Deep levels in low resistive Zn 3 P 2

The low resistivity p‐type polycrystalline Zn 3 P 2 grown by means of closed tube vapor transport was investigated. Deep carrier traps have been studied by means of deep level transient spectroscopy (DLTS) and by photocapacitance transient measurements. From DLTS measurements parameters of four main...

Full description

Saved in:
Bibliographic Details
Published inPhysica status solidi. A, Applications and materials science Vol. 214; no. 5
Main Authors Sierański, K., Szatkowski, J., Hajdusianek, A.
Format Journal Article
LanguageEnglish
Published 01.05.2017
Online AccessGet full text

Cover

Loading…
Abstract The low resistivity p‐type polycrystalline Zn 3 P 2 grown by means of closed tube vapor transport was investigated. Deep carrier traps have been studied by means of deep level transient spectroscopy (DLTS) and by photocapacitance transient measurements. From DLTS measurements parameters of four main hole traps were determined. The first with activation energy 0.17 eV above the top of the valence band, probably connected with zinc vacancy, the defect with activation energy 0.34 eV which origin is unknown, the defect with activation energy 0.46 eV, probably oxygen related and the defect with activation energy 0.77 eV with unknown origin. For the defects with energies 0.17 and 0.46 eV nonzero values of capture energies were found: 0.03 and 0.16 eV, respectively. From photocapacitance measurements three optical activation energies were determined as steps on the curve: 0.83, 0.99, and 1.25 eV. Defects with optical activation energies of 0.83 eV is probably the same defect as defect with activation energy 0.46 eV and energy barrier for capture 0.16 eV obtained from DLTS measurements, and may be responsible for persistent photoconductivity (PPC) efect in high resistive samples of Zn 3 P 2 .
AbstractList The low resistivity p‐type polycrystalline Zn 3 P 2 grown by means of closed tube vapor transport was investigated. Deep carrier traps have been studied by means of deep level transient spectroscopy (DLTS) and by photocapacitance transient measurements. From DLTS measurements parameters of four main hole traps were determined. The first with activation energy 0.17 eV above the top of the valence band, probably connected with zinc vacancy, the defect with activation energy 0.34 eV which origin is unknown, the defect with activation energy 0.46 eV, probably oxygen related and the defect with activation energy 0.77 eV with unknown origin. For the defects with energies 0.17 and 0.46 eV nonzero values of capture energies were found: 0.03 and 0.16 eV, respectively. From photocapacitance measurements three optical activation energies were determined as steps on the curve: 0.83, 0.99, and 1.25 eV. Defects with optical activation energies of 0.83 eV is probably the same defect as defect with activation energy 0.46 eV and energy barrier for capture 0.16 eV obtained from DLTS measurements, and may be responsible for persistent photoconductivity (PPC) efect in high resistive samples of Zn 3 P 2 .
Author Sierański, K.
Hajdusianek, A.
Szatkowski, J.
Author_xml – sequence: 1
  givenname: K.
  surname: Sierański
  fullname: Sierański, K.
  organization: Department of of Quantum Technologies, Faculty of Fundamental Problems of Technology Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50‐370 Wroclaw Poland
– sequence: 2
  givenname: J.
  surname: Szatkowski
  fullname: Szatkowski, J.
  organization: Department of of Quantum Technologies, Faculty of Fundamental Problems of Technology Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50‐370 Wroclaw Poland
– sequence: 3
  givenname: A.
  surname: Hajdusianek
  fullname: Hajdusianek, A.
  organization: Department of of Quantum Technologies, Faculty of Fundamental Problems of Technology Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50‐370 Wroclaw Poland
BookMark eNo9zztLxEAUBeBBVnAfttbTWCbeO69kSlmfsKDFVtsM43gHIjEJc2XFfy9B2eqc0xz4VmIxjAMJcYVQI4C6mZhjrQAdgLX6TCyxdapyGv3i1AEuxIr5A8BY0-BSXN8RTbKnI_Usu0H247csxB1_dUeSh0Fq-SrVRpzn2DNd_uda7B_u99unavfy-Ly93VWpNbpqjbJAFD34d_KAEJ22884u6WxTxKZx6M2bSylTzgjWNRFiQmiy8a1ei_rvNpWRuVAOU-k-Y_kJCGE2htkYTkb9C71kRJA
CitedBy_id crossref_primary_10_1016_j_solmat_2023_112194
crossref_primary_10_1039_D3TA03697A
Cites_doi 10.1016/0022-3697(79)90134-3
10.1063/1.3225151
10.1016/0038-1098(94)00682-3
10.1063/1.4772708
10.1002/pssa.2211110154
10.1016/S0040-6090(98)01110-9
10.1063/1.2192090
10.1002/1521-3951(200110)227:2<515::AID-PSSB515>3.0.CO;2-S
10.1103/PhysRevB.15.989
10.1103/PhysRevB.85.195208
10.1016/0022-3697(89)90502-7
10.1063/1.326122
10.1063/1.2960494
10.1143/JJAP.25.L993
10.1103/PhysRevB.50.7331
10.1063/1.113057
10.1103/PhysRevB.75.224418
10.1063/1.4867296
10.1063/1.337719
10.1103/PhysRevLett.39.635
10.1103/PhysRevB.26.4711
10.1063/1.341744
10.1016/j.jcrysgro.2012.10.054
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/pssa.201600553
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1862-6319
ExternalDocumentID 10_1002_pssa_201600553
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
33P
3SF
3WU
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CITATION
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W8V
W99
WBKPD
WGJPS
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
ID FETCH-LOGICAL-c843-84250eea909de9010a635eea9f6c3f5ca1776194b6ccfeff10567a0ac107f4983
ISSN 1862-6300
IngestDate Fri Aug 23 03:08:42 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c843-84250eea909de9010a635eea9f6c3f5ca1776194b6ccfeff10567a0ac107f4983
ParticipantIDs crossref_primary_10_1002_pssa_201600553
PublicationCentury 2000
PublicationDate 2017-05-00
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-00
PublicationDecade 2010
PublicationTitle Physica status solidi. A, Applications and materials science
PublicationYear 2017
References e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_29_1
Pawlikowski J. M. (e_1_2_5_8_1) 1988; 2
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
Misiewicz J. (e_1_2_5_20_1) 1985; 11
e_1_2_5_18_1
Suda T. (e_1_2_5_22_1) 1984; 45
References_xml – ident: e_1_2_5_13_1
  doi: 10.1016/0022-3697(79)90134-3
– ident: e_1_2_5_9_1
  doi: 10.1063/1.3225151
– ident: e_1_2_5_25_1
  doi: 10.1016/0038-1098(94)00682-3
– ident: e_1_2_5_17_1
  doi: 10.1063/1.4772708
– ident: e_1_2_5_21_1
  doi: 10.1002/pssa.2211110154
– ident: e_1_2_5_5_1
  doi: 10.1016/S0040-6090(98)01110-9
– volume: 11
  start-page: 39
  year: 1985
  ident: e_1_2_5_20_1
  publication-title: Mater. Sci
  contributor:
    fullname: Misiewicz J.
– ident: e_1_2_5_6_1
  doi: 10.1063/1.2192090
– ident: e_1_2_5_15_1
  doi: 10.1002/1521-3951(200110)227:2<515::AID-PSSB515>3.0.CO;2-S
– ident: e_1_2_5_28_1
  doi: 10.1103/PhysRevB.15.989
– ident: e_1_2_5_3_1
  doi: 10.1103/PhysRevB.85.195208
– ident: e_1_2_5_24_1
  doi: 10.1016/0022-3697(89)90502-7
– ident: e_1_2_5_10_1
  doi: 10.1063/1.326122
– ident: e_1_2_5_4_1
  doi: 10.1063/1.2960494
– volume: 45
  start-page: 776
  year: 1984
  ident: e_1_2_5_22_1
  publication-title: Appl. Phys. Lett
  contributor:
    fullname: Suda T.
– ident: e_1_2_5_23_1
  doi: 10.1143/JJAP.25.L993
– volume: 2
  start-page: 581
  year: 1988
  ident: e_1_2_5_8_1
  publication-title: Rev. Solid State Sci
  contributor:
    fullname: Pawlikowski J. M.
– ident: e_1_2_5_14_1
  doi: 10.1103/PhysRevB.50.7331
– ident: e_1_2_5_18_1
  doi: 10.1063/1.113057
– ident: e_1_2_5_7_1
  doi: 10.1103/PhysRevB.75.224418
– ident: e_1_2_5_26_1
  doi: 10.1016/S0040-6090(98)01110-9
– ident: e_1_2_5_19_1
  doi: 10.1063/1.4867296
– ident: e_1_2_5_12_1
  doi: 10.1063/1.337719
– ident: e_1_2_5_29_1
  doi: 10.1103/PhysRevLett.39.635
– ident: e_1_2_5_11_1
  doi: 10.1103/PhysRevB.26.4711
– ident: e_1_2_5_27_1
  doi: 10.1063/1.341744
– ident: e_1_2_5_2_1
  doi: 10.1016/j.jcrysgro.2012.10.054
– ident: e_1_2_5_16_1
  doi: 10.1103/PhysRevB.85.195208
SSID ssj0045471
Score 2.2076962
Snippet The low resistivity p‐type polycrystalline Zn 3 P 2 grown by means of closed tube vapor transport was investigated. Deep carrier traps have been studied by...
SourceID crossref
SourceType Aggregation Database
Title Deep levels in low resistive Zn 3 P 2
Volume 214
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5zIvgiXvFOHhw-hNbaNF33OLwgE2XIBPFlpGkKU-mG6xT26z2nyboqe1BfQpvekn7NuSTnfCXkxBNSCh0ljpCedIJW4jtS8sThXoSZ6EJFAhOF7-7Dm8eg8ySearVOJWppkseumi7MK_kPqlAHuGKW7B-QLW8KFbAN-EIJCEP5K4wvtR6xNwz7KaJa34afDLxnHLUfmj1njLMu86vmZ9egghMI-WTMoHWDZOCydiEhKkvZxZIC2LKmE8yqyXI2BlSpbFyIRhTYv17fuuWxqcxfh5-2vuPOJdxLMsGETV2I37ZbnW4AFVYG91kJCS6QgzxdRoFU66zss2LVN8mh9vsRC8W1oX8djcfIAHUeIiEYnyum2WL8D31VRhEaxmW_j9f3y-uXyLIPQgfD-y4fSiox5C0rnO9Z82cEnp5_9v35FQOlYmn01smadRFo2-C9QWo62yQrBrrxFmkg6tSgTgcZBdRpiTp9ziinXepvk971Ve_ixrE_u3BUFHAHV0M9rWXLayUaQ2YkWIK4n4aKp0LJ82Yx4RSHSqU6TcEsDpswvBS472nQivgOqWfDTO8SqmCUaambSN4XxDAYYyHi2OdhEsQReOd75HTWwf7IUJr0F7_K_V-feUBW5x_LIann7xN9BNZaHh8XMHwBB9A6SA
link.rule.ids 315,783,787,27938,27939
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+levels+in+low+resistive+Zn+3+P+2&rft.jtitle=Physica+status+solidi.+A%2C+Applications+and+materials+science&rft.au=Siera%C5%84ski%2C+K.&rft.au=Szatkowski%2C+J.&rft.au=Hajdusianek%2C+A.&rft.date=2017-05-01&rft.issn=1862-6300&rft.eissn=1862-6319&rft.volume=214&rft.issue=5&rft_id=info:doi/10.1002%2Fpssa.201600553&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pssa_201600553
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6300&client=summon