Quantitative Determination of Native Point‐Defect Concentrations at the ppm Level in Un‐Doped BaSnO 3 Thin Films

Abstract The high‐mobility, wide‐bandgap perovskite oxide BaSnO 3 is taken as a model system to demonstrate that the native point defects present in un‐doped, epitaxial thin films grown by hybrid molecular beam epitaxy can be identified and their concentrations at the ppm level determined quantitati...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 19
Main Authors Belthle, Kendra S., Gries, Ute N., Mueller, Michael P., Kemp, Dennis, Prakash, Abhinav, Rose, Marc‐André, Börgers, Jacqueline M., Jalan, Bharat, Gunkel, Felix, De Souza, Roger A.
Format Journal Article
LanguageEnglish
Published 01.05.2022
Online AccessGet full text

Cover

Loading…
Abstract Abstract The high‐mobility, wide‐bandgap perovskite oxide BaSnO 3 is taken as a model system to demonstrate that the native point defects present in un‐doped, epitaxial thin films grown by hybrid molecular beam epitaxy can be identified and their concentrations at the ppm level determined quantitatively. An elevated‐temperature, multi‐faceted approach is shown to be necessary: oxygen tracer diffusion experiments with secondary ion mass spectrometry analysis; molecular dynamics simulations of oxygen‐vacancy diffusion; electronic conductivity studies as a function of oxygen activity and temperature; and Hall‐effect measurements. The results indicate that the oxygen‐vacancy concentration cannot be lowered below 10 17.3 cm −3 because of a background level of barium vacancies (of this concentration), introduced during film growth. The multi‐faceted approach also yields the electron mobility over a wide temperature range, coefficients of oxygen surface exchange and oxygen‐vacancy diffusion, and the reduction enthalpy. The consequences of the results for the lowest electron concentration achievable in BaSnO 3 samples, for the ease of oxide reduction and for the stability of reduced films with respect to oxidation, are discussed.
AbstractList Abstract The high‐mobility, wide‐bandgap perovskite oxide BaSnO 3 is taken as a model system to demonstrate that the native point defects present in un‐doped, epitaxial thin films grown by hybrid molecular beam epitaxy can be identified and their concentrations at the ppm level determined quantitatively. An elevated‐temperature, multi‐faceted approach is shown to be necessary: oxygen tracer diffusion experiments with secondary ion mass spectrometry analysis; molecular dynamics simulations of oxygen‐vacancy diffusion; electronic conductivity studies as a function of oxygen activity and temperature; and Hall‐effect measurements. The results indicate that the oxygen‐vacancy concentration cannot be lowered below 10 17.3 cm −3 because of a background level of barium vacancies (of this concentration), introduced during film growth. The multi‐faceted approach also yields the electron mobility over a wide temperature range, coefficients of oxygen surface exchange and oxygen‐vacancy diffusion, and the reduction enthalpy. The consequences of the results for the lowest electron concentration achievable in BaSnO 3 samples, for the ease of oxide reduction and for the stability of reduced films with respect to oxidation, are discussed.
Author Belthle, Kendra S.
Gunkel, Felix
De Souza, Roger A.
Gries, Ute N.
Börgers, Jacqueline M.
Jalan, Bharat
Mueller, Michael P.
Rose, Marc‐André
Prakash, Abhinav
Kemp, Dennis
Author_xml – sequence: 1
  givenname: Kendra S.
  surname: Belthle
  fullname: Belthle, Kendra S.
  organization: Institute of Physical Chemistry RWTH Aachen University 52056 Aachen Germany
– sequence: 2
  givenname: Ute N.
  surname: Gries
  fullname: Gries, Ute N.
  organization: Institute of Physical Chemistry RWTH Aachen University 52056 Aachen Germany
– sequence: 3
  givenname: Michael P.
  surname: Mueller
  fullname: Mueller, Michael P.
  organization: Institute of Physical Chemistry RWTH Aachen University 52056 Aachen Germany
– sequence: 4
  givenname: Dennis
  surname: Kemp
  fullname: Kemp, Dennis
  organization: Institute of Physical Chemistry RWTH Aachen University 52056 Aachen Germany
– sequence: 5
  givenname: Abhinav
  surname: Prakash
  fullname: Prakash, Abhinav
  organization: Department of Chemical Engineering and Materials Science University of Minnesota Minnesota MN 55455 USA
– sequence: 6
  givenname: Marc‐André
  surname: Rose
  fullname: Rose, Marc‐André
  organization: Peter Gruenberg Institute (PGI 7) Forschungszentrum Juelich GmbH 52428 Juelich Germany
– sequence: 7
  givenname: Jacqueline M.
  surname: Börgers
  fullname: Börgers, Jacqueline M.
  organization: Peter Gruenberg Institute (PGI 7) Forschungszentrum Juelich GmbH 52428 Juelich Germany
– sequence: 8
  givenname: Bharat
  surname: Jalan
  fullname: Jalan, Bharat
  organization: Department of Chemical Engineering and Materials Science University of Minnesota Minnesota MN 55455 USA
– sequence: 9
  givenname: Felix
  surname: Gunkel
  fullname: Gunkel, Felix
  organization: Peter Gruenberg Institute (PGI 7) Forschungszentrum Juelich GmbH 52428 Juelich Germany
– sequence: 10
  givenname: Roger A.
  orcidid: 0000-0001-7721-4128
  surname: De Souza
  fullname: De Souza, Roger A.
  organization: Institute of Physical Chemistry RWTH Aachen University 52056 Aachen Germany
BookMark eNo9kMFKAzEQhoNUsK1ePc8LbM1s2t30qK1VoVjFCt6WNDuhkW6ybGLBm4_gM_ok7lrpZeafj5-B_x-wnvOOGLtEPkLO0ytVmmqU8hRR8FScsD5mmCWtlr2jxrczNgjhnXPMczHus_j8oVy0UUW7J5hTpKayrr28A2_g8cCfvHXx5-t7ToZ0hJl3mlxs_mwBVIS4JajrCpa0px1YB6-us_uaSrhRL24FAtbbli_srgrn7NSoXaCL_z1k68XtenafLFd3D7PrZaLlWCTpRqhc6TYbSjUWYoOkpZJySryUggvKsBuGl5sO5jgt86lOMzPRk0xiLoZsdHirGx9CQ6aoG1up5rNAXnSVFV1lxbEy8QvJ2WMh
CitedBy_id crossref_primary_10_1021_acsnano_3c04003
crossref_primary_10_1016_j_trechm_2023_03_001
crossref_primary_10_1021_acsami_3c18420
crossref_primary_10_1103_PhysRevMaterials_6_L111401
crossref_primary_10_1021_acs_jpclett_2c00970
crossref_primary_10_1002_admi_202201434
Cites_doi 10.1103/PhysRevLett.112.216601
10.1557/jmr.2007.0259
10.1103/PhysRevLett.105.226102
10.1007/s10008-010-1289-0
10.1039/C4NR04083J
10.1021/acsami.5b12574
10.1039/c3cp53979b
10.1063/1.4939657
10.1021/acs.nanolett.9b03825
10.1039/D1TA06293J
10.1039/C9CP06838D
10.1063/1.1814813
10.1146/annurev.ms.02.080172.001043
10.1063/1.4983039
10.1088/0022-3719/14/27/011
10.1103/PhysRevB.94.115408
10.1063/1.5001839
10.1103/PhysRevB.87.195409
10.1063/1.5133745
10.1103/PhysRevB.76.172106
10.1080/10420159108220797
10.1038/s41563-020-0790-9
10.1016/0022-4596(73)90216-8
10.1063/1.5020370
10.1557/mrs2009.212
10.1002/anie.199303133
10.1111/j.1151-2916.1982.tb10388.x
10.1063/1.4996548
10.1016/j.solidstatesciences.2007.06.017
10.1149/1.2134297
10.1103/PhysRevB.96.245423
10.1016/j.ssi.2005.03.012
10.1038/s42005-021-00742-w
10.1063/5.0036024
10.1002/ejic.202100381
10.1021/ic034551c
10.1039/D0CP01281E
10.1039/C5CP01187F
10.1103/PhysRevB.87.161201
10.1016/S0167-2738(01)00893-1
10.1515/zpch-1935-2934
10.1149/1.2127727
10.1016/0022-4596(88)90067-9
10.1111/j.1151-2916.1997.tb03157.x
10.1016/j.ssi.2012.02.045
10.1103/PhysRevB.89.241401
10.1063/1.5143309
10.4191/KCERS.2010.47.1.019
10.1016/S0081-1947(08)60135-6
10.1002/adfm.201500827
10.1063/1.4946762
10.1111/j.1151-2916.1991.tb07812.x
10.1103/PhysRevMaterials.5.105001
10.1103/PhysRevB.95.205202
10.1021/jp0611018
10.1039/C8EE01697F
10.1103/PhysRevB.87.134104
10.1039/B418824A
10.1016/j.jallcom.2021.159753
10.1021/jp504436t
10.1016/j.cossms.2021.100923
10.1039/b822381p
10.1103/PhysRevB.85.174109
10.1111/j.1151-2916.1988.tb05848.x
10.1116/1.4933401
10.1002/anie.201701724
10.1016/0038-1098(94)90787-0
10.1006/jcph.1995.1039
10.1103/PhysRevLett.90.105901
10.1038/ncomms15167
10.1103/PhysRevMaterials.4.123404
10.1143/APEX.5.061102
10.1039/C8CP02191K
10.1016/j.ssi.2005.05.010
10.1021/acs.nanolett.1c00966
10.1002/adfm.201700243
10.1186/s40580-020-00242-7
10.1039/b719618k
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/adfm.202113023
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
ExternalDocumentID 10_1002_adfm_202113023
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
ID FETCH-LOGICAL-c843-2b3a7ac10018a433b1ec8a889e0d8303e6103e6f0db889e719d79c26f5c568173
ISSN 1616-301X
IngestDate Fri Aug 23 02:46:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c843-2b3a7ac10018a433b1ec8a889e0d8303e6103e6f0db889e719d79c26f5c568173
ORCID 0000-0001-7721-4128
ParticipantIDs crossref_primary_10_1002_adfm_202113023
PublicationCentury 2000
PublicationDate 2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-00
PublicationDecade 2020
PublicationTitle Advanced functional materials
PublicationYear 2022
References e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
Smyth D. M. (e_1_2_10_2_1) 2000
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
Kofstad P. (e_1_2_10_1_1) 1972
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – ident: e_1_2_10_33_1
  doi: 10.1103/PhysRevLett.112.216601
– ident: e_1_2_10_12_1
  doi: 10.1557/jmr.2007.0259
– ident: e_1_2_10_62_1
  doi: 10.1103/PhysRevLett.105.226102
– volume-title: The Defect Chemistry of Metal Oxides
  year: 2000
  ident: e_1_2_10_2_1
  contributor:
    fullname: Smyth D. M.
– ident: e_1_2_10_79_1
  doi: 10.1007/s10008-010-1289-0
– ident: e_1_2_10_43_1
  doi: 10.1039/C4NR04083J
– ident: e_1_2_10_44_1
  doi: 10.1021/acsami.5b12574
– ident: e_1_2_10_39_1
  doi: 10.1039/c3cp53979b
– ident: e_1_2_10_9_1
  doi: 10.1063/1.4939657
– ident: e_1_2_10_18_1
  doi: 10.1021/acs.nanolett.9b03825
– ident: e_1_2_10_51_1
  doi: 10.1039/D1TA06293J
– ident: e_1_2_10_49_1
  doi: 10.1039/C9CP06838D
– ident: e_1_2_10_36_1
  doi: 10.1063/1.1814813
– ident: e_1_2_10_3_1
  doi: 10.1146/annurev.ms.02.080172.001043
– ident: e_1_2_10_15_1
  doi: 10.1063/1.4983039
– ident: e_1_2_10_42_1
  doi: 10.1088/0022-3719/14/27/011
– ident: e_1_2_10_68_1
  doi: 10.1103/PhysRevB.94.115408
– ident: e_1_2_10_10_1
  doi: 10.1063/1.5001839
– ident: e_1_2_10_63_1
  doi: 10.1103/PhysRevB.87.195409
– ident: e_1_2_10_8_1
  doi: 10.1063/1.5133745
– ident: e_1_2_10_54_1
  doi: 10.1103/PhysRevB.76.172106
– ident: e_1_2_10_27_1
  doi: 10.1080/10420159108220797
– ident: e_1_2_10_32_1
  doi: 10.1038/s41563-020-0790-9
– ident: e_1_2_10_72_1
  doi: 10.1016/0022-4596(73)90216-8
– ident: e_1_2_10_40_1
  doi: 10.1063/1.5020370
– ident: e_1_2_10_78_1
  doi: 10.1557/mrs2009.212
– ident: e_1_2_10_22_1
  doi: 10.1002/anie.199303133
– ident: e_1_2_10_30_1
  doi: 10.1111/j.1151-2916.1982.tb10388.x
– ident: e_1_2_10_16_1
  doi: 10.1063/1.4996548
– ident: e_1_2_10_26_1
  doi: 10.1016/j.solidstatesciences.2007.06.017
– ident: e_1_2_10_53_1
  doi: 10.1149/1.2134297
– volume-title: Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides
  year: 1972
  ident: e_1_2_10_1_1
  contributor:
    fullname: Kofstad P.
– ident: e_1_2_10_17_1
  doi: 10.1103/PhysRevB.96.245423
– ident: e_1_2_10_35_1
  doi: 10.1016/j.ssi.2005.03.012
– ident: e_1_2_10_34_1
  doi: 10.1038/s42005-021-00742-w
– ident: e_1_2_10_67_1
  doi: 10.1063/5.0036024
– ident: e_1_2_10_75_1
  doi: 10.1002/ejic.202100381
– ident: e_1_2_10_11_1
  doi: 10.1021/ic034551c
– ident: e_1_2_10_50_1
  doi: 10.1039/D0CP01281E
– ident: e_1_2_10_38_1
  doi: 10.1039/C5CP01187F
– ident: e_1_2_10_61_1
  doi: 10.1103/PhysRevB.87.161201
– ident: e_1_2_10_76_1
  doi: 10.1016/S0167-2738(01)00893-1
– ident: e_1_2_10_20_1
  doi: 10.1515/zpch-1935-2934
– ident: e_1_2_10_29_1
  doi: 10.1149/1.2127727
– ident: e_1_2_10_58_1
  doi: 10.1016/0022-4596(88)90067-9
– ident: e_1_2_10_60_1
  doi: 10.1111/j.1151-2916.1997.tb03157.x
– ident: e_1_2_10_48_1
  doi: 10.1016/j.ssi.2012.02.045
– ident: e_1_2_10_71_1
  doi: 10.1103/PhysRevB.89.241401
– ident: e_1_2_10_4_1
  doi: 10.1063/1.5143309
– ident: e_1_2_10_23_1
  doi: 10.4191/KCERS.2010.47.1.019
– ident: e_1_2_10_21_1
  doi: 10.1016/S0081-1947(08)60135-6
– ident: e_1_2_10_55_1
  doi: 10.1002/adfm.201500827
– ident: e_1_2_10_13_1
  doi: 10.1063/1.4946762
– ident: e_1_2_10_64_1
  doi: 10.1111/j.1151-2916.1991.tb07812.x
– ident: e_1_2_10_47_1
  doi: 10.1103/PhysRevMaterials.5.105001
– ident: e_1_2_10_6_1
  doi: 10.1103/PhysRevB.95.205202
– ident: e_1_2_10_52_1
  doi: 10.1021/jp0611018
– ident: e_1_2_10_74_1
  doi: 10.1039/C8EE01697F
– ident: e_1_2_10_66_1
  doi: 10.1103/PhysRevB.87.134104
– ident: e_1_2_10_25_1
  doi: 10.1039/B418824A
– ident: e_1_2_10_57_1
  doi: 10.1016/j.jallcom.2021.159753
– ident: e_1_2_10_59_1
  doi: 10.1021/jp504436t
– ident: e_1_2_10_69_1
  doi: 10.1016/j.cossms.2021.100923
– ident: e_1_2_10_65_1
  doi: 10.1039/b822381p
– ident: e_1_2_10_19_1
  doi: 10.1103/PhysRevB.85.174109
– ident: e_1_2_10_31_1
  doi: 10.1111/j.1151-2916.1988.tb05848.x
– ident: e_1_2_10_41_1
  doi: 10.1116/1.4933401
– ident: e_1_2_10_73_1
  doi: 10.1002/anie.201701724
– ident: e_1_2_10_56_1
  doi: 10.1016/0038-1098(94)90787-0
– ident: e_1_2_10_80_1
  doi: 10.1006/jcph.1995.1039
– ident: e_1_2_10_24_1
  doi: 10.1103/PhysRevLett.90.105901
– ident: e_1_2_10_7_1
  doi: 10.1038/ncomms15167
– ident: e_1_2_10_28_1
  doi: 10.1103/PhysRevMaterials.4.123404
– ident: e_1_2_10_5_1
  doi: 10.1143/APEX.5.061102
– ident: e_1_2_10_46_1
  doi: 10.1039/C8CP02191K
– ident: e_1_2_10_77_1
  doi: 10.1016/j.ssi.2005.05.010
– ident: e_1_2_10_70_1
  doi: 10.1021/acs.nanolett.1c00966
– ident: e_1_2_10_45_1
  doi: 10.1002/adfm.201700243
– ident: e_1_2_10_14_1
  doi: 10.1186/s40580-020-00242-7
– ident: e_1_2_10_37_1
  doi: 10.1039/b719618k
SSID ssj0017734
Score 2.431087
Snippet Abstract The high‐mobility, wide‐bandgap perovskite oxide BaSnO 3 is taken as a model system to demonstrate that the native point defects present in un‐doped,...
SourceID crossref
SourceType Aggregation Database
Title Quantitative Determination of Native Point‐Defect Concentrations at the ppm Level in Un‐Doped BaSnO 3 Thin Films
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaWcoED4leUP_mAxCHKksRp7ByhUFUIlkJ3pd5Wju1IK7XeqM1eeuIReAFejidhxnZ-Fu2hcLGiUZysMp88M95vPhPyWkMOVFdJHhdC13Fuch1XErAsRZEbyauMKSwUv8yK40X-6ezgbDL5NWItbdpqqq539pX8j1fBBn7FLtl_8Gz_UDDANfgXRvAwjDfy8beNtK5JzNN_ArGlywFn3n6yXtm25zR8ME6t-BC7FW2QzL0KHY1R01xEn5FFhLsgCztMWjeQl76Xp_ZrxNxRn9HR6jzonHcSth2ZACNl2GCEbNh_hr7oN-dI3ggNQfpSRqfTgQG08kvWojXRbDogwXTdioHiH51MhzBx0fhV03qFlH4HA4rfni8YFt0iRf6dOzoHYtLYFhrHw0o97IQiIsudEcArykpdo8wAVLd4KNIQ67r_9_8KgT0x0Ys4Z0ucv-zn3yK3M9QRxJz7e69OlnLuSQvdz-80QZPs7fb7RznPKHmZ3yf3QtVB33kIPSATYx-SuyMtykekHYOJboGJrmvqwUQdmH7_-OlhRLdhRGVLAUYUYEQdjOjK0oXF2xFA1AGIMooAog5Aj8n86OP88DgOR3LESuQsziomuVSo2yVkzliVGiWkEKVJtIBkyEAyDkOd6AqNPC01L1VW1AcKhe44e0L27Nqap4QKpcqEK62LKsvLgsOjcqZVJkuZSogL--RN982WjRdeWe72zrMb3_mc3Bnw94LstZcb8xJyyrZ65Tz7B1r2dr8
link.rule.ids 315,783,787,27937,27938
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Determination+of+Native+Point%E2%80%90Defect+Concentrations+at+the+ppm+Level+in+Un%E2%80%90Doped+BaSnO+3+Thin+Films&rft.jtitle=Advanced+functional+materials&rft.au=Belthle%2C+Kendra+S.&rft.au=Gries%2C+Ute+N.&rft.au=Mueller%2C+Michael+P.&rft.au=Kemp%2C+Dennis&rft.date=2022-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=19&rft_id=info:doi/10.1002%2Fadfm.202113023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202113023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon