C^{1,{1}/{3}-}$$ very weak solutions to the two dimensional Monge–Ampère equation
For any $$\theta <\frac{1}{3}$$ θ < 1 3 , we show that very weak solutions to the two-dimensional Monge–Ampère equation with regularity $$C^{1,\theta }$$ C 1 , θ are dense in the space of continuous functions. This result is shown by a convex integration scheme involving a subtle decomposition...
Saved in:
Published in | Calculus of variations and partial differential equations Vol. 64; no. 5 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.06.2025
|
Online Access | Get full text |
ISSN | 0944-2669 1432-0835 |
DOI | 10.1007/s00526-025-03019-0 |
Cover
Abstract | For any $$\theta <\frac{1}{3}$$ θ < 1 3 , we show that very weak solutions to the two-dimensional Monge–Ampère equation with regularity $$C^{1,\theta }$$ C 1 , θ are dense in the space of continuous functions. This result is shown by a convex integration scheme involving a subtle decomposition of the defect at each stage. The decomposition diagonalizes the defect and, in addition, incorporates some of the leading-order error terms of the first perturbation, effectively reducing the required amount of perturbations to one. |
---|---|
AbstractList | For any $$\theta <\frac{1}{3}$$ θ < 1 3 , we show that very weak solutions to the two-dimensional Monge–Ampère equation with regularity $$C^{1,\theta }$$ C 1 , θ are dense in the space of continuous functions. This result is shown by a convex integration scheme involving a subtle decomposition of the defect at each stage. The decomposition diagonalizes the defect and, in addition, incorporates some of the leading-order error terms of the first perturbation, effectively reducing the required amount of perturbations to one. |
ArticleNumber | 160 |
Author | Hirsch, Jonas Cao, Wentao Inauen, Dominik |
Author_xml | – sequence: 1 givenname: Wentao surname: Cao fullname: Cao, Wentao – sequence: 2 givenname: Jonas surname: Hirsch fullname: Hirsch, Jonas – sequence: 3 givenname: Dominik orcidid: 0000-0003-3858-3291 surname: Inauen fullname: Inauen, Dominik |
BookMark | eNotkEFOAjEYhRuDiYBewFUXLK387d92OktCFE0wLmTtpMy0isIUp4OEEBLv4CW8hzfxJA7i5r28l7y3-DqkVYbSEXLO4ZIDJP0IoIRmIBQDBJ4yOCJtLlEwMKhapA2plExonZ6QTowvAFwZIdtkMnzc8ost3_W3uGO7Xo--u2pD186-0hjmq3oWykjrQOtnR-t1oMVs4crYtHZO70L55H4-PgeL5fdX5ah7W9n94JQcezuP7uzfu-Th-moyvGHj-9HtcDBmuUmAeTQgVZ5MpccEhdQopt651CKkulCJ1VOhZO6VMl5j4XxujUEshG8CAnaJOLzmVYixcj5bVrOFrTYZh2xPJTtQyRoq2R-VRn8BNxVYnQ |
Cites_doi | 10.4171/cmh/564 10.1016/j.jfa.2024.110616 10.1007/978-3-642-25361-4_5 10.1090/surv/130 10.4171/rmi/1019 10.2140/apde.2017.10.695 10.1090/S0002-9947-1934-1501735-3 10.4310/jdg/1668186787 10.1090/gsm/048 10.1007/BF02385981 10.1016/j.anihpc.2015.08.005 10.1016/j.aim.2020.106996 10.1007/s11425-018-9516-7 10.1090/bull/1713 10.2307/1969840 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1007/s00526-025-03019-0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1432-0835 |
ExternalDocumentID | 10_1007_s00526_025_03019_0 |
GroupedDBID | -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PQQKQ PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~EX |
ID | FETCH-LOGICAL-c870-f38045c7b4f37324632bfee9a3096d57a6b254cf558f63defca8833d2f3de303 |
ISSN | 0944-2669 |
IngestDate | Tue Aug 05 12:11:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c870-f38045c7b4f37324632bfee9a3096d57a6b254cf558f63defca8833d2f3de303 |
ORCID | 0000-0003-3858-3291 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s00526-025-03019-0.pdf |
ParticipantIDs | crossref_primary_10_1007_s00526_025_03019_0 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-00 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-00 |
PublicationDecade | 2020 |
PublicationTitle | Calculus of variations and partial differential equations |
PublicationYear | 2025 |
References | 3019_CR12 Wentao Cao (3019_CR4) 2019; 62 3019_CR13 3019_CR10 Anders Källén (3019_CR15) 1978; 16 3019_CR21 3019_CR9 3019_CR11 3019_CR22 3019_CR16 3019_CR17 3019_CR14 Wentao Cao (3019_CR3) 2024; 99 Hassler Whitney (3019_CR23) 1934; 36 John Nash (3019_CR20) 1954; 2 3019_CR2 3019_CR18 3019_CR1 3019_CR19 3019_CR8 3019_CR7 3019_CR6 3019_CR5 |
References_xml | – ident: 3019_CR22 – ident: 3019_CR21 – volume: 99 start-page: 39 issue: 1 year: 2024 ident: 3019_CR3 publication-title: Comment. Math. Helv. doi: 10.4171/cmh/564 – ident: 3019_CR16 – ident: 3019_CR19 doi: 10.1016/j.jfa.2024.110616 – ident: 3019_CR7 doi: 10.1007/978-3-642-25361-4_5 – ident: 3019_CR13 doi: 10.1090/surv/130 – ident: 3019_CR9 doi: 10.4171/rmi/1019 – ident: 3019_CR18 doi: 10.2140/apde.2017.10.695 – volume: 36 start-page: 63 issue: 1 year: 1934 ident: 3019_CR23 publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-1934-1501735-3 – ident: 3019_CR10 – ident: 3019_CR5 doi: 10.4310/jdg/1668186787 – ident: 3019_CR11 doi: 10.1090/gsm/048 – ident: 3019_CR12 – ident: 3019_CR14 – volume: 16 start-page: 29 issue: 1 year: 1978 ident: 3019_CR15 publication-title: Ark. Mat. doi: 10.1007/BF02385981 – ident: 3019_CR17 doi: 10.1016/j.anihpc.2015.08.005 – ident: 3019_CR8 doi: 10.1016/j.aim.2020.106996 – volume: 62 start-page: 1041 issue: 6 year: 2019 ident: 3019_CR4 publication-title: Sci. China Math. doi: 10.1007/s11425-018-9516-7 – ident: 3019_CR1 doi: 10.1090/bull/1713 – ident: 3019_CR6 – volume: 2 start-page: 383 issue: 60 year: 1954 ident: 3019_CR20 publication-title: Ann. of Math. doi: 10.2307/1969840 – ident: 3019_CR2 |
SSID | ssj0015824 |
Score | 2.38978 |
Snippet | For any $$\theta <\frac{1}{3}$$ θ < 1 3 , we show that very weak solutions to the two-dimensional Monge–Ampère equation with regularity $$C^{1,\theta }$$ C 1 ,... |
SourceID | crossref |
SourceType | Index Database |
Title | C^{1,{1}/{3}-}$$ very weak solutions to the two dimensional Monge–Ampère equation |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaWcoFDxa9o-ZEP21MwZOM4To4lFBWkcmEreiJyYptD0abdzVLBaiXeoS_Be_RN-iSM7cSJoEgUaZW1o-zEycyOx_PzGaFxloYiYXxC0iqTBlRbk1RkMeFJqbVWlDNt6p0P3if7h_G7I3Y0Gp0PspaWTfmi-n5lXcn_cBXOAV9Nlew1OOuJwgloA3_hCByG4z_xON9hezv8FSij3H7x10ALWhRaxPZi-ATwXN-CMyWOAz-czuRszupAGoB_B85h_uKfVZcAAWM5sYH0dK4CdbrsmeihDb4Y76HNBvkKi-42rc5iD5jh2gCQ24DFdjoa3o7PhfXUfjQJ7HXvBZ8v3AZVxrXvr307E8tWR9YGEOV46LCIWJ9Y1Xke45iAXeA0pXJ6N6aRAcpmQ8Xs4M1bAWRX6nuX4rGwqDXE3gsUVkbCfnbrIvq_TXo-FdHDNlsaBdAoLI0ivIFuRpzb2P9htOtDUyy1OyX7p2grsWw95h_jGFg7A7NlegdttusNvOuE5y4aqdk9dPvAg_Uu7qNp_mk1eb6arF-u6Jqsx2NsBAYbgcFeYHBTY_gNBoHBA4HBVmAuf5yDqFz8nCvcsfgB-vBmb5rvk3azDVKByiaapmDcV7yMNeVgZCc0KrVSmaCwxpWMi6SMWFxpxlKdUKl0Jcw21TLS0AEz6CHamNUz9QjhMMlYJsEql4LHFUwZogplykppwA8nUm2hoHslxYlDVCn-zoTta139GN3qJe4J2mjmS_UUjMamfGaZ-AsZtWRR |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=C%5E%7B1%2C%7B1%7D%2F%7B3%7D-%7D%24%24+very+weak+solutions+to+the+two+dimensional+Monge%E2%80%93Amp%C3%A8re+equation&rft.jtitle=Calculus+of+variations+and+partial+differential+equations&rft.au=Cao%2C+Wentao&rft.au=Hirsch%2C+Jonas&rft.au=Inauen%2C+Dominik&rft.date=2025-06-01&rft.issn=0944-2669&rft.eissn=1432-0835&rft.volume=64&rft.issue=5&rft_id=info:doi/10.1007%2Fs00526-025-03019-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00526_025_03019_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-2669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-2669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-2669&client=summon |