Cryptographical Applications of Linear Transformations and Pell Equations: An R-Based Approach

Objective: This article’s main aim is to encrypt and decrypt the message to be sent using matrices of the linear transformation and the fundamental solution of the Pell equation. R Programming is provided at the end of the article. Methods: The encryption and decryption algorithms were created using...

Full description

Saved in:
Bibliographic Details
Published inIndian journal of science and technology Vol. 17; no. 47; pp. 4959 - 4965
Main Authors Kaleeswari, K, Kannan, J, Deepshika, A, Mahalakshmi, M
Format Journal Article
LanguageEnglish
Published 28.12.2024
Online AccessGet full text

Cover

Loading…
Abstract Objective: This article’s main aim is to encrypt and decrypt the message to be sent using matrices of the linear transformation and the fundamental solution of the Pell equation. R Programming is provided at the end of the article. Methods: The encryption and decryption algorithms were created using the fundamental solutions of the Pell equation 2 − 2 = 1, where p is a positive integer which is not a perfect square, and using the matrices of the linear transformations. The message to be sent is converted into block matrices of order 2. Based on the number of blocks, the prime is determined. Findings: Here, we gave two examples: manually for the sentence ”MATHS IS A UNIVERSAL SUBJECT” and using R programming for the word ”PIE.” Novelty: The concept of encrypting and decrypting a message or word already exists. Many algorithms have been created in different ways. But, in this article, we created the algorithms connecting the matrix of linear transformations and the fundamental solution of Pell equations. 2020 MSC Classification: 94A60, 15A04, 11C20. Keywords: Cryptography; Linear transformation; Pell equation; Encryption; Decryption
AbstractList Objective: This article’s main aim is to encrypt and decrypt the message to be sent using matrices of the linear transformation and the fundamental solution of the Pell equation. R Programming is provided at the end of the article. Methods: The encryption and decryption algorithms were created using the fundamental solutions of the Pell equation 2 − 2 = 1, where p is a positive integer which is not a perfect square, and using the matrices of the linear transformations. The message to be sent is converted into block matrices of order 2. Based on the number of blocks, the prime is determined. Findings: Here, we gave two examples: manually for the sentence ”MATHS IS A UNIVERSAL SUBJECT” and using R programming for the word ”PIE.” Novelty: The concept of encrypting and decrypting a message or word already exists. Many algorithms have been created in different ways. But, in this article, we created the algorithms connecting the matrix of linear transformations and the fundamental solution of Pell equations. 2020 MSC Classification: 94A60, 15A04, 11C20. Keywords: Cryptography; Linear transformation; Pell equation; Encryption; Decryption
Author Kaleeswari, K
Kannan, J
Mahalakshmi, M
Deepshika, A
Author_xml – sequence: 1
  givenname: K
  surname: Kaleeswari
  fullname: Kaleeswari, K
– sequence: 2
  givenname: J
  surname: Kannan
  fullname: Kannan, J
– sequence: 3
  givenname: A
  surname: Deepshika
  fullname: Deepshika, A
– sequence: 4
  givenname: M
  surname: Mahalakshmi
  fullname: Mahalakshmi, M
BookMark eNotkM1OAjEcxBuDiYg8gLe-wMK_u-226w0JKoZEo3t2009Zs7Rriya8veAyl5nMJHP4XaORD94idEtgRjgVbL5-fq_nv4S3lM8KTugFGkPFacZKykbnXApaXqFpSl9wVJEL4DBGH8t46PfhM8p-22rZ4UXfd8ewb4NPODi8ab2VEddR-uRC3J0X6Q1-tV2HV98_Q3WHFx6_ZfcyWXN6iUHq7Q26dLJLdnr2CaofVvXyKdu8PK6Xi02mBaOZo4YbWxJluJJCMJebsiLCKqqUhRIMGFWB0rkpnCOOVcxqzS3kAEYyAsUEkeFWx5BStK7pY7uT8dAQaP4RNSdEzYCoOSEq_gDqJl4W
ContentType Journal Article
CorporateAuthor Ph.D. Research Scholar, Department of Mathematics, Ayya Nadar Janaki Ammal College (Autonomous, affiliated to Madurai Kamaraj University), Sivakasi, 626124, Tamil Nadu, India
CorporateAuthor_xml – name: Ph.D. Research Scholar, Department of Mathematics, Ayya Nadar Janaki Ammal College (Autonomous, affiliated to Madurai Kamaraj University), Sivakasi, 626124, Tamil Nadu, India
DBID AAYXX
CITATION
DOI 10.17485/IJST/v17i47.3714
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 0974-5645
EndPage 4965
ExternalDocumentID 10_17485_IJST_v17i47_3714
GroupedDBID 29I
2WC
8R4
8R5
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
FRP
GX1
OK1
OVT
Q2X
RNS
TR2
ID FETCH-LOGICAL-c854-f4d7de61bd7ba885f2d6918eb4bbe060d0db90bc2d3ff1f595ecc7e0200da5103
ISSN 0974-6846
IngestDate Tue Jul 01 03:00:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 47
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c854-f4d7de61bd7ba885f2d6918eb4bbe060d0db90bc2d3ff1f595ecc7e0200da5103
OpenAccessLink https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2024/Issue-47/IJST-2024-3714.pdf
PageCount 7
ParticipantIDs crossref_primary_10_17485_IJST_v17i47_3714
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-28
PublicationDateYYYYMMDD 2024-12-28
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-28
  day: 28
PublicationDecade 2020
PublicationTitle Indian journal of science and technology
PublicationYear 2024
SSID ssj0000328070
Score 2.333576
Snippet Objective: This article’s main aim is to encrypt and decrypt the message to be sent using matrices of the linear transformation and the fundamental solution of...
SourceID crossref
SourceType Index Database
StartPage 4959
Title Cryptographical Applications of Linear Transformations and Pell Equations: An R-Based Approach
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9sILYhsIxkV-4GEgZXNSJ3Z5G9vQLhpCqEh9IrITW622ZaXpQNuv4adyTuymbjekjZe0cqujNufLudnnO4S8K-JYd4VlkTQqi7gFGCuRqIjrUpRdkyrXIXf6JTv8zo8H6aDT-ROcWrqa6u3i5s6-kv_RKqyBXrFL9gGabYXCArwH_cIVNAzXe-l4b3I9njrOaXevg93opvgPIaSaOALztkvRkTJ_xZrdwU9H9F378uC36BM4tRLlNI1WYeR6VDUkBgHTxKwjqDmDeatCfwKex9S_1WRx3PWJqvxE5LZAvW_MuB6OztRCafVUDdW5OquHF6N50daXJ5KGBDEJLCqDhCXKpK8zmvka0tgsmGERwM2xcHqjCjlcL3DQyHB_p_EXXCJRxhGYNHj5FYsRF9vISDj3dbP9_SUX2B5MxJQIxeQoJHcichTxiKwmkIg07eSDuK3iIRshayYStv_Tb52jlB2UshP8kCD4CaKY_lPyxKcfdNdhaY10TLVO1ryBr-mWZyF_v0F-LIGLhuCil5Y6cNElcFFAA0Vw0RZcH-luRT206Axaz0j_80F_7zDywziiQqY8shyeXZPF8AhrJWVqkzLrxdJorrVhGStZqXtMF0nZtTa2aS8F2yAMJCOsVMja-JysVJeVeUGohI-kNTrFXXmIF3VW4JQDXsiEKybFS_JhdpPysaNcyf-pl82HfPkVeTyH6GuyMp1cmTcQU07120atfwF-iXbH
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cryptographical+Applications+of+Linear+Transformations+and+Pell+Equations%3A+An+R-Based+Approach&rft.jtitle=Indian+journal+of+science+and+technology&rft.au=Kaleeswari%2C+K&rft.au=Kannan%2C+J&rft.au=Deepshika%2C+A&rft.au=Mahalakshmi%2C+M&rft.date=2024-12-28&rft.issn=0974-6846&rft.eissn=0974-5645&rft.volume=17&rft.issue=47&rft.spage=4959&rft.epage=4965&rft_id=info:doi/10.17485%2FIJST%2Fv17i47.3714&rft.externalDBID=n%2Fa&rft.externalDocID=10_17485_IJST_v17i47_3714
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0974-6846&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0974-6846&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0974-6846&client=summon