019
10.2140/apde.2017.10.695
10.1090/S0002-9947-1934-1501735-3
10.4310/jdg/1668186787
10.1090/gsm/048
10.1007/BF02385981
10.1016/j.anihpc.2015.08.005
10.1016/j.aim.2020.106996
10.1007/s11425-018-9516-7
10.1090/bull/1713
10.2307/1969840
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1007/s00526-025-03019-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-0835
ExternalDocumentID 10_1007_s00526_025_03019_0
GroupedDBID -Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PQQKQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
ID FETCH-LOGICAL-c870-f38045c7b4f37324632bfee9a3096d57a6b254cf558f63defca8833d2f3de303
ISSN 0944-2669
IngestDate Tue Aug 05 12:11:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c870-f38045c7b4f37324632bfee9a3096d57a6b254cf558f63defca8833d2f3de303
ORCID 0000-0003-3858-3291
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s00526-025-03019-0.pdf
ParticipantIDs crossref_primary_10_1007_s00526_025_03019_0
PublicationCentury 2000
PublicationDate 2025-06-00
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-00
PublicationDecade 2020
PublicationTitle Calculus of variations and partial differential equations
PublicationYear 2025
References 3019_CR12
Wentao Cao (3019_CR4) 2019; 62
3019_CR13
3019_CR10
Anders Källén (3019_CR15) 1978; 16
3019_CR21
3019_CR9
3019_CR11
3019_CR22
3019_CR16
3019_CR17
3019_CR14
Wentao Cao (3019_CR3) 2024; 99
Hassler Whitney (3019_CR23) 1934; 36
John Nash (3019_CR20) 1954; 2
3019_CR2
3019_CR18
3019_CR1
3019_CR19
3019_CR8
3019_CR7
3019_CR6
3019_CR5
References_xml – ident: 3019_CR22
– ident: 3019_CR21
– volume: 99
  start-page: 39
  issue: 1
  year: 2024
  ident: 3019_CR3
  publication-title: Comment. Math. Helv.
  doi: 10.4171/cmh/564
– ident: 3019_CR16
– ident: 3019_CR19
  doi: 10.1016/j.jfa.2024.110616
– ident: 3019_CR7
  doi: 10.1007/978-3-642-25361-4_5
– ident: 3019_CR13
  doi: 10.1090/surv/130
– ident: 3019_CR9
  doi: 10.4171/rmi/1019
– ident: 3019_CR18
  doi: 10.2140/apde.2017.10.695
– volume: 36
  start-page: 63
  issue: 1
  year: 1934
  ident: 3019_CR23
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-1934-1501735-3
– ident: 3019_CR10
– ident: 3019_CR5
  doi: 10.4310/jdg/1668186787
– ident: 3019_CR11
  doi: 10.1090/gsm/048
– ident: 3019_CR12
– ident: 3019_CR14
– volume: 16
  start-page: 29
  issue: 1
  year: 1978
  ident: 3019_CR15
  publication-title: Ark. Mat.
  doi: 10.1007/BF02385981
– ident: 3019_CR17
  doi: 10.1016/j.anihpc.2015.08.005
– ident: 3019_CR8
  doi: 10.1016/j.aim.2020.106996
– volume: 62
  start-page: 1041
  issue: 6
  year: 2019
  ident: 3019_CR4
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-018-9516-7
– ident: 3019_CR1
  doi: 10.1090/bull/1713
– ident: 3019_CR6
– volume: 2
  start-page: 383
  issue: 60
  year: 1954
  ident: 3019_CR20
  publication-title: Ann. of Math.
  doi: 10.2307/1969840
– ident: 3019_CR2
SSID ssj0015824
Score 2.38978
Snippet For any $$\theta <\frac{1}{3}$$ θ < 1 3 , we show that very weak solutions to the two-dimensional Monge–Ampère equation with regularity $$C^{1,\theta }$$ C 1 ,...
SourceID crossref
SourceType Index Database
Title C^{1,{1}/{3}-}$$ very weak solutions to the two dimensional Monge–Ampère equation
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaWcoFDxa9o-ZEP21MwZOM4To4lFBWkcmEreiJyYptD0abdzVLBaiXeoS_Be_RN-iSM7cSJoEgUaZW1o-zEycyOx_PzGaFxloYiYXxC0iqTBlRbk1RkMeFJqbVWlDNt6p0P3if7h_G7I3Y0Gp0PspaWTfmi-n5lXcn_cBXOAV9Nlew1OOuJwgloA3_hCByG4z_xON9hezv8FSij3H7x10ALWhRaxPZi-ATwXN-CMyWOAz-czuRszupAGoB_B85h_uKfVZcAAWM5sYH0dK4CdbrsmeihDb4Y76HNBvkKi-42rc5iD5jh2gCQ24DFdjoa3o7PhfXUfjQJ7HXvBZ8v3AZVxrXvr307E8tWR9YGEOV46LCIWJ9Y1Xke45iAXeA0pXJ6N6aRAcpmQ8Xs4M1bAWRX6nuX4rGwqDXE3gsUVkbCfnbrIvq_TXo-FdHDNlsaBdAoLI0ivIFuRpzb2P9htOtDUyy1OyX7p2grsWw95h_jGFg7A7NlegdttusNvOuE5y4aqdk9dPvAg_Uu7qNp_mk1eb6arF-u6Jqsx2NsBAYbgcFeYHBTY_gNBoHBA4HBVmAuf5yDqFz8nCvcsfgB-vBmb5rvk3azDVKByiaapmDcV7yMNeVgZCc0KrVSmaCwxpWMi6SMWFxpxlKdUKl0Jcw21TLS0AEz6CHamNUz9QjhMMlYJsEql4LHFUwZogplykppwA8nUm2hoHslxYlDVCn-zoTta139GN3qJe4J2mjmS_UUjMamfGaZ-AsZtWRR
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=C%5E%7B1%2C%7B1%7D%2F%7B3%7D-%7D%24%24+very+weak+solutions+to+the+two+dimensional+Monge%E2%80%93Amp%C3%A8re+equation&rft.jtitle=Calculus+of+variations+and+partial+differential+equations&rft.au=Cao%2C+Wentao&rft.au=Hirsch%2C+Jonas&rft.au=Inauen%2C+Dominik&rft.date=2025-06-01&rft.issn=0944-2669&rft.eissn=1432-0835&rft.volume=64&rft.issue=5&rft_id=info:doi/10.1007%2Fs00526-025-03019-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00526_025_03019_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-2669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-2669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-2669&client=summon