Modelling commodity market volatility with climate policy uncertainty: a GARCH-MIDAS approach
This research employs the Generalized Autoregressive Conditional Heteroskedasticity-GARCH option of Mixed Data Sampling – MIDAS (GARCH-MIDAS) model to examine how well commodity return volatility can be predicted using the US climate policy uncertainty (USCPU). Our analysis utilizes 20-day annualize...
Saved in:
Published in | SN Business & Economics Vol. 5; no. 3 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
28.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2662-9399 2662-9399 |
DOI | 10.1007/s43546-025-00792-0 |
Cover
Loading…
Abstract | This research employs the Generalized Autoregressive Conditional Heteroskedasticity-GARCH option of Mixed Data Sampling – MIDAS (GARCH-MIDAS) model to examine how well commodity return volatility can be predicted using the US climate policy uncertainty (USCPU). Our analysis utilizes 20-day annualized realized volatility returns for nine global commodities (including Aluminium, Cocoa, Coffee, Copper, Cotton, Rice, Soybean, Sugar, and Wheat) to develop the predictability model, with USCPU as the predictor. The outcomes of our investigation consistently show a considerable direct nexus between USCPU and the selected commodities. In other words, this implies that USCPU is a strong predictor of volatility in commodity returns. Therefore, our results offer implications for the pivotal role of climate change policies in influencing trading activities in the commodity market. Additionally, for robustness, we subject our data to further analysis using the economic policy uncertainty (EPU) index. This is to ascertain whether our results are index-sensitive or not, expectedly, our result shows consistency with the earlier observed pattern for CPU and confirms that our result are not sensitive to the choice of the indicator. These outcomes underscore the crucial impact of climate change considerations in investment decisions and the significant effect of economic policy uncertainty on economic and investment choices. |
---|---|
AbstractList | This research employs the Generalized Autoregressive Conditional Heteroskedasticity-GARCH option of Mixed Data Sampling – MIDAS (GARCH-MIDAS) model to examine how well commodity return volatility can be predicted using the US climate policy uncertainty (USCPU). Our analysis utilizes 20-day annualized realized volatility returns for nine global commodities (including Aluminium, Cocoa, Coffee, Copper, Cotton, Rice, Soybean, Sugar, and Wheat) to develop the predictability model, with USCPU as the predictor. The outcomes of our investigation consistently show a considerable direct nexus between USCPU and the selected commodities. In other words, this implies that USCPU is a strong predictor of volatility in commodity returns. Therefore, our results offer implications for the pivotal role of climate change policies in influencing trading activities in the commodity market. Additionally, for robustness, we subject our data to further analysis using the economic policy uncertainty (EPU) index. This is to ascertain whether our results are index-sensitive or not, expectedly, our result shows consistency with the earlier observed pattern for CPU and confirms that our result are not sensitive to the choice of the indicator. These outcomes underscore the crucial impact of climate change considerations in investment decisions and the significant effect of economic policy uncertainty on economic and investment choices. |
ArticleNumber | 29 |
Author | Olaniran, Abeeb O. Ngwu, Franklin N. Nnamdi, Kelechi C. Taliat, Mohammed K. Lasisi, Lukman A. |
Author_xml | – sequence: 1 givenname: Lukman A. orcidid: 0000-0002-8354-7903 surname: Lasisi fullname: Lasisi, Lukman A. email: abisoyelasisi2002@gmail.com, llasisi@lbs.edu.ng organization: Lagos Business School Public Sector Initiative – sequence: 2 givenname: Franklin N. surname: Ngwu fullname: Ngwu, Franklin N. organization: Lagos Business School Public Sector Initiative – sequence: 3 givenname: Mohammed K. surname: Taliat fullname: Taliat, Mohammed K. organization: University of Abuja – sequence: 4 givenname: Abeeb O. surname: Olaniran fullname: Olaniran, Abeeb O. organization: Centre for Econometrics and Applied Research – sequence: 5 givenname: Kelechi C. surname: Nnamdi fullname: Nnamdi, Kelechi C. organization: Lagos Business School Public Sector Initiative |
BookMark | eNp9UMtOwzAQtFCRKKU_wMk_ENg87MTcqgIFqRUS9Iosx7Vbl8SOHBeUv8elHDhx2t3RzGpmLtHIOqsQuk7hJgUob_siJwVNICNJPFmWwBkaZ5RmCcsZG_3ZL9C07_cAkVoCEDZG7yu3UU1j7BZL17ZuY8KAW-E_VMCfrhHBNEfky4Qdlo1pRVC4c42RAz5YqXwQxobhDgu8mL3On5LV8_3sDYuu807I3RU616Lp1fR3TtD68WEdacuXxfN8tkxkVUIiRF0WoImGus4pBV1TKStGGShWSVFVLFVVLYgsCiWFZlQDITFNXZKMpLnMJyg7vZXe9b1Xmnc-WvUDT4EfK-KninjMzX8q4hBF-UnUR7LdKs_37uBttPmf6hs2E2vp |
Cites_doi | 10.1007/s11356-018-3634-2 10.1080/1540496X.2020.1784719 10.46557/001c.17413 10.1016/j.resourpol.2021.102252 10.1016/S0169-2070(96)00719-4 10.1016/0304-4076(95)01737-2 10.1016/j.najef.2022.101755 10.1016/j.eneco.2021.105123 10.46557/001c.24843 10.1016/j.apenergy.2008.01.005 10.1111/j.1540-6261.2012.01746.x 10.1016/j.jcomm.2021.100208 10.1016/j.jeconom.2005.01.004 10.2139/ssrn.3847388 10.1080/15140326.2020.1729571 10.1007/s00181-017-1311-9 10.1016/j.eneco.2019.07.024 10.1016/j.irfa.2020.101616 10.1016/j.resourpol.2017.06.010 10.3386/w26983 10.1007/s11356-022-19328-2 10.1016/j.eneco.2024.107631 10.1016/j.resourpol.2022.102916 10.3390/math10101638 10.1177/13548166221110540 10.1016/j.eneco.2019.104553 10.1002/jae.2742 10.1016/j.resourpol.2022.103263 10.1016/j.resourpol.2020.101789 10.1162/REST_a_00300 10.1016/j.irfa.2020.101496 10.1016/j.econmod.2012.12.001 10.1016/j.frl.2023.104103 10.1057/s41267-017-0125-5 10.1038/nclimate3255 10.1016/j.jcomm.2020.100139 10.1093/qje/qjw024 10.1016/j.resourpol.2021.102303 10.1016/j.gfj.2020.100546 10.1007/s10258-023-00237-2 10.1016/j.eap.2023.03.013 10.1016/j.irfa.2021.101934 10.1111/joes.12525 10.1080/1331677X.2023.2186913 10.1016/j.scitotenv.2020.138878 10.46557/001c.37246 10.1016/j.ijforecast.2019.08.005 10.1007/s12571-017-0702-2 10.1057/palgrave.mel.9100165 10.2139/ssrn.1911824 10.1007/s10040-005-0467-0 10.1080/07350015.1995.10524599 10.1177/1086026618773985 10.1016/j.eneco.2022.105934 10.1038/s41561-020-0611-4 10.1155/2021/8848424 10.1016/j.jfs.2021.100925 10.1016/j.jempfin.2020.05.007 10.2139/ssrn.2775552 10.1108/JEAS-10-2021-0203 10.1080/03066150.2017.1381602 10.1016/j.physa.2019.122319 10.1016/j.najef.2022.101865 10.1016/j.ribaf.2020.101318 10.1002/fut.22416 10.1080/00207543.2019.1629670 10.1017/S0266466614000334 10.1016/j.jeconom.2016.04.008 10.1177/0958305X221127645 10.2139/ssrn.4850773 10.1016/j.qref.2023.02.004 10.1016/j.resourpol.2023.103494 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s43546-025-00792-0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics |
EISSN | 2662-9399 |
ExternalDocumentID | 10_1007_s43546_025_00792_0 |
GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABDBE ABECU ABJNI ABMQK ABTEG ABTKH ABTMW ACAOD ACDTI ACHSB ACPIV ACZOJ AEFQL AEMSY AESKC AFBBN AFQWF AGMZJ AGQEE AIGIU ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AYFIA DPUIP EBLON FIGPU IKXTQ IWAJR JZLTJ LLZTM NPVJJ NQJWS PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW AAYXX ABBRH ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION |
ID | FETCH-LOGICAL-c870-aab740f5f0bb3660fb6cc89690e98ca8891e8ba5c44ecaf96f055399b752513c3 |
ISSN | 2662-9399 |
IngestDate | Tue Jul 01 05:29:05 EDT 2025 Mon Mar 10 03:48:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | C53 Return volatility Economic policy uncertainty E44 Commodity market G15 Climate policy uncertainty G17 GARCH-MIDAS |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c870-aab740f5f0bb3660fb6cc89690e98ca8891e8ba5c44ecaf96f055399b752513c3 |
ORCID | 0000-0002-8354-7903 |
ParticipantIDs | crossref_primary_10_1007_s43546_025_00792_0 springer_journals_10_1007_s43546_025_00792_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250228 2025-02-28 |
PublicationDateYYYYMMDD | 2025-02-28 |
PublicationDate_xml | – month: 2 year: 2025 text: 20250228 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | SN Business & Economics |
PublicationTitleAbbrev | SN Bus Econ |
PublicationYear | 2025 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | IO Fasanya (792_CR25) 2020; 69 H Kim (792_CR42) 2021; 56 PF Dai (792_CR18) 2022; 26 AA Salisu (792_CR56) 2022; 108 M Bai (792_CR7) 2023; 34 S Sharma (792_CR62) 2020; 728 792_CR33 A Alqahtani (792_CR4) 2020; 23 T Fang (792_CR24) 2020; 58 S Fuss (792_CR27) 2008; 85 M Peri (792_CR50) 2017; 9 OB Adekoya (792_CR1) 2021; 74 792_CR28 AM Bender (792_CR11) 2020; 13 TT Sun (792_CR64) 2023; 36 FX Diebold (792_CR20) 1995; 13 D Harvey (792_CR34) 1997; 13 LA Smales (792_CR63) 2021; 73 A Ghadge (792_CR29) 2020; 58 I Badshah (792_CR6) 2019; 84 J Clapp (792_CR16) 2018; 45 CT Albulescu (792_CR3) 2019; 83 MY Ahmed (792_CR2) 2021; 74 Y Chen (792_CR15) 2019; 534 K Nam (792_CR47) 2021; 96 S Jia (792_CR40) 2023; 43 792_CR41 J Fang (792_CR23) 2019; 26 HH Huang (792_CR36) 2018; 49 L Wang (792_CR67) 2018; 54 C Hunt (792_CR37) 2019; 32 792_CR38 AA Salisu (792_CR57) 2022; 62 SR Baker (792_CR9) 2020 AC Homan (792_CR600) 2006; 8 J Iliyasu (792_CR39) 2024; 23 AA Salisu (792_CR54) 2020 SD Pham (792_CR51) 2024; 134 AA Salisu (792_CR58) 2023; 88 T Zhang (792_CR500) 2023; 80 Z Ding (792_CR21) 1996; 73 UB Ndako (792_CR48) 2021 A Sharif (792_CR61) 2020; 70 ME Hoque (792_CR35) 2020; 20 792_CR52 KH Wang (792_CR69) 2023; 78 YF Chen (792_CR14) 2021; 22 R Dehghanzadeh Shahabad (792_CR19) 2022; 10 S Yuandong (792_CR73) 2022; 78 792_CR12 X Wu (792_CR71) 2023 A Venturini (792_CR65) 2022; 79 D Xiao (792_CR72) 2022; 29 SR Baker (792_CR8) 2016; 131 C Liu (792_CR45) 2021; 55 F Wang (792_CR66) 2015; 31 AA Salisu (792_CR53) 2021; 48 RF Engle (792_CR22) 2013; 95 A Maghyereh (792_CR46) 2020; 68 AA Salisu (792_CR59) 2023; 82 E Ghysels (792_CR30) 2016; 193 SJH Shahzad (792_CR60) 2017; 53 L Pastor (792_CR49) 2012; 67 H Wu (792_CR70) 2023; 64 C Conrad (792_CR17) 2020; 35 N Apergis (792_CR5) 2023; 29 L Wang (792_CR68) 2020; 36 S Frimpong (792_CR26) 2021; 2021 E Ghysels (792_CR31) 2006; 131 E Girardin (792_CR32) 2013; 34 792_CR700 E Campiglio (792_CR13) 2023; 37 AA Salisu (792_CR55) 2022; 62 S Battiston (792_CR10) 2017; 7 L Lasisi (792_CR43) 2022 |
References_xml | – volume: 26 start-page: 1455 year: 2019 ident: 792_CR23 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-018-3634-2 – ident: 792_CR52 doi: 10.1080/1540496X.2020.1784719 – year: 2020 ident: 792_CR54 publication-title: Asian Econ Lett doi: 10.46557/001c.17413 – volume: 74 year: 2021 ident: 792_CR1 publication-title: Resour Policy doi: 10.1016/j.resourpol.2021.102252 – volume: 13 start-page: 281 issue: 2 year: 1997 ident: 792_CR34 publication-title: Int J Forecast doi: 10.1016/S0169-2070(96)00719-4 – volume: 73 start-page: 185 issue: 1 year: 1996 ident: 792_CR21 publication-title: J Economet doi: 10.1016/0304-4076(95)01737-2 – ident: 792_CR700 – volume: 62 year: 2022 ident: 792_CR57 publication-title: N Am Jo Econ Finance doi: 10.1016/j.najef.2022.101755 – volume: 96 year: 2021 ident: 792_CR47 publication-title: Energy Econ doi: 10.1016/j.eneco.2021.105123 – volume: 62 year: 2022 ident: 792_CR55 publication-title: N Am J Econ Finance doi: 10.1016/j.najef.2022.101755 – year: 2021 ident: 792_CR48 publication-title: Asian Econ Lett doi: 10.46557/001c.24843 – volume: 85 start-page: 708 issue: 8 year: 2008 ident: 792_CR27 publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.01.005 – volume: 67 start-page: 1219 issue: 4 year: 2012 ident: 792_CR49 publication-title: J Financ doi: 10.1111/j.1540-6261.2012.01746.x – volume: 26 year: 2022 ident: 792_CR18 publication-title: J Commod Mark doi: 10.1016/j.jcomm.2021.100208 – volume: 131 start-page: 59 issue: 1–2 year: 2006 ident: 792_CR31 publication-title: J Economet doi: 10.1016/j.jeconom.2005.01.004 – ident: 792_CR28 doi: 10.2139/ssrn.3847388 – volume: 23 start-page: 224 issue: 1 year: 2020 ident: 792_CR4 publication-title: J Appl Econ doi: 10.1080/15140326.2020.1729571 – volume: 54 start-page: 1549 year: 2018 ident: 792_CR67 publication-title: Empir Econ doi: 10.1007/s00181-017-1311-9 – volume: 83 start-page: 375 year: 2019 ident: 792_CR3 publication-title: Energy Econ doi: 10.1016/j.eneco.2019.07.024 – volume: 73 year: 2021 ident: 792_CR63 publication-title: Int Rev Financ Anal doi: 10.1016/j.irfa.2020.101616 – volume: 53 start-page: 208 year: 2017 ident: 792_CR60 publication-title: Resour Policy doi: 10.1016/j.resourpol.2017.06.010 – year: 2020 ident: 792_CR9 publication-title: Natl Bureau Econ Res doi: 10.3386/w26983 – volume: 29 start-page: 60662 issue: 40 year: 2022 ident: 792_CR72 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-19328-2 – ident: 792_CR38 – volume: 134 year: 2024 ident: 792_CR51 publication-title: Energy Econ doi: 10.1016/j.eneco.2024.107631 – volume: 78 year: 2022 ident: 792_CR73 publication-title: Resour Policy doi: 10.1016/j.resourpol.2022.102916 – volume: 10 start-page: 1638 issue: 10 year: 2022 ident: 792_CR19 publication-title: Mathematics doi: 10.3390/math10101638 – volume: 29 start-page: 1484 issue: 6 year: 2023 ident: 792_CR5 publication-title: Tour Econ doi: 10.1177/13548166221110540 – volume: 84 year: 2019 ident: 792_CR6 publication-title: Energy Econ doi: 10.1016/j.eneco.2019.104553 – volume: 35 start-page: 19 issue: 1 year: 2020 ident: 792_CR17 publication-title: J Appl Economet doi: 10.1002/jae.2742 – volume: 80 year: 2023 ident: 792_CR500 publication-title: Resour Policy doi: 10.1016/j.resourpol.2022.103263 – volume: 68 year: 2020 ident: 792_CR46 publication-title: Resour Policy doi: 10.1016/j.resourpol.2020.101789 – volume: 95 start-page: 776 issue: 3 year: 2013 ident: 792_CR22 publication-title: Rev Econ Stat doi: 10.1162/REST_a_00300 – volume: 70 year: 2020 ident: 792_CR61 publication-title: Int Rev Financ Anal doi: 10.1016/j.irfa.2020.101496 – volume: 34 start-page: 59 year: 2013 ident: 792_CR32 publication-title: Econ Model doi: 10.1016/j.econmod.2012.12.001 – year: 2023 ident: 792_CR71 publication-title: Finance Res Lett doi: 10.1016/j.frl.2023.104103 – volume: 49 start-page: 633 year: 2018 ident: 792_CR36 publication-title: J Int Bus Stud doi: 10.1057/s41267-017-0125-5 – volume: 7 start-page: 283 issue: 4 year: 2017 ident: 792_CR10 publication-title: Nat Clim Chang doi: 10.1038/nclimate3255 – volume: 22 year: 2021 ident: 792_CR14 publication-title: J Commod Mark doi: 10.1016/j.jcomm.2020.100139 – volume: 131 start-page: 1593 issue: 4 year: 2016 ident: 792_CR8 publication-title: Q J Econ doi: 10.1093/qje/qjw024 – volume: 74 year: 2021 ident: 792_CR2 publication-title: Resour Policy doi: 10.1016/j.resourpol.2021.102303 – volume: 48 year: 2021 ident: 792_CR53 publication-title: Glob Financ J doi: 10.1016/j.gfj.2020.100546 – volume: 23 start-page: 187 issue: 2 year: 2024 ident: 792_CR39 publication-title: Port Econ J doi: 10.1007/s10258-023-00237-2 – volume: 78 start-page: 256 year: 2023 ident: 792_CR69 publication-title: Econ Anal Policy doi: 10.1016/j.eap.2023.03.013 – volume: 79 year: 2022 ident: 792_CR65 publication-title: Int Rev Financ Anal doi: 10.1016/j.irfa.2021.101934 – volume: 37 start-page: 950 issue: 3 year: 2023 ident: 792_CR13 publication-title: J Econ Surv doi: 10.1111/joes.12525 – volume: 36 issue: 3 year: 2023 ident: 792_CR64 publication-title: Econ Res-Ekonomska istraživanja doi: 10.1080/1331677X.2023.2186913 – volume: 728 year: 2020 ident: 792_CR62 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.138878 – year: 2022 ident: 792_CR43 publication-title: Asian Econ Lett doi: 10.46557/001c.37246 – volume: 36 start-page: 684 issue: 2 year: 2020 ident: 792_CR68 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2019.08.005 – volume: 9 start-page: 673 issue: 4 year: 2017 ident: 792_CR50 publication-title: Food Secur doi: 10.1007/s12571-017-0702-2 – volume: 8 start-page: 387 year: 2006 ident: 792_CR600 publication-title: Marit Econ Logistics doi: 10.1057/palgrave.mel.9100165 – ident: 792_CR33 doi: 10.2139/ssrn.1911824 – volume: 20 start-page: 197 issue: 3 year: 2020 ident: 792_CR35 publication-title: Borsa Istanbul Rev doi: 10.1007/s10040-005-0467-0 – volume: 13 start-page: 253 year: 1995 ident: 792_CR20 publication-title: J Bus Econ Stat doi: 10.1080/07350015.1995.10524599 – volume: 32 start-page: 41 issue: 1 year: 2019 ident: 792_CR37 publication-title: Organ Environ doi: 10.1177/1086026618773985 – volume: 108 year: 2022 ident: 792_CR56 publication-title: Energy Econ doi: 10.1016/j.eneco.2022.105934 – volume: 13 start-page: 571 issue: 8 year: 2020 ident: 792_CR11 publication-title: Nat Geosci doi: 10.1038/s41561-020-0611-4 – volume: 2021 start-page: 8848424 issue: 1 year: 2021 ident: 792_CR26 publication-title: Complexity doi: 10.1155/2021/8848424 – volume: 56 year: 2021 ident: 792_CR42 publication-title: J Financ Stab doi: 10.1016/j.jfs.2021.100925 – volume: 58 start-page: 36 year: 2020 ident: 792_CR24 publication-title: J Empir Financ doi: 10.1016/j.jempfin.2020.05.007 – ident: 792_CR12 doi: 10.2139/ssrn.2775552 – volume: 69 year: 2020 ident: 792_CR25 publication-title: Afr Perspect Resour Policy doi: 10.1108/JEAS-10-2021-0203 – volume: 45 start-page: 80 issue: 1 year: 2018 ident: 792_CR16 publication-title: J Peasant Stud doi: 10.1080/03066150.2017.1381602 – volume: 534 year: 2019 ident: 792_CR15 publication-title: Physica A doi: 10.1016/j.physa.2019.122319 – volume: 64 year: 2023 ident: 792_CR70 publication-title: N Am J Econ Finance doi: 10.1016/j.najef.2022.101865 – volume: 55 year: 2021 ident: 792_CR45 publication-title: Res Int Bus Financ doi: 10.1016/j.ribaf.2020.101318 – volume: 43 start-page: 1393 issue: 10 year: 2023 ident: 792_CR40 publication-title: J Futur Mark doi: 10.1002/fut.22416 – volume: 58 start-page: 44 issue: 1 year: 2020 ident: 792_CR29 publication-title: Int J Prod Res doi: 10.1080/00207543.2019.1629670 – volume: 31 start-page: 362 issue: 2 year: 2015 ident: 792_CR66 publication-title: Economet Theor doi: 10.1017/S0266466614000334 – volume: 193 start-page: 294 issue: 2 year: 2016 ident: 792_CR30 publication-title: J Economet doi: 10.1016/j.jeconom.2016.04.008 – volume: 34 start-page: 2876 issue: 7 year: 2023 ident: 792_CR7 publication-title: Energy Environ doi: 10.1177/0958305X221127645 – ident: 792_CR41 doi: 10.2139/ssrn.4850773 – volume: 88 start-page: 303 year: 2023 ident: 792_CR58 publication-title: Q Rev Econ Finance doi: 10.1016/j.qref.2023.02.004 – volume: 82 year: 2023 ident: 792_CR59 publication-title: Resour Policy doi: 10.1016/j.resourpol.2023.103494 |
SSID | ssj0002570059 |
Score | 2.2841804 |
Snippet | This research employs the Generalized Autoregressive Conditional Heteroskedasticity-GARCH option of Mixed Data Sampling – MIDAS (GARCH-MIDAS) model to examine... |
SourceID | crossref springer |
SourceType | Index Database Publisher |
SubjectTerms | Business and Management Economics Finance Original Article |
Title | Modelling commodity market volatility with climate policy uncertainty: a GARCH-MIDAS approach |
URI | https://link.springer.com/article/10.1007/s43546-025-00792-0 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AAXVApVy0t76M04Mvba8XJzBeVRkh4apFyQtbtetxFNgvIQSv9A_3Zndu21CwW1XKxoPbYjz-fZb2fnQchBUYZlHKawNglD7jNWRD7vY5Aj1q6CCVAIgQnOg2Hy6Rv7Mo7Hnc5VK2ppvZI9dXlrXsn_aBXGQK-YJXsPzbqbwgD8Bv3CETQMxzvpGBuZ2ZracPfpvEBGPTVpzB5YHRAyHNtGl19MgJtq05RBbTyYzWwswGpj050_4q6RP_j8Pjt1dcbbxPV02MTII1rqhGZHyb-K5WRpU63XP3BjIOs5R_PZr3VNkrFBvDd0p0boZrERI_NzdKIX3rE7eXIhZpOF9dBmUmvpnfTaXoqwnfXd9lL-5udsXG12OjJ2DyhD6PPI9k2qjXTcwmJ0q-m30R5LoH8Mw6rhHwQGdM1E58IPXalmI5yDcG6E8-AB2QphvQEWfis7OjwcOncdNvsDJlqlXZnkyz-edJPa3NxXN3RltE0eV-sMmlnQPCEdPdshD53WnpLvDjzUgYda8NAGPBTBQyvwUAse2gLPOypoCzq0hs4zMjr6MILhqteGr8Bi-0LIPgvKuAykjJIkKGWiVMoTHmieKpGm_K1OpYgVY1qJkidlEGNNY9mPgSBHKtol3dl8pvcIhfVpVBaFSJhUGCzAtWJFLFUCFiGEq_aJV7-l_KetqJL_XSH75E39IvPqy1v-Q_z5_cRfkEcNWF-S7mqx1q-AZK7k6woA12ZFeg8 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+commodity+market+volatility+with+climate+policy+uncertainty%3A+a+GARCH-MIDAS+approach&rft.jtitle=SN+Business+%26+Economics&rft.au=Lasisi%2C+Lukman+A.&rft.au=Ngwu%2C+Franklin+N.&rft.au=Taliat%2C+Mohammed+K.&rft.au=Olaniran%2C+Abeeb+O.&rft.date=2025-02-28&rft.pub=Springer+International+Publishing&rft.eissn=2662-9399&rft.volume=5&rft.issue=3&rft_id=info:doi/10.1007%2Fs43546-025-00792-0&rft.externalDocID=10_1007_s43546_025_00792_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-9399&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-9399&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-9399&client=summon |