Facile Synthesis of Template‐Free SnS 2 with Different Morphologies and Excellent Gas‐Sensing Performance for NO 2 Gas‐Sensor Applications

Herein, SnS 2 particles with two different morphologies are synthesized using a template‐free one‐step hydrothermal method. Flower‐ and plate‐like SnS 2 are obtained using different solvents, ethyl alcohol, and deionized water, respectively, under the same synthesis conditions. The flower‐like SnS 2...

Full description

Saved in:
Bibliographic Details
Published inPhysica status solidi. A, Applications and materials science Vol. 219; no. 20
Main Authors Shin, Se-Hee, Park, Jong-Hwan, Ahn, Byung-Wook, Ro, Jae Chul, Suh, Su-Jeong
Format Journal Article
LanguageEnglish
Published 01.10.2022
Online AccessGet full text

Cover

Loading…
Abstract Herein, SnS 2 particles with two different morphologies are synthesized using a template‐free one‐step hydrothermal method. Flower‐ and plate‐like SnS 2 are obtained using different solvents, ethyl alcohol, and deionized water, respectively, under the same synthesis conditions. The flower‐like SnS 2 had a larger surface area and higher concentration of sulfur vacancies than plate‐like SnS 2 . The effects of the specific surface area and the number of sulfur vacancies in the gas‐sensing materials are studied using the gas‐sensing characteristics of SnS 2 in the two morphologies. The gas sensitivities at 25 °C under 1 ppm NO 2 are 73.5 and 129.5 for flower‐ and plate‐like SnS 2 , respectively. Both the flower‐ and plate‐like SnS 2 gas sensors exhibited good gas selectivity for NO 2 against SO 2 , CO, and NH 3 at 25 °C. The response and recovery times are 540 and 1407 s for the flower‐like SnS 2 and 214 and 18 s for the plate‐like SnS 2 , respectively. It is confirmed that a large specific surface area and the number of sulfur vacancies adversely affected the response and recovery times. Therefore, the plate‐like gas sensor is expected to be a good candidate for NO 2 gas‐sensing applications at 27 °C.
AbstractList Herein, SnS 2 particles with two different morphologies are synthesized using a template‐free one‐step hydrothermal method. Flower‐ and plate‐like SnS 2 are obtained using different solvents, ethyl alcohol, and deionized water, respectively, under the same synthesis conditions. The flower‐like SnS 2 had a larger surface area and higher concentration of sulfur vacancies than plate‐like SnS 2 . The effects of the specific surface area and the number of sulfur vacancies in the gas‐sensing materials are studied using the gas‐sensing characteristics of SnS 2 in the two morphologies. The gas sensitivities at 25 °C under 1 ppm NO 2 are 73.5 and 129.5 for flower‐ and plate‐like SnS 2 , respectively. Both the flower‐ and plate‐like SnS 2 gas sensors exhibited good gas selectivity for NO 2 against SO 2 , CO, and NH 3 at 25 °C. The response and recovery times are 540 and 1407 s for the flower‐like SnS 2 and 214 and 18 s for the plate‐like SnS 2 , respectively. It is confirmed that a large specific surface area and the number of sulfur vacancies adversely affected the response and recovery times. Therefore, the plate‐like gas sensor is expected to be a good candidate for NO 2 gas‐sensing applications at 27 °C.
Author Shin, Se-Hee
Ro, Jae Chul
Suh, Su-Jeong
Park, Jong-Hwan
Ahn, Byung-Wook
Author_xml – sequence: 1
  givenname: Se-Hee
  surname: Shin
  fullname: Shin, Se-Hee
  organization: School of Advanced Materials Science and Engineering Sungkyunkwan University Suwon Gyeonggi-do 440-746 South Korea
– sequence: 2
  givenname: Jong-Hwan
  surname: Park
  fullname: Park, Jong-Hwan
  organization: School of Advanced Materials Science and Engineering Sungkyunkwan University Suwon Gyeonggi-do 440-746 South Korea
– sequence: 3
  givenname: Byung-Wook
  surname: Ahn
  fullname: Ahn, Byung-Wook
  organization: Department of Energy Science Sungkyunkwan University Suwon 16419 South Korea, Center for Integrated Nanostructure Physics Institute for Basic Science Sungkyunkwan University Suwon 16419 South Korea
– sequence: 4
  givenname: Jae Chul
  surname: Ro
  fullname: Ro, Jae Chul
  organization: School of Advanced Materials Science and Engineering Sungkyunkwan University Suwon Gyeonggi-do 440-746 South Korea
– sequence: 5
  givenname: Su-Jeong
  orcidid: 0000-0002-4950-8601
  surname: Suh
  fullname: Suh, Su-Jeong
  organization: School of Advanced Materials Science and Engineering Sungkyunkwan University Suwon Gyeonggi-do 440-746 South Korea
BookMark eNpFkM1OAjEUhRuDiYBuXfcFBttOmZ8lQUATFBPYT8qdW6gp7aSdRNn5CDyjT-IQDa7uuefcexbfgPScd0jIPWcjzph4aGJUI8FEtxQivyJ9XmQiyVJe9i6asRsyiPGdMTmWOe-T01yBsUjXR9fuMZpIvaYbPDRWtfj9dZoH7EK3poJ-mHZPH43WGNC19MWHZu-t3xmMVLmazj4BrT1HCxW71zW6aNyOvmHQPhyUA6SdoK-rruz_pHMmTWMNqNZ4F2_JtVY24t3fHJLNfLaZPiXL1eJ5OlkmUMg8KaFmOkvzbQFaco6QgWQlAGMp5vW4ZFKB2OocatAgeckyjXXK82JbZ0oKlQ7J6LcWgo8xoK6aYA4qHCvOqjPO6oyzuuBMfwDJvnAX
CitedBy_id crossref_primary_10_1007_s13391_022_00389_x
crossref_primary_10_1016_j_surfin_2024_103868
crossref_primary_10_3390_chemosensors11020132
Cites_doi 10.1039/D0TA01688H
10.1039/C8RA08857H
10.1002/adfm.201600318
10.1021/acsami.6b14551
10.1002/admt.201901062
10.1039/C9NR02780G
10.1016/j.apcatb.2019.02.027
10.1016/j.ceramint.2020.03.051
10.7567/1347-4065/ab03c8
10.1002/smll.201202358
10.1021/am404397f
10.1088/1361-6528/ab5271
10.1016/j.snb.2011.08.032
10.1016/j.snb.2016.08.080
10.1088/0022-3719/10/8/035
10.1016/j.apsusc.2018.05.197
10.1016/j.snb.2017.08.091
10.1002/smll.201704116
10.1021/acsnano.5b04343
10.1016/B978-0-12-816448-8.00008-3
10.1063/1.3432446
10.1016/j.apsusc.2021.149925
10.1038/s42004-018-0086-z
10.1103/PhysRev.56.978
10.1016/j.snb.2014.12.081
10.1038/s41467-017-02547-4
10.1002/adfm.201806724
10.1039/C8NR01379A
10.1021/acsanm.0c00649
10.1021/acsami.9b12843
10.1016/j.jallcom.2018.12.110
10.1016/j.cclet.2020.07.052
10.3390/chemosensors7030042
10.1016/j.jcis.2020.09.021
10.1016/j.jhazmat.2021.127813
10.1039/C7CP00336F
10.1002/smsc.202100097
10.1002/adfm.201102111
10.1038/srep01755
10.1016/j.jallcom.2020.156155
10.1016/j.jcat.2018.07.029
10.1016/B978-0-08-102577-2.00006-3
10.1039/C9NR07849E
10.1038/s41598-018-28569-6
10.1021/nn800593m
10.1016/j.mtchem.2020.100399
10.1016/j.snb.2010.12.001
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/pssa.202100827
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1862-6319
ExternalDocumentID 10_1002_pssa_202100827
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
33P
3SF
3WU
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CITATION
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W8V
W99
WBKPD
WGJPS
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
ID FETCH-LOGICAL-c847-9cd0f637b8cf411ec6c409cc003e7d5904ac2bf7cdcfc41906fed3178bd6a42a3
ISSN 1862-6300
IngestDate Fri Aug 23 00:43:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c847-9cd0f637b8cf411ec6c409cc003e7d5904ac2bf7cdcfc41906fed3178bd6a42a3
ORCID 0000-0002-4950-8601
ParticipantIDs crossref_primary_10_1002_pssa_202100827
PublicationCentury 2000
PublicationDate 2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-00
PublicationDecade 2020
PublicationTitle Physica status solidi. A, Applications and materials science
PublicationYear 2022
References e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – ident: e_1_2_8_36_1
  doi: 10.1039/D0TA01688H
– ident: e_1_2_8_45_1
  doi: 10.1039/C8RA08857H
– ident: e_1_2_8_32_1
  doi: 10.1002/adfm.201600318
– ident: e_1_2_8_15_1
  doi: 10.1021/acsami.6b14551
– ident: e_1_2_8_14_1
  doi: 10.1002/admt.201901062
– ident: e_1_2_8_25_1
  doi: 10.1039/C9NR02780G
– ident: e_1_2_8_41_1
  doi: 10.1016/j.apcatb.2019.02.027
– ident: e_1_2_8_3_1
– ident: e_1_2_8_44_1
  doi: 10.1016/j.ceramint.2020.03.051
– ident: e_1_2_8_9_1
  doi: 10.7567/1347-4065/ab03c8
– ident: e_1_2_8_13_1
  doi: 10.1002/smll.201202358
– ident: e_1_2_8_4_1
  doi: 10.1021/am404397f
– ident: e_1_2_8_49_1
  doi: 10.1088/1361-6528/ab5271
– ident: e_1_2_8_2_1
  doi: 10.1016/j.snb.2011.08.032
– ident: e_1_2_8_6_1
  doi: 10.1016/j.snb.2016.08.080
– ident: e_1_2_8_31_1
  doi: 10.1088/0022-3719/10/8/035
– ident: e_1_2_8_19_1
  doi: 10.1016/j.apsusc.2018.05.197
– ident: e_1_2_8_46_1
  doi: 10.1016/j.snb.2017.08.091
– ident: e_1_2_8_47_1
  doi: 10.1002/smll.201704116
– ident: e_1_2_8_18_1
  doi: 10.1021/acsnano.5b04343
– ident: e_1_2_8_43_1
  doi: 10.1016/B978-0-12-816448-8.00008-3
– ident: e_1_2_8_11_1
  doi: 10.1063/1.3432446
– ident: e_1_2_8_39_1
  doi: 10.1016/j.apsusc.2021.149925
– ident: e_1_2_8_21_1
  doi: 10.1038/s42004-018-0086-z
– ident: e_1_2_8_29_1
  doi: 10.1103/PhysRev.56.978
– ident: e_1_2_8_7_1
  doi: 10.1016/j.snb.2014.12.081
– ident: e_1_2_8_35_1
  doi: 10.1038/s41467-017-02547-4
– ident: e_1_2_8_22_1
  doi: 10.1002/adfm.201806724
– ident: e_1_2_8_28_1
  doi: 10.1039/C8NR01379A
– ident: e_1_2_8_38_1
  doi: 10.1021/acsanm.0c00649
– ident: e_1_2_8_17_1
  doi: 10.1021/acsami.9b12843
– ident: e_1_2_8_26_1
  doi: 10.1016/j.jallcom.2018.12.110
– ident: e_1_2_8_40_1
  doi: 10.1016/j.cclet.2020.07.052
– ident: e_1_2_8_5_1
  doi: 10.3390/chemosensors7030042
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jcis.2020.09.021
– ident: e_1_2_8_27_1
  doi: 10.1016/j.jhazmat.2021.127813
– ident: e_1_2_8_42_1
  doi: 10.1039/C7CP00336F
– ident: e_1_2_8_16_1
  doi: 10.1002/smsc.202100097
– ident: e_1_2_8_34_1
  doi: 10.1002/adfm.201102111
– ident: e_1_2_8_33_1
  doi: 10.1038/srep01755
– ident: e_1_2_8_37_1
  doi: 10.1016/j.jallcom.2020.156155
– ident: e_1_2_8_23_1
  doi: 10.1016/j.jcat.2018.07.029
– ident: e_1_2_8_10_1
  doi: 10.1016/B978-0-08-102577-2.00006-3
– ident: e_1_2_8_20_1
  doi: 10.1039/C9NR07849E
– ident: e_1_2_8_30_1
  doi: 10.1038/s41598-018-28569-6
– ident: e_1_2_8_12_1
  doi: 10.1021/nn800593m
– ident: e_1_2_8_8_1
  doi: 10.1016/j.mtchem.2020.100399
– ident: e_1_2_8_48_1
  doi: 10.1016/j.snb.2010.12.001
SSID ssj0045471
Score 2.4021127
Snippet Herein, SnS 2 particles with two different morphologies are synthesized using a template‐free one‐step hydrothermal method. Flower‐ and plate‐like SnS 2 are...
SourceID crossref
SourceType Aggregation Database
Title Facile Synthesis of Template‐Free SnS 2 with Different Morphologies and Excellent Gas‐Sensing Performance for NO 2 Gas‐Sensor Applications
Volume 219
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiQuiKd4aw9IHKwtfqzt5hiVplGlphUJorfI3kcTqThR7QjKiZ_Qv8eVX8LsM9vSQ-FiWZPdtbXzZWZ2PPstQu9yVlYxq0siaVITygQnVcI4qRPKc1kKnmRqg_PhuBh9pgcn-Umv9yuoWlp39Tb7ceO-kv_RKshAr2qX7D9o1g8KArgH_cIVNAzXW-l4WLGFqgW8aCCMs8wiU_F1daboKFwVw_BcQJNmEqUm6frRHonSwf8ZJlkbP2GYmve-6zw-_LRftX6Aiapxb05VsbzfY6CKE8dHMOT1hiAfBN_Ew9j32EBCZS-6dRvB1Cz4YjsaaPMU9NGvAoG0mcHI-mifCpob1oOJICPhpce25Ptg2ZyS0bcN5Adzcx79BRg18sWtKPQXJlMkLKLduS2OtMkPWDe7Mjpnr2FBRhRrmHFnocxaYmvknWE2aNb77_72HoaNdtW2ipAqVbRHhrfgKk33NffpixoNAXQ6U_1nvv8ddDcFG6grCD55ZjNFo6ZzAe79HZ9onH64-vwgXgoCn-lD9MCuWPDAwO8R6onmMbpnlNk-QZcGhNiDEC8ldiD8_fNSwQ8D_HCKFfywhx8O4YdB59jDDwOqoKsFHg6Ah-EGj49gsE0TkITweYqmw73p7ojYYz4Ig9CI9BmPZZGV9Q4De5EIVjAa9xkDdyNKnvdjWrG0liXjTDIK8WshBYeod6fmRUXTKnuGtpplI54jnHHwQKKfZ5IKWmqeoySFYEQq7i0uihfovZvL2cqQucxu1trLW7d8he5vgPkabXXna_EG4tSufqs1_gcbh5a7
link.rule.ids 315,783,787,27936,27937
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+Synthesis+of+Template%E2%80%90Free+SnS+2+with+Different+Morphologies+and+Excellent+Gas%E2%80%90Sensing+Performance+for+NO+2+Gas%E2%80%90Sensor+Applications&rft.jtitle=Physica+status+solidi.+A%2C+Applications+and+materials+science&rft.au=Shin%2C+Se-Hee&rft.au=Park%2C+Jong-Hwan&rft.au=Ahn%2C+Byung-Wook&rft.au=Ro%2C+Jae+Chul&rft.date=2022-10-01&rft.issn=1862-6300&rft.eissn=1862-6319&rft.volume=219&rft.issue=20&rft_id=info:doi/10.1002%2Fpssa.202100827&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pssa_202100827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6300&client=summon