Fly Photoreceptors Demonstrate Energy-Information Trade-Offs in Neural Coding

Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanoga...

Full description

Saved in:
Bibliographic Details
Published inPLoS biology Vol. 5; no. 4; p. e116
Main Authors Niven, Jeremy E, Anderson, John C, Laughlin, Simon B
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.04.2007
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1545-7885
1544-9173
1545-7885
DOI10.1371/journal.pbio.0050116

Cover

Loading…
Abstract Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, D. virilis, Calliphora vicina, and Sarcophaga carnaria, we measured the rates at which homologous R1-6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, approximately 20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from approximately 200 bits s(-1) in D. melanogaster to approximately 1,000 bits s(-1) in S. carnaria. Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput.
AbstractList Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, D. virilis, Calliphora vicina, and Sarcophaga carnaria, we measured the rates at which homologous R1-6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, approximately 20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from approximately 200 bits s(-1) in D. melanogaster to approximately 1,000 bits s(-1) in S. carnaria. Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput.
Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster , D. virilis , Calliphora vicina, and Sarcophaga carnaria , we measured the rates at which homologous R1–6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, ∼20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from ∼200 bits s −1 in D. melanogaster to ∼1,000 bits s −1 in S. carnaria . Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput. Evidence from single-neuron recordings supports the law of diminishing returns, i.e., high performance eyes in larger, faster flies have less efficient photoreceptors than those of their small, sluggish counterparts.
Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, D. virilis, Calliphora vicina, and Sarcophaga carnaria, we measured the rates at which homologous R1-6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, ~20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from ~200 bits s-1 in D. melanogaster to ~1,000 bits s-1 in S. carnaria. Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput.
  Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, D. virilis, Calliphora vicina, and Sarcophaga carnaria, we measured the rates at which homologous R1-6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, ~20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from ~200 bits s-1 in D. melanogaster to ~1,000 bits s-1 in S. carnaria. Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput.
Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, D. virilis, Calliphora vicina, and Sarcophaga carnaria, we measured the rates at which homologous R1-6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, approximately 20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from approximately 200 bits s(-1) in D. melanogaster to approximately 1,000 bits s(-1) in S. carnaria. Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput.Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, D. virilis, Calliphora vicina, and Sarcophaga carnaria, we measured the rates at which homologous R1-6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, approximately 20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from approximately 200 bits s(-1) in D. melanogaster to approximately 1,000 bits s(-1) in S. carnaria. Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput.
Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster , D. virilis , Calliphora vicina, and Sarcophaga carnaria , we measured the rates at which homologous R1-6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, similar to 20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from similar to 200 bits s super(-1) in D. melanogaster to similar to 1,000 bits s super(-1) in S. carnaria . Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput. Author Summary Many animals show striking reductions or enlargements of sense organs or brain regions according to their lifestyle and habitat. For example, cave dwelling or subterranean animals often have reduced eyes and brain regions involved in visual processing. These differences suggest that although there are benefits to possessing a particular sense organ or brain region, there are also significant costs that shape the evolution of the nervous system, but little is known about this trade-off, particularly at the level of single neurons. We measured the trade-off between performance and energetic costs by recording electrical signals from single photoreceptors in different fly species. We discovered that photoreceptors in the blowfly transmit five times more information than the smaller photoreceptors of the diminutive fruit fly Drosophila. The blowfly pays a high price for better performance; its photoreceptor uses ten times more energy to code the same quantity of information. We conclude that, for basic biophysical reasons, neuronal energy consumption increases much more steeply than performance, and this intensifies the evolutionary pressure to reduce performance to the minimum required for adequate function. Thus the biophysical properties of sensory neurons help to explain why the sense organs and brains of different species vary in size and performance. Evidence from single-neuron recordings supports the law of diminishing returns, i.e., high performance eyes in larger, faster flies have less efficient photoreceptors than those of their small, sluggish counterparts.
Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, D. virilis, Calliphora vicina, and Sarcophaga carnaria, we measured the rates at which homologous R1-6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, 20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from 200 bits s super(-1) in D. melanogaster to 1,000 bits s super(-1) in S. carnaria. Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput.
Audience Academic
Author Niven, Jeremy E
Laughlin, Simon B
Anderson, John C
AuthorAffiliation Harvard University, United States of America
2 Biology and Environmental Science, School of Life Sciences, University of Sussex, Brighton, United Kingdom
1 Department of Zoology, University of Cambridge, Cambridge, United Kingdom
AuthorAffiliation_xml – name: 2 Biology and Environmental Science, School of Life Sciences, University of Sussex, Brighton, United Kingdom
– name: 1 Department of Zoology, University of Cambridge, Cambridge, United Kingdom
– name: Harvard University, United States of America
Author_xml – sequence: 1
  givenname: Jeremy E
  surname: Niven
  fullname: Niven, Jeremy E
– sequence: 2
  givenname: John C
  surname: Anderson
  fullname: Anderson, John C
– sequence: 3
  givenname: Simon B
  surname: Laughlin
  fullname: Laughlin, Simon B
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17373859$$D View this record in MEDLINE/PubMed
BookMark eNqVk11v0zAUhiM0xD7gHyCIhITERYodf9TmAmkqG1QaK4LBreUkJ5mrxC52gui_x12zaZ0mBsqFI-d53_i8x-cw2bPOQpI8x2iCyRS_XbrBW91OVoVxE4QYwpg_Sg4woyybCsH2br3vJ4chLBHKc5mLJ8k-npIpEUweJJ9P23X65dL1zkMJq7iE9AN0zobe6x7SEwu-WWdzWzvf6d44m154XUG2qOuQGpuew-B1m85cZWzzNHlc6zbAs3E9Sr6fnlzMPmVni4_z2fFZVgpG-4xIBkLKghBR5YhVnGhdVjXFBSOaAJIclZgCIlPJayQJACNCYilJQapcCHKUvNz6rloX1JhEUDiWF_24pJGYb4nK6aVaedNpv1ZOG3W14XyjtO9N2YLStaSoEgXHJaEEiaICJFjBqBaFILyIXu_Hvw1FB1UJNmbT7pjufrHmUjXul8IiF5hujvt6NPDu5wChV50JJbSttuCGoLjADFNOHwRznNM8J_xBEEsuqGQkgq_ugPenNVKNjoGY2OxYR7mxVMeYM4njCTdek3uo-FTQmTLeztrE_R3Bmx1BZHr43Td6CEHNv339D_b839nFj132xe3m3XTtegQi8G4LlN6F4KFWpemvbnqszrQKI7WZt-vc1Gbe1DhvUUzviG_8_yb7A8BMLCc
CitedBy_id crossref_primary_10_1016_j_cub_2009_08_023
crossref_primary_10_1016_j_cub_2009_12_006
crossref_primary_10_1371_journal_pone_0157993
crossref_primary_10_3389_fevo_2021_698041
crossref_primary_10_1016_j_ygcen_2012_02_014
crossref_primary_10_1038_s41598_019_51774_w
crossref_primary_10_1098_rspb_2010_1378
crossref_primary_10_1152_jn_00017_2018
crossref_primary_10_3389_fnins_2019_01234
crossref_primary_10_1152_jn_00365_2019
crossref_primary_10_7554_eLife_26117
crossref_primary_10_1016_j_neucom_2009_02_022
crossref_primary_10_1093_icb_icab174
crossref_primary_10_1007_s10682_013_9656_9
crossref_primary_10_1038_s41467_025_56640_0
crossref_primary_10_1371_journal_pcbi_1006566
crossref_primary_10_1523_JNEUROSCI_4463_13_2014
crossref_primary_10_7717_peerj_2772
crossref_primary_10_1016_j_cub_2008_11_031
crossref_primary_10_3390_cells13100871
crossref_primary_10_1113_JP273614
crossref_primary_10_1242_jeb_246423
crossref_primary_10_1016_j_neuron_2019_01_015
crossref_primary_10_1073_pnas_1017393108
crossref_primary_10_1016_j_conb_2016_09_004
crossref_primary_10_1016_j_cub_2015_08_050
crossref_primary_10_1016_j_cub_2011_10_022
crossref_primary_10_1016_j_exger_2013_10_013
crossref_primary_10_1073_pnas_1303346110
crossref_primary_10_1088_1741_2552_aa776c
crossref_primary_10_1371_journal_pone_0033149
crossref_primary_10_1073_pnas_1412051111
crossref_primary_10_1016_j_scitotenv_2024_172783
crossref_primary_10_1016_j_chaos_2023_113464
crossref_primary_10_1098_rspb_2007_0675
crossref_primary_10_1371_journal_pcbi_1003157
crossref_primary_10_1371_journal_pcbi_1000840
crossref_primary_10_1098_rspb_2010_2699
crossref_primary_10_1371_journal_pcbi_1003439
crossref_primary_10_1007_s10682_016_9876_x
crossref_primary_10_1007_s11229_016_1298_3
crossref_primary_10_1186_s12915_024_01864_7
crossref_primary_10_1242_jeb_228460
crossref_primary_10_1038_jcbfm_2009_231
crossref_primary_10_1007_s40362_013_0009_4
crossref_primary_10_1152_jn_00795_2015
crossref_primary_10_1007_s00359_013_0814_x
crossref_primary_10_1113_jphysiol_2009_170704
crossref_primary_10_1162_NECO_a_00962
crossref_primary_10_1007_s10071_011_0465_7
crossref_primary_10_1016_j_cub_2012_04_002
crossref_primary_10_1371_journal_pbio_1002147
crossref_primary_10_3389_fnsys_2016_00090
crossref_primary_10_1371_journal_pcbi_1006612
crossref_primary_10_1016_j_cub_2014_03_005
crossref_primary_10_1126_scirobotics_abq8184
crossref_primary_10_1098_rstb_2021_0276
crossref_primary_10_1016_j_cub_2022_07_070
crossref_primary_10_3389_fncom_2018_00079
crossref_primary_10_3389_frobt_2020_00077
crossref_primary_10_1242_jeb_222679
crossref_primary_10_1007_s10682_009_9336_y
crossref_primary_10_1038_srep26041
crossref_primary_10_1093_beheco_arx042
crossref_primary_10_1159_000356091
crossref_primary_10_1523_JNEUROSCI_3180_13_2014
crossref_primary_10_3390_ijms23010210
crossref_primary_10_1371_journal_pone_0071540
crossref_primary_10_1111_cogs_13297
crossref_primary_10_1016_j_neuron_2008_10_019
crossref_primary_10_1159_000368177
crossref_primary_10_1242_jeb_001040
crossref_primary_10_1016_j_anbehav_2012_12_031
crossref_primary_10_1038_jcbfm_2012_35
crossref_primary_10_1016_j_crhy_2018_09_006
crossref_primary_10_1016_j_cobeha_2016_09_004
crossref_primary_10_1073_pnas_0914886107
crossref_primary_10_3389_fncel_2023_1184563
crossref_primary_10_1098_rsif_2016_0938
crossref_primary_10_1016_j_anbehav_2011_01_016
crossref_primary_10_1016_j_neuron_2020_03_010
crossref_primary_10_1016_j_asd_2017_08_005
crossref_primary_10_3389_fevo_2022_805385
crossref_primary_10_1242_bio_057224
crossref_primary_10_1242_jeb_017574
crossref_primary_10_1242_jeb_015396
crossref_primary_10_1073_pnas_1810701115
crossref_primary_10_1038_srep29686
crossref_primary_10_1093_molbev_msv197
crossref_primary_10_1113_JP273645
crossref_primary_10_1371_journal_pone_0026886
crossref_primary_10_1002_jnr_24131
crossref_primary_10_1098_rspb_2010_2027
crossref_primary_10_1242_dev_020644
crossref_primary_10_1007_s00359_014_0918_y
crossref_primary_10_1016_j_brainres_2013_07_024
crossref_primary_10_1111_1744_7917_12117
crossref_primary_10_1103_PhysRevE_81_011918
crossref_primary_10_1016_j_jphysparis_2012_10_002
crossref_primary_10_1016_j_neuroscience_2023_08_012
crossref_primary_10_1016_j_cub_2016_07_032
crossref_primary_10_1103_PhysRevE_83_031912
crossref_primary_10_1152_jn_00239_2014
crossref_primary_10_3389_fevo_2020_00082
crossref_primary_10_1007_s00359_019_01392_8
crossref_primary_10_1016_j_cub_2023_09_060
crossref_primary_10_1016_j_jinsphys_2017_02_006
crossref_primary_10_1152_jn_00288_2016
crossref_primary_10_1523_JNEUROSCI_2612_12_2012
crossref_primary_10_1093_plankt_fbae058
crossref_primary_10_1242_jeb_247835
crossref_primary_10_1007_s00359_019_01355_z
crossref_primary_10_1016_j_celrep_2022_111654
crossref_primary_10_1109_TNN_2007_914177
crossref_primary_10_1098_rstb_2016_0074
crossref_primary_10_1007_s10071_023_01818_6
crossref_primary_10_1016_j_conb_2011_05_003
crossref_primary_10_1007_s00359_017_1209_1
crossref_primary_10_1093_beheco_araa083
crossref_primary_10_1152_jn_00607_2011
crossref_primary_10_1016_j_cub_2008_10_029
crossref_primary_10_1523_JNEUROSCI_4800_08_2009
crossref_primary_10_1186_1471_2202_13_93
crossref_primary_10_1016_j_cub_2016_05_042
crossref_primary_10_1016_j_cub_2014_03_013
crossref_primary_10_1146_annurev_ento_52_110405_091322
crossref_primary_10_1038_srep46627
crossref_primary_10_1016_j_cub_2009_11_009
crossref_primary_10_1109_TIT_2015_2444401
crossref_primary_10_1016_j_visres_2018_05_007
crossref_primary_10_1242_jeb_120808
crossref_primary_10_1007_s00359_019_01324_6
crossref_primary_10_1007_s10237_020_01322_7
crossref_primary_10_1007_s00359_014_0912_4
crossref_primary_10_1007_s00359_015_1065_9
crossref_primary_10_1016_j_cub_2008_01_057
crossref_primary_10_1007_s00359_008_0335_1
crossref_primary_10_4303_jem_235996
crossref_primary_10_1073_pnas_2011828117
crossref_primary_10_1016_j_neubiorev_2024_105928
crossref_primary_10_1098_rspb_2010_2488
crossref_primary_10_1111_tops_12085
crossref_primary_10_2139_ssrn_3001323
crossref_primary_10_1523_JNEUROSCI_5700_09_2010
crossref_primary_10_1073_pnas_2008173118
crossref_primary_10_1162_netn_a_00223
crossref_primary_10_1523_JNEUROSCI_3430_11_2012
crossref_primary_10_1007_s00285_015_0862_7
crossref_primary_10_1007_s10158_012_0140_y
crossref_primary_10_1038_hdy_2009_184
crossref_primary_10_1016_j_cois_2017_09_007
crossref_primary_10_1038_jcbfm_2013_103
crossref_primary_10_1371_journal_pbio_1002197
crossref_primary_10_1113_JP273674
crossref_primary_10_1016_j_cub_2008_02_017
crossref_primary_10_1098_rspb_2016_1949
crossref_primary_10_1111_jzo_13117
crossref_primary_10_1109_JPROC_2014_2332533
crossref_primary_10_1002_ece3_8264
crossref_primary_10_1016_j_cois_2022_100914
crossref_primary_10_1016_j_jtbi_2008_03_002
crossref_primary_10_1242_jeb_095554
crossref_primary_10_1152_jn_00590_2007
crossref_primary_10_1016_j_tree_2009_02_010
crossref_primary_10_1113_jphysiol_2012_240358
crossref_primary_10_1111_j_1469_185X_2008_00067_x
crossref_primary_10_1126_scirobotics_adi9754
crossref_primary_10_1146_annurev_ento_010814_020924
crossref_primary_10_1242_jeb_159103
crossref_primary_10_1016_j_cub_2007_11_020
crossref_primary_10_1242_jeb_136523
crossref_primary_10_1080_13546805_2019_1665994
crossref_primary_10_1152_jn_01037_2012
crossref_primary_10_1111_j_1558_5646_2011_01285_x
crossref_primary_10_1007_s00359_013_0879_6
Cites_doi 10.1002/0470020520.ch2
10.1007/BF00370258
10.1016/j.visres.2005.09.020
10.1007/s00359-003-0390-6
10.1038/236
10.1098/rspb.1997.0246
10.1006/jtbi.2001.2498
10.1088/0954-898X_13_4_306
10.1038/35093002
10.1242/jeb.146.1.277
10.1007/978-3-642-74082-4_16
10.1097/00004647-200110000-00001
10.1007/BF00188924
10.7551/mitpress/7131.003.0022
10.1016/0166-2236(95)98373-7
10.1007/s003590050032
10.1162/089976698300017052
10.1017/S095252380000701X
10.1016/S0166-2236(98)01340-X
10.1016/S0165-0173(00)00038-2
10.1162/089976601300014358
10.1085/jgp.200509470
10.1016/0166-2236(92)90352-9
10.1162/089976699300016773
10.1085/jgp.104.3.593
10.1523/JNEUROSCI.22-11-04746.2002
10.1038/nature01384
10.1007/s00359-004-0571-y
10.1152/jn.1995.74.1.470
10.1016/S0896-6273(02)01048-6
10.1016/0166-2236(95)93945-T
10.1162/neco.1996.8.3.531
10.1159/000076239
10.1016/j.cub.2005.08.007
10.1126/science.1089662
10.1098/rspb.1991.0110
10.1098/rspb.1987.0053
10.1038/nature03012
10.1016/0304-3940(93)90177-M
10.1085/jgp.200308824
10.1007/BF00611889
10.1002/cne.903280302
10.1007/BF00213682
10.1242/jeb.00600
10.1152/jn.2001.86.2.950
10.1038/nrn1784
10.1007/BF00606117
10.1073/pnas.221456698
10.1016/j.cub.2006.05.056
10.1098/rspb.1992.0134
10.1016/0042-6989(95)00242-1
10.1016/j.pbiomolbio.2003.11.014
10.1016/S0042-6989(99)00171-6
10.1016/S0960-9822(03)00135-0
10.1016/j.cub.2004.07.057
10.1146/annurev.physiol.65.092101.142505
10.1109/5.939817
10.1038/299818a0
10.1159/000082979
10.1080/net.12.3.395.407
10.1159/000006530
10.1113/jphysiol.1991.sp018729
10.1038/379642a0
10.1038/361628a0
10.1523/JNEUROSCI.3316-05.2006
10.1098/rspb.1983.0011
10.1085/jgp.117.1.3
10.1098/rspb.2004.2912
10.1016/1350-9462(94)90009-4
10.1162/089976602753712963
10.1017/CBO9780511897085.006
10.1023/A:1010028405318
ContentType Journal Article
Copyright COPYRIGHT 2007 Public Library of Science
2007 Niven et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Niven JE, Anderson JC, Laughlin SB (2007) Fly Photoreceptors Demonstrate Energy-Information Trade-Offs in Neural Coding. PLoS Biol 5(4): e116. doi:10.1371/journal.pbio.0050116
2007 Niven et al. 2007
Copyright_xml – notice: COPYRIGHT 2007 Public Library of Science
– notice: 2007 Niven et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Niven JE, Anderson JC, Laughlin SB (2007) Fly Photoreceptors Demonstrate Energy-Information Trade-Offs in Neural Coding. PLoS Biol 5(4): e116. doi:10.1371/journal.pbio.0050116
– notice: 2007 Niven et al. 2007
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
3V.
7QG
7QL
7SN
7SS
7T5
7TK
7TM
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
RC3
7X8
5PM
DOA
CZG
DOI 10.1371/journal.pbio.0050116
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Opposing Viewpoints in Context
Gale In Context: Canada
Science in Context
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
PLoS Biology
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Publicly Available Content Database

MEDLINE - Academic
Neurosciences Abstracts
Entomology Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Energy-Information Trade-Offs
EISSN 1545-7885
ExternalDocumentID 1292205694
oai_doaj_org_article_af940d8b61c34308bde085b54a8b836b
PMC1828148
2897830291
A165916813
17373859
10_1371_journal_pbio_0050116
Genre Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID ---
123
29O
2WC
36B
53G
5VS
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AFXKF
AHMBA
AKRSQ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBS
EJD
EMB
EMK
EMOBN
EPL
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IGS
IHR
IOV
IPNFZ
ISE
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PATMY
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PYCSY
QN7
RIG
RNS
RPM
SJN
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
YZZ
~8M
.GJ
3V.
AGJBV
CGR
CUY
CVF
ECM
EIF
M~E
NPM
PV9
QF4
RZL
YIN
PMFND
7QG
7QL
7SN
7SS
7T5
7TK
7TM
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
CZG
ZA5
ID FETCH-LOGICAL-c854t-395e899b338d205d63aacdf41b53a3e0960c14e03796f093ee53891993b3d2883
IEDL.DBID M48
ISSN 1545-7885
1544-9173
IngestDate Sun Oct 01 00:20:32 EDT 2023
Wed Aug 27 01:29:21 EDT 2025
Thu Aug 21 14:10:06 EDT 2025
Mon Jul 21 11:14:11 EDT 2025
Fri Jul 11 14:57:10 EDT 2025
Fri Jul 11 16:24:34 EDT 2025
Fri Jul 25 12:09:14 EDT 2025
Tue Jun 17 22:03:24 EDT 2025
Tue Jun 10 21:01:58 EDT 2025
Fri Jun 27 05:31:29 EDT 2025
Fri Jun 27 05:31:13 EDT 2025
Fri Jun 27 05:29:58 EDT 2025
Wed Feb 19 01:42:37 EST 2025
Tue Jul 01 01:24:18 EDT 2025
Thu Apr 24 23:06:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Animals
Energy Metabolism
Neurons
Drosophila
Photoreceptor Cells, Invertebrate
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c854t-395e899b338d205d63aacdf41b53a3e0960c14e03796f093ee53891993b3d2883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pbio.0050116
PMID 17373859
PQID 1292205694
PQPubID 23462
PageCount 13
ParticipantIDs plos_journals_1292205694
doaj_primary_oai_doaj_org_article_af940d8b61c34308bde085b54a8b836b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1828148
proquest_miscellaneous_68151464
proquest_miscellaneous_21242236
proquest_miscellaneous_19684953
proquest_journals_1292205694
gale_infotracmisc_A165916813
gale_infotracacademiconefile_A165916813
gale_incontextgauss_ISR_A165916813
gale_incontextgauss_ISN_A165916813
gale_incontextgauss_IOV_A165916813
pubmed_primary_17373859
crossref_citationtrail_10_1371_journal_pbio_0050116
crossref_primary_10_1371_journal_pbio_0050116
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-04-01
PublicationDateYYYYMMDD 2007-04-01
PublicationDate_xml – month: 04
  year: 2007
  text: 2007-04-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PLoS biology
PublicationTitleAlternate PLoS Biol
PublicationYear 2007
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References (pbio-0050116-b053) 2005; 191
(pbio-0050116-b075) 1999; 22
(pbio-0050116-b066) 1995; 74
(pbio-0050116-b069) 2004; 14
(pbio-0050116-b013) 2002; 13
(pbio-0050116-b083) 1992; 421
(pbio-0050116-b084) 1991; 245
(pbio-0050116-b044) 2003; 206
(pbio-0050116-b050) 2003; 189
pbio-0050116-b049
pbio-0050116-b006
(pbio-0050116-b031) 2001; 117
(pbio-0050116-b065) 2006; 127
(pbio-0050116-b012) 2004; 43
(pbio-0050116-b032) 2003; 421
(pbio-0050116-b086) 1997; 180
(pbio-0050116-b041) 2003; 65
(pbio-0050116-b051) 2003; 122
(pbio-0050116-b055) 2000; 40
(pbio-0050116-b058) 1996; 36
(pbio-0050116-b067) 2002; 22
pbio-0050116-b040
pbio-0050116-b001
pbio-0050116-b045
(pbio-0050116-b047) 1992; 171
pbio-0050116-b002
(pbio-0050116-b015) 1998; 10
(pbio-0050116-b007) 2005; 15
(pbio-0050116-b052) 1996; 178
(pbio-0050116-b070) 2005; 6
(pbio-0050116-b029) 1993; 154
(pbio-0050116-b076) 2004; 431
(pbio-0050116-b003) 1982; 299
(pbio-0050116-b023) 2000; 34
de Ruyter van Steveninck RR, Laughlin SB (pbio-0050116-b033) 1996; 379
(pbio-0050116-b048) 1994; 13
(pbio-0050116-b080) 2004; 271
(pbio-0050116-b072) 2001; 12
(pbio-0050116-b028) 1991; 440
(pbio-0050116-b014) 2003; 1
(pbio-0050116-b020) 2003; 301
(pbio-0050116-b018) 2001; 13
(pbio-0050116-b034) 1998; 1
(pbio-0050116-b085) 1988; 162
(pbio-0050116-b011) 1992; 15
(pbio-0050116-b037) 2006; 26
(pbio-0050116-b046) 1981; 36c
(pbio-0050116-b016) 1996; 8
(pbio-0050116-b079) 2004; 63
(pbio-0050116-b026) 2003; 13
(pbio-0050116-b061) 2001; 98
(pbio-0050116-b074) 1989; 146
(pbio-0050116-b008) 1998; 51
(pbio-0050116-b056) 2001; 89
(pbio-0050116-b060) 1993; 172
(pbio-0050116-b010) 1995; 18
(pbio-0050116-b081) 1977; 122
(pbio-0050116-b082) 1994; 11
(pbio-0050116-b043) 2005; 88
(pbio-0050116-b030) 2001; 86
(pbio-0050116-b042) 1998; 43
pbio-0050116-b025
(pbio-0050116-b071) 2006; 16
(pbio-0050116-b054) 1983; 217
(pbio-0050116-b021) 2001; 21
(pbio-0050116-b017) 1997; 264
(pbio-0050116-b019) 2002; 214
pbio-0050116-b024
pbio-0050116-b068
pbio-0050116-b022
(pbio-0050116-b027) 2001; 413
(pbio-0050116-b077) 1999; 11
(pbio-0050116-b005) 2000; 1
(pbio-0050116-b057) 1994; 104
(pbio-0050116-b004) 1993; 361
(pbio-0050116-b009) 1993; 328
(pbio-0050116-b062) 2002; 36
pbio-0050116-b036
(pbio-0050116-b038) 1949; 37
(pbio-0050116-b064) 1992; 250
(pbio-0050116-b063) 2006; 46
pbio-0050116-b073
(pbio-0050116-b035) 2002; 14
(pbio-0050116-b059) 1995; 18
(pbio-0050116-b078) 2005; 65
(pbio-0050116-b039) 1987; 231
8361652 - Neurosci Lett. 1993 May 14;154(1-2):84-8
15627722 - Brain Behav Evol. 2005;65(2):73-108
15561300 - Prog Biophys Mol Biol. 2005 May;88(1):1-58
12571596 - Nature. 2003 Feb 6;421(6923):630-4
15558288 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Jan;191(1):75-84
2689566 - J Exp Biol. 1989 Sep;146:277-86
8440785 - J Comp Neurol. 1993 Feb 15;328(3):313-50
12020449 - Neural Comput. 2002 Jun;14(6):1323-46
11557987 - Nature. 2001 Sep 13;413(6852):186-93
10768038 - Vision Res. 2000;40(1):13-31
7535485 - Trends Neurosci. 1995 Jan;18(1):17-21
11563536 - Network. 2001 Aug;12(3):395-407
1281310 - Pflugers Arch. 1992 Aug;421(5):469-72
16860742 - Curr Biol. 2006 Jul 25;16(14):1428-34
15483599 - Nature. 2004 Oct 14;431(7010):782-8
9491274 - Brain Behav Evol. 1998;51(2):59-89
12441057 - Neuron. 2002 Nov 14;36(4):689-701
12952637 - Proc Biol Sci. 2003 Aug 7;270 Suppl 1:S58-61
12463343 - Network. 2002 Nov;13(4):531-52
8638292 - Trends Neurosci. 1995 Dec;18(12):522-7
14512617 - Science. 2003 Sep 26;301(5641):1870-4
7303823 - Z Naturforsch C. 1981 Sep-Oct;36(9-10):910-2
12040082 - J Neurosci. 2002 Jun 1;22(11):4746-55
16525044 - J Neurosci. 2006 Mar 8;26(10):2652-60
14555737 - J Exp Biol. 2003 Nov;206(Pt 22):3963-77
15590591 - Proc Biol Sci. 2004 Dec 7;271(1556):2423-9
11598490 - J Cereb Blood Flow Metab. 2001 Oct;21(10):1133-45
11851374 - J Theor Biol. 2002 Feb 21;214(4):657-64
2892201 - Proc R Soc Lond B Biol Sci. 1987 Sep 22;231(1265):415-35
14726622 - Brain Behav Evol. 2004;63(3):125-40
11255570 - Neural Comput. 2001 Apr;13(4):799-815
7472349 - J Neurophysiol. 1995 Jul;74(1):470-3
9612405 - Am J Physiol. 1998 May;274(5 Pt 2):R1376-83
7841128 - Vis Neurosci. 1994 Nov-Dec;11(6):1221-5
12860926 - J Gen Physiol. 2003 Aug;122(2):191-206
9447735 - Proc Biol Sci. 1997 Dec 22;264(1389):1775-83
8868566 - Neural Comput. 1996 Apr 1;8(3):531-43
11606744 - Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12550-4
12664095 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Mar;189(3):189-202
7807062 - J Gen Physiol. 1994 Sep;104(3):593-621
8759456 - Vision Res. 1996 Jun;36(11):1529-41
11495963 - J Neurophysiol. 2001 Aug;86(2):950-60
10203852 - Trends Neurosci. 1999 Apr;22(4):153-61
9744889 - Neural Comput. 1998 Oct 1;10(7):1601-38
1374968 - Trends Neurosci. 1992 Apr;15(4):122-6
11134228 - J Gen Physiol. 2001 Jan;117(1):3-25
12646132 - Curr Biol. 2003 Mar 18;13(6):493-7
12560473 - Annu Rev Physiol. 2003;65:735-59
15339643 - Neuron. 2004 Sep 2;43(5):609-17
11086186 - Brain Res Brain Res Rev. 2000 Nov;34(1-2):42-68
15296747 - Curr Biol. 2004 Aug 10;14(15):1309-18
9950719 - Neural Comput. 1999 Jan 1;11(1):1-20
1804980 - J Physiol. 1991;440:635-57
16636201 - J Gen Physiol. 2006 May;127(5):495-510
16321420 - Vision Res. 2006 Mar;46(5):622-35
10195106 - Nat Neurosci. 1998 May;1(1):36-41
16261178 - Nat Rev Neurosci. 2005 Nov;6(11):841-9
16111932 - Curr Biol. 2005 Aug 23;15(16):R624-6
References_xml – ident: pbio-0050116-b022
  doi: 10.1002/0470020520.ch2
– volume: 421
  start-page: 469
  year: 1992
  ident: pbio-0050116-b083
  article-title: Measurement of cell impedance in frequency-domain using discontinuous current clamp and white-noise-modulated current injection.
  publication-title: Pflugers Arch
  doi: 10.1007/BF00370258
– volume: 46
  start-page: 622
  year: 2006
  ident: pbio-0050116-b063
  article-title: Adaptation of single photon responses in photoreceptors of the housefly, Musca domestica: A novel spectral analysis.
  publication-title: Vision Res
  doi: 10.1016/j.visres.2005.09.020
– volume: 189
  start-page: 189
  year: 2003
  ident: pbio-0050116-b050
  article-title: Angular and spectral sensitivity of fly photoreceptors. II. Dependence on facet F-number and rhabdomere type in Drosophila.
  publication-title: J Comp Physiol A
  doi: 10.1007/s00359-003-0390-6
– volume: 1
  start-page: 36
  year: 1998
  ident: pbio-0050116-b034
  article-title: The metabolic cost of neural information.
  publication-title: Nat Neurosci
  doi: 10.1038/236
– volume: 178
  start-page: 513
  year: 1996
  ident: pbio-0050116-b052
  article-title: Different photoreceptors within the same retina express unique combinations of potassium channels.
  publication-title: J Comp Physiol A
– volume: 264
  start-page: 1775
  year: 1997
  ident: pbio-0050116-b017
  article-title: Responses of neurons in primary and inferior temporal visual cortices to natural scenes.
  publication-title: Proc R Soc Lond B Biol Sci
  doi: 10.1098/rspb.1997.0246
– volume: 214
  start-page: 657
  year: 2002
  ident: pbio-0050116-b019
  article-title: Errors drive the evolution of biological signalling to costly codes.
  publication-title: J Theor Biol
  doi: 10.1006/jtbi.2001.2498
– ident: pbio-0050116-b002
– ident: pbio-0050116-b006
– volume: 13
  start-page: 531
  year: 2002
  ident: pbio-0050116-b013
  article-title: A test of metabolically efficient coding in the retina.
  publication-title: Network
  doi: 10.1088/0954-898X_13_4_306
– volume: 413
  start-page: 186
  year: 2001
  ident: pbio-0050116-b027
  article-title: Visual transduction in Drosophila.
  publication-title: Nature
  doi: 10.1038/35093002
– volume: 146
  start-page: 277
  year: 1989
  ident: pbio-0050116-b074
  article-title: Principles of auditory information-processing derived from neuroethology.
  publication-title: J Exp Biol
  doi: 10.1242/jeb.146.1.277
– ident: pbio-0050116-b045
  doi: 10.1007/978-3-642-74082-4_16
– volume: 43
  start-page: 609
  year: 2004
  ident: pbio-0050116-b012
  article-title: Synaptic connectivity and neuronal morphology: Two sides of the same coin.
  publication-title: Neuron
– volume: 21
  start-page: 1133
  year: 2001
  ident: pbio-0050116-b021
  article-title: An energy budget for signalling in the grey matter of the brain.
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1097/00004647-200110000-00001
– volume: 171
  start-page: 157
  year: 1992
  ident: pbio-0050116-b047
  article-title: Theoretical predictions of spatiotemporal receptive-fields of fly LMCs, and experimental validation.
  publication-title: J Comp Physiol A
  doi: 10.1007/BF00188924
– volume: 37
  start-page: 10
  year: 1949
  ident: pbio-0050116-b038
  article-title: Communication in the presence of noise.
  publication-title: Proc Inst Radio Eng
– ident: pbio-0050116-b073
  doi: 10.7551/mitpress/7131.003.0022
– volume: 18
  start-page: 522
  year: 1995
  ident: pbio-0050116-b010
  article-title: Neural component placement.
  publication-title: Trends Neurosci
  doi: 10.1016/0166-2236(95)98373-7
– volume: 180
  start-page: 113
  year: 1997
  ident: pbio-0050116-b086
  article-title: Na+/K+ pump activity in photoreceptors of the blowfly Calliphora: A model analysis based on membrane potential measurements.
  publication-title: J Comp Physiol A
  doi: 10.1007/s003590050032
– volume: 10
  start-page: 1601
  year: 1998
  ident: pbio-0050116-b015
  article-title: Analog versus digital: Extrapolating from electronics to neurobiology.
  publication-title: Neural Comput
  doi: 10.1162/089976698300017052
– volume: 11
  start-page: 1221
  year: 1994
  ident: pbio-0050116-b082
  article-title: A method for determining photoreceptor signal-to-noise ratio in the time and frequency domains with a pseudorandom stimulus.
  publication-title: Vis Neurosci
  doi: 10.1017/S095252380000701X
– volume: 22
  start-page: 153
  year: 1999
  ident: pbio-0050116-b075
  article-title: Fifty years of a command neuron: The neurobiology of escape behaviour in the crayfish.
  publication-title: Trends Neurosci
  doi: 10.1016/S0166-2236(98)01340-X
– volume: 34
  start-page: 42
  year: 2000
  ident: pbio-0050116-b023
  article-title: CNS energy metabolism as related to function.
  publication-title: Brain Res Rev
  doi: 10.1016/S0165-0173(00)00038-2
– volume: 13
  start-page: 799
  year: 2001
  ident: pbio-0050116-b018
  article-title: Metabolically efficient information processing.
  publication-title: Neural Comp
  doi: 10.1162/089976601300014358
– volume: 127
  start-page: 495
  year: 2006
  ident: pbio-0050116-b065
  article-title: Feedback network controls photoreceptor output at the layer of first visual synapses in Drosophila.
  publication-title: J Gen Physiol
  doi: 10.1085/jgp.200509470
– volume: 15
  start-page: 122
  year: 1992
  ident: pbio-0050116-b011
  article-title: Axonal trees and cortical architecture.
  publication-title: Trends Neurosci
  doi: 10.1016/0166-2236(92)90352-9
– volume: 11
  start-page: 1
  year: 1999
  ident: pbio-0050116-b077
  article-title: Evolution of time coding systems.
  publication-title: Neural Comput
  doi: 10.1162/089976699300016773
– ident: pbio-0050116-b024
– volume: 104
  start-page: 593
  year: 1994
  ident: pbio-0050116-b057
  article-title: Contrast gain, signal-to-noise ratio, and linearity in light-adapted blowfly photoreceptors.
  publication-title: J Gen Physiol
  doi: 10.1085/jgp.104.3.593
– volume: 43
  start-page: R1376
  year: 1998
  ident: pbio-0050116-b042
  article-title: Mitochondrial oxidative phosphorylation thermodynamic efficiencies reflect physiological organ roles.
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 22
  start-page: 4746
  year: 2002
  ident: pbio-0050116-b067
  article-title: Energy-efficient neuronal computation via quantal synaptic failures.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-11-04746.2002
– volume: 421
  start-page: 630
  year: 2003
  ident: pbio-0050116-b032
  article-title: The contribution of Shaker K+ channels to the information capacity of Drosophila photoreceptors.
  publication-title: Nature
  doi: 10.1038/nature01384
– volume: 191
  start-page: 75
  year: 2005
  ident: pbio-0050116-b053
  article-title: Light dependence of oxygen consumption by blowfly eyes recorded with a magnetic diver balance.
  publication-title: J Comp Physiol A
  doi: 10.1007/s00359-004-0571-y
– volume: 74
  start-page: 470
  year: 1995
  ident: pbio-0050116-b066
  article-title: Tonic transmitter release in a graded potential synapse.
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1995.74.1.470
– ident: pbio-0050116-b049
– volume: 36
  start-page: 689
  year: 2002
  ident: pbio-0050116-b062
  article-title: Molecular basis of amplification in Drosophila phototranduction: Roles for G protein, phospholipase C, and diacylglycerol kinase.
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)01048-6
– volume: 18
  start-page: 17
  year: 1995
  ident: pbio-0050116-b059
  article-title: Visual ecology and voltage-gated ion channels in insect photoreceptors.
  publication-title: Trends Neurosci
  doi: 10.1016/0166-2236(95)93945-T
– volume: 8
  start-page: 531
  year: 1996
  ident: pbio-0050116-b016
  article-title: Energy-efficient neural codes.
  publication-title: Neural Comput
  doi: 10.1162/neco.1996.8.3.531
– volume: 63
  start-page: 125
  year: 2004
  ident: pbio-0050116-b079
  article-title: Reduction of brain and sense organs in the fossil insular bovid Myotragus.
  publication-title: Brain Behav Evol
  doi: 10.1159/000076239
– volume: 15
  start-page: R624
  year: 2005
  ident: pbio-0050116-b007
  article-title: Brain evolution: Getting better all the time?
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2005.08.007
– volume: 301
  start-page: 1870
  year: 2003
  ident: pbio-0050116-b020
  article-title: Communication in neuronal networks.
  publication-title: Science
  doi: 10.1126/science.1089662
– volume: 245
  start-page: 203
  year: 1991
  ident: pbio-0050116-b084
  article-title: Whole-cell recordings of the light-induced current in dissociated Drosophila photoreceptors - evidence for feedback by calcium permeating the light-sensitive channels.
  publication-title: Proc R Soc Lond B Biol Sci
  doi: 10.1098/rspb.1991.0110
– volume: 231
  start-page: 415
  year: 1987
  ident: pbio-0050116-b039
  article-title: The intracellular pupil mechanism and photoreceptor signal:noise ratios in the fly Lucilia cuprina.
  publication-title: Proc R Soc Lond B Biol Sci
  doi: 10.1098/rspb.1987.0053
– volume: 431
  start-page: 782
  year: 2004
  ident: pbio-0050116-b076
  article-title: Cortical rewiring and information storage.
  publication-title: Nature
  doi: 10.1038/nature03012
– volume: 154
  start-page: 84
  year: 1993
  ident: pbio-0050116-b029
  article-title: Band-pass filtering by voltage-dependent membrane in an insect photoreceptor.
  publication-title: Neurosci Lett
  doi: 10.1016/0304-3940(93)90177-M
– volume: 122
  start-page: 191
  year: 2003
  ident: pbio-0050116-b051
  article-title: The rate of information transfer of naturalistic stimulation by graded potentials.
  publication-title: J Gen Physiol
  doi: 10.1085/jgp.200308824
– volume: 122
  start-page: 189
  year: 1977
  ident: pbio-0050116-b081
  article-title: Single photon signals and transduction in an insect eye.
  publication-title: J Comp Physiol
  doi: 10.1007/BF00611889
– volume: 328
  start-page: 313
  year: 1993
  ident: pbio-0050116-b009
  article-title: Visual system of a naturally microphthalmic mammal - the blind mole rat, Spalax ehrenbergi.
  publication-title: J Comp Neurol
  doi: 10.1002/cne.903280302
– volume: 172
  start-page: 593
  year: 1993
  ident: pbio-0050116-b060
  article-title: Fast and slow photoreceptors - a comparative study of the functional diversity of coding and conductances in the diptera.
  publication-title: J Comp Physiol A
  doi: 10.1007/BF00213682
– volume: 206
  start-page: 3963
  year: 2003
  ident: pbio-0050116-b044
  article-title: Neural images of pursuit targets in the photoreceptor arrays of male and female houseflies, Musca domestica.
  publication-title: J Exp Biol
  doi: 10.1242/jeb.00600
– volume: 86
  start-page: 950
  year: 2001
  ident: pbio-0050116-b030
  article-title: Variations in photoreceptor response dynamics across the fly retina.
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2001.86.2.950
– volume: 36c
  start-page: 910
  year: 1981
  ident: pbio-0050116-b046
  article-title: A simple coding procedure enhances a neuron's information capacity.
  publication-title: Z Naturforsch
– volume: 6
  start-page: 841
  year: 2005
  ident: pbio-0050116-b070
  article-title: Neuroenergetics and the kinetic design of excitatory synapses.
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn1784
– volume: 1
  start-page: S58
  year: 2003
  ident: pbio-0050116-b014
  article-title: Shaker K+-channels are predicted to reduce the metabolic cost of neural information in Drosophila photoreceptors.
  publication-title: Proc Biol Sci
– volume: 162
  start-page: 285
  year: 1988
  ident: pbio-0050116-b085
  article-title: Light activation of the sodium-pump in blowfly photoreceptors.
  publication-title: J Comp Physiol A
  doi: 10.1007/BF00606117
– volume: 98
  start-page: 12550
  year: 2001
  ident: pbio-0050116-b061
  article-title: Metabolic rate and environmental productivity: Well-provisioned animals evolved to run and idle fast.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.221456698
– volume: 16
  start-page: 1428
  year: 2006
  ident: pbio-0050116-b071
  article-title: How much the eye tells the brain.
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2006.05.056
– volume: 250
  start-page: 83
  year: 1992
  ident: pbio-0050116-b064
  article-title: Presynaptic enhancement of signal transients in photoreceptor terminals in the compound eye.
  publication-title: Proc R Soc Lond B Biol Sci
  doi: 10.1098/rspb.1992.0134
– volume: 36
  start-page: 1529
  year: 1996
  ident: pbio-0050116-b058
  article-title: Matched filtering by a photoreceptor membrane.
  publication-title: Vision Res
  doi: 10.1016/0042-6989(95)00242-1
– volume: 88
  start-page: 1
  year: 2005
  ident: pbio-0050116-b043
  article-title: The efficiency of muscle contraction.
  publication-title: Prog Biophys Mol Biol
  doi: 10.1016/j.pbiomolbio.2003.11.014
– volume: 40
  start-page: 13
  year: 2000
  ident: pbio-0050116-b055
  article-title: Photoreceptor performance and the co-ordination of achromatic and chromatic inputs in the fly visual system.
  publication-title: Vision Res
  doi: 10.1016/S0042-6989(99)00171-6
– volume: 13
  start-page: 493
  year: 2003
  ident: pbio-0050116-b026
  article-title: The cost of cortical computation.
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(03)00135-0
– volume: 14
  start-page: 1309
  year: 2004
  ident: pbio-0050116-b069
  article-title: Nocturnal vision and landmark orientation in a tropical halictid bee.
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2004.07.057
– volume: 65
  start-page: 735
  year: 2003
  ident: pbio-0050116-b041
  article-title: Regulation of TRP channels via lipid second messengers.
  publication-title: Annu Rev Physiol
  doi: 10.1146/annurev.physiol.65.092101.142505
– volume: 89
  start-page: 1052
  year: 2001
  ident: pbio-0050116-b056
  article-title: Capacity and energy cost of information in biological and silicon photoreceptors.
  publication-title: Proc IEEE
  doi: 10.1109/5.939817
– ident: pbio-0050116-b036
– volume: 299
  start-page: 818
  year: 1982
  ident: pbio-0050116-b003
  article-title: Female choice selects for extreme tail length in a widowbird.
  publication-title: Nature
  doi: 10.1038/299818a0
– volume: 65
  start-page: 73
  year: 2005
  ident: pbio-0050116-b078
  article-title: On the evolutionary significance of encephalization in some eutherian mammals: Effects of adaptive radiation, domestication and feralization.
  publication-title: Brain Behav Evol
  doi: 10.1159/000082979
– ident: pbio-0050116-b001
– volume: 12
  start-page: 395
  year: 2001
  ident: pbio-0050116-b072
  article-title: Optimal nonlinear codes for the perception of natural colours.
  publication-title: Network
  doi: 10.1080/net.12.3.395.407
– ident: pbio-0050116-b040
– volume: 51
  start-page: 59
  year: 1998
  ident: pbio-0050116-b008
  article-title: Comparative morphometry of mammalian central auditory systems: Variation in nuclei and form of the ascending system.
  publication-title: Brain Behav Evol
  doi: 10.1159/000006530
– volume: 440
  start-page: 635
  year: 1991
  ident: pbio-0050116-b028
  article-title: Voltage-activated potassium channels in blowfly photoreceptors and their role in light adaptation.
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1991.sp018729
– volume: 379
  start-page: 642
  year: 1996
  ident: pbio-0050116-b033
  article-title: The rate of information-transfer at graded-potential synapses.
  publication-title: Nature
  doi: 10.1038/379642a0
– volume: 361
  start-page: 628
  year: 1993
  ident: pbio-0050116-b004
  article-title: Aerodynamics and the evolution of long tails in birds.
  publication-title: Nature
  doi: 10.1038/361628a0
– volume: 26
  start-page: 2652
  year: 2006
  ident: pbio-0050116-b037
  article-title: Robustness of neural coding in Drosophila photoreceptors in the absence of slow delayed rectifier K+ channels.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3316-05.2006
– volume: 217
  start-page: 287
  year: 1983
  ident: pbio-0050116-b054
  article-title: Transduction as a limitation on compound eye function and design.
  publication-title: Proc R Soc Lond B Biol Sci
  doi: 10.1098/rspb.1983.0011
– ident: pbio-0050116-b068
– volume: 117
  start-page: 3
  year: 2001
  ident: pbio-0050116-b031
  article-title: Light adaptation in Drosophila photoreceptors: I. Response dynamics and signalling at 25 °C.
  publication-title: J Gen Physiol
  doi: 10.1085/jgp.117.1.3
– volume: 271
  start-page: 2423
  year: 2004
  ident: pbio-0050116-b080
  article-title: Does hippocampal size correlate with the degree of caching specialization?
  publication-title: Proc R Soc Lond B Biol Sci
  doi: 10.1098/rspb.2004.2912
– volume: 13
  start-page: 165
  year: 1994
  ident: pbio-0050116-b048
  article-title: Matching coding, circuits, cells, and molecules to signals - general principles of retinal design in the fly's eye.
  publication-title: Prog Retinal Eye Res
  doi: 10.1016/1350-9462(94)90009-4
– volume: 14
  start-page: 1323
  year: 2002
  ident: pbio-0050116-b035
  article-title: Energy efficient coding with discrete stochastic events.
  publication-title: Neural Comput
  doi: 10.1162/089976602753712963
– ident: pbio-0050116-b025
  doi: 10.1017/CBO9780511897085.006
– volume: 1
  start-page: 7
  year: 2000
  ident: pbio-0050116-b005
  article-title: Why is brain size so important: Design problems and solutions as neocortex gets bigger or smaller.
  publication-title: Brain Mind
  doi: 10.1023/A:1010028405318
– reference: 11255570 - Neural Comput. 2001 Apr;13(4):799-815
– reference: 1374968 - Trends Neurosci. 1992 Apr;15(4):122-6
– reference: 16636201 - J Gen Physiol. 2006 May;127(5):495-510
– reference: 12441057 - Neuron. 2002 Nov 14;36(4):689-701
– reference: 14555737 - J Exp Biol. 2003 Nov;206(Pt 22):3963-77
– reference: 11557987 - Nature. 2001 Sep 13;413(6852):186-93
– reference: 12952637 - Proc Biol Sci. 2003 Aug 7;270 Suppl 1:S58-61
– reference: 9612405 - Am J Physiol. 1998 May;274(5 Pt 2):R1376-83
– reference: 1804980 - J Physiol. 1991;440:635-57
– reference: 12560473 - Annu Rev Physiol. 2003;65:735-59
– reference: 12860926 - J Gen Physiol. 2003 Aug;122(2):191-206
– reference: 11598490 - J Cereb Blood Flow Metab. 2001 Oct;21(10):1133-45
– reference: 7807062 - J Gen Physiol. 1994 Sep;104(3):593-621
– reference: 15483599 - Nature. 2004 Oct 14;431(7010):782-8
– reference: 12646132 - Curr Biol. 2003 Mar 18;13(6):493-7
– reference: 11606744 - Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12550-4
– reference: 15339643 - Neuron. 2004 Sep 2;43(5):609-17
– reference: 2892201 - Proc R Soc Lond B Biol Sci. 1987 Sep 22;231(1265):415-35
– reference: 15296747 - Curr Biol. 2004 Aug 10;14(15):1309-18
– reference: 12020449 - Neural Comput. 2002 Jun;14(6):1323-46
– reference: 8759456 - Vision Res. 1996 Jun;36(11):1529-41
– reference: 12040082 - J Neurosci. 2002 Jun 1;22(11):4746-55
– reference: 9447735 - Proc Biol Sci. 1997 Dec 22;264(1389):1775-83
– reference: 11563536 - Network. 2001 Aug;12(3):395-407
– reference: 8638292 - Trends Neurosci. 1995 Dec;18(12):522-7
– reference: 10203852 - Trends Neurosci. 1999 Apr;22(4):153-61
– reference: 9950719 - Neural Comput. 1999 Jan 1;11(1):1-20
– reference: 12664095 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Mar;189(3):189-202
– reference: 7841128 - Vis Neurosci. 1994 Nov-Dec;11(6):1221-5
– reference: 7472349 - J Neurophysiol. 1995 Jul;74(1):470-3
– reference: 10768038 - Vision Res. 2000;40(1):13-31
– reference: 14726622 - Brain Behav Evol. 2004;63(3):125-40
– reference: 11086186 - Brain Res Brain Res Rev. 2000 Nov;34(1-2):42-68
– reference: 12571596 - Nature. 2003 Feb 6;421(6923):630-4
– reference: 11851374 - J Theor Biol. 2002 Feb 21;214(4):657-64
– reference: 16321420 - Vision Res. 2006 Mar;46(5):622-35
– reference: 7535485 - Trends Neurosci. 1995 Jan;18(1):17-21
– reference: 16525044 - J Neurosci. 2006 Mar 8;26(10):2652-60
– reference: 15590591 - Proc Biol Sci. 2004 Dec 7;271(1556):2423-9
– reference: 7303823 - Z Naturforsch C. 1981 Sep-Oct;36(9-10):910-2
– reference: 11495963 - J Neurophysiol. 2001 Aug;86(2):950-60
– reference: 14512617 - Science. 2003 Sep 26;301(5641):1870-4
– reference: 12463343 - Network. 2002 Nov;13(4):531-52
– reference: 15558288 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Jan;191(1):75-84
– reference: 2689566 - J Exp Biol. 1989 Sep;146:277-86
– reference: 8361652 - Neurosci Lett. 1993 May 14;154(1-2):84-8
– reference: 11134228 - J Gen Physiol. 2001 Jan;117(1):3-25
– reference: 8868566 - Neural Comput. 1996 Apr 1;8(3):531-43
– reference: 9744889 - Neural Comput. 1998 Oct 1;10(7):1601-38
– reference: 10195106 - Nat Neurosci. 1998 May;1(1):36-41
– reference: 9491274 - Brain Behav Evol. 1998;51(2):59-89
– reference: 16261178 - Nat Rev Neurosci. 2005 Nov;6(11):841-9
– reference: 15561300 - Prog Biophys Mol Biol. 2005 May;88(1):1-58
– reference: 15627722 - Brain Behav Evol. 2005;65(2):73-108
– reference: 1281310 - Pflugers Arch. 1992 Aug;421(5):469-72
– reference: 16111932 - Curr Biol. 2005 Aug 23;15(16):R624-6
– reference: 8440785 - J Comp Neurol. 1993 Feb 15;328(3):313-50
– reference: 16860742 - Curr Biol. 2006 Jul 25;16(14):1428-34
SSID ssj0022928
Score 2.3480241
Snippet Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how...
  Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e116
SubjectTerms Animals
Biophysics
Brain research
Calliphora vicina
Calliphoridae
Computational Biology
Costs
Drosophila
Drosophila melanogaster
Electrodes
Energy consumption
Energy Metabolism
Evolution
Evolutionary Biology
Light intensity
Neural conduction
Neurons
Neurons - metabolism
Neurons - physiology
Neuroscience
Noise
Photoreception
Photoreceptor Cells, Invertebrate - physiology
Physiology
Sarcophaga carnaria
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hSEhcEJRHAy1YCInTtnb24d1jQUQFiSIBRb2tvA_TSKk3qpND_z0z9ibEqFE5cM1-dpKZnd1v7NlvCHnrvBXMTySFIMwpDzmnmjlLvcsFBJ_23Hdqn2fy9Jx_vhAXW62-sCaslwfuDXdc1ZrnXllZOMZZrqwPwBKs4JWyikmLqy_seetkKqVaE911VUWpGQjnkqVDc6wsjpOPjhZ2Fo9Q_qTAXudbm1Kn3b9ZoUeLeWxvo59_V1FubUvTR-Rh4pPZSf8_HpN7odkj9_sOkzdPyJfp_CZbXEbIrAMWsMTrNvPhCkkhakRkoTv6R5N8KjopgwEfaKzrNps1Gepdwv1dxD3uKTmffvzx4ZSmDgrUKcGXlGkRIKGykIf6SS68ZFXlfM0LcFDFAqYvrgAHsVLLOtcsBIHvLYGzWHCgUuwZGTWxCfskqwIQCy9yh08fa2u1nISqKIPNy7oIvBwTtjahcUleHLtczE33zqyENKO3iEHDm2T4MaGbqxa9vMYd-PfonQ0WxbG7D2DKmDRlzF1TZkzeoG8Nyl80WF_zq1q1rfn09ac5KaQAwqwKtgv0_exfQN8GoHcJVEewiKvSwQewK2pvDZAHAyREuhsM7-NkXBumNcDV8Jy01ByuXE_Q24dfb4bxplhY14S4AoyWCkuMdyOA23DgkHI3An4b0G4J3_K8j4g_rixROEvoMSkHsTLw33CkmV12IueQ9ypI1V_8D4e_JA_6R_JYcHVARsvrVTgELrm0r7pl4zcaXHBK
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegCImXie8VBkQIiSdv8fyR5AmNsWogsSFgaG9W_JGtUolL0z7sv-cucdsFrcBrfU6TO5_vzr77HSFvrDOSu31FQQlTKnwqaMGtoc6mEpSvcMK1aJ8n6vhMfDqX5_HArYlplcs9sd2oXbB4Rr4HdglrQlUh3k1_UewahbersYXGbXIHocsw-MrO1wEXTGlL4aSAN2AZj6VzPGN7UVK7UzMOuwiCwrDj-TXT1CL4r_bpwXQSmpuc0D9zKa8Zp9F9shW9yuSgWwYPyC1fPyR3uz6TV4_I59HkKvlyGSC-9pjGEmZN8sH_RNcQkSKSo7YAkMbSJBRVAjbMeXpaVU0yrhOE8IDnHwa0dI_J2ejo--ExjX0UqM2lmFNeSA9hlYFo1AELneJlaV0lGIip5B6DGMtATDwrVJUW3HuJt5fguRgQY57zJ2RQh9pvk6T04F44mVo8g6yMKdS-L1nmTZpVzItsSPiShdpGkHHsdTHR7c1ZBsFGxxGNjNeR8UNCV7OmHcjGP-jfo3RWtAiR3f4QZhc6apwuq0KkLjeKWS54mhvnwb00UpS5ybkyQ_IaZasRBKPGLJuLctE0-uPpD33AlAS3OWd8E9G3k_8h-tojehuJqgAcsWUsfwC-IgJXj3KnRwn6bnvD27gYl4xp9FozYOZygd48_Go1jA_F9LrahwXQFCrHROPNFODhCPAk1WYKeDdwvhX8y9NOI9aizBA-SxZDkvV0pSe__kg9vmyhziH6zSFgf_b3D3tO7nVH7phQtUMG89nCvwBfcW5ethvCb9KEZrY
  priority: 102
  providerName: ProQuest
Title Fly Photoreceptors Demonstrate Energy-Information Trade-Offs in Neural Coding
URI https://www.ncbi.nlm.nih.gov/pubmed/17373859
https://www.proquest.com/docview/1292205694
https://www.proquest.com/docview/19684953
https://www.proquest.com/docview/21242236
https://www.proquest.com/docview/68151464
https://pubmed.ncbi.nlm.nih.gov/PMC1828148
https://doaj.org/article/af940d8b61c34308bde085b54a8b836b
http://dx.doi.org/10.1371/journal.pbio.0050116
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2Tki8IL5XGCVCSDylSmrHdh4Q2karAVo3BkV9i-KPbJVKUppWov89d4lbFtQKxEsf6rNb3fns39nn3xHyWhsVUdPjPjhh4DMbMD-mWvlGBxE4X2yYqdg-h_xsxD6Oo_EeWddsdQost4Z2WE9qNJ92f_5YvQOHf1tVbRDhulN3piZFFwlNwpDvkwPYmwQWczhnm3uFXi-uqq0iBQ24uaDuMd2uUZBSVCD3D1KZ3tq3Knr_zSLemk2LchtC_TPR8tbONbhP7jnI6R3Xc-QB2bP5Q3KnLkK5ekTOB9OVd3lTQPBtMcelmJfee_sdcSPSSHj96nWg794toR092OCM9S-yrPQmuYf8HjD-aYHb4GMyGvS_np75rsiCr2XEFj6NIwsxl4JQ1fSCyHCaptpkLAQbptRihKNDsCEVMc-CmFob4dUmwBoFNpaSPiGtvMjtIfFSC9jDRIHGA8pMqZj3bBoKqwKRhZaJNqFrFSbaMZBjIYxpUl2rCYhEao0kaIPE2aBN_E2vWc3A8Rf5E7TORhb5s6svivl14twxSbOYBUYqHmrKaCCVsYA9VcRSqSTlqk1eoW0TZMjIMQXnOl2WZfLh4ltyHPIIMLUM6S6hL8N_EbpqCL1xQlkBGtGpexsBekV6robkUUMSFgPdaD7EybhWTJkAnMOn1Dxm0HM9Qbc3v9w046CYe5fbYgkyMZeYhbxbAuAPA5jJd0vAfwNkzuFXntYe8duUzr_aRDR8pWG_Zks-ual40CE0lhDNP_vvns_J3fqoHhOxjkhrMV_aF4AxF6pD9sVYdMjBSX94edWpTmrg89Nn2akWlF-Nm34-
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpFCF4Q3ysMFiEQT9mS2nGcB4TGtqplW4dgm_pm4o9slUpSmlaof4rfyF0-2gVtwMte64tr34fvzr4PQt5oowJqOtwFIfRcZj3mRlQr12gvAOGLDDNFtc8B752yT8NguEZ-1bkwGFZZn4nFQW0yjXfk26CXMCeUR-zD5IeLXaPwdbVuoVGyxYFd_ASXLX_f3wP6vu10uvsnuz236irgahGwmUujwIKTocA3MzCh4TSOtUmYD4uOqUWTXvuwaBpGPAF_39oA3_JAjyvYlBAU5r1FboPi9TCEMByuHDxYYpF6FzDYsR_SKlWPhv52xRlbEzXKtrDoio8d1i-pwqJjwFIvtCbjLL_K6P0zdvOSMuw-IPcrK9bZKdnuIVmz6SNyp-xruXhMjrrjhfP5IgN_3mLYTDbNnT37HU1RrEzh7BcJh26VCoWs4YDONNY9TpLcGaUOlgyB-Xcz1KxPyOmNYPgpaaVZateJE1swZ0zgabzzTJSKeMfGfmiVFya-ZWGb0BqFUldFzbG3xlgWL3UhODclRiQiXlaIbxN3-dWkLOrxD_iPSJ0lLJbkLn7IpueyknAZJxHzjFDc15RRTyhjwZxVAYuFEpSrNnmNtJVYdCPFqJ7zeJ7nsn98Jnd8HoCZLnx6HdDXwf8AfWkAvauAkgwwouMq3QLwihW_GpAbDUg4X3RjeB2ZsUZMLleSCF_WDHr18OZyGCfFcL7UZnOAibjAwObrIcCiYmC58ushYG1g7HP4l2elRKxIGWK5riBqk7AhKw36NUfS0UVRWh28beEz8fzvG9skd3snR4fysD84eEHuldf9GMy1QVqz6dy-BDt1pl4Vh4NDvt30afQbuS2hqQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BpFIF4Q9xUGixCIp6xJ7TjJA0JjXbUx6CZgU99MfMlWqSSlaYX6a3wd5yROu6AVeNlrfOLEx-dqnwshr5SWAdVd7gITei4zHnNjqqSrlRcA88Wa6bLa54AfnLIPw2C4QX7VuTAYVlnLxFJQ61zhGXkH9BLmhPKYdVIbFnHS67-b_HCxgxTetNbtNCoSOTKLn-C-FW8Pe7DXr7vd_v7XvQPXdhhwVRSwmUvjwIDDIcFP0zC55jRJlE6ZDwtIqEHzXvmwABrGPAXf35gA7_VAp0tYYBRRmPcGuRlSUJvAS-Fw5ezB75ZpeAGD1fshtWl7NPQ7lkp2JnKU72ABFh-7rV9Si2X3gKWOaE3GeXGVAfxnHOclxdi_R-5ai9bZrUjwPtkw2QNyq-pxuXhIPvXHC-fkIgff3mAITT4tnJ75jmYpVqlw9svkQ9emRSGZOKA_tXGP07RwRpmD5UNg_r0ctewjcnotGH5MWlmemU3iJAZMGx14Cs8_Uylj3jWJHxrphalvWNgmtEahULbAOfbZGIvy1i4ER6fCiEDEC4v4NnGXb02qAh__gH-Pu7OExfLc5YN8ei4st4skjZmnI8l9RRn1IqkNmLYyYEkkI8plm7zEvRVYgCNDUj5P5kUhDo_PxK7PAzDZI5-uA_oy-B-gzw2gNxYozQEjKrGpF4BXrP7VgNxqQIKsUY3hTSTGGjGFWHElvFkT6NXD28thnBRD-zKTzwEm5hEGOa-HAOuKgRXL10PAv4Hhz-ErTyqOWG1liKW7grhNwgavNPavOZKNLsoy6-B5Rz6Lnv59YdvkNsgh8fFwcPSM3KlO_jGua4u0ZtO5eQ4m60y-KGWDQ75dtzD6DZU9pd8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fly+Photoreceptors+Demonstrate+Energy-Information+Trade-Offs+in+Neural+Coding&rft.jtitle=PLoS+biology&rft.au=Niven%2C+Jeremy+E&rft.au=Anderson%2C+John+C&rft.au=Laughlin%2C+Simon+B&rft.date=2007-04-01&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.eissn=1545-7885&rft.volume=5&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pbio.0050116&rft_id=info%3Apmid%2F17373859&rft.externalDocID=PMC1828148
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon