Deep levels in low resistive Zn 3 P 2
The low resistivity p‐type polycrystalline Zn 3 P 2 grown by means of closed tube vapor transport was investigated. Deep carrier traps have been studied by means of deep level transient spectroscopy (DLTS) and by photocapacitance transient measurements. From DLTS measurements parameters of four main...
Saved in:
Published in | Physica status solidi. A, Applications and materials science Vol. 214; no. 5 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.05.2017
|
Online Access | Get full text |
Cover
Loading…
Abstract | The low resistivity p‐type polycrystalline Zn
3
P
2
grown by means of closed tube vapor transport was investigated. Deep carrier traps have been studied by means of deep level transient spectroscopy (DLTS) and by photocapacitance transient measurements. From DLTS measurements parameters of four main hole traps were determined. The first with activation energy 0.17 eV above the top of the valence band, probably connected with zinc vacancy, the defect with activation energy 0.34 eV which origin is unknown, the defect with activation energy 0.46 eV, probably oxygen related and the defect with activation energy 0.77 eV with unknown origin. For the defects with energies 0.17 and 0.46 eV nonzero values of capture energies were found: 0.03 and 0.16 eV, respectively. From photocapacitance measurements three optical activation energies were determined as steps on the curve: 0.83, 0.99, and 1.25 eV. Defects with optical activation energies of 0.83 eV is probably the same defect as defect with activation energy 0.46 eV and energy barrier for capture 0.16 eV obtained from DLTS measurements, and may be responsible for persistent photoconductivity (PPC) efect in high resistive samples of Zn
3
P
2
. |
---|---|
AbstractList | The low resistivity p‐type polycrystalline Zn
3
P
2
grown by means of closed tube vapor transport was investigated. Deep carrier traps have been studied by means of deep level transient spectroscopy (DLTS) and by photocapacitance transient measurements. From DLTS measurements parameters of four main hole traps were determined. The first with activation energy 0.17 eV above the top of the valence band, probably connected with zinc vacancy, the defect with activation energy 0.34 eV which origin is unknown, the defect with activation energy 0.46 eV, probably oxygen related and the defect with activation energy 0.77 eV with unknown origin. For the defects with energies 0.17 and 0.46 eV nonzero values of capture energies were found: 0.03 and 0.16 eV, respectively. From photocapacitance measurements three optical activation energies were determined as steps on the curve: 0.83, 0.99, and 1.25 eV. Defects with optical activation energies of 0.83 eV is probably the same defect as defect with activation energy 0.46 eV and energy barrier for capture 0.16 eV obtained from DLTS measurements, and may be responsible for persistent photoconductivity (PPC) efect in high resistive samples of Zn
3
P
2
. |
Author | Sierański, K. Hajdusianek, A. Szatkowski, J. |
Author_xml | – sequence: 1 givenname: K. surname: Sierański fullname: Sierański, K. organization: Department of of Quantum Technologies, Faculty of Fundamental Problems of Technology Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50‐370 Wroclaw Poland – sequence: 2 givenname: J. surname: Szatkowski fullname: Szatkowski, J. organization: Department of of Quantum Technologies, Faculty of Fundamental Problems of Technology Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50‐370 Wroclaw Poland – sequence: 3 givenname: A. surname: Hajdusianek fullname: Hajdusianek, A. organization: Department of of Quantum Technologies, Faculty of Fundamental Problems of Technology Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50‐370 Wroclaw Poland |
BookMark | eNo9zztLxEAUBeBBVnAfttbTWCbeO69kSlmfsKDFVtsM43gHIjEJc2XFfy9B2eqc0xz4VmIxjAMJcYVQI4C6mZhjrQAdgLX6TCyxdapyGv3i1AEuxIr5A8BY0-BSXN8RTbKnI_Usu0H247csxB1_dUeSh0Fq-SrVRpzn2DNd_uda7B_u99unavfy-Ly93VWpNbpqjbJAFD34d_KAEJ22884u6WxTxKZx6M2bSylTzgjWNRFiQmiy8a1ei_rvNpWRuVAOU-k-Y_kJCGE2htkYTkb9C71kRJA |
CitedBy_id | crossref_primary_10_1016_j_solmat_2023_112194 crossref_primary_10_1039_D3TA03697A |
Cites_doi | 10.1016/0022-3697(79)90134-3 10.1063/1.3225151 10.1016/0038-1098(94)00682-3 10.1063/1.4772708 10.1002/pssa.2211110154 10.1016/S0040-6090(98)01110-9 10.1063/1.2192090 10.1002/1521-3951(200110)227:2<515::AID-PSSB515>3.0.CO;2-S 10.1103/PhysRevB.15.989 10.1103/PhysRevB.85.195208 10.1016/0022-3697(89)90502-7 10.1063/1.326122 10.1063/1.2960494 10.1143/JJAP.25.L993 10.1103/PhysRevB.50.7331 10.1063/1.113057 10.1103/PhysRevB.75.224418 10.1063/1.4867296 10.1063/1.337719 10.1103/PhysRevLett.39.635 10.1103/PhysRevB.26.4711 10.1063/1.341744 10.1016/j.jcrysgro.2012.10.054 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1002/pssa.201600553 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1862-6319 |
ExternalDocumentID | 10_1002_pssa_201600553 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 33P 3SF 3WU 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BNHUX BROTX BRXPI BY8 CITATION D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ V2E W8V W99 WBKPD WGJPS WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ~IA ~WT |
ID | FETCH-LOGICAL-c843-84250eea909de9010a635eea9f6c3f5ca1776194b6ccfeff10567a0ac107f4983 |
ISSN | 1862-6300 |
IngestDate | Fri Aug 23 03:08:42 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c843-84250eea909de9010a635eea9f6c3f5ca1776194b6ccfeff10567a0ac107f4983 |
ParticipantIDs | crossref_primary_10_1002_pssa_201600553 |
PublicationCentury | 2000 |
PublicationDate | 2017-05-00 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-00 |
PublicationDecade | 2010 |
PublicationTitle | Physica status solidi. A, Applications and materials science |
PublicationYear | 2017 |
References | e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_29_1 Pawlikowski J. M. (e_1_2_5_8_1) 1988; 2 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 Misiewicz J. (e_1_2_5_20_1) 1985; 11 e_1_2_5_18_1 Suda T. (e_1_2_5_22_1) 1984; 45 |
References_xml | – ident: e_1_2_5_13_1 doi: 10.1016/0022-3697(79)90134-3 – ident: e_1_2_5_9_1 doi: 10.1063/1.3225151 – ident: e_1_2_5_25_1 doi: 10.1016/0038-1098(94)00682-3 – ident: e_1_2_5_17_1 doi: 10.1063/1.4772708 – ident: e_1_2_5_21_1 doi: 10.1002/pssa.2211110154 – ident: e_1_2_5_5_1 doi: 10.1016/S0040-6090(98)01110-9 – volume: 11 start-page: 39 year: 1985 ident: e_1_2_5_20_1 publication-title: Mater. Sci contributor: fullname: Misiewicz J. – ident: e_1_2_5_6_1 doi: 10.1063/1.2192090 – ident: e_1_2_5_15_1 doi: 10.1002/1521-3951(200110)227:2<515::AID-PSSB515>3.0.CO;2-S – ident: e_1_2_5_28_1 doi: 10.1103/PhysRevB.15.989 – ident: e_1_2_5_3_1 doi: 10.1103/PhysRevB.85.195208 – ident: e_1_2_5_24_1 doi: 10.1016/0022-3697(89)90502-7 – ident: e_1_2_5_10_1 doi: 10.1063/1.326122 – ident: e_1_2_5_4_1 doi: 10.1063/1.2960494 – volume: 45 start-page: 776 year: 1984 ident: e_1_2_5_22_1 publication-title: Appl. Phys. Lett contributor: fullname: Suda T. – ident: e_1_2_5_23_1 doi: 10.1143/JJAP.25.L993 – volume: 2 start-page: 581 year: 1988 ident: e_1_2_5_8_1 publication-title: Rev. Solid State Sci contributor: fullname: Pawlikowski J. M. – ident: e_1_2_5_14_1 doi: 10.1103/PhysRevB.50.7331 – ident: e_1_2_5_18_1 doi: 10.1063/1.113057 – ident: e_1_2_5_7_1 doi: 10.1103/PhysRevB.75.224418 – ident: e_1_2_5_26_1 doi: 10.1016/S0040-6090(98)01110-9 – ident: e_1_2_5_19_1 doi: 10.1063/1.4867296 – ident: e_1_2_5_12_1 doi: 10.1063/1.337719 – ident: e_1_2_5_29_1 doi: 10.1103/PhysRevLett.39.635 – ident: e_1_2_5_11_1 doi: 10.1103/PhysRevB.26.4711 – ident: e_1_2_5_27_1 doi: 10.1063/1.341744 – ident: e_1_2_5_2_1 doi: 10.1016/j.jcrysgro.2012.10.054 – ident: e_1_2_5_16_1 doi: 10.1103/PhysRevB.85.195208 |
SSID | ssj0045471 |
Score | 2.2076962 |
Snippet | The low resistivity p‐type polycrystalline Zn
3
P
2
grown by means of closed tube vapor transport was investigated. Deep carrier traps have been studied by... |
SourceID | crossref |
SourceType | Aggregation Database |
Title | Deep levels in low resistive Zn 3 P 2 |
Volume | 214 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5zIvgiXvFOHhw-hNbaNF33OLwgE2XIBPFlpGkKU-mG6xT26z2nyboqe1BfQpvekn7NuSTnfCXkxBNSCh0ljpCedIJW4jtS8sThXoSZ6EJFAhOF7-7Dm8eg8ySearVOJWppkseumi7MK_kPqlAHuGKW7B-QLW8KFbAN-EIJCEP5K4wvtR6xNwz7KaJa34afDLxnHLUfmj1njLMu86vmZ9egghMI-WTMoHWDZOCydiEhKkvZxZIC2LKmE8yqyXI2BlSpbFyIRhTYv17fuuWxqcxfh5-2vuPOJdxLMsGETV2I37ZbnW4AFVYG91kJCS6QgzxdRoFU66zss2LVN8mh9vsRC8W1oX8djcfIAHUeIiEYnyum2WL8D31VRhEaxmW_j9f3y-uXyLIPQgfD-y4fSiox5C0rnO9Z82cEnp5_9v35FQOlYmn01smadRFo2-C9QWo62yQrBrrxFmkg6tSgTgcZBdRpiTp9ziinXepvk971Ve_ixrE_u3BUFHAHV0M9rWXLayUaQ2YkWIK4n4aKp0LJ82Yx4RSHSqU6TcEsDpswvBS472nQivgOqWfDTO8SqmCUaambSN4XxDAYYyHi2OdhEsQReOd75HTWwf7IUJr0F7_K_V-feUBW5x_LIann7xN9BNZaHh8XMHwBB9A6SA |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+levels+in+low+resistive+Zn+3+P+2&rft.jtitle=Physica+status+solidi.+A%2C+Applications+and+materials+science&rft.au=Siera%C5%84ski%2C+K.&rft.au=Szatkowski%2C+J.&rft.au=Hajdusianek%2C+A.&rft.date=2017-05-01&rft.issn=1862-6300&rft.eissn=1862-6319&rft.volume=214&rft.issue=5&rft_id=info:doi/10.1002%2Fpssa.201600553&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pssa_201600553 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6300&client=summon |