Fly Photoreceptors Demonstrate Energy-Information Trade-Offs in Neural Coding
Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanoga...
Saved in:
Published in | PLoS biology Vol. 5; no. 4; p. e116 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.04.2007
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1545-7885 1544-9173 1545-7885 |
DOI | 10.1371/journal.pbio.0050116 |
Cover
Loading…
Abstract | Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, D. virilis, Calliphora vicina, and Sarcophaga carnaria, we measured the rates at which homologous R1-6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, approximately 20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from approximately 200 bits s(-1) in D. melanogaster to approximately 1,000 bits s(-1) in S. carnaria. Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput. |
---|---|
AbstractList | Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, D. virilis, Calliphora vicina, and Sarcophaga carnaria, we measured the rates at which homologous R1-6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, approximately 20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from approximately 200 bits s(-1) in D. melanogaster to approximately 1,000 bits s(-1) in S. carnaria. Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput. Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster , D. virilis , Calliphora vicina, and Sarcophaga carnaria , we measured the rates at which homologous R1–6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, ∼20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from ∼200 bits s −1 in D. melanogaster to ∼1,000 bits s −1 in S. carnaria . Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput. Evidence from single-neuron recordings supports the law of diminishing returns, i.e., high performance eyes in larger, faster flies have less efficient photoreceptors than those of their small, sluggish counterparts. Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, D. virilis, Calliphora vicina, and Sarcophaga carnaria, we measured the rates at which homologous R1-6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, ~20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from ~200 bits s-1 in D. melanogaster to ~1,000 bits s-1 in S. carnaria. Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput. Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, D. virilis, Calliphora vicina, and Sarcophaga carnaria, we measured the rates at which homologous R1-6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, ~20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from ~200 bits s-1 in D. melanogaster to ~1,000 bits s-1 in S. carnaria. Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput. Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, D. virilis, Calliphora vicina, and Sarcophaga carnaria, we measured the rates at which homologous R1-6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, approximately 20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from approximately 200 bits s(-1) in D. melanogaster to approximately 1,000 bits s(-1) in S. carnaria. Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput.Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, D. virilis, Calliphora vicina, and Sarcophaga carnaria, we measured the rates at which homologous R1-6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, approximately 20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from approximately 200 bits s(-1) in D. melanogaster to approximately 1,000 bits s(-1) in S. carnaria. Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput. Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster , D. virilis , Calliphora vicina, and Sarcophaga carnaria , we measured the rates at which homologous R1-6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, similar to 20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from similar to 200 bits s super(-1) in D. melanogaster to similar to 1,000 bits s super(-1) in S. carnaria . Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput. Author Summary Many animals show striking reductions or enlargements of sense organs or brain regions according to their lifestyle and habitat. For example, cave dwelling or subterranean animals often have reduced eyes and brain regions involved in visual processing. These differences suggest that although there are benefits to possessing a particular sense organ or brain region, there are also significant costs that shape the evolution of the nervous system, but little is known about this trade-off, particularly at the level of single neurons. We measured the trade-off between performance and energetic costs by recording electrical signals from single photoreceptors in different fly species. We discovered that photoreceptors in the blowfly transmit five times more information than the smaller photoreceptors of the diminutive fruit fly Drosophila. The blowfly pays a high price for better performance; its photoreceptor uses ten times more energy to code the same quantity of information. We conclude that, for basic biophysical reasons, neuronal energy consumption increases much more steeply than performance, and this intensifies the evolutionary pressure to reduce performance to the minimum required for adequate function. Thus the biophysical properties of sensory neurons help to explain why the sense organs and brains of different species vary in size and performance. Evidence from single-neuron recordings supports the law of diminishing returns, i.e., high performance eyes in larger, faster flies have less efficient photoreceptors than those of their small, sluggish counterparts. Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, D. virilis, Calliphora vicina, and Sarcophaga carnaria, we measured the rates at which homologous R1-6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, 20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from 200 bits s super(-1) in D. melanogaster to 1,000 bits s super(-1) in S. carnaria. Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput. |
Audience | Academic |
Author | Niven, Jeremy E Laughlin, Simon B Anderson, John C |
AuthorAffiliation | Harvard University, United States of America 2 Biology and Environmental Science, School of Life Sciences, University of Sussex, Brighton, United Kingdom 1 Department of Zoology, University of Cambridge, Cambridge, United Kingdom |
AuthorAffiliation_xml | – name: 2 Biology and Environmental Science, School of Life Sciences, University of Sussex, Brighton, United Kingdom – name: 1 Department of Zoology, University of Cambridge, Cambridge, United Kingdom – name: Harvard University, United States of America |
Author_xml | – sequence: 1 givenname: Jeremy E surname: Niven fullname: Niven, Jeremy E – sequence: 2 givenname: John C surname: Anderson fullname: Anderson, John C – sequence: 3 givenname: Simon B surname: Laughlin fullname: Laughlin, Simon B |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17373859$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk11v0zAUhiM0xD7gHyCIhITERYodf9TmAmkqG1QaK4LBreUkJ5mrxC52gui_x12zaZ0mBsqFI-d53_i8x-cw2bPOQpI8x2iCyRS_XbrBW91OVoVxE4QYwpg_Sg4woyybCsH2br3vJ4chLBHKc5mLJ8k-npIpEUweJJ9P23X65dL1zkMJq7iE9AN0zobe6x7SEwu-WWdzWzvf6d44m154XUG2qOuQGpuew-B1m85cZWzzNHlc6zbAs3E9Sr6fnlzMPmVni4_z2fFZVgpG-4xIBkLKghBR5YhVnGhdVjXFBSOaAJIclZgCIlPJayQJACNCYilJQapcCHKUvNz6rloX1JhEUDiWF_24pJGYb4nK6aVaedNpv1ZOG3W14XyjtO9N2YLStaSoEgXHJaEEiaICJFjBqBaFILyIXu_Hvw1FB1UJNmbT7pjufrHmUjXul8IiF5hujvt6NPDu5wChV50JJbSttuCGoLjADFNOHwRznNM8J_xBEEsuqGQkgq_ugPenNVKNjoGY2OxYR7mxVMeYM4njCTdek3uo-FTQmTLeztrE_R3Bmx1BZHr43Td6CEHNv339D_b839nFj132xe3m3XTtegQi8G4LlN6F4KFWpemvbnqszrQKI7WZt-vc1Gbe1DhvUUzviG_8_yb7A8BMLCc |
CitedBy_id | crossref_primary_10_1016_j_cub_2009_08_023 crossref_primary_10_1016_j_cub_2009_12_006 crossref_primary_10_1371_journal_pone_0157993 crossref_primary_10_3389_fevo_2021_698041 crossref_primary_10_1016_j_ygcen_2012_02_014 crossref_primary_10_1038_s41598_019_51774_w crossref_primary_10_1098_rspb_2010_1378 crossref_primary_10_1152_jn_00017_2018 crossref_primary_10_3389_fnins_2019_01234 crossref_primary_10_1152_jn_00365_2019 crossref_primary_10_7554_eLife_26117 crossref_primary_10_1016_j_neucom_2009_02_022 crossref_primary_10_1093_icb_icab174 crossref_primary_10_1007_s10682_013_9656_9 crossref_primary_10_1038_s41467_025_56640_0 crossref_primary_10_1371_journal_pcbi_1006566 crossref_primary_10_1523_JNEUROSCI_4463_13_2014 crossref_primary_10_7717_peerj_2772 crossref_primary_10_1016_j_cub_2008_11_031 crossref_primary_10_3390_cells13100871 crossref_primary_10_1113_JP273614 crossref_primary_10_1242_jeb_246423 crossref_primary_10_1016_j_neuron_2019_01_015 crossref_primary_10_1073_pnas_1017393108 crossref_primary_10_1016_j_conb_2016_09_004 crossref_primary_10_1016_j_cub_2015_08_050 crossref_primary_10_1016_j_cub_2011_10_022 crossref_primary_10_1016_j_exger_2013_10_013 crossref_primary_10_1073_pnas_1303346110 crossref_primary_10_1088_1741_2552_aa776c crossref_primary_10_1371_journal_pone_0033149 crossref_primary_10_1073_pnas_1412051111 crossref_primary_10_1016_j_scitotenv_2024_172783 crossref_primary_10_1016_j_chaos_2023_113464 crossref_primary_10_1098_rspb_2007_0675 crossref_primary_10_1371_journal_pcbi_1003157 crossref_primary_10_1371_journal_pcbi_1000840 crossref_primary_10_1098_rspb_2010_2699 crossref_primary_10_1371_journal_pcbi_1003439 crossref_primary_10_1007_s10682_016_9876_x crossref_primary_10_1007_s11229_016_1298_3 crossref_primary_10_1186_s12915_024_01864_7 crossref_primary_10_1242_jeb_228460 crossref_primary_10_1038_jcbfm_2009_231 crossref_primary_10_1007_s40362_013_0009_4 crossref_primary_10_1152_jn_00795_2015 crossref_primary_10_1007_s00359_013_0814_x crossref_primary_10_1113_jphysiol_2009_170704 crossref_primary_10_1162_NECO_a_00962 crossref_primary_10_1007_s10071_011_0465_7 crossref_primary_10_1016_j_cub_2012_04_002 crossref_primary_10_1371_journal_pbio_1002147 crossref_primary_10_3389_fnsys_2016_00090 crossref_primary_10_1371_journal_pcbi_1006612 crossref_primary_10_1016_j_cub_2014_03_005 crossref_primary_10_1126_scirobotics_abq8184 crossref_primary_10_1098_rstb_2021_0276 crossref_primary_10_1016_j_cub_2022_07_070 crossref_primary_10_3389_fncom_2018_00079 crossref_primary_10_3389_frobt_2020_00077 crossref_primary_10_1242_jeb_222679 crossref_primary_10_1007_s10682_009_9336_y crossref_primary_10_1038_srep26041 crossref_primary_10_1093_beheco_arx042 crossref_primary_10_1159_000356091 crossref_primary_10_1523_JNEUROSCI_3180_13_2014 crossref_primary_10_3390_ijms23010210 crossref_primary_10_1371_journal_pone_0071540 crossref_primary_10_1111_cogs_13297 crossref_primary_10_1016_j_neuron_2008_10_019 crossref_primary_10_1159_000368177 crossref_primary_10_1242_jeb_001040 crossref_primary_10_1016_j_anbehav_2012_12_031 crossref_primary_10_1038_jcbfm_2012_35 crossref_primary_10_1016_j_crhy_2018_09_006 crossref_primary_10_1016_j_cobeha_2016_09_004 crossref_primary_10_1073_pnas_0914886107 crossref_primary_10_3389_fncel_2023_1184563 crossref_primary_10_1098_rsif_2016_0938 crossref_primary_10_1016_j_anbehav_2011_01_016 crossref_primary_10_1016_j_neuron_2020_03_010 crossref_primary_10_1016_j_asd_2017_08_005 crossref_primary_10_3389_fevo_2022_805385 crossref_primary_10_1242_bio_057224 crossref_primary_10_1242_jeb_017574 crossref_primary_10_1242_jeb_015396 crossref_primary_10_1073_pnas_1810701115 crossref_primary_10_1038_srep29686 crossref_primary_10_1093_molbev_msv197 crossref_primary_10_1113_JP273645 crossref_primary_10_1371_journal_pone_0026886 crossref_primary_10_1002_jnr_24131 crossref_primary_10_1098_rspb_2010_2027 crossref_primary_10_1242_dev_020644 crossref_primary_10_1007_s00359_014_0918_y crossref_primary_10_1016_j_brainres_2013_07_024 crossref_primary_10_1111_1744_7917_12117 crossref_primary_10_1103_PhysRevE_81_011918 crossref_primary_10_1016_j_jphysparis_2012_10_002 crossref_primary_10_1016_j_neuroscience_2023_08_012 crossref_primary_10_1016_j_cub_2016_07_032 crossref_primary_10_1103_PhysRevE_83_031912 crossref_primary_10_1152_jn_00239_2014 crossref_primary_10_3389_fevo_2020_00082 crossref_primary_10_1007_s00359_019_01392_8 crossref_primary_10_1016_j_cub_2023_09_060 crossref_primary_10_1016_j_jinsphys_2017_02_006 crossref_primary_10_1152_jn_00288_2016 crossref_primary_10_1523_JNEUROSCI_2612_12_2012 crossref_primary_10_1093_plankt_fbae058 crossref_primary_10_1242_jeb_247835 crossref_primary_10_1007_s00359_019_01355_z crossref_primary_10_1016_j_celrep_2022_111654 crossref_primary_10_1109_TNN_2007_914177 crossref_primary_10_1098_rstb_2016_0074 crossref_primary_10_1007_s10071_023_01818_6 crossref_primary_10_1016_j_conb_2011_05_003 crossref_primary_10_1007_s00359_017_1209_1 crossref_primary_10_1093_beheco_araa083 crossref_primary_10_1152_jn_00607_2011 crossref_primary_10_1016_j_cub_2008_10_029 crossref_primary_10_1523_JNEUROSCI_4800_08_2009 crossref_primary_10_1186_1471_2202_13_93 crossref_primary_10_1016_j_cub_2016_05_042 crossref_primary_10_1016_j_cub_2014_03_013 crossref_primary_10_1146_annurev_ento_52_110405_091322 crossref_primary_10_1038_srep46627 crossref_primary_10_1016_j_cub_2009_11_009 crossref_primary_10_1109_TIT_2015_2444401 crossref_primary_10_1016_j_visres_2018_05_007 crossref_primary_10_1242_jeb_120808 crossref_primary_10_1007_s00359_019_01324_6 crossref_primary_10_1007_s10237_020_01322_7 crossref_primary_10_1007_s00359_014_0912_4 crossref_primary_10_1007_s00359_015_1065_9 crossref_primary_10_1016_j_cub_2008_01_057 crossref_primary_10_1007_s00359_008_0335_1 crossref_primary_10_4303_jem_235996 crossref_primary_10_1073_pnas_2011828117 crossref_primary_10_1016_j_neubiorev_2024_105928 crossref_primary_10_1098_rspb_2010_2488 crossref_primary_10_1111_tops_12085 crossref_primary_10_2139_ssrn_3001323 crossref_primary_10_1523_JNEUROSCI_5700_09_2010 crossref_primary_10_1073_pnas_2008173118 crossref_primary_10_1162_netn_a_00223 crossref_primary_10_1523_JNEUROSCI_3430_11_2012 crossref_primary_10_1007_s00285_015_0862_7 crossref_primary_10_1007_s10158_012_0140_y crossref_primary_10_1038_hdy_2009_184 crossref_primary_10_1016_j_cois_2017_09_007 crossref_primary_10_1038_jcbfm_2013_103 crossref_primary_10_1371_journal_pbio_1002197 crossref_primary_10_1113_JP273674 crossref_primary_10_1016_j_cub_2008_02_017 crossref_primary_10_1098_rspb_2016_1949 crossref_primary_10_1111_jzo_13117 crossref_primary_10_1109_JPROC_2014_2332533 crossref_primary_10_1002_ece3_8264 crossref_primary_10_1016_j_cois_2022_100914 crossref_primary_10_1016_j_jtbi_2008_03_002 crossref_primary_10_1242_jeb_095554 crossref_primary_10_1152_jn_00590_2007 crossref_primary_10_1016_j_tree_2009_02_010 crossref_primary_10_1113_jphysiol_2012_240358 crossref_primary_10_1111_j_1469_185X_2008_00067_x crossref_primary_10_1126_scirobotics_adi9754 crossref_primary_10_1146_annurev_ento_010814_020924 crossref_primary_10_1242_jeb_159103 crossref_primary_10_1016_j_cub_2007_11_020 crossref_primary_10_1242_jeb_136523 crossref_primary_10_1080_13546805_2019_1665994 crossref_primary_10_1152_jn_01037_2012 crossref_primary_10_1111_j_1558_5646_2011_01285_x crossref_primary_10_1007_s00359_013_0879_6 |
Cites_doi | 10.1002/0470020520.ch2 10.1007/BF00370258 10.1016/j.visres.2005.09.020 10.1007/s00359-003-0390-6 10.1038/236 10.1098/rspb.1997.0246 10.1006/jtbi.2001.2498 10.1088/0954-898X_13_4_306 10.1038/35093002 10.1242/jeb.146.1.277 10.1007/978-3-642-74082-4_16 10.1097/00004647-200110000-00001 10.1007/BF00188924 10.7551/mitpress/7131.003.0022 10.1016/0166-2236(95)98373-7 10.1007/s003590050032 10.1162/089976698300017052 10.1017/S095252380000701X 10.1016/S0166-2236(98)01340-X 10.1016/S0165-0173(00)00038-2 10.1162/089976601300014358 10.1085/jgp.200509470 10.1016/0166-2236(92)90352-9 10.1162/089976699300016773 10.1085/jgp.104.3.593 10.1523/JNEUROSCI.22-11-04746.2002 10.1038/nature01384 10.1007/s00359-004-0571-y 10.1152/jn.1995.74.1.470 10.1016/S0896-6273(02)01048-6 10.1016/0166-2236(95)93945-T 10.1162/neco.1996.8.3.531 10.1159/000076239 10.1016/j.cub.2005.08.007 10.1126/science.1089662 10.1098/rspb.1991.0110 10.1098/rspb.1987.0053 10.1038/nature03012 10.1016/0304-3940(93)90177-M 10.1085/jgp.200308824 10.1007/BF00611889 10.1002/cne.903280302 10.1007/BF00213682 10.1242/jeb.00600 10.1152/jn.2001.86.2.950 10.1038/nrn1784 10.1007/BF00606117 10.1073/pnas.221456698 10.1016/j.cub.2006.05.056 10.1098/rspb.1992.0134 10.1016/0042-6989(95)00242-1 10.1016/j.pbiomolbio.2003.11.014 10.1016/S0042-6989(99)00171-6 10.1016/S0960-9822(03)00135-0 10.1016/j.cub.2004.07.057 10.1146/annurev.physiol.65.092101.142505 10.1109/5.939817 10.1038/299818a0 10.1159/000082979 10.1080/net.12.3.395.407 10.1159/000006530 10.1113/jphysiol.1991.sp018729 10.1038/379642a0 10.1038/361628a0 10.1523/JNEUROSCI.3316-05.2006 10.1098/rspb.1983.0011 10.1085/jgp.117.1.3 10.1098/rspb.2004.2912 10.1016/1350-9462(94)90009-4 10.1162/089976602753712963 10.1017/CBO9780511897085.006 10.1023/A:1010028405318 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2007 Public Library of Science 2007 Niven et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Niven JE, Anderson JC, Laughlin SB (2007) Fly Photoreceptors Demonstrate Energy-Information Trade-Offs in Neural Coding. PLoS Biol 5(4): e116. doi:10.1371/journal.pbio.0050116 2007 Niven et al. 2007 |
Copyright_xml | – notice: COPYRIGHT 2007 Public Library of Science – notice: 2007 Niven et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Niven JE, Anderson JC, Laughlin SB (2007) Fly Photoreceptors Demonstrate Energy-Information Trade-Offs in Neural Coding. PLoS Biol 5(4): e116. doi:10.1371/journal.pbio.0050116 – notice: 2007 Niven et al. 2007 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 3V. 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PYCSY RC3 7X8 5PM DOA CZG |
DOI | 10.1371/journal.pbio.0050116 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Opposing Viewpoints in Context Gale In Context: Canada Science in Context ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Database ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals PLoS Biology |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic Neurosciences Abstracts Entomology Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Energy-Information Trade-Offs |
EISSN | 1545-7885 |
ExternalDocumentID | 1292205694 oai_doaj_org_article_af940d8b61c34308bde085b54a8b836b PMC1828148 2897830291 A165916813 17373859 10_1371_journal_pbio_0050116 |
Genre | Journal Article |
GeographicLocations | United Kingdom |
GeographicLocations_xml | – name: United Kingdom |
GroupedDBID | --- 123 29O 2WC 36B 53G 5VS 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AFXKF AHMBA AKRSQ ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBS EJD EMB EMK EMOBN EPL ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IGS IHR IOV IPNFZ ISE ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PATMY PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PYCSY QN7 RIG RNS RPM SJN SV3 TR2 TUS UKHRP WOQ WOW XSB YZZ ~8M .GJ 3V. AGJBV CGR CUY CVF ECM EIF M~E NPM PV9 QF4 RZL YIN PMFND 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 7X8 5PM PUEGO AAPBV ABPTK CZG ZA5 |
ID | FETCH-LOGICAL-c854t-395e899b338d205d63aacdf41b53a3e0960c14e03796f093ee53891993b3d2883 |
IEDL.DBID | M48 |
ISSN | 1545-7885 1544-9173 |
IngestDate | Sun Oct 01 00:20:32 EDT 2023 Wed Aug 27 01:29:21 EDT 2025 Thu Aug 21 14:10:06 EDT 2025 Mon Jul 21 11:14:11 EDT 2025 Fri Jul 11 14:57:10 EDT 2025 Fri Jul 11 16:24:34 EDT 2025 Fri Jul 25 12:09:14 EDT 2025 Tue Jun 17 22:03:24 EDT 2025 Tue Jun 10 21:01:58 EDT 2025 Fri Jun 27 05:31:29 EDT 2025 Fri Jun 27 05:31:13 EDT 2025 Fri Jun 27 05:29:58 EDT 2025 Wed Feb 19 01:42:37 EST 2025 Tue Jul 01 01:24:18 EDT 2025 Thu Apr 24 23:06:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Animals Energy Metabolism Neurons Drosophila Photoreceptor Cells, Invertebrate |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c854t-395e899b338d205d63aacdf41b53a3e0960c14e03796f093ee53891993b3d2883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pbio.0050116 |
PMID | 17373859 |
PQID | 1292205694 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | plos_journals_1292205694 doaj_primary_oai_doaj_org_article_af940d8b61c34308bde085b54a8b836b pubmedcentral_primary_oai_pubmedcentral_nih_gov_1828148 proquest_miscellaneous_68151464 proquest_miscellaneous_21242236 proquest_miscellaneous_19684953 proquest_journals_1292205694 gale_infotracmisc_A165916813 gale_infotracacademiconefile_A165916813 gale_incontextgauss_ISR_A165916813 gale_incontextgauss_ISN_A165916813 gale_incontextgauss_IOV_A165916813 pubmed_primary_17373859 crossref_citationtrail_10_1371_journal_pbio_0050116 crossref_primary_10_1371_journal_pbio_0050116 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-04-01 |
PublicationDateYYYYMMDD | 2007-04-01 |
PublicationDate_xml | – month: 04 year: 2007 text: 2007-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PLoS biology |
PublicationTitleAlternate | PLoS Biol |
PublicationYear | 2007 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | (pbio-0050116-b053) 2005; 191 (pbio-0050116-b075) 1999; 22 (pbio-0050116-b066) 1995; 74 (pbio-0050116-b069) 2004; 14 (pbio-0050116-b013) 2002; 13 (pbio-0050116-b083) 1992; 421 (pbio-0050116-b084) 1991; 245 (pbio-0050116-b044) 2003; 206 (pbio-0050116-b050) 2003; 189 pbio-0050116-b049 pbio-0050116-b006 (pbio-0050116-b031) 2001; 117 (pbio-0050116-b065) 2006; 127 (pbio-0050116-b012) 2004; 43 (pbio-0050116-b032) 2003; 421 (pbio-0050116-b086) 1997; 180 (pbio-0050116-b041) 2003; 65 (pbio-0050116-b051) 2003; 122 (pbio-0050116-b055) 2000; 40 (pbio-0050116-b058) 1996; 36 (pbio-0050116-b067) 2002; 22 pbio-0050116-b040 pbio-0050116-b001 pbio-0050116-b045 (pbio-0050116-b047) 1992; 171 pbio-0050116-b002 (pbio-0050116-b015) 1998; 10 (pbio-0050116-b007) 2005; 15 (pbio-0050116-b052) 1996; 178 (pbio-0050116-b070) 2005; 6 (pbio-0050116-b029) 1993; 154 (pbio-0050116-b076) 2004; 431 (pbio-0050116-b003) 1982; 299 (pbio-0050116-b023) 2000; 34 de Ruyter van Steveninck RR, Laughlin SB (pbio-0050116-b033) 1996; 379 (pbio-0050116-b048) 1994; 13 (pbio-0050116-b080) 2004; 271 (pbio-0050116-b072) 2001; 12 (pbio-0050116-b028) 1991; 440 (pbio-0050116-b014) 2003; 1 (pbio-0050116-b020) 2003; 301 (pbio-0050116-b018) 2001; 13 (pbio-0050116-b034) 1998; 1 (pbio-0050116-b085) 1988; 162 (pbio-0050116-b011) 1992; 15 (pbio-0050116-b037) 2006; 26 (pbio-0050116-b046) 1981; 36c (pbio-0050116-b016) 1996; 8 (pbio-0050116-b079) 2004; 63 (pbio-0050116-b026) 2003; 13 (pbio-0050116-b061) 2001; 98 (pbio-0050116-b074) 1989; 146 (pbio-0050116-b008) 1998; 51 (pbio-0050116-b056) 2001; 89 (pbio-0050116-b060) 1993; 172 (pbio-0050116-b010) 1995; 18 (pbio-0050116-b081) 1977; 122 (pbio-0050116-b082) 1994; 11 (pbio-0050116-b043) 2005; 88 (pbio-0050116-b030) 2001; 86 (pbio-0050116-b042) 1998; 43 pbio-0050116-b025 (pbio-0050116-b071) 2006; 16 (pbio-0050116-b054) 1983; 217 (pbio-0050116-b021) 2001; 21 (pbio-0050116-b017) 1997; 264 (pbio-0050116-b019) 2002; 214 pbio-0050116-b024 pbio-0050116-b068 pbio-0050116-b022 (pbio-0050116-b027) 2001; 413 (pbio-0050116-b077) 1999; 11 (pbio-0050116-b005) 2000; 1 (pbio-0050116-b057) 1994; 104 (pbio-0050116-b004) 1993; 361 (pbio-0050116-b009) 1993; 328 (pbio-0050116-b062) 2002; 36 pbio-0050116-b036 (pbio-0050116-b038) 1949; 37 (pbio-0050116-b064) 1992; 250 (pbio-0050116-b063) 2006; 46 pbio-0050116-b073 (pbio-0050116-b035) 2002; 14 (pbio-0050116-b059) 1995; 18 (pbio-0050116-b078) 2005; 65 (pbio-0050116-b039) 1987; 231 8361652 - Neurosci Lett. 1993 May 14;154(1-2):84-8 15627722 - Brain Behav Evol. 2005;65(2):73-108 15561300 - Prog Biophys Mol Biol. 2005 May;88(1):1-58 12571596 - Nature. 2003 Feb 6;421(6923):630-4 15558288 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Jan;191(1):75-84 2689566 - J Exp Biol. 1989 Sep;146:277-86 8440785 - J Comp Neurol. 1993 Feb 15;328(3):313-50 12020449 - Neural Comput. 2002 Jun;14(6):1323-46 11557987 - Nature. 2001 Sep 13;413(6852):186-93 10768038 - Vision Res. 2000;40(1):13-31 7535485 - Trends Neurosci. 1995 Jan;18(1):17-21 11563536 - Network. 2001 Aug;12(3):395-407 1281310 - Pflugers Arch. 1992 Aug;421(5):469-72 16860742 - Curr Biol. 2006 Jul 25;16(14):1428-34 15483599 - Nature. 2004 Oct 14;431(7010):782-8 9491274 - Brain Behav Evol. 1998;51(2):59-89 12441057 - Neuron. 2002 Nov 14;36(4):689-701 12952637 - Proc Biol Sci. 2003 Aug 7;270 Suppl 1:S58-61 12463343 - Network. 2002 Nov;13(4):531-52 8638292 - Trends Neurosci. 1995 Dec;18(12):522-7 14512617 - Science. 2003 Sep 26;301(5641):1870-4 7303823 - Z Naturforsch C. 1981 Sep-Oct;36(9-10):910-2 12040082 - J Neurosci. 2002 Jun 1;22(11):4746-55 16525044 - J Neurosci. 2006 Mar 8;26(10):2652-60 14555737 - J Exp Biol. 2003 Nov;206(Pt 22):3963-77 15590591 - Proc Biol Sci. 2004 Dec 7;271(1556):2423-9 11598490 - J Cereb Blood Flow Metab. 2001 Oct;21(10):1133-45 11851374 - J Theor Biol. 2002 Feb 21;214(4):657-64 2892201 - Proc R Soc Lond B Biol Sci. 1987 Sep 22;231(1265):415-35 14726622 - Brain Behav Evol. 2004;63(3):125-40 11255570 - Neural Comput. 2001 Apr;13(4):799-815 7472349 - J Neurophysiol. 1995 Jul;74(1):470-3 9612405 - Am J Physiol. 1998 May;274(5 Pt 2):R1376-83 7841128 - Vis Neurosci. 1994 Nov-Dec;11(6):1221-5 12860926 - J Gen Physiol. 2003 Aug;122(2):191-206 9447735 - Proc Biol Sci. 1997 Dec 22;264(1389):1775-83 8868566 - Neural Comput. 1996 Apr 1;8(3):531-43 11606744 - Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12550-4 12664095 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Mar;189(3):189-202 7807062 - J Gen Physiol. 1994 Sep;104(3):593-621 8759456 - Vision Res. 1996 Jun;36(11):1529-41 11495963 - J Neurophysiol. 2001 Aug;86(2):950-60 10203852 - Trends Neurosci. 1999 Apr;22(4):153-61 9744889 - Neural Comput. 1998 Oct 1;10(7):1601-38 1374968 - Trends Neurosci. 1992 Apr;15(4):122-6 11134228 - J Gen Physiol. 2001 Jan;117(1):3-25 12646132 - Curr Biol. 2003 Mar 18;13(6):493-7 12560473 - Annu Rev Physiol. 2003;65:735-59 15339643 - Neuron. 2004 Sep 2;43(5):609-17 11086186 - Brain Res Brain Res Rev. 2000 Nov;34(1-2):42-68 15296747 - Curr Biol. 2004 Aug 10;14(15):1309-18 9950719 - Neural Comput. 1999 Jan 1;11(1):1-20 1804980 - J Physiol. 1991;440:635-57 16636201 - J Gen Physiol. 2006 May;127(5):495-510 16321420 - Vision Res. 2006 Mar;46(5):622-35 10195106 - Nat Neurosci. 1998 May;1(1):36-41 16261178 - Nat Rev Neurosci. 2005 Nov;6(11):841-9 16111932 - Curr Biol. 2005 Aug 23;15(16):R624-6 |
References_xml | – ident: pbio-0050116-b022 doi: 10.1002/0470020520.ch2 – volume: 421 start-page: 469 year: 1992 ident: pbio-0050116-b083 article-title: Measurement of cell impedance in frequency-domain using discontinuous current clamp and white-noise-modulated current injection. publication-title: Pflugers Arch doi: 10.1007/BF00370258 – volume: 46 start-page: 622 year: 2006 ident: pbio-0050116-b063 article-title: Adaptation of single photon responses in photoreceptors of the housefly, Musca domestica: A novel spectral analysis. publication-title: Vision Res doi: 10.1016/j.visres.2005.09.020 – volume: 189 start-page: 189 year: 2003 ident: pbio-0050116-b050 article-title: Angular and spectral sensitivity of fly photoreceptors. II. Dependence on facet F-number and rhabdomere type in Drosophila. publication-title: J Comp Physiol A doi: 10.1007/s00359-003-0390-6 – volume: 1 start-page: 36 year: 1998 ident: pbio-0050116-b034 article-title: The metabolic cost of neural information. publication-title: Nat Neurosci doi: 10.1038/236 – volume: 178 start-page: 513 year: 1996 ident: pbio-0050116-b052 article-title: Different photoreceptors within the same retina express unique combinations of potassium channels. publication-title: J Comp Physiol A – volume: 264 start-page: 1775 year: 1997 ident: pbio-0050116-b017 article-title: Responses of neurons in primary and inferior temporal visual cortices to natural scenes. publication-title: Proc R Soc Lond B Biol Sci doi: 10.1098/rspb.1997.0246 – volume: 214 start-page: 657 year: 2002 ident: pbio-0050116-b019 article-title: Errors drive the evolution of biological signalling to costly codes. publication-title: J Theor Biol doi: 10.1006/jtbi.2001.2498 – ident: pbio-0050116-b002 – ident: pbio-0050116-b006 – volume: 13 start-page: 531 year: 2002 ident: pbio-0050116-b013 article-title: A test of metabolically efficient coding in the retina. publication-title: Network doi: 10.1088/0954-898X_13_4_306 – volume: 413 start-page: 186 year: 2001 ident: pbio-0050116-b027 article-title: Visual transduction in Drosophila. publication-title: Nature doi: 10.1038/35093002 – volume: 146 start-page: 277 year: 1989 ident: pbio-0050116-b074 article-title: Principles of auditory information-processing derived from neuroethology. publication-title: J Exp Biol doi: 10.1242/jeb.146.1.277 – ident: pbio-0050116-b045 doi: 10.1007/978-3-642-74082-4_16 – volume: 43 start-page: 609 year: 2004 ident: pbio-0050116-b012 article-title: Synaptic connectivity and neuronal morphology: Two sides of the same coin. publication-title: Neuron – volume: 21 start-page: 1133 year: 2001 ident: pbio-0050116-b021 article-title: An energy budget for signalling in the grey matter of the brain. publication-title: J Cereb Blood Flow Metab doi: 10.1097/00004647-200110000-00001 – volume: 171 start-page: 157 year: 1992 ident: pbio-0050116-b047 article-title: Theoretical predictions of spatiotemporal receptive-fields of fly LMCs, and experimental validation. publication-title: J Comp Physiol A doi: 10.1007/BF00188924 – volume: 37 start-page: 10 year: 1949 ident: pbio-0050116-b038 article-title: Communication in the presence of noise. publication-title: Proc Inst Radio Eng – ident: pbio-0050116-b073 doi: 10.7551/mitpress/7131.003.0022 – volume: 18 start-page: 522 year: 1995 ident: pbio-0050116-b010 article-title: Neural component placement. publication-title: Trends Neurosci doi: 10.1016/0166-2236(95)98373-7 – volume: 180 start-page: 113 year: 1997 ident: pbio-0050116-b086 article-title: Na+/K+ pump activity in photoreceptors of the blowfly Calliphora: A model analysis based on membrane potential measurements. publication-title: J Comp Physiol A doi: 10.1007/s003590050032 – volume: 10 start-page: 1601 year: 1998 ident: pbio-0050116-b015 article-title: Analog versus digital: Extrapolating from electronics to neurobiology. publication-title: Neural Comput doi: 10.1162/089976698300017052 – volume: 11 start-page: 1221 year: 1994 ident: pbio-0050116-b082 article-title: A method for determining photoreceptor signal-to-noise ratio in the time and frequency domains with a pseudorandom stimulus. publication-title: Vis Neurosci doi: 10.1017/S095252380000701X – volume: 22 start-page: 153 year: 1999 ident: pbio-0050116-b075 article-title: Fifty years of a command neuron: The neurobiology of escape behaviour in the crayfish. publication-title: Trends Neurosci doi: 10.1016/S0166-2236(98)01340-X – volume: 34 start-page: 42 year: 2000 ident: pbio-0050116-b023 article-title: CNS energy metabolism as related to function. publication-title: Brain Res Rev doi: 10.1016/S0165-0173(00)00038-2 – volume: 13 start-page: 799 year: 2001 ident: pbio-0050116-b018 article-title: Metabolically efficient information processing. publication-title: Neural Comp doi: 10.1162/089976601300014358 – volume: 127 start-page: 495 year: 2006 ident: pbio-0050116-b065 article-title: Feedback network controls photoreceptor output at the layer of first visual synapses in Drosophila. publication-title: J Gen Physiol doi: 10.1085/jgp.200509470 – volume: 15 start-page: 122 year: 1992 ident: pbio-0050116-b011 article-title: Axonal trees and cortical architecture. publication-title: Trends Neurosci doi: 10.1016/0166-2236(92)90352-9 – volume: 11 start-page: 1 year: 1999 ident: pbio-0050116-b077 article-title: Evolution of time coding systems. publication-title: Neural Comput doi: 10.1162/089976699300016773 – ident: pbio-0050116-b024 – volume: 104 start-page: 593 year: 1994 ident: pbio-0050116-b057 article-title: Contrast gain, signal-to-noise ratio, and linearity in light-adapted blowfly photoreceptors. publication-title: J Gen Physiol doi: 10.1085/jgp.104.3.593 – volume: 43 start-page: R1376 year: 1998 ident: pbio-0050116-b042 article-title: Mitochondrial oxidative phosphorylation thermodynamic efficiencies reflect physiological organ roles. publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 22 start-page: 4746 year: 2002 ident: pbio-0050116-b067 article-title: Energy-efficient neuronal computation via quantal synaptic failures. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-11-04746.2002 – volume: 421 start-page: 630 year: 2003 ident: pbio-0050116-b032 article-title: The contribution of Shaker K+ channels to the information capacity of Drosophila photoreceptors. publication-title: Nature doi: 10.1038/nature01384 – volume: 191 start-page: 75 year: 2005 ident: pbio-0050116-b053 article-title: Light dependence of oxygen consumption by blowfly eyes recorded with a magnetic diver balance. publication-title: J Comp Physiol A doi: 10.1007/s00359-004-0571-y – volume: 74 start-page: 470 year: 1995 ident: pbio-0050116-b066 article-title: Tonic transmitter release in a graded potential synapse. publication-title: J Neurophysiol doi: 10.1152/jn.1995.74.1.470 – ident: pbio-0050116-b049 – volume: 36 start-page: 689 year: 2002 ident: pbio-0050116-b062 article-title: Molecular basis of amplification in Drosophila phototranduction: Roles for G protein, phospholipase C, and diacylglycerol kinase. publication-title: Neuron doi: 10.1016/S0896-6273(02)01048-6 – volume: 18 start-page: 17 year: 1995 ident: pbio-0050116-b059 article-title: Visual ecology and voltage-gated ion channels in insect photoreceptors. publication-title: Trends Neurosci doi: 10.1016/0166-2236(95)93945-T – volume: 8 start-page: 531 year: 1996 ident: pbio-0050116-b016 article-title: Energy-efficient neural codes. publication-title: Neural Comput doi: 10.1162/neco.1996.8.3.531 – volume: 63 start-page: 125 year: 2004 ident: pbio-0050116-b079 article-title: Reduction of brain and sense organs in the fossil insular bovid Myotragus. publication-title: Brain Behav Evol doi: 10.1159/000076239 – volume: 15 start-page: R624 year: 2005 ident: pbio-0050116-b007 article-title: Brain evolution: Getting better all the time? publication-title: Curr Biol doi: 10.1016/j.cub.2005.08.007 – volume: 301 start-page: 1870 year: 2003 ident: pbio-0050116-b020 article-title: Communication in neuronal networks. publication-title: Science doi: 10.1126/science.1089662 – volume: 245 start-page: 203 year: 1991 ident: pbio-0050116-b084 article-title: Whole-cell recordings of the light-induced current in dissociated Drosophila photoreceptors - evidence for feedback by calcium permeating the light-sensitive channels. publication-title: Proc R Soc Lond B Biol Sci doi: 10.1098/rspb.1991.0110 – volume: 231 start-page: 415 year: 1987 ident: pbio-0050116-b039 article-title: The intracellular pupil mechanism and photoreceptor signal:noise ratios in the fly Lucilia cuprina. publication-title: Proc R Soc Lond B Biol Sci doi: 10.1098/rspb.1987.0053 – volume: 431 start-page: 782 year: 2004 ident: pbio-0050116-b076 article-title: Cortical rewiring and information storage. publication-title: Nature doi: 10.1038/nature03012 – volume: 154 start-page: 84 year: 1993 ident: pbio-0050116-b029 article-title: Band-pass filtering by voltage-dependent membrane in an insect photoreceptor. publication-title: Neurosci Lett doi: 10.1016/0304-3940(93)90177-M – volume: 122 start-page: 191 year: 2003 ident: pbio-0050116-b051 article-title: The rate of information transfer of naturalistic stimulation by graded potentials. publication-title: J Gen Physiol doi: 10.1085/jgp.200308824 – volume: 122 start-page: 189 year: 1977 ident: pbio-0050116-b081 article-title: Single photon signals and transduction in an insect eye. publication-title: J Comp Physiol doi: 10.1007/BF00611889 – volume: 328 start-page: 313 year: 1993 ident: pbio-0050116-b009 article-title: Visual system of a naturally microphthalmic mammal - the blind mole rat, Spalax ehrenbergi. publication-title: J Comp Neurol doi: 10.1002/cne.903280302 – volume: 172 start-page: 593 year: 1993 ident: pbio-0050116-b060 article-title: Fast and slow photoreceptors - a comparative study of the functional diversity of coding and conductances in the diptera. publication-title: J Comp Physiol A doi: 10.1007/BF00213682 – volume: 206 start-page: 3963 year: 2003 ident: pbio-0050116-b044 article-title: Neural images of pursuit targets in the photoreceptor arrays of male and female houseflies, Musca domestica. publication-title: J Exp Biol doi: 10.1242/jeb.00600 – volume: 86 start-page: 950 year: 2001 ident: pbio-0050116-b030 article-title: Variations in photoreceptor response dynamics across the fly retina. publication-title: J Neurophysiol doi: 10.1152/jn.2001.86.2.950 – volume: 36c start-page: 910 year: 1981 ident: pbio-0050116-b046 article-title: A simple coding procedure enhances a neuron's information capacity. publication-title: Z Naturforsch – volume: 6 start-page: 841 year: 2005 ident: pbio-0050116-b070 article-title: Neuroenergetics and the kinetic design of excitatory synapses. publication-title: Nat Rev Neurosci doi: 10.1038/nrn1784 – volume: 1 start-page: S58 year: 2003 ident: pbio-0050116-b014 article-title: Shaker K+-channels are predicted to reduce the metabolic cost of neural information in Drosophila photoreceptors. publication-title: Proc Biol Sci – volume: 162 start-page: 285 year: 1988 ident: pbio-0050116-b085 article-title: Light activation of the sodium-pump in blowfly photoreceptors. publication-title: J Comp Physiol A doi: 10.1007/BF00606117 – volume: 98 start-page: 12550 year: 2001 ident: pbio-0050116-b061 article-title: Metabolic rate and environmental productivity: Well-provisioned animals evolved to run and idle fast. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.221456698 – volume: 16 start-page: 1428 year: 2006 ident: pbio-0050116-b071 article-title: How much the eye tells the brain. publication-title: Curr Biol doi: 10.1016/j.cub.2006.05.056 – volume: 250 start-page: 83 year: 1992 ident: pbio-0050116-b064 article-title: Presynaptic enhancement of signal transients in photoreceptor terminals in the compound eye. publication-title: Proc R Soc Lond B Biol Sci doi: 10.1098/rspb.1992.0134 – volume: 36 start-page: 1529 year: 1996 ident: pbio-0050116-b058 article-title: Matched filtering by a photoreceptor membrane. publication-title: Vision Res doi: 10.1016/0042-6989(95)00242-1 – volume: 88 start-page: 1 year: 2005 ident: pbio-0050116-b043 article-title: The efficiency of muscle contraction. publication-title: Prog Biophys Mol Biol doi: 10.1016/j.pbiomolbio.2003.11.014 – volume: 40 start-page: 13 year: 2000 ident: pbio-0050116-b055 article-title: Photoreceptor performance and the co-ordination of achromatic and chromatic inputs in the fly visual system. publication-title: Vision Res doi: 10.1016/S0042-6989(99)00171-6 – volume: 13 start-page: 493 year: 2003 ident: pbio-0050116-b026 article-title: The cost of cortical computation. publication-title: Curr Biol doi: 10.1016/S0960-9822(03)00135-0 – volume: 14 start-page: 1309 year: 2004 ident: pbio-0050116-b069 article-title: Nocturnal vision and landmark orientation in a tropical halictid bee. publication-title: Curr Biol doi: 10.1016/j.cub.2004.07.057 – volume: 65 start-page: 735 year: 2003 ident: pbio-0050116-b041 article-title: Regulation of TRP channels via lipid second messengers. publication-title: Annu Rev Physiol doi: 10.1146/annurev.physiol.65.092101.142505 – volume: 89 start-page: 1052 year: 2001 ident: pbio-0050116-b056 article-title: Capacity and energy cost of information in biological and silicon photoreceptors. publication-title: Proc IEEE doi: 10.1109/5.939817 – ident: pbio-0050116-b036 – volume: 299 start-page: 818 year: 1982 ident: pbio-0050116-b003 article-title: Female choice selects for extreme tail length in a widowbird. publication-title: Nature doi: 10.1038/299818a0 – volume: 65 start-page: 73 year: 2005 ident: pbio-0050116-b078 article-title: On the evolutionary significance of encephalization in some eutherian mammals: Effects of adaptive radiation, domestication and feralization. publication-title: Brain Behav Evol doi: 10.1159/000082979 – ident: pbio-0050116-b001 – volume: 12 start-page: 395 year: 2001 ident: pbio-0050116-b072 article-title: Optimal nonlinear codes for the perception of natural colours. publication-title: Network doi: 10.1080/net.12.3.395.407 – ident: pbio-0050116-b040 – volume: 51 start-page: 59 year: 1998 ident: pbio-0050116-b008 article-title: Comparative morphometry of mammalian central auditory systems: Variation in nuclei and form of the ascending system. publication-title: Brain Behav Evol doi: 10.1159/000006530 – volume: 440 start-page: 635 year: 1991 ident: pbio-0050116-b028 article-title: Voltage-activated potassium channels in blowfly photoreceptors and their role in light adaptation. publication-title: J Physiol doi: 10.1113/jphysiol.1991.sp018729 – volume: 379 start-page: 642 year: 1996 ident: pbio-0050116-b033 article-title: The rate of information-transfer at graded-potential synapses. publication-title: Nature doi: 10.1038/379642a0 – volume: 361 start-page: 628 year: 1993 ident: pbio-0050116-b004 article-title: Aerodynamics and the evolution of long tails in birds. publication-title: Nature doi: 10.1038/361628a0 – volume: 26 start-page: 2652 year: 2006 ident: pbio-0050116-b037 article-title: Robustness of neural coding in Drosophila photoreceptors in the absence of slow delayed rectifier K+ channels. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3316-05.2006 – volume: 217 start-page: 287 year: 1983 ident: pbio-0050116-b054 article-title: Transduction as a limitation on compound eye function and design. publication-title: Proc R Soc Lond B Biol Sci doi: 10.1098/rspb.1983.0011 – ident: pbio-0050116-b068 – volume: 117 start-page: 3 year: 2001 ident: pbio-0050116-b031 article-title: Light adaptation in Drosophila photoreceptors: I. Response dynamics and signalling at 25 °C. publication-title: J Gen Physiol doi: 10.1085/jgp.117.1.3 – volume: 271 start-page: 2423 year: 2004 ident: pbio-0050116-b080 article-title: Does hippocampal size correlate with the degree of caching specialization? publication-title: Proc R Soc Lond B Biol Sci doi: 10.1098/rspb.2004.2912 – volume: 13 start-page: 165 year: 1994 ident: pbio-0050116-b048 article-title: Matching coding, circuits, cells, and molecules to signals - general principles of retinal design in the fly's eye. publication-title: Prog Retinal Eye Res doi: 10.1016/1350-9462(94)90009-4 – volume: 14 start-page: 1323 year: 2002 ident: pbio-0050116-b035 article-title: Energy efficient coding with discrete stochastic events. publication-title: Neural Comput doi: 10.1162/089976602753712963 – ident: pbio-0050116-b025 doi: 10.1017/CBO9780511897085.006 – volume: 1 start-page: 7 year: 2000 ident: pbio-0050116-b005 article-title: Why is brain size so important: Design problems and solutions as neocortex gets bigger or smaller. publication-title: Brain Mind doi: 10.1023/A:1010028405318 – reference: 11255570 - Neural Comput. 2001 Apr;13(4):799-815 – reference: 1374968 - Trends Neurosci. 1992 Apr;15(4):122-6 – reference: 16636201 - J Gen Physiol. 2006 May;127(5):495-510 – reference: 12441057 - Neuron. 2002 Nov 14;36(4):689-701 – reference: 14555737 - J Exp Biol. 2003 Nov;206(Pt 22):3963-77 – reference: 11557987 - Nature. 2001 Sep 13;413(6852):186-93 – reference: 12952637 - Proc Biol Sci. 2003 Aug 7;270 Suppl 1:S58-61 – reference: 9612405 - Am J Physiol. 1998 May;274(5 Pt 2):R1376-83 – reference: 1804980 - J Physiol. 1991;440:635-57 – reference: 12560473 - Annu Rev Physiol. 2003;65:735-59 – reference: 12860926 - J Gen Physiol. 2003 Aug;122(2):191-206 – reference: 11598490 - J Cereb Blood Flow Metab. 2001 Oct;21(10):1133-45 – reference: 7807062 - J Gen Physiol. 1994 Sep;104(3):593-621 – reference: 15483599 - Nature. 2004 Oct 14;431(7010):782-8 – reference: 12646132 - Curr Biol. 2003 Mar 18;13(6):493-7 – reference: 11606744 - Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12550-4 – reference: 15339643 - Neuron. 2004 Sep 2;43(5):609-17 – reference: 2892201 - Proc R Soc Lond B Biol Sci. 1987 Sep 22;231(1265):415-35 – reference: 15296747 - Curr Biol. 2004 Aug 10;14(15):1309-18 – reference: 12020449 - Neural Comput. 2002 Jun;14(6):1323-46 – reference: 8759456 - Vision Res. 1996 Jun;36(11):1529-41 – reference: 12040082 - J Neurosci. 2002 Jun 1;22(11):4746-55 – reference: 9447735 - Proc Biol Sci. 1997 Dec 22;264(1389):1775-83 – reference: 11563536 - Network. 2001 Aug;12(3):395-407 – reference: 8638292 - Trends Neurosci. 1995 Dec;18(12):522-7 – reference: 10203852 - Trends Neurosci. 1999 Apr;22(4):153-61 – reference: 9950719 - Neural Comput. 1999 Jan 1;11(1):1-20 – reference: 12664095 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Mar;189(3):189-202 – reference: 7841128 - Vis Neurosci. 1994 Nov-Dec;11(6):1221-5 – reference: 7472349 - J Neurophysiol. 1995 Jul;74(1):470-3 – reference: 10768038 - Vision Res. 2000;40(1):13-31 – reference: 14726622 - Brain Behav Evol. 2004;63(3):125-40 – reference: 11086186 - Brain Res Brain Res Rev. 2000 Nov;34(1-2):42-68 – reference: 12571596 - Nature. 2003 Feb 6;421(6923):630-4 – reference: 11851374 - J Theor Biol. 2002 Feb 21;214(4):657-64 – reference: 16321420 - Vision Res. 2006 Mar;46(5):622-35 – reference: 7535485 - Trends Neurosci. 1995 Jan;18(1):17-21 – reference: 16525044 - J Neurosci. 2006 Mar 8;26(10):2652-60 – reference: 15590591 - Proc Biol Sci. 2004 Dec 7;271(1556):2423-9 – reference: 7303823 - Z Naturforsch C. 1981 Sep-Oct;36(9-10):910-2 – reference: 11495963 - J Neurophysiol. 2001 Aug;86(2):950-60 – reference: 14512617 - Science. 2003 Sep 26;301(5641):1870-4 – reference: 12463343 - Network. 2002 Nov;13(4):531-52 – reference: 15558288 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Jan;191(1):75-84 – reference: 2689566 - J Exp Biol. 1989 Sep;146:277-86 – reference: 8361652 - Neurosci Lett. 1993 May 14;154(1-2):84-8 – reference: 11134228 - J Gen Physiol. 2001 Jan;117(1):3-25 – reference: 8868566 - Neural Comput. 1996 Apr 1;8(3):531-43 – reference: 9744889 - Neural Comput. 1998 Oct 1;10(7):1601-38 – reference: 10195106 - Nat Neurosci. 1998 May;1(1):36-41 – reference: 9491274 - Brain Behav Evol. 1998;51(2):59-89 – reference: 16261178 - Nat Rev Neurosci. 2005 Nov;6(11):841-9 – reference: 15561300 - Prog Biophys Mol Biol. 2005 May;88(1):1-58 – reference: 15627722 - Brain Behav Evol. 2005;65(2):73-108 – reference: 1281310 - Pflugers Arch. 1992 Aug;421(5):469-72 – reference: 16111932 - Curr Biol. 2005 Aug 23;15(16):R624-6 – reference: 8440785 - J Comp Neurol. 1993 Feb 15;328(3):313-50 – reference: 16860742 - Curr Biol. 2006 Jul 25;16(14):1428-34 |
SSID | ssj0022928 |
Score | 2.3480241 |
Snippet | Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how... Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e116 |
SubjectTerms | Animals Biophysics Brain research Calliphora vicina Calliphoridae Computational Biology Costs Drosophila Drosophila melanogaster Electrodes Energy consumption Energy Metabolism Evolution Evolutionary Biology Light intensity Neural conduction Neurons Neurons - metabolism Neurons - physiology Neuroscience Noise Photoreception Photoreceptor Cells, Invertebrate - physiology Physiology Sarcophaga carnaria |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hSEhcEJRHAy1YCInTtnb24d1jQUQFiSIBRb2tvA_TSKk3qpND_z0z9ibEqFE5cM1-dpKZnd1v7NlvCHnrvBXMTySFIMwpDzmnmjlLvcsFBJ_23Hdqn2fy9Jx_vhAXW62-sCaslwfuDXdc1ZrnXllZOMZZrqwPwBKs4JWyikmLqy_seetkKqVaE911VUWpGQjnkqVDc6wsjpOPjhZ2Fo9Q_qTAXudbm1Kn3b9ZoUeLeWxvo59_V1FubUvTR-Rh4pPZSf8_HpN7odkj9_sOkzdPyJfp_CZbXEbIrAMWsMTrNvPhCkkhakRkoTv6R5N8KjopgwEfaKzrNps1Gepdwv1dxD3uKTmffvzx4ZSmDgrUKcGXlGkRIKGykIf6SS68ZFXlfM0LcFDFAqYvrgAHsVLLOtcsBIHvLYGzWHCgUuwZGTWxCfskqwIQCy9yh08fa2u1nISqKIPNy7oIvBwTtjahcUleHLtczE33zqyENKO3iEHDm2T4MaGbqxa9vMYd-PfonQ0WxbG7D2DKmDRlzF1TZkzeoG8Nyl80WF_zq1q1rfn09ac5KaQAwqwKtgv0_exfQN8GoHcJVEewiKvSwQewK2pvDZAHAyREuhsM7-NkXBumNcDV8Jy01ByuXE_Q24dfb4bxplhY14S4AoyWCkuMdyOA23DgkHI3An4b0G4J3_K8j4g_rixROEvoMSkHsTLw33CkmV12IueQ9ypI1V_8D4e_JA_6R_JYcHVARsvrVTgELrm0r7pl4zcaXHBK priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegCImXie8VBkQIiSdv8fyR5AmNsWogsSFgaG9W_JGtUolL0z7sv-cucdsFrcBrfU6TO5_vzr77HSFvrDOSu31FQQlTKnwqaMGtoc6mEpSvcMK1aJ8n6vhMfDqX5_HArYlplcs9sd2oXbB4Rr4HdglrQlUh3k1_UewahbersYXGbXIHocsw-MrO1wEXTGlL4aSAN2AZj6VzPGN7UVK7UzMOuwiCwrDj-TXT1CL4r_bpwXQSmpuc0D9zKa8Zp9F9shW9yuSgWwYPyC1fPyR3uz6TV4_I59HkKvlyGSC-9pjGEmZN8sH_RNcQkSKSo7YAkMbSJBRVAjbMeXpaVU0yrhOE8IDnHwa0dI_J2ejo--ExjX0UqM2lmFNeSA9hlYFo1AELneJlaV0lGIip5B6DGMtATDwrVJUW3HuJt5fguRgQY57zJ2RQh9pvk6T04F44mVo8g6yMKdS-L1nmTZpVzItsSPiShdpGkHHsdTHR7c1ZBsFGxxGNjNeR8UNCV7OmHcjGP-jfo3RWtAiR3f4QZhc6apwuq0KkLjeKWS54mhvnwb00UpS5ybkyQ_IaZasRBKPGLJuLctE0-uPpD33AlAS3OWd8E9G3k_8h-tojehuJqgAcsWUsfwC-IgJXj3KnRwn6bnvD27gYl4xp9FozYOZygd48_Go1jA_F9LrahwXQFCrHROPNFODhCPAk1WYKeDdwvhX8y9NOI9aizBA-SxZDkvV0pSe__kg9vmyhziH6zSFgf_b3D3tO7nVH7phQtUMG89nCvwBfcW5ethvCb9KEZrY priority: 102 providerName: ProQuest |
Title | Fly Photoreceptors Demonstrate Energy-Information Trade-Offs in Neural Coding |
URI | https://www.ncbi.nlm.nih.gov/pubmed/17373859 https://www.proquest.com/docview/1292205694 https://www.proquest.com/docview/19684953 https://www.proquest.com/docview/21242236 https://www.proquest.com/docview/68151464 https://pubmed.ncbi.nlm.nih.gov/PMC1828148 https://doaj.org/article/af940d8b61c34308bde085b54a8b836b http://dx.doi.org/10.1371/journal.pbio.0050116 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2Tki8IL5XGCVCSDylSmrHdh4Q2karAVo3BkV9i-KPbJVKUppWov89d4lbFtQKxEsf6rNb3fns39nn3xHyWhsVUdPjPjhh4DMbMD-mWvlGBxE4X2yYqdg-h_xsxD6Oo_EeWddsdQost4Z2WE9qNJ92f_5YvQOHf1tVbRDhulN3piZFFwlNwpDvkwPYmwQWczhnm3uFXi-uqq0iBQ24uaDuMd2uUZBSVCD3D1KZ3tq3Knr_zSLemk2LchtC_TPR8tbONbhP7jnI6R3Xc-QB2bP5Q3KnLkK5ekTOB9OVd3lTQPBtMcelmJfee_sdcSPSSHj96nWg794toR092OCM9S-yrPQmuYf8HjD-aYHb4GMyGvS_np75rsiCr2XEFj6NIwsxl4JQ1fSCyHCaptpkLAQbptRihKNDsCEVMc-CmFob4dUmwBoFNpaSPiGtvMjtIfFSC9jDRIHGA8pMqZj3bBoKqwKRhZaJNqFrFSbaMZBjIYxpUl2rCYhEao0kaIPE2aBN_E2vWc3A8Rf5E7TORhb5s6svivl14twxSbOYBUYqHmrKaCCVsYA9VcRSqSTlqk1eoW0TZMjIMQXnOl2WZfLh4ltyHPIIMLUM6S6hL8N_EbpqCL1xQlkBGtGpexsBekV6robkUUMSFgPdaD7EybhWTJkAnMOn1Dxm0HM9Qbc3v9w046CYe5fbYgkyMZeYhbxbAuAPA5jJd0vAfwNkzuFXntYe8duUzr_aRDR8pWG_Zks-ual40CE0lhDNP_vvns_J3fqoHhOxjkhrMV_aF4AxF6pD9sVYdMjBSX94edWpTmrg89Nn2akWlF-Nm34- |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpFCF4Q3ysMFiEQT9mS2nGcB4TGtqplW4dgm_pm4o9slUpSmlaof4rfyF0-2gVtwMte64tr34fvzr4PQt5oowJqOtwFIfRcZj3mRlQr12gvAOGLDDNFtc8B752yT8NguEZ-1bkwGFZZn4nFQW0yjXfk26CXMCeUR-zD5IeLXaPwdbVuoVGyxYFd_ASXLX_f3wP6vu10uvsnuz236irgahGwmUujwIKTocA3MzCh4TSOtUmYD4uOqUWTXvuwaBpGPAF_39oA3_JAjyvYlBAU5r1FboPi9TCEMByuHDxYYpF6FzDYsR_SKlWPhv52xRlbEzXKtrDoio8d1i-pwqJjwFIvtCbjLL_K6P0zdvOSMuw-IPcrK9bZKdnuIVmz6SNyp-xruXhMjrrjhfP5IgN_3mLYTDbNnT37HU1RrEzh7BcJh26VCoWs4YDONNY9TpLcGaUOlgyB-Xcz1KxPyOmNYPgpaaVZateJE1swZ0zgabzzTJSKeMfGfmiVFya-ZWGb0BqFUldFzbG3xlgWL3UhODclRiQiXlaIbxN3-dWkLOrxD_iPSJ0lLJbkLn7IpueyknAZJxHzjFDc15RRTyhjwZxVAYuFEpSrNnmNtJVYdCPFqJ7zeJ7nsn98Jnd8HoCZLnx6HdDXwf8AfWkAvauAkgwwouMq3QLwihW_GpAbDUg4X3RjeB2ZsUZMLleSCF_WDHr18OZyGCfFcL7UZnOAibjAwObrIcCiYmC58ushYG1g7HP4l2elRKxIGWK5riBqk7AhKw36NUfS0UVRWh28beEz8fzvG9skd3snR4fysD84eEHuldf9GMy1QVqz6dy-BDt1pl4Vh4NDvt30afQbuS2hqQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BpFIF4Q9xUGixCIp6xJ7TjJA0JjXbUx6CZgU99MfMlWqSSlaYX6a3wd5yROu6AVeNlrfOLEx-dqnwshr5SWAdVd7gITei4zHnNjqqSrlRcA88Wa6bLa54AfnLIPw2C4QX7VuTAYVlnLxFJQ61zhGXkH9BLmhPKYdVIbFnHS67-b_HCxgxTetNbtNCoSOTKLn-C-FW8Pe7DXr7vd_v7XvQPXdhhwVRSwmUvjwIDDIcFP0zC55jRJlE6ZDwtIqEHzXvmwABrGPAXf35gA7_VAp0tYYBRRmPcGuRlSUJvAS-Fw5ezB75ZpeAGD1fshtWl7NPQ7lkp2JnKU72ABFh-7rV9Si2X3gKWOaE3GeXGVAfxnHOclxdi_R-5ai9bZrUjwPtkw2QNyq-pxuXhIPvXHC-fkIgff3mAITT4tnJ75jmYpVqlw9svkQ9emRSGZOKA_tXGP07RwRpmD5UNg_r0ctewjcnotGH5MWlmemU3iJAZMGx14Cs8_Uylj3jWJHxrphalvWNgmtEahULbAOfbZGIvy1i4ER6fCiEDEC4v4NnGXb02qAh__gH-Pu7OExfLc5YN8ei4st4skjZmnI8l9RRn1IqkNmLYyYEkkI8plm7zEvRVYgCNDUj5P5kUhDo_PxK7PAzDZI5-uA_oy-B-gzw2gNxYozQEjKrGpF4BXrP7VgNxqQIKsUY3hTSTGGjGFWHElvFkT6NXD28thnBRD-zKTzwEm5hEGOa-HAOuKgRXL10PAv4Hhz-ErTyqOWG1liKW7grhNwgavNPavOZKNLsoy6-B5Rz6Lnv59YdvkNsgh8fFwcPSM3KlO_jGua4u0ZtO5eQ4m60y-KGWDQ75dtzD6DZU9pd8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fly+Photoreceptors+Demonstrate+Energy-Information+Trade-Offs+in+Neural+Coding&rft.jtitle=PLoS+biology&rft.au=Niven%2C+Jeremy+E&rft.au=Anderson%2C+John+C&rft.au=Laughlin%2C+Simon+B&rft.date=2007-04-01&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.eissn=1545-7885&rft.volume=5&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pbio.0050116&rft_id=info%3Apmid%2F17373859&rft.externalDocID=PMC1828148 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon |