Protocadherins mediate dendritic self-avoidance in the mammalian nervous system

Protocadherins are found to potentially provide the molecular diversity and complexity required to promote dendritic self-avoidance in mouse retina and cerebellum. Dendrite self-avoidance in mammalian neurons The complex geometry of neurons helps to determine the patterns of connectivity that underl...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 488; no. 7412; pp. 517 - 521
Main Authors Lefebvre, Julie L., Kostadinov, Dimitar, Chen, Weisheng V., Maniatis, Tom, Sanes, Joshua R.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.08.2012
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Protocadherins are found to potentially provide the molecular diversity and complexity required to promote dendritic self-avoidance in mouse retina and cerebellum. Dendrite self-avoidance in mammalian neurons The complex geometry of neurons helps to determine the patterns of connectivity that underlie their functions. Elaborate axonal and dendritic patterning is achieved through self-avoidance, a process that allows individual branches of one neuron to repel each other while simultaneously attracting branches of other, seemingly identical neurons. The molecular basis of neurite self-avoidance in Drosophila involves Dscam genes, but the mammalian homologues are insufficiently complex to cope with self/non-self recognition. Here it is shown that protocadherins, a type of cell-adhesion molecule, may provide the molecular diversity and complexity required to promote dendritic self-avoidance in the mouse retina and cerebellum. Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other 1 , 2 , 3 , 4 , 5 , 6 , 7 . By minimizing gaps and overlaps within the arborization, self-avoidance facilitates complete coverage of a neuron’s territory by its neurites 1 , 2 , 3 . Remarkably, some neurons that display self-avoidance interact freely with other neurons of the same subtype, implying that they discriminate self from non-self. Here we demonstrate roles for the clustered protocadherins (Pcdhs) in dendritic self-avoidance and self/non-self discrimination. The Pcdh locus encodes 58 related cadherin-like transmembrane proteins, at least some of which exhibit isoform-specific homophilic adhesion in heterologous cells and are expressed stochastically and combinatorially in single neurons 7 , 8 , 9 , 10 , 11 . Deletion of all 22 Pcdh genes in the mouse γ-subcluster ( Pcdhg genes) disrupts self-avoidance of dendrites in retinal starburst amacrine cells (SACs) and cerebellar Purkinje cells. Further genetic analysis of SACs showed that Pcdhg proteins act cell-autonomously during development, and that replacement of the 22 Pcdhg proteins with a single isoform restores self-avoidance. Moreover, expression of the same single isoform in all SACs decreases interactions among dendrites of neighbouring SACs (heteroneuronal interactions). These results suggest that homophilic Pcdhg interactions between sibling neurites (isoneuronal interactions) generate a repulsive signal that leads to self-avoidance. In this model, heteroneuronal interactions are normally permitted because dendrites seldom encounter a matched set of Pcdhg proteins unless they emanate from the same soma. In many respects, our results mirror those reported for Dscam1 ( Down syndrome cell adhesion molecule ) in Drosophila : this complex gene encodes thousands of recognition molecules that exhibit stochastic expression and isoform-specific interactions, and mediate both self-avoidance and self/non-self discrimination 4 , 5 , 6 , 7 , 12 , 13 , 14 , 15 . Thus, although insect Dscam and vertebrate Pcdh proteins share no sequence homology, they seem to underlie similar strategies for endowing neurons with distinct molecular identities and patterning their arborizations.
AbstractList Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other. By minimizing gaps and overlaps within the arborization, self-avoidance facilitates complete coverage of a neuron’s territory by its neurites. Remarkably, some neurons that display self-avoidance interact freely with other neurons of the same subtype, implying that they discriminate self from non-self. Here we demonstrate roles for the clustered protocadherins (Pcdhs) in dendritic self-avoidance and self/non-self discrimination. The Pcdh locus encodes 58 related cadherin-like transmembrane proteins, at least some of which exhibit isoform-specific homophilic adhesion in heterologous cells and are expressed stochastically and combinatorially in single neurons. Deletion of all 22 Pcdh genes in the mouse γ-subcluster (Pcdhg genes) disrupts self-avoidance of dendrites in retinal starburst amacrine cells (SACs) and cerebellar Purkinje cells. Further genetic analysis of SACs showed that Pcdhg proteins act cell-autonomously during development, and that replacement of the 22 Pcdhg proteins with a single isoform restores self-avoidance. Moreover, expression of the same single isoform in all SACs decreases interactions among dendrites of neighbouring SACs (heteroneuronal interactions). These results suggest that homophilic Pcdhg interactions between sibling neurites (isoneuronal interactions) generate a repulsive signal that leads to self-avoidance. In this model, heteroneuronal interactions are normally permitted because dendrites seldom encounter a matched set of Pcdhg proteins unless they emanate from the same soma. In many respects, our results mirror those reported for Dscam1 (Down syndrome cell adhesion molecule) in Drosophila: this complex gene encodes thousands of recognition molecules that exhibit stochastic expression and isoform-specific interactions, and mediate both self-avoidance and self/non-self discrimination. Thus, although insect Dscam and vertebrate Pcdh proteins share no sequence homology, they seem to underlie similar strategies for endowing neurons with distinct molecular identities and patterning their arborizations.
Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other (1-7). By minimizing gaps and overlaps within the arborization, self-avoidance facilitates complete coverage of a neuron's territory by its neuritis (1-3). Remarkably, some neurons that display self-avoidance interact freely with other neurons of the same subtype, implying that they discriminate self from non-self. Here we demonstrate roles for the clustered protocadherins (Pcdhs) in dendritic self-avoidance and self/non-self discrimination. The Pcdh locus encodes 58 related cadherin-like transmembrane proteins, at least some of which exhibit isoform-specific homophilic adhesion in heterologous cells and are expressed stochastically and combinatorially in single neurons (7-11). Deletion of all 22 Pcdh genes in the mouse y-subcluster (Pcdhg genes) disrupts self-avoidance of dendrites in retinal starburst amacrine cells (SACs) and cerebellar Purkinje cells. Further genetic analysis of SACs showed that Pcdhg proteins act cell-autonomously during development, and that replacement of the 22 Pcdhg proteins with a single isoform restores self-avoidance. Moreover, expression of the same single isoform in all SACs decreases interactions among dendrites of neighbouring SACs (heteroneuronal interactions). These results suggest that homophilic Pcdhg interactions between sibling neurites (isoneuronal interactions) generate a repulsive signal that leads to self-avoidance. In this model, heteroneuronal interactions are normally permitted because dendrites seldom encounter a matched set of Pcdhg proteins unless they emanate from the same soma. In many respects, our results mirror those reported for Dscam1 (Down syndrome cell adhesion molecule)in Drosophila: this complex gene encodes thousands of recognition molecules that exhibit stochastic expression and isoform-specific interactions, and mediate both self-avoidance and self/non-self discrimination (4-7,12-15). Thus, although insect Dscam and vertebrate Pcdh proteins share no sequence homology, they seem to underlie similar strategies for endowing neurons with distinct molecular identities and patterning their arborizations.
Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other. By minimizing gaps and overlaps within the arborization, self-avoidance facilitates complete coverage of a neuron’s territory by its neurites. Remarkably, some neurons that display self-avoidance interact freely with other neurons of the same subtype, implying that they discriminate self from non-self. Here we demonstrate roles for the clustered protocadherins (Pcdhs) in dendritic self-avoidance and self/non-self discrimination. The Pcdh locus encodes 58 related cadherin-like transmembrane proteins, at least some of which exhibit isoform-specific homophilic adhesion in heterologous cells and are expressed stochastically and combinatorially in single neurons. Deletion of all 22 Pcdh genes in the mouse γ-subcluster (Pcdhg genes) disrupts self-avoidance of dendrites in retinal starburst amacrine cells (SACs) and cerebellar Purkinje cells. Further genetic analysis of SACs showed that Pcdhg proteins act cell-autonomously during development, and that replacement of the 22 Pcdhg proteins with a single isoform restores self-avoidance. Moreover, expression of the same single isoform in all SACs decreases interactions among dendrites of neighbouring SACs (heteroneuronal interactions). These results suggest that homophilic Pcdhg interactions between sibling neurites (isoneuronal interactions) generate a repulsive signal that leads to self-avoidance. In this model, heteroneuronal interactions are normally permitted because dendrites seldom encounter a matched set of Pcdhg proteins unless they emanate from the same soma. In many respects, our results mirror those reported for Dscam1 (Down syndrome cell adhesion molecule) in Drosophila: this complex gene encodes thousands of recognition molecules that exhibit stochastic expression and isoform-specific interactions, and mediate both self-avoidance and self/non-self discrimination. Thus, although insect Dscam and vertebrate Pcdh proteins share no sequence homology, they seem to underlie similar strategies for endowing neurons with distinct molecular identities and patterning their arborizations.Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other. By minimizing gaps and overlaps within the arborization, self-avoidance facilitates complete coverage of a neuron’s territory by its neurites. Remarkably, some neurons that display self-avoidance interact freely with other neurons of the same subtype, implying that they discriminate self from non-self. Here we demonstrate roles for the clustered protocadherins (Pcdhs) in dendritic self-avoidance and self/non-self discrimination. The Pcdh locus encodes 58 related cadherin-like transmembrane proteins, at least some of which exhibit isoform-specific homophilic adhesion in heterologous cells and are expressed stochastically and combinatorially in single neurons. Deletion of all 22 Pcdh genes in the mouse γ-subcluster (Pcdhg genes) disrupts self-avoidance of dendrites in retinal starburst amacrine cells (SACs) and cerebellar Purkinje cells. Further genetic analysis of SACs showed that Pcdhg proteins act cell-autonomously during development, and that replacement of the 22 Pcdhg proteins with a single isoform restores self-avoidance. Moreover, expression of the same single isoform in all SACs decreases interactions among dendrites of neighbouring SACs (heteroneuronal interactions). These results suggest that homophilic Pcdhg interactions between sibling neurites (isoneuronal interactions) generate a repulsive signal that leads to self-avoidance. In this model, heteroneuronal interactions are normally permitted because dendrites seldom encounter a matched set of Pcdhg proteins unless they emanate from the same soma. In many respects, our results mirror those reported for Dscam1 (Down syndrome cell adhesion molecule) in Drosophila: this complex gene encodes thousands of recognition molecules that exhibit stochastic expression and isoform-specific interactions, and mediate both self-avoidance and self/non-self discrimination. Thus, although insect Dscam and vertebrate Pcdh proteins share no sequence homology, they seem to underlie similar strategies for endowing neurons with distinct molecular identities and patterning their arborizations.
Protocadherins are found to potentially provide the molecular diversity and complexity required to promote dendritic self-avoidance in mouse retina and cerebellum.
Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other. By minimizing gaps and overlaps within the arborization, self-avoidance facilitates complete coverage of a neuron's territory by its neurites. Remarkably, some neurons that display self-avoidance interact freely with other neurons of the same subtype, implying that they discriminate self from non-self. Here we demonstrate roles for the clustered protocadherins (Pcdhs) in dendritic self-avoidance and self/non-self discrimination. The Pcdh locus encodes 58 related cadherin-like transmembrane proteins, at least some of which exhibit isoform-specific homophilic adhesion in heterologous cells and are expressed stochastically and combinatorially in single neurons. Deletion of all 22 Pcdh genes in the mouse γ-subcluster (Pcdhg genes) disrupts self-avoidance of dendrites in retinal starburst amacrine cells (SACs) and cerebellar Purkinje cells. Further genetic analysis of SACs showed that Pcdhg proteins act cell-autonomously during development, and that replacement of the 22 Pcdhg proteins with a single isoform restores self-avoidance. Moreover, expression of the same single isoform in all SACs decreases interactions among dendrites of neighbouring SACs (heteroneuronal interactions). These results suggest that homophilic Pcdhg interactions between sibling neurites (isoneuronal interactions) generate a repulsive signal that leads to self-avoidance. In this model, heteroneuronal interactions are normally permitted because dendrites seldom encounter a matched set of Pcdhg proteins unless they emanate from the same soma. In many respects, our results mirror those reported for Dscam1 (Down syndrome cell adhesion molecule) in Drosophila: this complex gene encodes thousands of recognition molecules that exhibit stochastic expression and isoform-specific interactions, and mediate both self-avoidance and self/non-self discrimination. Thus, although insect Dscam and vertebrate Pcdh proteins share no sequence homology, they seem to underlie similar strategies for endowing neurons with distinct molecular identities and patterning their arborizations. [PUBLICATION ABSTRACT]
Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other. By minimizing gaps and overlaps within the arborization, self-avoidance facilitates complete coverage of a neuron's territory by its neurites. Remarkably, some neurons that display self-avoidance interact freely with other neurons of the same subtype, implying that they discriminate self from non-self. Here we demonstrate roles for the clustered protocadherins (Pcdhs) in dendritic self-avoidance and self/non-self discrimination. The Pcdh locus encodes 58 related cadherin-like transmembrane proteins, at least some of which exhibit isoform-specific homophilic adhesion in heterologous cells and are expressed stochastically and combinatorially in single neurons. Deletion of all 22 Pcdh genes in the mouse gamma -subcluster (Pcdhg genes) disrupts self-avoidance of dendrites in retinal starburst amacrine cells (SACs) and cerebellar Purkinje cells. Further genetic analysis of SACs showed that Pcdhg proteins act cell-autonomously during development, and that replacement of the 22 Pcdhg proteins with a single isoform restores self-avoidance. Moreover, expression of the same single isoform in all SACs decreases interactions among dendrites of neighbouring SACs (heteroneuronal interactions). These results suggest that homophilic Pcdhg interactions between sibling neurites (isoneuronal interactions) generate a repulsive signal that leads to self-avoidance. In this model, heteroneuronal interactions are normally permitted because dendrites seldom encounter a matched set of Pcdhg proteins unless they emanate from the same soma. In many respects, our results mirror those reported for Dscam1 (Down syndrome cell adhesion molecule) in Drosophila: this complex gene encodes thousands of recognition molecules that exhibit stochastic expression and isoform-specific interactions, and mediate both self-avoidance and self/non-self discrimination. Thus, although insect Dscam and vertebrate Pcdh proteins share no sequence homology, they seem to underlie similar strategies for endowing neurons with distinct molecular identities and patterning their arborizations.
Dendritic arbors of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other 1 - 7 . By minimizing gaps and overlaps within the arbor, self-avoidance facilitates complete coverage of a neuron’s territory by its neurites 1 - 3 . Remarkably, some neurons that display self-avoidance interact freely with other neurons of the same subtype, implying that they discriminate self from non-self. Here, we demonstrate roles for the clustered protocadherins (Pcdhs) in dendritic self-avoidance and self/non-self discrimination. The Pcdh locus encodes ~60 related cadherin-like transmembrane proteins, at least some of which exhibit isoform-specific homophilic adhesion in heterologous cells and are expressed stochastically and combinatorially in single neurons 7 - 11 . Deletion of all 22 Pcdh s in the mouse gamma subcluster ( Pcdhg s) disrupts self-avoidance of dendrites in retinal starburst amacrine cells (SACs) and cerebellar Purkinje cells. Further genetic analysis of SACs showed that Pcdhgs act cell-autonomously during development, and that replacement of the 22 Pcdhgs with a single isoform restores self-avoidance. Moreover, expression of the same single isoform in all SACs decreases interactions among dendrites of neighboring SACs (heteroneuronal interactions). These results suggest that homophilic Pcdhg interactions between sibling neurites (isoneuronal interactions) generate a repulsive signal that leads to self-avoidance. In this model, heteroneuronal interactions are normally permitted because dendrites seldom encounter a matched set of Pcdhgs unless they emanate from the same soma. In many respects, our results mirror those reported for Dscam1 in Drosophila : this complex gene encodes thousands of recognition molecules that exhibit stochastic expression and isoform-specific interactions, and mediate both self-avoidance and self/non-self discrimination 4 - 7 , 12 - 15 . Thus, although insect Dscams and vertebrate Pcdhs share no sequence homology, they appear to underlie similar strategies for endowing neurons with distinct molecular identities and patterning their arbors.
Protocadherins are found to potentially provide the molecular diversity and complexity required to promote dendritic self-avoidance in mouse retina and cerebellum. Dendrite self-avoidance in mammalian neurons The complex geometry of neurons helps to determine the patterns of connectivity that underlie their functions. Elaborate axonal and dendritic patterning is achieved through self-avoidance, a process that allows individual branches of one neuron to repel each other while simultaneously attracting branches of other, seemingly identical neurons. The molecular basis of neurite self-avoidance in Drosophila involves Dscam genes, but the mammalian homologues are insufficiently complex to cope with self/non-self recognition. Here it is shown that protocadherins, a type of cell-adhesion molecule, may provide the molecular diversity and complexity required to promote dendritic self-avoidance in the mouse retina and cerebellum. Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other 1 , 2 , 3 , 4 , 5 , 6 , 7 . By minimizing gaps and overlaps within the arborization, self-avoidance facilitates complete coverage of a neuron’s territory by its neurites 1 , 2 , 3 . Remarkably, some neurons that display self-avoidance interact freely with other neurons of the same subtype, implying that they discriminate self from non-self. Here we demonstrate roles for the clustered protocadherins (Pcdhs) in dendritic self-avoidance and self/non-self discrimination. The Pcdh locus encodes 58 related cadherin-like transmembrane proteins, at least some of which exhibit isoform-specific homophilic adhesion in heterologous cells and are expressed stochastically and combinatorially in single neurons 7 , 8 , 9 , 10 , 11 . Deletion of all 22 Pcdh genes in the mouse γ-subcluster ( Pcdhg genes) disrupts self-avoidance of dendrites in retinal starburst amacrine cells (SACs) and cerebellar Purkinje cells. Further genetic analysis of SACs showed that Pcdhg proteins act cell-autonomously during development, and that replacement of the 22 Pcdhg proteins with a single isoform restores self-avoidance. Moreover, expression of the same single isoform in all SACs decreases interactions among dendrites of neighbouring SACs (heteroneuronal interactions). These results suggest that homophilic Pcdhg interactions between sibling neurites (isoneuronal interactions) generate a repulsive signal that leads to self-avoidance. In this model, heteroneuronal interactions are normally permitted because dendrites seldom encounter a matched set of Pcdhg proteins unless they emanate from the same soma. In many respects, our results mirror those reported for Dscam1 ( Down syndrome cell adhesion molecule ) in Drosophila : this complex gene encodes thousands of recognition molecules that exhibit stochastic expression and isoform-specific interactions, and mediate both self-avoidance and self/non-self discrimination 4 , 5 , 6 , 7 , 12 , 13 , 14 , 15 . Thus, although insect Dscam and vertebrate Pcdh proteins share no sequence homology, they seem to underlie similar strategies for endowing neurons with distinct molecular identities and patterning their arborizations.
Audience Academic
Author Chen, Weisheng V.
Maniatis, Tom
Kostadinov, Dimitar
Lefebvre, Julie L.
Sanes, Joshua R.
AuthorAffiliation 1 Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138
2 Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 W 168th Street, New York, NY 10032
AuthorAffiliation_xml – name: 1 Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138
– name: 2 Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 W 168th Street, New York, NY 10032
Author_xml – sequence: 1
  givenname: Julie L.
  surname: Lefebvre
  fullname: Lefebvre, Julie L.
  organization: Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts 02138, USA
– sequence: 2
  givenname: Dimitar
  surname: Kostadinov
  fullname: Kostadinov, Dimitar
  organization: Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts 02138, USA
– sequence: 3
  givenname: Weisheng V.
  surname: Chen
  fullname: Chen, Weisheng V.
  organization: Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 West 168th Street, New York, New York 10032, USA
– sequence: 4
  givenname: Tom
  surname: Maniatis
  fullname: Maniatis, Tom
  organization: Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 West 168th Street, New York, New York 10032, USA
– sequence: 5
  givenname: Joshua R.
  surname: Sanes
  fullname: Sanes, Joshua R.
  email: sanesj@mcb.harvard.edu
  organization: Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts 02138, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26256107$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22842903$$D View this record in MEDLINE/PubMed
BookMark eNqF099r1TAUB_AiE_dDn3yXogiKduZHm6Qvwhj-GAwnOvExnKandxltepfkDvffm-t-9eqdow-F5pNvTpqT7WzDjQ6z7Cklu5Rw9c5BXHiklJPqQbZFSymKUii5kW0RwlRBFBeb2XYIp4SQisryUbbJmCpZTfhWdvTVj3E00J6gty7kA7YWIuYtutbbaE0esO8KOB9tC85gbl0eTzAfYBigt-Byh_58XIQ8XISIw-PsYQd9wCdX753sx8cPx_ufi8OjTwf7e4eFSeXEAhEaUEJ1LW0Eq8tUvKxL2QLnRiCFsm4UbRAV4bw2rBaqAsIRAKuGk4bxnez9Ze580aSaDbrooddzbwfwF3oEq1dHnD3Rs_Fc85LJki0DXl0F-PFsgSHqwQaDfQ8O03Y0LXnNuCJU3U8JrygRnIpEX_xFT8eFd-lPLJWsJZNE3qoZ9Kit68ZUolmG6j3BCSOVVPV_FSdUSlGp5YrFGjXDdCzQp0bpbPq84p-v8WZuz_R06TvRNGl3DUpPi4M1a5d-vTIhmYi_4gwWIeiD799WN3-fnea-udvuHf_c_7KafL-eZj-b9tlNg13foAReXgEIBvrOp1tiw60TrBL0z5nTS2f8GILHThsbIdpx2Z62T-2x7BClJ7f5ttSbOdex6_XbSx2ScjP00977l_8G5VZR3A
CODEN NATUAS
CitedBy_id crossref_primary_10_1038_s41588_019_0526_4
crossref_primary_10_1016_j_conb_2014_02_009
crossref_primary_10_1016_j_semcdb_2017_05_001
crossref_primary_10_1038_srep01514
crossref_primary_10_1534_genetics_117_300432
crossref_primary_10_2139_ssrn_3207022
crossref_primary_10_3389_fnmol_2019_00243
crossref_primary_10_1016_j_neuroscience_2020_06_037
crossref_primary_10_7554_eLife_20930
crossref_primary_10_1016_j_tins_2015_05_003
crossref_primary_10_1371_journal_pbio_3002197
crossref_primary_10_3389_fnmol_2019_00115
crossref_primary_10_1007_s00018_017_2572_3
crossref_primary_10_1101_gad_262592_115
crossref_primary_10_1002_wdev_379
crossref_primary_10_1111_jnc_16066
crossref_primary_10_1002_wdev_135
crossref_primary_10_1016_j_neuroscience_2014_01_044
crossref_primary_10_1038_ncomms11252
crossref_primary_10_1016_j_celrep_2020_02_003
crossref_primary_10_1093_pnasnexus_pgae060
crossref_primary_10_1146_annurev_cellbio_101011_155748
crossref_primary_10_1016_j_cell_2020_04_008
crossref_primary_10_1016_j_neuron_2013_10_035
crossref_primary_10_1371_journal_pone_0216263
crossref_primary_10_1016_j_celrep_2021_109522
crossref_primary_10_1523_JNEUROSCI_2202_14_2015
crossref_primary_10_1186_s12915_016_0326_6
crossref_primary_10_1038_s41467_023_38205_1
crossref_primary_10_1038_s41598_017_16120_y
crossref_primary_10_5005_jp_journals_11002_0112
crossref_primary_10_1371_journal_pone_0096837
crossref_primary_10_1016_j_celrep_2018_08_029
crossref_primary_10_1073_pnas_1219280110
crossref_primary_10_1242_dev_194530
crossref_primary_10_1242_dev_201830
crossref_primary_10_1016_j_neuron_2018_11_001
crossref_primary_10_1016_j_neuron_2023_03_012
crossref_primary_10_1152_jn_00322_2018
crossref_primary_10_1002_dvdy_512
crossref_primary_10_1186_s12862_016_0652_x
crossref_primary_10_1111_eva_13257
crossref_primary_10_1371_journal_pone_0076201
crossref_primary_10_3389_fgene_2024_1308234
crossref_primary_10_1007_s10237_021_01539_0
crossref_primary_10_3382_ps_pey236
crossref_primary_10_3389_fgene_2019_00268
crossref_primary_10_3389_fnmol_2020_00117
crossref_primary_10_1146_annurev_cellbio_100913_013020
crossref_primary_10_1002_cne_25102
crossref_primary_10_1016_j_crvi_2013_11_010
crossref_primary_10_1128_MCB_00760_14
crossref_primary_10_1021_acs_biochem_7b00545
crossref_primary_10_1186_1749_8104_8_11
crossref_primary_10_1016_j_neuron_2018_03_031
crossref_primary_10_1002_ange_201704783
crossref_primary_10_3109_10409238_2015_1064350
crossref_primary_10_1073_pnas_1901378116
crossref_primary_10_1371_journal_pgen_1008228
crossref_primary_10_7554_eLife_50568
crossref_primary_10_1016_j_xpro_2024_102844
crossref_primary_10_1523_JNEUROSCI_1636_20_2020
crossref_primary_10_1016_j_devcel_2013_07_011
crossref_primary_10_1093_jmcb_mjab057
crossref_primary_10_1016_j_conb_2016_06_009
crossref_primary_10_1126_sciadv_abo7247
crossref_primary_10_1038_s41598_021_01481_2
crossref_primary_10_1016_j_cell_2019_05_019
crossref_primary_10_1016_j_neuron_2022_09_025
crossref_primary_10_1007_s00018_018_2951_4
crossref_primary_10_1080_15592294_2016_1192736
crossref_primary_10_1186_s13059_020_01984_7
crossref_primary_10_3390_ijms22168511
crossref_primary_10_1016_j_cell_2013_10_018
crossref_primary_10_1126_science_aan2856
crossref_primary_10_1016_j_cell_2024_04_010
crossref_primary_10_1002_mds_28965
crossref_primary_10_1371_journal_pone_0083076
crossref_primary_10_1186_s13041_020_0547_z
crossref_primary_10_1002_anie_201704783
crossref_primary_10_1073_pnas_1809430115
crossref_primary_10_1007_s12263_014_0399_1
crossref_primary_10_1016_j_neuron_2014_08_054
crossref_primary_10_7554_eLife_41050
crossref_primary_10_1038_srep22892
crossref_primary_10_1016_j_pneurobio_2020_101968
crossref_primary_10_1073_pnas_1311135110
crossref_primary_10_1080_23262133_2015_1122699
crossref_primary_10_1242_dev_179168
crossref_primary_10_1074_jbc_M115_642306
crossref_primary_10_1016_j_neuron_2013_12_012
crossref_primary_10_1111_gtc_12008
crossref_primary_10_1152_physiolgenomics_00042_2017
crossref_primary_10_1101_cshperspect_a024208
crossref_primary_10_1242_dev_204293
crossref_primary_10_1016_j_semcdb_2022_02_015
crossref_primary_10_1126_science_adf8440
crossref_primary_10_1155_2016_3423267
crossref_primary_10_12688_f1000research_16038_1
crossref_primary_10_1242_dev_090621
crossref_primary_10_1093_bfgp_els054
crossref_primary_10_1016_j_jgg_2016_03_006
crossref_primary_10_1523_ENEURO_0250_23_2023
crossref_primary_10_1016_j_alcohol_2016_11_009
crossref_primary_10_1016_j_bpj_2022_02_008
crossref_primary_10_1186_s13073_016_0374_0
crossref_primary_10_1002_glia_22779
crossref_primary_10_1016_j_celrep_2018_07_024
crossref_primary_10_3389_fnmol_2016_00155
crossref_primary_10_1002_dneu_22267
crossref_primary_10_1016_j_yexcr_2018_03_016
crossref_primary_10_1038_s41398_020_00984_2
crossref_primary_10_1016_j_celrep_2020_107844
crossref_primary_10_3389_fnmol_2018_00485
crossref_primary_10_3389_fimmu_2023_1206906
crossref_primary_10_1038_s44161_024_00522_z
crossref_primary_10_1016_j_celrep_2023_112170
crossref_primary_10_1016_j_str_2015_09_005
crossref_primary_10_1146_annurev_cellbio_100616_060701
crossref_primary_10_1016_j_neuroscience_2020_05_036
crossref_primary_10_1016_j_conb_2013_09_011
crossref_primary_10_1016_j_jbc_2025_108337
crossref_primary_10_3389_fnins_2020_587819
crossref_primary_10_1038_nnano_2016_256
crossref_primary_10_1038_srep31665
crossref_primary_10_1007_s13277_016_5169_9
crossref_primary_10_1097_MD_0000000000009572
crossref_primary_10_1002_dneu_22950
crossref_primary_10_1371_journal_pbio_2004734
crossref_primary_10_1172_JCI66476
crossref_primary_10_7554_eLife_06963
crossref_primary_10_1038_s41598_018_28034_4
crossref_primary_10_1111_jnc_13053
crossref_primary_10_1016_j_cell_2015_09_026
crossref_primary_10_1016_j_cell_2014_07_012
crossref_primary_10_1038_s41586_019_1089_3
crossref_primary_10_7554_eLife_35242
crossref_primary_10_1007_s12035_020_02263_z
crossref_primary_10_1016_j_colsurfb_2023_113143
crossref_primary_10_1146_annurev_neuro_062111_150414
crossref_primary_10_1242_jcs_166306
crossref_primary_10_1016_j_biosystems_2013_06_005
crossref_primary_10_3389_fcell_2021_720798
crossref_primary_10_1523_JNEUROSCI_0969_12_2012
crossref_primary_10_1016_j_celrep_2017_02_060
crossref_primary_10_1016_j_neuron_2015_05_004
crossref_primary_10_1016_j_cub_2024_07_076
crossref_primary_10_7554_eLife_89532_3
crossref_primary_10_1016_j_cell_2015_09_031
crossref_primary_10_1242_dev_201214
crossref_primary_10_3389_fnmol_2017_00114
crossref_primary_10_1093_jb_mvu070
crossref_primary_10_1038_ncomms15683
crossref_primary_10_1126_science_adm9802
crossref_primary_10_1038_srep06263
crossref_primary_10_1073_pnas_1800889115
crossref_primary_10_1038_s41467_021_27135_5
crossref_primary_10_1186_s40478_021_01140_7
crossref_primary_10_1038_s41467_023_43849_0
crossref_primary_10_1523_JNEUROSCI_1878_13_2013
crossref_primary_10_1016_j_conb_2019_10_001
crossref_primary_10_1126_science_aal3231
crossref_primary_10_7554_eLife_74270
crossref_primary_10_1016_j_celrep_2014_03_040
crossref_primary_10_1111_ejn_13051
crossref_primary_10_1038_s41467_022_33364_z
crossref_primary_10_7554_eLife_16144
crossref_primary_10_1002_dvg_70010
crossref_primary_10_1146_annurev_physiol_021014_071746
crossref_primary_10_1016_j_biopsych_2015_01_017
crossref_primary_10_1038_nature12107
crossref_primary_10_7554_eLife_72416
crossref_primary_10_1016_j_cell_2015_07_038
crossref_primary_10_7554_eLife_18449
crossref_primary_10_15252_embj_201385162
crossref_primary_10_3389_fgene_2017_00019
crossref_primary_10_1016_j_cell_2015_11_021
crossref_primary_10_1111_jne_12280
crossref_primary_10_1016_j_isci_2024_111452
crossref_primary_10_1016_j_neures_2018_09_015
crossref_primary_10_1016_j_conb_2016_12_006
crossref_primary_10_1016_j_semcdb_2022_11_004
crossref_primary_10_1098_rsob_180257
crossref_primary_10_1371_journal_pbio_3000159
crossref_primary_10_3389_fncir_2020_00044
crossref_primary_10_1523_JNEUROSCI_2098_17_2017
crossref_primary_10_3389_fncel_2022_896854
crossref_primary_10_1016_j_celrep_2014_10_001
crossref_primary_10_3389_fncel_2020_622808
crossref_primary_10_3389_fncel_2021_734938
crossref_primary_10_7554_eLife_89532
crossref_primary_10_1038_nrn_2015_3
crossref_primary_10_7554_eLife_05491
crossref_primary_10_1073_pnas_1821063116
crossref_primary_10_1016_j_preteyeres_2021_101038
crossref_primary_10_1016_j_neuron_2016_01_020
crossref_primary_10_1016_j_cell_2020_06_027
crossref_primary_10_1038_srep06902
crossref_primary_10_1016_j_semcdb_2017_07_037
crossref_primary_10_1242_dev_158246
crossref_primary_10_1016_j_ceb_2013_10_001
crossref_primary_10_1073_pnas_1921983117
crossref_primary_10_1016_j_cell_2014_06_047
crossref_primary_10_1016_j_cub_2018_03_001
crossref_primary_10_1016_j_neuron_2012_06_039
crossref_primary_10_3390_ijms23084161
crossref_primary_10_1126_science_aai8801
crossref_primary_10_1016_j_conb_2020_01_002
crossref_primary_10_7554_eLife_18345
crossref_primary_10_1007_s11064_013_0999_y
crossref_primary_10_3109_01677063_2013_801969
crossref_primary_10_1016_j_stemcr_2017_07_008
crossref_primary_10_1016_j_devcel_2014_07_015
crossref_primary_10_2217_epi_15_60
crossref_primary_10_1016_j_molcel_2016_05_023
crossref_primary_10_1016_j_cub_2024_08_002
crossref_primary_10_7554_eLife_75827
crossref_primary_10_1016_j_gde_2020_05_041
crossref_primary_10_1038_s41551_021_00703_2
crossref_primary_10_1016_j_devcel_2018_04_008
crossref_primary_10_1126_sciadv_abn9458
crossref_primary_10_1126_science_1251852
crossref_primary_10_1016_j_semcdb_2017_07_023
crossref_primary_10_1073_pnas_1411270111
crossref_primary_10_1002_cne_24666
crossref_primary_10_1017_S1431927621001598
crossref_primary_10_1016_j_isci_2023_107238
crossref_primary_10_3390_cells9122711
crossref_primary_10_1016_j_jgg_2020_06_008
crossref_primary_10_3389_fncel_2019_00250
crossref_primary_10_1016_j_neuron_2024_03_018
crossref_primary_10_1016_j_tibs_2023_09_001
crossref_primary_10_1038_nn_3772
crossref_primary_10_1016_j_celrep_2018_06_013
crossref_primary_10_1038_s41380_021_01199_7
crossref_primary_10_1016_j_ydbio_2019_04_002
crossref_primary_10_1093_texcom_tgaa089
crossref_primary_10_1186_s12860_015_0074_4
crossref_primary_10_1016_j_tcb_2013_04_005
crossref_primary_10_1371_journal_pone_0052652
crossref_primary_10_1007_s12311_014_0585_0
crossref_primary_10_3389_fphar_2021_796179
crossref_primary_10_1016_j_gep_2014_07_003
crossref_primary_10_1016_j_celrep_2016_05_003
crossref_primary_10_1038_s42003_019_0586_0
crossref_primary_10_1073_pnas_2301003120
crossref_primary_10_1126_sciadv_adk3384
crossref_primary_10_1016_j_neuron_2014_02_005
crossref_primary_10_1002_cne_23666
crossref_primary_10_1016_j_tcb_2014_03_007
crossref_primary_10_1093_gbe_evz098
crossref_primary_10_1146_annurev_cellbio_120420_100215
crossref_primary_10_3389_fcell_2023_1261048
crossref_primary_10_7554_eLife_08964
crossref_primary_10_1038_nature14682
crossref_primary_10_1523_JNEUROSCI_3035_17_2018
crossref_primary_10_1371_journal_pone_0154836
crossref_primary_10_1002_wrna_1762
crossref_primary_10_3390_ijms24032992
crossref_primary_10_1038_s41467_024_46333_5
crossref_primary_10_1073_pnas_1713548114
crossref_primary_10_7554_eLife_18529
crossref_primary_10_1523_JNEUROSCI_4067_13_2013
crossref_primary_10_1007_s12311_015_0724_2
crossref_primary_10_1016_j_celrep_2024_114005
crossref_primary_10_4161_cam_27839
crossref_primary_10_1016_j_neuron_2016_04_004
crossref_primary_10_1016_j_devcel_2015_08_011
crossref_primary_10_1016_j_it_2014_03_004
crossref_primary_10_1038_s41467_024_54573_8
crossref_primary_10_1523_JNEUROSCI_2387_13_2013
crossref_primary_10_1371_journal_pgen_1008554
crossref_primary_10_1002_cbin_10980
crossref_primary_10_3389_fnins_2022_889155
crossref_primary_10_1111_brv_12139
crossref_primary_10_7554_eLife_10233
crossref_primary_10_1016_j_preteyeres_2022_101131
crossref_primary_10_1016_j_celrep_2016_03_093
crossref_primary_10_1038_cr_2012_137
crossref_primary_10_1523_JNEUROSCI_0729_22_2022
crossref_primary_10_1038_nn_3390
crossref_primary_10_1016_j_semcdb_2017_07_040
crossref_primary_10_1016_j_tins_2021_04_001
crossref_primary_10_1101_gad_248245_114
crossref_primary_10_1042_BST20160103
crossref_primary_10_1016_j_abb_2018_01_001
crossref_primary_10_7554_eLife_55374
crossref_primary_10_1016_j_cell_2013_08_059
crossref_primary_10_1016_j_cub_2022_05_030
crossref_primary_10_1146_annurev_neuro_072116_031607
crossref_primary_10_1186_s12864_017_4420_0
crossref_primary_10_1080_19336918_2014_1000069
crossref_primary_10_3390_ijms22158220
crossref_primary_10_1186_s40478_022_01478_6
crossref_primary_10_1016_j_ydbio_2021_06_004
crossref_primary_10_1016_j_neuron_2017_12_005
crossref_primary_10_1016_j_devcel_2023_07_011
crossref_primary_10_1038_mp_2016_43
crossref_primary_10_1016_j_preteyeres_2014_06_003
crossref_primary_10_1038_emboj_2013_144
crossref_primary_10_1080_19336918_2014_1000072
crossref_primary_10_1152_jn_00044_2018
crossref_primary_10_1073_pnas_1713449114
crossref_primary_10_1186_s13064_018_0109_6
crossref_primary_10_1016_j_neuron_2014_01_009
crossref_primary_10_1126_sciadv_1501118
crossref_primary_10_1016_j_neuron_2018_08_019
crossref_primary_10_1126_science_1241974
crossref_primary_10_1126_science_1248806
crossref_primary_10_1016_j_ydbio_2018_12_005
crossref_primary_10_1007_s00018_017_2588_8
crossref_primary_10_1007_s12311_018_0984_8
crossref_primary_10_1002_dvdy_24611
crossref_primary_10_1038_s41586_022_05495_2
crossref_primary_10_1523_JNEUROSCI_1940_22_2023
crossref_primary_10_1016_j_celrep_2018_07_092
crossref_primary_10_1038_nn_3290
crossref_primary_10_1128_JB_00347_21
Cites_doi 10.1073/pnas.86.18.7223
10.1074/jbc.M605677200
10.1016/j.neuron.2008.06.008
10.1523/JNEUROSCI.18-04-01428.1998
10.1002/cne.21630
10.1101/cshperspect.a001750
10.1016/j.neuron.2004.06.033
10.1126/science.270.5233.96
10.1523/JNEUROSCI.11-05-01440.1991
10.1016/j.cell.2004.08.021
10.1038/292344a0
10.1038/nature08431
10.1016/S0092-8674(00)80789-8
10.1371/journal.pone.0020108
10.1038/nature06469
10.1016/j.cmet.2011.01.010
10.1038/nn.2467
10.1016/j.neuron.2007.03.029
10.1016/j.cell.2007.04.013
10.1016/j.neuron.2006.08.007
10.1002/1526-968X(200011/12)28:3/4<106::AID-GENE30>3.0.CO;2-T
10.3389/fnmol.2012.00018
10.1002/(SICI)1526-968X(200002)26:2<130::AID-GENE9>3.0.CO;2-I
10.1073/pnas.1004526107
10.1016/j.cell.2010.10.009
10.1016/S0165-0270(96)00080-5
10.1017/S095252380001049X
10.1016/j.jneumeth.2008.03.013
10.1016/S0896-6273(02)01090-5
10.1016/S0896-6273(00)80495-X
10.1038/nature06514
10.1016/j.ydbio.2004.03.039
10.1038/nn.2859
10.1242/dev.026807
10.1002/gene.20062
10.1016/j.neuron.2010.01.018
10.1523/JNEUROSCI.0907-11.2011
10.1073/pnas.0407931101
10.1016/j.neuron.2004.07.020
10.1242/dev.027912
10.1002/cne.10509
10.1523/JNEUROSCI.03-12-02474.1983
10.1016/S0165-0270(98)00021-1
10.1038/ng1299
10.1016/j.neuron.2007.04.013
10.1002/cne.22595
10.1016/0896-6273(95)90172-8
10.1016/j.neuron.2009.09.027
10.1002/(SICI)1520-6408(1999)24:3/4<241::AID-DVG7>3.0.CO;2-R
ContentType Journal Article
Copyright Springer Nature Limited 2012
2015 INIST-CNRS
COPYRIGHT 2012 Nature Publishing Group
Copyright Nature Publishing Group Aug 23, 2012
Copyright_xml – notice: Springer Nature Limited 2012
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2012 Nature Publishing Group
– notice: Copyright Nature Publishing Group Aug 23, 2012
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/nature11305
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Agricultural Science Database

Neurosciences Abstracts




Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 521
ExternalDocumentID PMC3427422
2752632861
A630205789
A301776586
22842903
26256107
10_1038_nature11305
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: F31 NS078893
– fundername: NINDS NIH HHS
  grantid: R01 NS043915
– fundername: NINDS NIH HHS
  grantid: R01 NS029169
– fundername: NINDS NIH HHS
  grantid: R01NS043915
– fundername: NEI NIH HHS
  grantid: R01EY022073
– fundername: NEI NIH HHS
  grantid: R01 EY022073
– fundername: NINDS NIH HHS
  grantid: R01NS029169
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.HR
.XZ
00M
07C
08P
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABNNU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACRPL
ACUHS
ACWUS
ADBBV
ADFRT
ADNMO
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGGDT
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L-9
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~G0
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AEZWR
AFANA
AGQPQ
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
1CY
1VW
354
3EH
3O-
41~
42X
4R4
663
79B
9M8
AAJYS
AAVBQ
ABDPE
ABEFU
ACBNA
ACBTR
ACTDY
ADRHT
AFBBN
AFFDN
AFHIU
AFHKK
AGCDD
AHWEU
AJUXI
BES
BKOMP
DB5
FA8
FAC
HG6
IQODW
J5H
LGEZI
LOTEE
MVM
N4W
NADUK
NFIDA
NXXTH
ODYON
PJZUB
PPXIY
PQGLB
PV9
QS-
R4F
RHI
SKT
TUD
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZGI
ZHY
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c836t-eeaba868fd1b62941307947da33c6e1a49b81bee80339c29685a03eaae5b30b23
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 18:18:29 EDT 2025
Fri Jul 11 15:48:36 EDT 2025
Fri Jul 11 04:49:36 EDT 2025
Fri Jul 25 09:05:48 EDT 2025
Tue Jun 17 21:47:01 EDT 2025
Tue Jun 17 21:11:23 EDT 2025
Thu Jun 12 23:35:16 EDT 2025
Tue Jun 10 15:32:22 EDT 2025
Tue Jun 10 15:34:57 EDT 2025
Tue Jun 10 20:46:07 EDT 2025
Fri Jun 27 04:59:35 EDT 2025
Fri Jun 27 03:31:14 EDT 2025
Fri Jun 27 03:35:13 EDT 2025
Fri Jun 27 04:16:22 EDT 2025
Wed Feb 19 02:33:22 EST 2025
Mon Jul 21 09:14:37 EDT 2025
Tue Jul 01 02:56:53 EDT 2025
Thu Apr 24 22:57:16 EDT 2025
Fri Feb 21 02:37:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7412
Keywords Cerebellum
Transmembrane protein
Molecular form
Amacrine neuron
Rodentia
Central nervous system
Purkinje neuron
Retina
Nervous system
Down syndrome
Cadherin
Adhesion
Encephalon
Dendrite
Eye
Visual system
Vertebrata
Discrimination
Mammalia
Mouse
Animal
Avoidance
Language English
License http://www.springer.com/tdm
CC BY 4.0
Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c836t-eeaba868fd1b62941307947da33c6e1a49b81bee80339c29685a03eaae5b30b23
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3427422
PMID 22842903
PQID 1037972707
PQPubID 40569
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3427422
proquest_miscellaneous_1439238018
proquest_miscellaneous_1035106316
proquest_journals_1037972707
gale_infotracmisc_A630205789
gale_infotracmisc_A301776586
gale_infotracgeneralonefile_A301776586
gale_infotraccpiq_630205789
gale_infotraccpiq_301776586
gale_infotracacademiconefile_A301776586
gale_incontextgauss_ISR_A630205789
gale_incontextgauss_ISR_A301776586
gale_incontextgauss_ATWCN_A630205789
gale_incontextgauss_ATWCN_A301776586
pubmed_primary_22842903
pascalfrancis_primary_26256107
crossref_citationtrail_10_1038_nature11305
crossref_primary_10_1038_nature11305
springer_journals_10_1038_nature11305
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-08-23
PublicationDateYYYYMMDD 2012-08-23
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-23
  day: 23
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2012
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Jelinek, Fernandez (CR27) 1998; 81
Srinivas (CR38) 1999; 24
Smith, Lange, Marks (CR48) 1996; 69
Rowan, Cepko (CR31) 2004; 271
CR39
Weiner, Wang, Tapia, Sanes (CR23) 2005; 102
Rossi (CR35) 2011; 13
Kohmura (CR9) 1998; 20
Kay (CR37) 2011; 31
Matthews (CR4) 2007; 129
Schreiner, Weiner (CR11) 2010; 107
Kaneko (CR10) 2006; 281
Farley, Soriano, Steffen, Dymecki (CR40) 2000; 28
Lee, Zhou (CR25) 2006; 51
Montague, Friedlander (CR47) 1991; 11
Chen (CR44) 2008; 171
Grueber, Sagasti (CR3) 2010; 2
Montague, Friedlander (CR2) 1989; 86
Fuerst, Koizumi, Masland, Burgess (CR17) 2008; 451
Kuchibhotla (CR41) 2008; 59
Hughes (CR6) 2007; 54
Hong, Kim, Sanes (CR42) 2011; 519
Sanes, Zipursky (CR19) 2010; 66
Wojtowicz, Flanagan, Millard, Zipursky, Clemens (CR13) 2004; 118
Wu, Maniatis (CR8) 1999; 97
Prasad, Wang, Gray, Weiner (CR21) 2008; 135
Furuta, Lagutin, Hogan, Oliver (CR32) 2000; 26
Neves, Zucker, Daly, Chess (CR14) 2004; 36
Whitney, Keeley, Raven, Reese (CR45) 2008; 508
Zhan (CR12) 2004; 43
Fuerst (CR18) 2009; 64
Kramer, Kuwada (CR1) 1983; 3
Lefebvre, Zhang, Meister, Wang, Sanes (CR22) 2008; 135
Hattori (CR15) 2009; 461
Stacy, Wong (CR24) 2003; 456
Zipursky, Sanes (CR7) 2010; 143
CR28
Wang (CR29) 2004; 43
Rodieck (CR46) 1991; 6
White, Keller-Peck, Knudson, Korsmeyer, Snider (CR26) 1998; 18
Zhang (CR34) 2004; 40
Soba (CR5) 2007; 54
Yamagata, Sanes (CR16) 2008; 451
Kaneko (CR30) 2011; 6
Madisen (CR36) 2010; 13
Kay, Voinescu, Chu, Sanes (CR50) 2011; 14
Wang (CR20) 2002; 36
Meyer-Franke, Kaplan, Pfrieger, Barres (CR43) 1995; 15
Knudson, Tung, Tourtellotte, Brown, Korsmeyer (CR33) 1995; 270
Wässle, Peichl, Boycott (CR49) 1981; 292
M Kaneko (BFnature11305_CR30) 2011; 6
JA Weiner (BFnature11305_CR23) 2005; 102
Y Chen (BFnature11305_CR44) 2008; 171
AP Kramer (BFnature11305_CR1) 1983; 3
TG Smith Jr (BFnature11305_CR48) 1996; 69
D Schreiner (BFnature11305_CR11) 2010; 107
X Wang (BFnature11305_CR20) 2002; 36
S Rowan (BFnature11305_CR31) 2004; 271
PG Fuerst (BFnature11305_CR18) 2009; 64
WB Grueber (BFnature11305_CR3) 2010; 2
WM Wojtowicz (BFnature11305_CR13) 2004; 118
RW Rodieck (BFnature11305_CR46) 1991; 6
D Hattori (BFnature11305_CR15) 2009; 461
XL Zhan (BFnature11305_CR12) 2004; 43
PR Montague (BFnature11305_CR47) 1991; 11
N Kohmura (BFnature11305_CR9) 1998; 20
XM Zhang (BFnature11305_CR34) 2004; 40
S Srinivas (BFnature11305_CR38) 1999; 24
Y Furuta (BFnature11305_CR32) 2000; 26
L Madisen (BFnature11305_CR36) 2010; 13
R Kaneko (BFnature11305_CR10) 2006; 281
G Neves (BFnature11305_CR14) 2004; 36
BFnature11305_CR28
BJ Matthews (BFnature11305_CR4) 2007; 129
JR Sanes (BFnature11305_CR19) 2010; 66
HF Jelinek (BFnature11305_CR27) 1998; 81
IE Whitney (BFnature11305_CR45) 2008; 508
H Wässle (BFnature11305_CR49) 1981; 292
JN Kay (BFnature11305_CR50) 2011; 14
SL Zipursky (BFnature11305_CR7) 2010; 143
PR Montague (BFnature11305_CR2) 1989; 86
M Yamagata (BFnature11305_CR16) 2008; 451
BFnature11305_CR39
A Meyer-Franke (BFnature11305_CR43) 1995; 15
J Rossi (BFnature11305_CR35) 2011; 13
RC Stacy (BFnature11305_CR24) 2003; 456
JN Kay (BFnature11305_CR37) 2011; 31
ME Hughes (BFnature11305_CR6) 2007; 54
T Prasad (BFnature11305_CR21) 2008; 135
PG Fuerst (BFnature11305_CR17) 2008; 451
S Lee (BFnature11305_CR25) 2006; 51
Q Wu (BFnature11305_CR8) 1999; 97
CM Knudson (BFnature11305_CR33) 1995; 270
KV Kuchibhotla (BFnature11305_CR41) 2008; 59
YK Hong (BFnature11305_CR42) 2011; 519
JL Lefebvre (BFnature11305_CR22) 2008; 135
P Soba (BFnature11305_CR5) 2007; 54
FA White (BFnature11305_CR26) 1998; 18
J Wang (BFnature11305_CR29) 2004; 43
FW Farley (BFnature11305_CR40) 2000; 28
References_xml – volume: 54
  start-page: 417
  year: 2007
  end-page: 427
  ident: CR6
  article-title: Homophilic Dscam interactions control complex dendrite morphogenesis
  publication-title: Neuron
– volume: 11
  start-page: 1440
  year: 1991
  end-page: 1457
  ident: CR47
  article-title: Morphogenesis and territorial coverage by isolated mammalian retinal ganglion cells
  publication-title: J. Neurosci.
– volume: 129
  start-page: 593
  year: 2007
  end-page: 604
  ident: CR4
  article-title: Dendrite self-avoidance is controlled by Dscam
  publication-title: Cell
– volume: 81
  start-page: 9
  year: 1998
  end-page: 18
  ident: CR27
  article-title: Neurons and fractals: how reliable and useful are calculations of fractal dimensions?
  publication-title: J. Neurosci. Methods
– ident: CR39
– volume: 270
  start-page: 96
  year: 1995
  end-page: 99
  ident: CR33
  article-title: Bax-deficient mice with lymphoid hyperplasia and male germ cell death
  publication-title: Science
– volume: 171
  start-page: 239
  year: 2008
  end-page: 247
  ident: CR44
  article-title: NS21: re-defined and modified supplement B27 for neuronal cultures
  publication-title: J. Neurosci. Methods
– volume: 86
  start-page: 7223
  year: 1989
  end-page: 7227
  ident: CR2
  article-title: Expression of an intrinsic growth strategy by mammalian retinal neurons
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 97
  start-page: 779
  year: 1999
  end-page: 790
  ident: CR8
  article-title: A striking organization of a large family of human neural cadherin-like cell adhesion genes
  publication-title: Cell
– volume: 2
  start-page: a001750
  year: 2010
  ident: CR3
  article-title: Self-avoidance and tiling: mechanisms of dendrite and axon spacing
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 271
  start-page: 388
  year: 2004
  end-page: 402
  ident: CR31
  article-title: Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter
  publication-title: Dev. Biol.
– volume: 102
  start-page: 8
  year: 2005
  end-page: 14
  ident: CR23
  article-title: Gamma protocadherins are required for synaptic development in the spinal cord
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 51
  start-page: 787
  year: 2006
  end-page: 799
  ident: CR25
  article-title: The synaptic mechanism of direction selectivity in distal processes of starburst amacrine cells
  publication-title: Neuron
– volume: 69
  start-page: 123
  year: 1996
  end-page: 136
  ident: CR48
  article-title: Fractal methods and results in cellular morphology—dimensions, lacunarity and multifractals
  publication-title: J. Neurosci. Methods
– volume: 18
  start-page: 1428
  year: 1998
  end-page: 1439
  ident: CR26
  article-title: Widespread elimination of naturally occurring neuronal death in Bax-deficient mice
  publication-title: J. Neurosci.
– volume: 26
  start-page: 130
  year: 2000
  end-page: 132
  ident: CR32
  article-title: Retina- and ventral forebrain-specific Cre recombinase activity in transgenic mice
  publication-title: Genesis
– volume: 64
  start-page: 484
  year: 2009
  end-page: 497
  ident: CR18
  article-title: DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the developing mouse retina
  publication-title: Neuron
– volume: 135
  start-page: 4153
  year: 2008
  end-page: 4164
  ident: CR21
  article-title: A differential developmental pattern of spinal interneuron apoptosis during synaptogenesis: insights from genetic analyses of the protocadherin-γ gene cluster
  publication-title: Development
– volume: 143
  start-page: 343
  year: 2010
  end-page: 353
  ident: CR7
  article-title: Chemoaffinity revisited: dscams, protocadherins, and neural circuit assembly
  publication-title: Cell
– volume: 456
  start-page: 154
  year: 2003
  end-page: 166
  ident: CR24
  article-title: Developmental relationship between cholinergic amacrine cell processes and ganglion cell dendrites of the mouse retina
  publication-title: J. Comp. Neurol.
– volume: 59
  start-page: 214
  year: 2008
  end-page: 225
  ident: CR41
  article-title: Aβ plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks
  publication-title: Neuron
– volume: 13
  start-page: 133
  year: 2010
  end-page: 140
  ident: CR36
  article-title: A robust and high-throughput Cre reporting and characterization system for the whole mouse brain
  publication-title: Nature Neurosci.
– volume: 3
  start-page: 2474
  year: 1983
  end-page: 2486
  ident: CR1
  article-title: Formation of the receptive fields of leech mechanosensory neurons during embryonic development
  publication-title: J. Neurosci.
– volume: 31
  start-page: 7753
  year: 2011
  end-page: 7762
  ident: CR37
  article-title: Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections
  publication-title: J. Neurosci.
– volume: 28
  start-page: 106
  year: 2000
  end-page: 110
  ident: CR40
  article-title: Widespread recombinase expression using FLPeR (flipper) mice
  publication-title: Genesis
– volume: 451
  start-page: 465
  year: 2008
  end-page: 469
  ident: CR16
  article-title: Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina
  publication-title: Nature
– volume: 281
  start-page: 30551
  year: 2006
  end-page: 30560
  ident: CR10
  article-title: Allelic gene regulation of -α and -γ clusters involving both monoallelic and biallelic expression in single Purkinje cells
  publication-title: J. Biol. Chem.
– volume: 107
  start-page: 14893
  year: 2010
  end-page: 14898
  ident: CR11
  article-title: Combinatorial homophilic interaction between γ-protocadherin multimers greatly expands the molecular diversity of cell adhesion
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 508
  start-page: 1
  year: 2008
  end-page: 12
  ident: CR45
  article-title: Spatial patterning of cholinergic amacrine cells in the mouse retina
  publication-title: J. Comp. Neurol.
– volume: 13
  start-page: 195
  year: 2011
  end-page: 204
  ident: CR35
  article-title: Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis
  publication-title: Cell Metab.
– volume: 36
  start-page: 843
  year: 2002
  end-page: 854
  ident: CR20
  article-title: Gamma protocadherins are required for survival of spinal interneurons
  publication-title: Neuron
– volume: 461
  start-page: 644
  year: 2009
  end-page: 648
  ident: CR15
  article-title: Robust discrimination between self and non-self neurites requires thousands of Dscam1 isoforms
  publication-title: Nature
– volume: 118
  start-page: 619
  year: 2004
  end-page: 633
  ident: CR13
  article-title: Alternative splicing of Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding
  publication-title: Cell
– volume: 135
  start-page: 4141
  year: 2008
  end-page: 4151
  ident: CR22
  article-title: γ-Protocadherins regulate neuronal survival but are dispensable for circuit formation in retina
  publication-title: Development
– volume: 24
  start-page: 241
  year: 1999
  end-page: 251
  ident: CR38
  article-title: Expression of green fluorescent protein in the ureteric bud of transgenic mice: a new tool for the analysis of ureteric bud morphogenesis
  publication-title: Dev. Genet.
– volume: 66
  start-page: 15
  year: 2010
  end-page: 36
  ident: CR19
  article-title: Design principles of insect and vertebrate visual systems
  publication-title: Neuron
– volume: 15
  start-page: 805
  year: 1995
  end-page: 819
  ident: CR43
  article-title: Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture
  publication-title: Neuron
– volume: 14
  start-page: 965
  year: 2011
  end-page: 972
  ident: CR50
  article-title: Neurod6 expression defines new retinal amacrine cell subtypes and regulates their fate
  publication-title: Nature Neurosci.
– volume: 36
  start-page: 240
  year: 2004
  end-page: 246
  ident: CR14
  article-title: Stochastic yet biased expression of multiple Dscam splice variants by individual cells
  publication-title: Nature Genet.
– volume: 20
  start-page: 1137
  year: 1998
  end-page: 1151
  ident: CR9
  article-title: Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex
  publication-title: Neuron
– volume: 43
  start-page: 663
  year: 2004
  end-page: 672
  ident: CR29
  article-title: Transmembrane/juxtamembrane domain-dependent Dscam distribution and function during mushroom body neuronal morphogenesis
  publication-title: Neuron
– volume: 54
  start-page: 403
  year: 2007
  end-page: 416
  ident: CR5
  article-title: sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization
  publication-title: Neuron
– volume: 292
  start-page: 344
  year: 1981
  end-page: 345
  ident: CR49
  article-title: Dendritic territories of cat retinal ganglion cells
  publication-title: Nature
– volume: 6
  start-page: e20108
  year: 2011
  ident: CR30
  article-title: Remodeling of monoplanar Purkinje cell dendrites during cerebellar circuit formation
  publication-title: PLoS ONE
– volume: 40
  start-page: 45
  year: 2004
  end-page: 51
  ident: CR34
  article-title: Highly restricted expression of Cre recombinase in cerebellar Purkinje cells
  publication-title: Genesis
– volume: 6
  start-page: 95
  year: 1991
  end-page: 111
  ident: CR46
  article-title: The density recovery profile: a method for the analysis of points in the plane applicable to retinal studies
  publication-title: Vis. Neurosci.
– volume: 43
  start-page: 673
  year: 2004
  end-page: 686
  ident: CR12
  article-title: Analysis of Dscam diversity in regulating axon guidance in mushroom bodies
  publication-title: Neuron
– volume: 451
  start-page: 470
  year: 2008
  end-page: 474
  ident: CR17
  article-title: Neurite arborization and mosaic spacing in the mouse retina require DSCAM
  publication-title: Nature
– ident: CR28
– volume: 519
  start-page: 1691
  year: 2011
  end-page: 1711
  ident: CR42
  article-title: Stereotyped axonal arbors of retinal ganglion cell subsets in the mouse superior colliculus
  publication-title: J. Comp. Neurol.
– volume: 86
  start-page: 7223
  year: 1989
  ident: BFnature11305_CR2
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.86.18.7223
– volume: 281
  start-page: 30551
  year: 2006
  ident: BFnature11305_CR10
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M605677200
– volume: 59
  start-page: 214
  year: 2008
  ident: BFnature11305_CR41
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.06.008
– volume: 18
  start-page: 1428
  year: 1998
  ident: BFnature11305_CR26
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.18-04-01428.1998
– volume: 508
  start-page: 1
  year: 2008
  ident: BFnature11305_CR45
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.21630
– volume: 2
  start-page: a001750
  year: 2010
  ident: BFnature11305_CR3
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a001750
– volume: 43
  start-page: 663
  year: 2004
  ident: BFnature11305_CR29
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.06.033
– volume: 270
  start-page: 96
  year: 1995
  ident: BFnature11305_CR33
  publication-title: Science
  doi: 10.1126/science.270.5233.96
– volume: 11
  start-page: 1440
  year: 1991
  ident: BFnature11305_CR47
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.11-05-01440.1991
– volume: 118
  start-page: 619
  year: 2004
  ident: BFnature11305_CR13
  publication-title: Cell
  doi: 10.1016/j.cell.2004.08.021
– volume: 292
  start-page: 344
  year: 1981
  ident: BFnature11305_CR49
  publication-title: Nature
  doi: 10.1038/292344a0
– volume: 461
  start-page: 644
  year: 2009
  ident: BFnature11305_CR15
  publication-title: Nature
  doi: 10.1038/nature08431
– volume: 97
  start-page: 779
  year: 1999
  ident: BFnature11305_CR8
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80789-8
– volume: 6
  start-page: e20108
  year: 2011
  ident: BFnature11305_CR30
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0020108
– volume: 451
  start-page: 465
  year: 2008
  ident: BFnature11305_CR16
  publication-title: Nature
  doi: 10.1038/nature06469
– volume: 13
  start-page: 195
  year: 2011
  ident: BFnature11305_CR35
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.01.010
– volume: 13
  start-page: 133
  year: 2010
  ident: BFnature11305_CR36
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2467
– volume: 54
  start-page: 403
  year: 2007
  ident: BFnature11305_CR5
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.03.029
– volume: 129
  start-page: 593
  year: 2007
  ident: BFnature11305_CR4
  publication-title: Cell
  doi: 10.1016/j.cell.2007.04.013
– volume: 51
  start-page: 787
  year: 2006
  ident: BFnature11305_CR25
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.08.007
– volume: 28
  start-page: 106
  year: 2000
  ident: BFnature11305_CR40
  publication-title: Genesis
  doi: 10.1002/1526-968X(200011/12)28:3/4<106::AID-GENE30>3.0.CO;2-T
– ident: BFnature11305_CR39
  doi: 10.3389/fnmol.2012.00018
– volume: 26
  start-page: 130
  year: 2000
  ident: BFnature11305_CR32
  publication-title: Genesis
  doi: 10.1002/(SICI)1526-968X(200002)26:2<130::AID-GENE9>3.0.CO;2-I
– volume: 107
  start-page: 14893
  year: 2010
  ident: BFnature11305_CR11
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1004526107
– volume: 143
  start-page: 343
  year: 2010
  ident: BFnature11305_CR7
  publication-title: Cell
  doi: 10.1016/j.cell.2010.10.009
– volume: 69
  start-page: 123
  year: 1996
  ident: BFnature11305_CR48
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(96)00080-5
– volume: 6
  start-page: 95
  year: 1991
  ident: BFnature11305_CR46
  publication-title: Vis. Neurosci.
  doi: 10.1017/S095252380001049X
– volume: 171
  start-page: 239
  year: 2008
  ident: BFnature11305_CR44
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2008.03.013
– volume: 36
  start-page: 843
  year: 2002
  ident: BFnature11305_CR20
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)01090-5
– volume: 20
  start-page: 1137
  year: 1998
  ident: BFnature11305_CR9
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80495-X
– volume: 451
  start-page: 470
  year: 2008
  ident: BFnature11305_CR17
  publication-title: Nature
  doi: 10.1038/nature06514
– volume: 271
  start-page: 388
  year: 2004
  ident: BFnature11305_CR31
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2004.03.039
– volume: 14
  start-page: 965
  year: 2011
  ident: BFnature11305_CR50
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2859
– ident: BFnature11305_CR28
– volume: 135
  start-page: 4153
  year: 2008
  ident: BFnature11305_CR21
  publication-title: Development
  doi: 10.1242/dev.026807
– volume: 40
  start-page: 45
  year: 2004
  ident: BFnature11305_CR34
  publication-title: Genesis
  doi: 10.1002/gene.20062
– volume: 66
  start-page: 15
  year: 2010
  ident: BFnature11305_CR19
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.01.018
– volume: 31
  start-page: 7753
  year: 2011
  ident: BFnature11305_CR37
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0907-11.2011
– volume: 102
  start-page: 8
  year: 2005
  ident: BFnature11305_CR23
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0407931101
– volume: 43
  start-page: 673
  year: 2004
  ident: BFnature11305_CR12
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.07.020
– volume: 135
  start-page: 4141
  year: 2008
  ident: BFnature11305_CR22
  publication-title: Development
  doi: 10.1242/dev.027912
– volume: 456
  start-page: 154
  year: 2003
  ident: BFnature11305_CR24
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.10509
– volume: 3
  start-page: 2474
  year: 1983
  ident: BFnature11305_CR1
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.03-12-02474.1983
– volume: 81
  start-page: 9
  year: 1998
  ident: BFnature11305_CR27
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(98)00021-1
– volume: 36
  start-page: 240
  year: 2004
  ident: BFnature11305_CR14
  publication-title: Nature Genet.
  doi: 10.1038/ng1299
– volume: 54
  start-page: 417
  year: 2007
  ident: BFnature11305_CR6
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.04.013
– volume: 519
  start-page: 1691
  year: 2011
  ident: BFnature11305_CR42
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.22595
– volume: 15
  start-page: 805
  year: 1995
  ident: BFnature11305_CR43
  publication-title: Neuron
  doi: 10.1016/0896-6273(95)90172-8
– volume: 64
  start-page: 484
  year: 2009
  ident: BFnature11305_CR18
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.09.027
– volume: 24
  start-page: 241
  year: 1999
  ident: BFnature11305_CR38
  publication-title: Dev. Genet.
  doi: 10.1002/(SICI)1520-6408(1999)24:3/4<241::AID-DVG7>3.0.CO;2-R
SSID ssj0005174
Score 2.5525637
Snippet Protocadherins are found to potentially provide the molecular diversity and complexity required to promote dendritic self-avoidance in mouse retina and...
Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other. By...
Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other...
Dendritic arbors of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other 1 - 7 . By...
SourceID pubmedcentral
proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 517
SubjectTerms 631/378/1697
631/378/2571
631/80/79/1902
Adhesion
Amacrine Cells - cytology
Amacrine Cells - metabolism
Animals
Biological and medical sciences
Cadherins
Cadherins - genetics
Cadherins - metabolism
Cell Adhesion Molecules - genetics
Cell Adhesion Molecules - metabolism
Cells, Cultured
Cerebellum
Chromosome aberrations
Dendrites
Dendrites - metabolism
Dendritic cells
Drosophila
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Evolution, Molecular
Eye and associated structures. Visual pathways and centers. Vision
Fundamental and applied biological sciences. Psychology
Humanities and Social Sciences
Insects
letter
Medical genetics
Medical sciences
Mice
Mice, Transgenic
Multiculturalism & pluralism
multidisciplinary
Nervous system
Physiological aspects
Protein Isoforms - genetics
Protein Isoforms - metabolism
Proteins
Purkinje Cells - cytology
Purkinje Cells - metabolism
Retina
Science
Vertebrates: nervous system and sense organs
Title Protocadherins mediate dendritic self-avoidance in the mammalian nervous system
URI https://link.springer.com/article/10.1038/nature11305
https://www.ncbi.nlm.nih.gov/pubmed/22842903
https://www.proquest.com/docview/1037972707
https://www.proquest.com/docview/1035106316
https://www.proquest.com/docview/1439238018
https://pubmed.ncbi.nlm.nih.gov/PMC3427422
Volume 488
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bT9swFLY20KRJaBrslsEqb9pdikjixomfpq6iY5PWIQaib5HjOFCJJoWk_P6dk7htAqV7yYtPjxP7XL7a50LIe6U41zLVtgx9bXeFcu1YxSDLwo-ZxKwBjYnCv4f88LT7a-SPzIFbYcIq5zaxMtRJrvCMfB_z2QQ4Wyf4Nr2ysWsU3q6aFhoPySaWLsOQrmAULEM8blVhNvl5Dgv367KZLlhwv-WRjF3emsoC1iitm1usQp93gyhv3aRWDmrwlDwxyJL2alHYJg90tkMeVRGeqtgh20aLC_rZlJr-8oz8ObrOS_BmSZUFWNAqj6TUFIxRUvVAoIW-TG15k48TFA86ziggRjqRk0l1QEKB000-K2hdEfo5OR0cnPQPbdNiwVawHqWttYxlyMM0cWPuCfRooKBBIhlTXLuyK2LAtVqHDmNCeYKHvnSYllLDVjqxx16QjSzP9CtCQ8U08GEs9Xk3SYQU0gN7Ih039aV2PYt8nS9zpEz9cWyDcRlV9-AsjBp7YoEUzYmnddmNe8hwvyIsZJFhpMy5nBVF1Ds56w-jHtiuIACExdeTcQaQGQyXsMi7VWQ__x63eN1P1OD0yRClOXyjkibXAVYKy2212O22KNV0fBWtH23M8rE1el5Lz6pJ9lqEYEHUf4cb03Ra2rDYEA_-OwP6DuD3c_WIjAUsoqW-WuTtYhhZY1RfpkE0kQZcAmcuX0MDiBlgpeOGFnlZa9zyBQBbecJhFglaurggwNrp7ZFsfFHVUGddjFEAofww19rmq98RtNfrP3GXPAYg7dVhTntko7ye6TcAVsu4U1kkeIZ9F5-DHx2y-f1geHT8Dz78lbU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwELemIQQSQmy8wsYwiPGSoiVx4sQfEKoGU8u2gqAT_RYcxxmV1qRb2iH-Kf5G7vJom60rn_bZl7Nj3_3uEt-DkJdKca5lok0ZeNp0hbLNSEUgy8KLmMSsAY2Jwodd3j5yP_e9_gr5W-fCYFhljYkFUMeZwn_kO5jPJsDYWv6H0amJXaPwdrVuoVGKxb7-8xs-2fL3nY9wvtuOs_ept9s2q64CpoKpx6bWMpIBD5LYjrgjEMRBJv1YMqa4tqUrInDltA4sxoRyBA88aTEtpYbVWxEWOgDIvwGG10KN8vv-LKTkQtXnKh_QYsFOWabThsm8hgWs7MCdkczhTJKymcYib_dy0OaFm9vCIO7dI3crT5a2StFbIys6XSc3i4hSla-TtQo1cvqmKm399j758vUsG4P1jIusw5wWeStjTQH84qLnAs31SWLK82wQozjSQUrBQ6VDORwWP2QocDrPJjktK1A_IEfXsvkPyWqapfoxoYFiGvgwlnjcjWMhhXQAv6RlJ57UtmOQd_U2h6qqd45tN07C4t6dBeHcmRggtTXxqCzzcQUZnleIhTNSjMw5lpM8D1u9H7vdsAVY6fvg0fHlZJyBiw5AKQzyYhFZ5_u3Bq-rieY4va6IkgzeUckqtwJ2Cst7NdhtNCjVaHAaLh-dm-VVY_S4lJ5Fk2w2CAGx1H-H56bZamjD9EAc-FYHb9-H52v1CCvEzcMZPhjk-XQYWWMUYapBNJEGTBBnNl9CAx46uLGWHRjkUalxswWAL-cIixnEb-jilABrtTdH0sGvomY7czEmAoRyu9ba-aVfErQny1_xGbnV7h0ehAed7v4GuQ1OvIP3HA7bJKvjs4l-Co7yONoq0ImSn9cNh_8A-MjPZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIRASQmx8hY1hEONLiprEiZM8IFRtVCuDMsEm-hYcxxmV1qRb2iH-Nf467hKnbbauPO3Zl7Nj3_3uEt8HIS-l5FyJVJki8JTphtI2YxmDLIdezARmDShMFP7S43tH7qe-118hf-tcGAyrrDGxBOokl_iPvIX5bCEYW8tvpTos4mC382F0amIHKbxprdtpVCKyr_78hs-34n13F85623E6Hw939kzdYcCUsIyxqZSIRcCDNLFj7oQI6CCffiIYk1zZwg1jcOuUCizGQumEPPCExZQQCt7EirHoAcD_DZ95NuqY3_dn4SUXKkDr3ECLBa2qZKcNk3kNa6htwp2RKOB80qqxxiLP93IA54Vb3NI4du6Ru9qrpe1KDNfIisrWyc0yulQW62RNI0hB3-gy12_vk68HZ_kYLGlSZiAWtMxhGSsKQJiU_RdooU5SU5zngwRFkw4yCt4qHYrhsPw5Q4HTeT4paFWN-gE5upbNf0hWszxTjwkNJFPAh7HU426ShCIUDmCZsOzUE8p2DPKu3uZI6trn2ILjJCrv4FkQzZ2JARJcE4-qkh9XkOF5RVhEI0NxPBaToojahz92elEbcNP3wbvjy8k4A3cdQDM0yItFZN3v3xq8riaa4_RaE6U5vKMUOs8CdgpLfTXYbTQo5WhwGi0fnZvlVWP0uJKeRZNsNggBveR_h-em2Wpow_RAHPhuB8_fh-dr9Yg0-hbRDCsM8nw6jKwxojBTIJpIA-aIM5svoQFvHVxayw4M8qjSuNkCwK9zQosZxG_o4pQA67Y3R7LBr7J-O3MxPgKEcrvW2vmlXxK0J8tf8Rm5BUAYfe729jfIbfDnHbzycNgmWR2fTdRT8JnH8VYJTpT8vG40_AcBONOa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protocadherins+mediate+dendritic+self%E2%80%95avoidance+in+the+mammalian+nervous+system&rft.jtitle=Nature+%28London%29&rft.au=LEFEBVRE%2C+Julie+L&rft.au=KOSTADINOV%2C+Dimitar&rft.au=CHEN%2C+Weisheng+V&rft.au=MANIATIS%2C+Tom&rft.date=2012-08-23&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=488&rft.issue=7412&rft.spage=517&rft.epage=521&rft_id=info:doi/10.1038%2Fnature11305&rft.externalDBID=n%2Fa&rft.externalDocID=26256107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon