Facile Synthesis of Template‐Free SnS 2 with Different Morphologies and Excellent Gas‐Sensing Performance for NO 2 Gas‐Sensor Applications
Herein, SnS 2 particles with two different morphologies are synthesized using a template‐free one‐step hydrothermal method. Flower‐ and plate‐like SnS 2 are obtained using different solvents, ethyl alcohol, and deionized water, respectively, under the same synthesis conditions. The flower‐like SnS 2...
Saved in:
Published in | Physica status solidi. A, Applications and materials science Vol. 219; no. 20 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.10.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | Herein, SnS
2
particles with two different morphologies are synthesized using a template‐free one‐step hydrothermal method. Flower‐ and plate‐like SnS
2
are obtained using different solvents, ethyl alcohol, and deionized water, respectively, under the same synthesis conditions. The flower‐like SnS
2
had a larger surface area and higher concentration of sulfur vacancies than plate‐like SnS
2
. The effects of the specific surface area and the number of sulfur vacancies in the gas‐sensing materials are studied using the gas‐sensing characteristics of SnS
2
in the two morphologies. The gas sensitivities at 25 °C under 1 ppm NO
2
are 73.5 and 129.5 for flower‐ and plate‐like SnS
2
, respectively. Both the flower‐ and plate‐like SnS
2
gas sensors exhibited good gas selectivity for NO
2
against SO
2
, CO, and NH
3
at 25 °C. The response and recovery times are 540 and 1407 s for the flower‐like SnS
2
and 214 and 18 s for the plate‐like SnS
2
, respectively. It is confirmed that a large specific surface area and the number of sulfur vacancies adversely affected the response and recovery times. Therefore, the plate‐like gas sensor is expected to be a good candidate for NO
2
gas‐sensing applications at 27 °C. |
---|---|
AbstractList | Herein, SnS
2
particles with two different morphologies are synthesized using a template‐free one‐step hydrothermal method. Flower‐ and plate‐like SnS
2
are obtained using different solvents, ethyl alcohol, and deionized water, respectively, under the same synthesis conditions. The flower‐like SnS
2
had a larger surface area and higher concentration of sulfur vacancies than plate‐like SnS
2
. The effects of the specific surface area and the number of sulfur vacancies in the gas‐sensing materials are studied using the gas‐sensing characteristics of SnS
2
in the two morphologies. The gas sensitivities at 25 °C under 1 ppm NO
2
are 73.5 and 129.5 for flower‐ and plate‐like SnS
2
, respectively. Both the flower‐ and plate‐like SnS
2
gas sensors exhibited good gas selectivity for NO
2
against SO
2
, CO, and NH
3
at 25 °C. The response and recovery times are 540 and 1407 s for the flower‐like SnS
2
and 214 and 18 s for the plate‐like SnS
2
, respectively. It is confirmed that a large specific surface area and the number of sulfur vacancies adversely affected the response and recovery times. Therefore, the plate‐like gas sensor is expected to be a good candidate for NO
2
gas‐sensing applications at 27 °C. |
Author | Shin, Se-Hee Ro, Jae Chul Suh, Su-Jeong Park, Jong-Hwan Ahn, Byung-Wook |
Author_xml | – sequence: 1 givenname: Se-Hee surname: Shin fullname: Shin, Se-Hee organization: School of Advanced Materials Science and Engineering Sungkyunkwan University Suwon Gyeonggi-do 440-746 South Korea – sequence: 2 givenname: Jong-Hwan surname: Park fullname: Park, Jong-Hwan organization: School of Advanced Materials Science and Engineering Sungkyunkwan University Suwon Gyeonggi-do 440-746 South Korea – sequence: 3 givenname: Byung-Wook surname: Ahn fullname: Ahn, Byung-Wook organization: Department of Energy Science Sungkyunkwan University Suwon 16419 South Korea, Center for Integrated Nanostructure Physics Institute for Basic Science Sungkyunkwan University Suwon 16419 South Korea – sequence: 4 givenname: Jae Chul surname: Ro fullname: Ro, Jae Chul organization: School of Advanced Materials Science and Engineering Sungkyunkwan University Suwon Gyeonggi-do 440-746 South Korea – sequence: 5 givenname: Su-Jeong orcidid: 0000-0002-4950-8601 surname: Suh fullname: Suh, Su-Jeong organization: School of Advanced Materials Science and Engineering Sungkyunkwan University Suwon Gyeonggi-do 440-746 South Korea |
BookMark | eNpFkM1OAjEUhRuDiYBuXfcFBttOmZ8lQUATFBPYT8qdW6gp7aSdRNn5CDyjT-IQDa7uuefcexbfgPScd0jIPWcjzph4aGJUI8FEtxQivyJ9XmQiyVJe9i6asRsyiPGdMTmWOe-T01yBsUjXR9fuMZpIvaYbPDRWtfj9dZoH7EK3poJ-mHZPH43WGNC19MWHZu-t3xmMVLmazj4BrT1HCxW71zW6aNyOvmHQPhyUA6SdoK-rruz_pHMmTWMNqNZ4F2_JtVY24t3fHJLNfLaZPiXL1eJ5OlkmUMg8KaFmOkvzbQFaco6QgWQlAGMp5vW4ZFKB2OocatAgeckyjXXK82JbZ0oKlQ7J6LcWgo8xoK6aYA4qHCvOqjPO6oyzuuBMfwDJvnAX |
CitedBy_id | crossref_primary_10_1007_s13391_022_00389_x crossref_primary_10_1016_j_surfin_2024_103868 crossref_primary_10_3390_chemosensors11020132 |
Cites_doi | 10.1039/D0TA01688H 10.1039/C8RA08857H 10.1002/adfm.201600318 10.1021/acsami.6b14551 10.1002/admt.201901062 10.1039/C9NR02780G 10.1016/j.apcatb.2019.02.027 10.1016/j.ceramint.2020.03.051 10.7567/1347-4065/ab03c8 10.1002/smll.201202358 10.1021/am404397f 10.1088/1361-6528/ab5271 10.1016/j.snb.2011.08.032 10.1016/j.snb.2016.08.080 10.1088/0022-3719/10/8/035 10.1016/j.apsusc.2018.05.197 10.1016/j.snb.2017.08.091 10.1002/smll.201704116 10.1021/acsnano.5b04343 10.1016/B978-0-12-816448-8.00008-3 10.1063/1.3432446 10.1016/j.apsusc.2021.149925 10.1038/s42004-018-0086-z 10.1103/PhysRev.56.978 10.1016/j.snb.2014.12.081 10.1038/s41467-017-02547-4 10.1002/adfm.201806724 10.1039/C8NR01379A 10.1021/acsanm.0c00649 10.1021/acsami.9b12843 10.1016/j.jallcom.2018.12.110 10.1016/j.cclet.2020.07.052 10.3390/chemosensors7030042 10.1016/j.jcis.2020.09.021 10.1016/j.jhazmat.2021.127813 10.1039/C7CP00336F 10.1002/smsc.202100097 10.1002/adfm.201102111 10.1038/srep01755 10.1016/j.jallcom.2020.156155 10.1016/j.jcat.2018.07.029 10.1016/B978-0-08-102577-2.00006-3 10.1039/C9NR07849E 10.1038/s41598-018-28569-6 10.1021/nn800593m 10.1016/j.mtchem.2020.100399 10.1016/j.snb.2010.12.001 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1002/pssa.202100827 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1862-6319 |
ExternalDocumentID | 10_1002_pssa_202100827 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 33P 3SF 3WU 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BNHUX BROTX BRXPI BY8 CITATION D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ V2E W8V W99 WBKPD WGJPS WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ~IA ~WT |
ID | FETCH-LOGICAL-c847-9cd0f637b8cf411ec6c409cc003e7d5904ac2bf7cdcfc41906fed3178bd6a42a3 |
ISSN | 1862-6300 |
IngestDate | Fri Aug 23 00:43:30 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c847-9cd0f637b8cf411ec6c409cc003e7d5904ac2bf7cdcfc41906fed3178bd6a42a3 |
ORCID | 0000-0002-4950-8601 |
ParticipantIDs | crossref_primary_10_1002_pssa_202100827 |
PublicationCentury | 2000 |
PublicationDate | 2022-10-00 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-00 |
PublicationDecade | 2020 |
PublicationTitle | Physica status solidi. A, Applications and materials science |
PublicationYear | 2022 |
References | e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – ident: e_1_2_8_36_1 doi: 10.1039/D0TA01688H – ident: e_1_2_8_45_1 doi: 10.1039/C8RA08857H – ident: e_1_2_8_32_1 doi: 10.1002/adfm.201600318 – ident: e_1_2_8_15_1 doi: 10.1021/acsami.6b14551 – ident: e_1_2_8_14_1 doi: 10.1002/admt.201901062 – ident: e_1_2_8_25_1 doi: 10.1039/C9NR02780G – ident: e_1_2_8_41_1 doi: 10.1016/j.apcatb.2019.02.027 – ident: e_1_2_8_3_1 – ident: e_1_2_8_44_1 doi: 10.1016/j.ceramint.2020.03.051 – ident: e_1_2_8_9_1 doi: 10.7567/1347-4065/ab03c8 – ident: e_1_2_8_13_1 doi: 10.1002/smll.201202358 – ident: e_1_2_8_4_1 doi: 10.1021/am404397f – ident: e_1_2_8_49_1 doi: 10.1088/1361-6528/ab5271 – ident: e_1_2_8_2_1 doi: 10.1016/j.snb.2011.08.032 – ident: e_1_2_8_6_1 doi: 10.1016/j.snb.2016.08.080 – ident: e_1_2_8_31_1 doi: 10.1088/0022-3719/10/8/035 – ident: e_1_2_8_19_1 doi: 10.1016/j.apsusc.2018.05.197 – ident: e_1_2_8_46_1 doi: 10.1016/j.snb.2017.08.091 – ident: e_1_2_8_47_1 doi: 10.1002/smll.201704116 – ident: e_1_2_8_18_1 doi: 10.1021/acsnano.5b04343 – ident: e_1_2_8_43_1 doi: 10.1016/B978-0-12-816448-8.00008-3 – ident: e_1_2_8_11_1 doi: 10.1063/1.3432446 – ident: e_1_2_8_39_1 doi: 10.1016/j.apsusc.2021.149925 – ident: e_1_2_8_21_1 doi: 10.1038/s42004-018-0086-z – ident: e_1_2_8_29_1 doi: 10.1103/PhysRev.56.978 – ident: e_1_2_8_7_1 doi: 10.1016/j.snb.2014.12.081 – ident: e_1_2_8_35_1 doi: 10.1038/s41467-017-02547-4 – ident: e_1_2_8_22_1 doi: 10.1002/adfm.201806724 – ident: e_1_2_8_28_1 doi: 10.1039/C8NR01379A – ident: e_1_2_8_38_1 doi: 10.1021/acsanm.0c00649 – ident: e_1_2_8_17_1 doi: 10.1021/acsami.9b12843 – ident: e_1_2_8_26_1 doi: 10.1016/j.jallcom.2018.12.110 – ident: e_1_2_8_40_1 doi: 10.1016/j.cclet.2020.07.052 – ident: e_1_2_8_5_1 doi: 10.3390/chemosensors7030042 – ident: e_1_2_8_24_1 doi: 10.1016/j.jcis.2020.09.021 – ident: e_1_2_8_27_1 doi: 10.1016/j.jhazmat.2021.127813 – ident: e_1_2_8_42_1 doi: 10.1039/C7CP00336F – ident: e_1_2_8_16_1 doi: 10.1002/smsc.202100097 – ident: e_1_2_8_34_1 doi: 10.1002/adfm.201102111 – ident: e_1_2_8_33_1 doi: 10.1038/srep01755 – ident: e_1_2_8_37_1 doi: 10.1016/j.jallcom.2020.156155 – ident: e_1_2_8_23_1 doi: 10.1016/j.jcat.2018.07.029 – ident: e_1_2_8_10_1 doi: 10.1016/B978-0-08-102577-2.00006-3 – ident: e_1_2_8_20_1 doi: 10.1039/C9NR07849E – ident: e_1_2_8_30_1 doi: 10.1038/s41598-018-28569-6 – ident: e_1_2_8_12_1 doi: 10.1021/nn800593m – ident: e_1_2_8_8_1 doi: 10.1016/j.mtchem.2020.100399 – ident: e_1_2_8_48_1 doi: 10.1016/j.snb.2010.12.001 |
SSID | ssj0045471 |
Score | 2.4021127 |
Snippet | Herein, SnS
2
particles with two different morphologies are synthesized using a template‐free one‐step hydrothermal method. Flower‐ and plate‐like SnS
2
are... |
SourceID | crossref |
SourceType | Aggregation Database |
Title | Facile Synthesis of Template‐Free SnS 2 with Different Morphologies and Excellent Gas‐Sensing Performance for NO 2 Gas‐Sensor Applications |
Volume | 219 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiQuiKd4aw9IHKwtfqzt5hiVplGlphUJorfI3kcTqThR7QjKiZ_Qv8eVX8LsM9vSQ-FiWZPdtbXzZWZ2PPstQu9yVlYxq0siaVITygQnVcI4qRPKc1kKnmRqg_PhuBh9pgcn-Umv9yuoWlp39Tb7ceO-kv_RKshAr2qX7D9o1g8KArgH_cIVNAzXW-l4WLGFqgW8aCCMs8wiU_F1daboKFwVw_BcQJNmEqUm6frRHonSwf8ZJlkbP2GYmve-6zw-_LRftX6Aiapxb05VsbzfY6CKE8dHMOT1hiAfBN_Ew9j32EBCZS-6dRvB1Cz4YjsaaPMU9NGvAoG0mcHI-mifCpob1oOJICPhpce25Ptg2ZyS0bcN5Adzcx79BRg18sWtKPQXJlMkLKLduS2OtMkPWDe7Mjpnr2FBRhRrmHFnocxaYmvknWE2aNb77_72HoaNdtW2ipAqVbRHhrfgKk33NffpixoNAXQ6U_1nvv8ddDcFG6grCD55ZjNFo6ZzAe79HZ9onH64-vwgXgoCn-lD9MCuWPDAwO8R6onmMbpnlNk-QZcGhNiDEC8ldiD8_fNSwQ8D_HCKFfywhx8O4YdB59jDDwOqoKsFHg6Ah-EGj49gsE0TkITweYqmw73p7ojYYz4Ig9CI9BmPZZGV9Q4De5EIVjAa9xkDdyNKnvdjWrG0liXjTDIK8WshBYeod6fmRUXTKnuGtpplI54jnHHwQKKfZ5IKWmqeoySFYEQq7i0uihfovZvL2cqQucxu1trLW7d8he5vgPkabXXna_EG4tSufqs1_gcbh5a7 |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+Synthesis+of+Template%E2%80%90Free+SnS+2+with+Different+Morphologies+and+Excellent+Gas%E2%80%90Sensing+Performance+for+NO+2+Gas%E2%80%90Sensor+Applications&rft.jtitle=Physica+status+solidi.+A%2C+Applications+and+materials+science&rft.au=Shin%2C+Se-Hee&rft.au=Park%2C+Jong-Hwan&rft.au=Ahn%2C+Byung-Wook&rft.au=Ro%2C+Jae+Chul&rft.date=2022-10-01&rft.issn=1862-6300&rft.eissn=1862-6319&rft.volume=219&rft.issue=20&rft_id=info:doi/10.1002%2Fpssa.202100827&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pssa_202100827 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6300&client=summon |