Protocadherins mediate dendritic self-avoidance in the mammalian nervous system
Protocadherins are found to potentially provide the molecular diversity and complexity required to promote dendritic self-avoidance in mouse retina and cerebellum. Dendrite self-avoidance in mammalian neurons The complex geometry of neurons helps to determine the patterns of connectivity that underl...
Saved in:
Published in | Nature (London) Vol. 488; no. 7412; pp. 517 - 521 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.08.2012
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Protocadherins are found to potentially provide the molecular diversity and complexity required to promote dendritic self-avoidance in mouse retina and cerebellum.
Dendrite self-avoidance in mammalian neurons
The complex geometry of neurons helps to determine the patterns of connectivity that underlie their functions. Elaborate axonal and dendritic patterning is achieved through self-avoidance, a process that allows individual branches of one neuron to repel each other while simultaneously attracting branches of other, seemingly identical neurons. The molecular basis of neurite self-avoidance in
Drosophila
involves
Dscam
genes, but the mammalian homologues are insufficiently complex to cope with self/non-self recognition. Here it is shown that protocadherins, a type of cell-adhesion molecule, may provide the molecular diversity and complexity required to promote dendritic self-avoidance in the mouse retina and cerebellum.
Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other
1
,
2
,
3
,
4
,
5
,
6
,
7
. By minimizing gaps and overlaps within the arborization, self-avoidance facilitates complete coverage of a neuron’s territory by its neurites
1
,
2
,
3
. Remarkably, some neurons that display self-avoidance interact freely with other neurons of the same subtype, implying that they discriminate self from non-self. Here we demonstrate roles for the clustered protocadherins (Pcdhs) in dendritic self-avoidance and self/non-self discrimination. The
Pcdh
locus encodes 58 related cadherin-like transmembrane proteins, at least some of which exhibit isoform-specific homophilic adhesion in heterologous cells and are expressed stochastically and combinatorially in single neurons
7
,
8
,
9
,
10
,
11
. Deletion of all 22
Pcdh
genes in the mouse γ-subcluster (
Pcdhg
genes) disrupts self-avoidance of dendrites in retinal starburst amacrine cells (SACs) and cerebellar Purkinje cells. Further genetic analysis of SACs showed that Pcdhg proteins act cell-autonomously during development, and that replacement of the 22 Pcdhg proteins with a single isoform restores self-avoidance. Moreover, expression of the same single isoform in all SACs decreases interactions among dendrites of neighbouring SACs (heteroneuronal interactions). These results suggest that homophilic Pcdhg interactions between sibling neurites (isoneuronal interactions) generate a repulsive signal that leads to self-avoidance. In this model, heteroneuronal interactions are normally permitted because dendrites seldom encounter a matched set of Pcdhg proteins unless they emanate from the same soma. In many respects, our results mirror those reported for
Dscam1
(
Down syndrome cell adhesion molecule
) in
Drosophila
: this complex gene encodes thousands of recognition molecules that exhibit stochastic expression and isoform-specific interactions, and mediate both self-avoidance and self/non-self discrimination
4
,
5
,
6
,
7
,
12
,
13
,
14
,
15
. Thus, although insect Dscam and vertebrate Pcdh proteins share no sequence homology, they seem to underlie similar strategies for endowing neurons with distinct molecular identities and patterning their arborizations. |
---|---|
AbstractList | Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other. By minimizing gaps and overlaps within the arborization, self-avoidance facilitates complete coverage of a neuron’s territory by its neurites. Remarkably, some neurons that display self-avoidance interact freely with other neurons of the same subtype, implying that they discriminate self from non-self. Here we demonstrate roles for the clustered protocadherins (Pcdhs) in dendritic self-avoidance and self/non-self discrimination. The Pcdh locus encodes 58 related cadherin-like transmembrane proteins, at least some of which exhibit isoform-specific homophilic adhesion in heterologous cells and are expressed stochastically and combinatorially in single neurons. Deletion of all 22 Pcdh genes in the mouse γ-subcluster (Pcdhg genes) disrupts self-avoidance of dendrites in retinal starburst amacrine cells (SACs) and cerebellar Purkinje cells. Further genetic analysis of SACs showed that Pcdhg proteins act cell-autonomously during development, and that replacement of the 22 Pcdhg proteins with a single isoform restores self-avoidance. Moreover, expression of the same single isoform in all SACs decreases interactions among dendrites of neighbouring SACs (heteroneuronal interactions). These results suggest that homophilic Pcdhg interactions between sibling neurites (isoneuronal interactions) generate a repulsive signal that leads to self-avoidance. In this model, heteroneuronal interactions are normally permitted because dendrites seldom encounter a matched set of Pcdhg proteins unless they emanate from the same soma. In many respects, our results mirror those reported for Dscam1 (Down syndrome cell adhesion molecule) in Drosophila: this complex gene encodes thousands of recognition molecules that exhibit stochastic expression and isoform-specific interactions, and mediate both self-avoidance and self/non-self discrimination. Thus, although insect Dscam and vertebrate Pcdh proteins share no sequence homology, they seem to underlie similar strategies for endowing neurons with distinct molecular identities and patterning their arborizations. Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other (1-7). By minimizing gaps and overlaps within the arborization, self-avoidance facilitates complete coverage of a neuron's territory by its neuritis (1-3). Remarkably, some neurons that display self-avoidance interact freely with other neurons of the same subtype, implying that they discriminate self from non-self. Here we demonstrate roles for the clustered protocadherins (Pcdhs) in dendritic self-avoidance and self/non-self discrimination. The Pcdh locus encodes 58 related cadherin-like transmembrane proteins, at least some of which exhibit isoform-specific homophilic adhesion in heterologous cells and are expressed stochastically and combinatorially in single neurons (7-11). Deletion of all 22 Pcdh genes in the mouse y-subcluster (Pcdhg genes) disrupts self-avoidance of dendrites in retinal starburst amacrine cells (SACs) and cerebellar Purkinje cells. Further genetic analysis of SACs showed that Pcdhg proteins act cell-autonomously during development, and that replacement of the 22 Pcdhg proteins with a single isoform restores self-avoidance. Moreover, expression of the same single isoform in all SACs decreases interactions among dendrites of neighbouring SACs (heteroneuronal interactions). These results suggest that homophilic Pcdhg interactions between sibling neurites (isoneuronal interactions) generate a repulsive signal that leads to self-avoidance. In this model, heteroneuronal interactions are normally permitted because dendrites seldom encounter a matched set of Pcdhg proteins unless they emanate from the same soma. In many respects, our results mirror those reported for Dscam1 (Down syndrome cell adhesion molecule)in Drosophila: this complex gene encodes thousands of recognition molecules that exhibit stochastic expression and isoform-specific interactions, and mediate both self-avoidance and self/non-self discrimination (4-7,12-15). Thus, although insect Dscam and vertebrate Pcdh proteins share no sequence homology, they seem to underlie similar strategies for endowing neurons with distinct molecular identities and patterning their arborizations. Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other. By minimizing gaps and overlaps within the arborization, self-avoidance facilitates complete coverage of a neuron’s territory by its neurites. Remarkably, some neurons that display self-avoidance interact freely with other neurons of the same subtype, implying that they discriminate self from non-self. Here we demonstrate roles for the clustered protocadherins (Pcdhs) in dendritic self-avoidance and self/non-self discrimination. The Pcdh locus encodes 58 related cadherin-like transmembrane proteins, at least some of which exhibit isoform-specific homophilic adhesion in heterologous cells and are expressed stochastically and combinatorially in single neurons. Deletion of all 22 Pcdh genes in the mouse γ-subcluster (Pcdhg genes) disrupts self-avoidance of dendrites in retinal starburst amacrine cells (SACs) and cerebellar Purkinje cells. Further genetic analysis of SACs showed that Pcdhg proteins act cell-autonomously during development, and that replacement of the 22 Pcdhg proteins with a single isoform restores self-avoidance. Moreover, expression of the same single isoform in all SACs decreases interactions among dendrites of neighbouring SACs (heteroneuronal interactions). These results suggest that homophilic Pcdhg interactions between sibling neurites (isoneuronal interactions) generate a repulsive signal that leads to self-avoidance. In this model, heteroneuronal interactions are normally permitted because dendrites seldom encounter a matched set of Pcdhg proteins unless they emanate from the same soma. In many respects, our results mirror those reported for Dscam1 (Down syndrome cell adhesion molecule) in Drosophila: this complex gene encodes thousands of recognition molecules that exhibit stochastic expression and isoform-specific interactions, and mediate both self-avoidance and self/non-self discrimination. Thus, although insect Dscam and vertebrate Pcdh proteins share no sequence homology, they seem to underlie similar strategies for endowing neurons with distinct molecular identities and patterning their arborizations.Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other. By minimizing gaps and overlaps within the arborization, self-avoidance facilitates complete coverage of a neuron’s territory by its neurites. Remarkably, some neurons that display self-avoidance interact freely with other neurons of the same subtype, implying that they discriminate self from non-self. Here we demonstrate roles for the clustered protocadherins (Pcdhs) in dendritic self-avoidance and self/non-self discrimination. The Pcdh locus encodes 58 related cadherin-like transmembrane proteins, at least some of which exhibit isoform-specific homophilic adhesion in heterologous cells and are expressed stochastically and combinatorially in single neurons. Deletion of all 22 Pcdh genes in the mouse γ-subcluster (Pcdhg genes) disrupts self-avoidance of dendrites in retinal starburst amacrine cells (SACs) and cerebellar Purkinje cells. Further genetic analysis of SACs showed that Pcdhg proteins act cell-autonomously during development, and that replacement of the 22 Pcdhg proteins with a single isoform restores self-avoidance. Moreover, expression of the same single isoform in all SACs decreases interactions among dendrites of neighbouring SACs (heteroneuronal interactions). These results suggest that homophilic Pcdhg interactions between sibling neurites (isoneuronal interactions) generate a repulsive signal that leads to self-avoidance. In this model, heteroneuronal interactions are normally permitted because dendrites seldom encounter a matched set of Pcdhg proteins unless they emanate from the same soma. In many respects, our results mirror those reported for Dscam1 (Down syndrome cell adhesion molecule) in Drosophila: this complex gene encodes thousands of recognition molecules that exhibit stochastic expression and isoform-specific interactions, and mediate both self-avoidance and self/non-self discrimination. Thus, although insect Dscam and vertebrate Pcdh proteins share no sequence homology, they seem to underlie similar strategies for endowing neurons with distinct molecular identities and patterning their arborizations. Protocadherins are found to potentially provide the molecular diversity and complexity required to promote dendritic self-avoidance in mouse retina and cerebellum. Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other. By minimizing gaps and overlaps within the arborization, self-avoidance facilitates complete coverage of a neuron's territory by its neurites. Remarkably, some neurons that display self-avoidance interact freely with other neurons of the same subtype, implying that they discriminate self from non-self. Here we demonstrate roles for the clustered protocadherins (Pcdhs) in dendritic self-avoidance and self/non-self discrimination. The Pcdh locus encodes 58 related cadherin-like transmembrane proteins, at least some of which exhibit isoform-specific homophilic adhesion in heterologous cells and are expressed stochastically and combinatorially in single neurons. Deletion of all 22 Pcdh genes in the mouse γ-subcluster (Pcdhg genes) disrupts self-avoidance of dendrites in retinal starburst amacrine cells (SACs) and cerebellar Purkinje cells. Further genetic analysis of SACs showed that Pcdhg proteins act cell-autonomously during development, and that replacement of the 22 Pcdhg proteins with a single isoform restores self-avoidance. Moreover, expression of the same single isoform in all SACs decreases interactions among dendrites of neighbouring SACs (heteroneuronal interactions). These results suggest that homophilic Pcdhg interactions between sibling neurites (isoneuronal interactions) generate a repulsive signal that leads to self-avoidance. In this model, heteroneuronal interactions are normally permitted because dendrites seldom encounter a matched set of Pcdhg proteins unless they emanate from the same soma. In many respects, our results mirror those reported for Dscam1 (Down syndrome cell adhesion molecule) in Drosophila: this complex gene encodes thousands of recognition molecules that exhibit stochastic expression and isoform-specific interactions, and mediate both self-avoidance and self/non-self discrimination. Thus, although insect Dscam and vertebrate Pcdh proteins share no sequence homology, they seem to underlie similar strategies for endowing neurons with distinct molecular identities and patterning their arborizations. [PUBLICATION ABSTRACT] Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other. By minimizing gaps and overlaps within the arborization, self-avoidance facilitates complete coverage of a neuron's territory by its neurites. Remarkably, some neurons that display self-avoidance interact freely with other neurons of the same subtype, implying that they discriminate self from non-self. Here we demonstrate roles for the clustered protocadherins (Pcdhs) in dendritic self-avoidance and self/non-self discrimination. The Pcdh locus encodes 58 related cadherin-like transmembrane proteins, at least some of which exhibit isoform-specific homophilic adhesion in heterologous cells and are expressed stochastically and combinatorially in single neurons. Deletion of all 22 Pcdh genes in the mouse gamma -subcluster (Pcdhg genes) disrupts self-avoidance of dendrites in retinal starburst amacrine cells (SACs) and cerebellar Purkinje cells. Further genetic analysis of SACs showed that Pcdhg proteins act cell-autonomously during development, and that replacement of the 22 Pcdhg proteins with a single isoform restores self-avoidance. Moreover, expression of the same single isoform in all SACs decreases interactions among dendrites of neighbouring SACs (heteroneuronal interactions). These results suggest that homophilic Pcdhg interactions between sibling neurites (isoneuronal interactions) generate a repulsive signal that leads to self-avoidance. In this model, heteroneuronal interactions are normally permitted because dendrites seldom encounter a matched set of Pcdhg proteins unless they emanate from the same soma. In many respects, our results mirror those reported for Dscam1 (Down syndrome cell adhesion molecule) in Drosophila: this complex gene encodes thousands of recognition molecules that exhibit stochastic expression and isoform-specific interactions, and mediate both self-avoidance and self/non-self discrimination. Thus, although insect Dscam and vertebrate Pcdh proteins share no sequence homology, they seem to underlie similar strategies for endowing neurons with distinct molecular identities and patterning their arborizations. Dendritic arbors of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other 1 - 7 . By minimizing gaps and overlaps within the arbor, self-avoidance facilitates complete coverage of a neuron’s territory by its neurites 1 - 3 . Remarkably, some neurons that display self-avoidance interact freely with other neurons of the same subtype, implying that they discriminate self from non-self. Here, we demonstrate roles for the clustered protocadherins (Pcdhs) in dendritic self-avoidance and self/non-self discrimination. The Pcdh locus encodes ~60 related cadherin-like transmembrane proteins, at least some of which exhibit isoform-specific homophilic adhesion in heterologous cells and are expressed stochastically and combinatorially in single neurons 7 - 11 . Deletion of all 22 Pcdh s in the mouse gamma subcluster ( Pcdhg s) disrupts self-avoidance of dendrites in retinal starburst amacrine cells (SACs) and cerebellar Purkinje cells. Further genetic analysis of SACs showed that Pcdhgs act cell-autonomously during development, and that replacement of the 22 Pcdhgs with a single isoform restores self-avoidance. Moreover, expression of the same single isoform in all SACs decreases interactions among dendrites of neighboring SACs (heteroneuronal interactions). These results suggest that homophilic Pcdhg interactions between sibling neurites (isoneuronal interactions) generate a repulsive signal that leads to self-avoidance. In this model, heteroneuronal interactions are normally permitted because dendrites seldom encounter a matched set of Pcdhgs unless they emanate from the same soma. In many respects, our results mirror those reported for Dscam1 in Drosophila : this complex gene encodes thousands of recognition molecules that exhibit stochastic expression and isoform-specific interactions, and mediate both self-avoidance and self/non-self discrimination 4 - 7 , 12 - 15 . Thus, although insect Dscams and vertebrate Pcdhs share no sequence homology, they appear to underlie similar strategies for endowing neurons with distinct molecular identities and patterning their arbors. Protocadherins are found to potentially provide the molecular diversity and complexity required to promote dendritic self-avoidance in mouse retina and cerebellum. Dendrite self-avoidance in mammalian neurons The complex geometry of neurons helps to determine the patterns of connectivity that underlie their functions. Elaborate axonal and dendritic patterning is achieved through self-avoidance, a process that allows individual branches of one neuron to repel each other while simultaneously attracting branches of other, seemingly identical neurons. The molecular basis of neurite self-avoidance in Drosophila involves Dscam genes, but the mammalian homologues are insufficiently complex to cope with self/non-self recognition. Here it is shown that protocadherins, a type of cell-adhesion molecule, may provide the molecular diversity and complexity required to promote dendritic self-avoidance in the mouse retina and cerebellum. Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other 1 , 2 , 3 , 4 , 5 , 6 , 7 . By minimizing gaps and overlaps within the arborization, self-avoidance facilitates complete coverage of a neuron’s territory by its neurites 1 , 2 , 3 . Remarkably, some neurons that display self-avoidance interact freely with other neurons of the same subtype, implying that they discriminate self from non-self. Here we demonstrate roles for the clustered protocadherins (Pcdhs) in dendritic self-avoidance and self/non-self discrimination. The Pcdh locus encodes 58 related cadherin-like transmembrane proteins, at least some of which exhibit isoform-specific homophilic adhesion in heterologous cells and are expressed stochastically and combinatorially in single neurons 7 , 8 , 9 , 10 , 11 . Deletion of all 22 Pcdh genes in the mouse γ-subcluster ( Pcdhg genes) disrupts self-avoidance of dendrites in retinal starburst amacrine cells (SACs) and cerebellar Purkinje cells. Further genetic analysis of SACs showed that Pcdhg proteins act cell-autonomously during development, and that replacement of the 22 Pcdhg proteins with a single isoform restores self-avoidance. Moreover, expression of the same single isoform in all SACs decreases interactions among dendrites of neighbouring SACs (heteroneuronal interactions). These results suggest that homophilic Pcdhg interactions between sibling neurites (isoneuronal interactions) generate a repulsive signal that leads to self-avoidance. In this model, heteroneuronal interactions are normally permitted because dendrites seldom encounter a matched set of Pcdhg proteins unless they emanate from the same soma. In many respects, our results mirror those reported for Dscam1 ( Down syndrome cell adhesion molecule ) in Drosophila : this complex gene encodes thousands of recognition molecules that exhibit stochastic expression and isoform-specific interactions, and mediate both self-avoidance and self/non-self discrimination 4 , 5 , 6 , 7 , 12 , 13 , 14 , 15 . Thus, although insect Dscam and vertebrate Pcdh proteins share no sequence homology, they seem to underlie similar strategies for endowing neurons with distinct molecular identities and patterning their arborizations. |
Audience | Academic |
Author | Chen, Weisheng V. Maniatis, Tom Kostadinov, Dimitar Lefebvre, Julie L. Sanes, Joshua R. |
AuthorAffiliation | 1 Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138 2 Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 W 168th Street, New York, NY 10032 |
AuthorAffiliation_xml | – name: 1 Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138 – name: 2 Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 W 168th Street, New York, NY 10032 |
Author_xml | – sequence: 1 givenname: Julie L. surname: Lefebvre fullname: Lefebvre, Julie L. organization: Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts 02138, USA – sequence: 2 givenname: Dimitar surname: Kostadinov fullname: Kostadinov, Dimitar organization: Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts 02138, USA – sequence: 3 givenname: Weisheng V. surname: Chen fullname: Chen, Weisheng V. organization: Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 West 168th Street, New York, New York 10032, USA – sequence: 4 givenname: Tom surname: Maniatis fullname: Maniatis, Tom organization: Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 West 168th Street, New York, New York 10032, USA – sequence: 5 givenname: Joshua R. surname: Sanes fullname: Sanes, Joshua R. email: sanesj@mcb.harvard.edu organization: Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts 02138, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26256107$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22842903$$D View this record in MEDLINE/PubMed |
BookMark | eNqF099r1TAUB_AiE_dDn3yXogiKduZHm6Qvwhj-GAwnOvExnKandxltepfkDvffm-t-9eqdow-F5pNvTpqT7WzDjQ6z7Cklu5Rw9c5BXHiklJPqQbZFSymKUii5kW0RwlRBFBeb2XYIp4SQisryUbbJmCpZTfhWdvTVj3E00J6gty7kA7YWIuYtutbbaE0esO8KOB9tC85gbl0eTzAfYBigt-Byh_58XIQ8XISIw-PsYQd9wCdX753sx8cPx_ufi8OjTwf7e4eFSeXEAhEaUEJ1LW0Eq8tUvKxL2QLnRiCFsm4UbRAV4bw2rBaqAsIRAKuGk4bxnez9Ze580aSaDbrooddzbwfwF3oEq1dHnD3Rs_Fc85LJki0DXl0F-PFsgSHqwQaDfQ8O03Y0LXnNuCJU3U8JrygRnIpEX_xFT8eFd-lPLJWsJZNE3qoZ9Kit68ZUolmG6j3BCSOVVPV_FSdUSlGp5YrFGjXDdCzQp0bpbPq84p-v8WZuz_R06TvRNGl3DUpPi4M1a5d-vTIhmYi_4gwWIeiD799WN3-fnea-udvuHf_c_7KafL-eZj-b9tlNg13foAReXgEIBvrOp1tiw60TrBL0z5nTS2f8GILHThsbIdpx2Z62T-2x7BClJ7f5ttSbOdex6_XbSx2ScjP00977l_8G5VZR3A |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1038_s41588_019_0526_4 crossref_primary_10_1016_j_conb_2014_02_009 crossref_primary_10_1016_j_semcdb_2017_05_001 crossref_primary_10_1038_srep01514 crossref_primary_10_1534_genetics_117_300432 crossref_primary_10_2139_ssrn_3207022 crossref_primary_10_3389_fnmol_2019_00243 crossref_primary_10_1016_j_neuroscience_2020_06_037 crossref_primary_10_7554_eLife_20930 crossref_primary_10_1016_j_tins_2015_05_003 crossref_primary_10_1371_journal_pbio_3002197 crossref_primary_10_3389_fnmol_2019_00115 crossref_primary_10_1007_s00018_017_2572_3 crossref_primary_10_1101_gad_262592_115 crossref_primary_10_1002_wdev_379 crossref_primary_10_1111_jnc_16066 crossref_primary_10_1002_wdev_135 crossref_primary_10_1016_j_neuroscience_2014_01_044 crossref_primary_10_1038_ncomms11252 crossref_primary_10_1016_j_celrep_2020_02_003 crossref_primary_10_1093_pnasnexus_pgae060 crossref_primary_10_1146_annurev_cellbio_101011_155748 crossref_primary_10_1016_j_cell_2020_04_008 crossref_primary_10_1016_j_neuron_2013_10_035 crossref_primary_10_1371_journal_pone_0216263 crossref_primary_10_1016_j_celrep_2021_109522 crossref_primary_10_1523_JNEUROSCI_2202_14_2015 crossref_primary_10_1186_s12915_016_0326_6 crossref_primary_10_1038_s41467_023_38205_1 crossref_primary_10_1038_s41598_017_16120_y crossref_primary_10_5005_jp_journals_11002_0112 crossref_primary_10_1371_journal_pone_0096837 crossref_primary_10_1016_j_celrep_2018_08_029 crossref_primary_10_1073_pnas_1219280110 crossref_primary_10_1242_dev_194530 crossref_primary_10_1242_dev_201830 crossref_primary_10_1016_j_neuron_2018_11_001 crossref_primary_10_1016_j_neuron_2023_03_012 crossref_primary_10_1152_jn_00322_2018 crossref_primary_10_1002_dvdy_512 crossref_primary_10_1186_s12862_016_0652_x crossref_primary_10_1111_eva_13257 crossref_primary_10_1371_journal_pone_0076201 crossref_primary_10_3389_fgene_2024_1308234 crossref_primary_10_1007_s10237_021_01539_0 crossref_primary_10_3382_ps_pey236 crossref_primary_10_3389_fgene_2019_00268 crossref_primary_10_3389_fnmol_2020_00117 crossref_primary_10_1146_annurev_cellbio_100913_013020 crossref_primary_10_1002_cne_25102 crossref_primary_10_1016_j_crvi_2013_11_010 crossref_primary_10_1128_MCB_00760_14 crossref_primary_10_1021_acs_biochem_7b00545 crossref_primary_10_1186_1749_8104_8_11 crossref_primary_10_1016_j_neuron_2018_03_031 crossref_primary_10_1002_ange_201704783 crossref_primary_10_3109_10409238_2015_1064350 crossref_primary_10_1073_pnas_1901378116 crossref_primary_10_1371_journal_pgen_1008228 crossref_primary_10_7554_eLife_50568 crossref_primary_10_1016_j_xpro_2024_102844 crossref_primary_10_1523_JNEUROSCI_1636_20_2020 crossref_primary_10_1016_j_devcel_2013_07_011 crossref_primary_10_1093_jmcb_mjab057 crossref_primary_10_1016_j_conb_2016_06_009 crossref_primary_10_1126_sciadv_abo7247 crossref_primary_10_1038_s41598_021_01481_2 crossref_primary_10_1016_j_cell_2019_05_019 crossref_primary_10_1016_j_neuron_2022_09_025 crossref_primary_10_1007_s00018_018_2951_4 crossref_primary_10_1080_15592294_2016_1192736 crossref_primary_10_1186_s13059_020_01984_7 crossref_primary_10_3390_ijms22168511 crossref_primary_10_1016_j_cell_2013_10_018 crossref_primary_10_1126_science_aan2856 crossref_primary_10_1016_j_cell_2024_04_010 crossref_primary_10_1002_mds_28965 crossref_primary_10_1371_journal_pone_0083076 crossref_primary_10_1186_s13041_020_0547_z crossref_primary_10_1002_anie_201704783 crossref_primary_10_1073_pnas_1809430115 crossref_primary_10_1007_s12263_014_0399_1 crossref_primary_10_1016_j_neuron_2014_08_054 crossref_primary_10_7554_eLife_41050 crossref_primary_10_1038_srep22892 crossref_primary_10_1016_j_pneurobio_2020_101968 crossref_primary_10_1073_pnas_1311135110 crossref_primary_10_1080_23262133_2015_1122699 crossref_primary_10_1242_dev_179168 crossref_primary_10_1074_jbc_M115_642306 crossref_primary_10_1016_j_neuron_2013_12_012 crossref_primary_10_1111_gtc_12008 crossref_primary_10_1152_physiolgenomics_00042_2017 crossref_primary_10_1101_cshperspect_a024208 crossref_primary_10_1242_dev_204293 crossref_primary_10_1016_j_semcdb_2022_02_015 crossref_primary_10_1126_science_adf8440 crossref_primary_10_1155_2016_3423267 crossref_primary_10_12688_f1000research_16038_1 crossref_primary_10_1242_dev_090621 crossref_primary_10_1093_bfgp_els054 crossref_primary_10_1016_j_jgg_2016_03_006 crossref_primary_10_1523_ENEURO_0250_23_2023 crossref_primary_10_1016_j_alcohol_2016_11_009 crossref_primary_10_1016_j_bpj_2022_02_008 crossref_primary_10_1186_s13073_016_0374_0 crossref_primary_10_1002_glia_22779 crossref_primary_10_1016_j_celrep_2018_07_024 crossref_primary_10_3389_fnmol_2016_00155 crossref_primary_10_1002_dneu_22267 crossref_primary_10_1016_j_yexcr_2018_03_016 crossref_primary_10_1038_s41398_020_00984_2 crossref_primary_10_1016_j_celrep_2020_107844 crossref_primary_10_3389_fnmol_2018_00485 crossref_primary_10_3389_fimmu_2023_1206906 crossref_primary_10_1038_s44161_024_00522_z crossref_primary_10_1016_j_celrep_2023_112170 crossref_primary_10_1016_j_str_2015_09_005 crossref_primary_10_1146_annurev_cellbio_100616_060701 crossref_primary_10_1016_j_neuroscience_2020_05_036 crossref_primary_10_1016_j_conb_2013_09_011 crossref_primary_10_1016_j_jbc_2025_108337 crossref_primary_10_3389_fnins_2020_587819 crossref_primary_10_1038_nnano_2016_256 crossref_primary_10_1038_srep31665 crossref_primary_10_1007_s13277_016_5169_9 crossref_primary_10_1097_MD_0000000000009572 crossref_primary_10_1002_dneu_22950 crossref_primary_10_1371_journal_pbio_2004734 crossref_primary_10_1172_JCI66476 crossref_primary_10_7554_eLife_06963 crossref_primary_10_1038_s41598_018_28034_4 crossref_primary_10_1111_jnc_13053 crossref_primary_10_1016_j_cell_2015_09_026 crossref_primary_10_1016_j_cell_2014_07_012 crossref_primary_10_1038_s41586_019_1089_3 crossref_primary_10_7554_eLife_35242 crossref_primary_10_1007_s12035_020_02263_z crossref_primary_10_1016_j_colsurfb_2023_113143 crossref_primary_10_1146_annurev_neuro_062111_150414 crossref_primary_10_1242_jcs_166306 crossref_primary_10_1016_j_biosystems_2013_06_005 crossref_primary_10_3389_fcell_2021_720798 crossref_primary_10_1523_JNEUROSCI_0969_12_2012 crossref_primary_10_1016_j_celrep_2017_02_060 crossref_primary_10_1016_j_neuron_2015_05_004 crossref_primary_10_1016_j_cub_2024_07_076 crossref_primary_10_7554_eLife_89532_3 crossref_primary_10_1016_j_cell_2015_09_031 crossref_primary_10_1242_dev_201214 crossref_primary_10_3389_fnmol_2017_00114 crossref_primary_10_1093_jb_mvu070 crossref_primary_10_1038_ncomms15683 crossref_primary_10_1126_science_adm9802 crossref_primary_10_1038_srep06263 crossref_primary_10_1073_pnas_1800889115 crossref_primary_10_1038_s41467_021_27135_5 crossref_primary_10_1186_s40478_021_01140_7 crossref_primary_10_1038_s41467_023_43849_0 crossref_primary_10_1523_JNEUROSCI_1878_13_2013 crossref_primary_10_1016_j_conb_2019_10_001 crossref_primary_10_1126_science_aal3231 crossref_primary_10_7554_eLife_74270 crossref_primary_10_1016_j_celrep_2014_03_040 crossref_primary_10_1111_ejn_13051 crossref_primary_10_1038_s41467_022_33364_z crossref_primary_10_7554_eLife_16144 crossref_primary_10_1002_dvg_70010 crossref_primary_10_1146_annurev_physiol_021014_071746 crossref_primary_10_1016_j_biopsych_2015_01_017 crossref_primary_10_1038_nature12107 crossref_primary_10_7554_eLife_72416 crossref_primary_10_1016_j_cell_2015_07_038 crossref_primary_10_7554_eLife_18449 crossref_primary_10_15252_embj_201385162 crossref_primary_10_3389_fgene_2017_00019 crossref_primary_10_1016_j_cell_2015_11_021 crossref_primary_10_1111_jne_12280 crossref_primary_10_1016_j_isci_2024_111452 crossref_primary_10_1016_j_neures_2018_09_015 crossref_primary_10_1016_j_conb_2016_12_006 crossref_primary_10_1016_j_semcdb_2022_11_004 crossref_primary_10_1098_rsob_180257 crossref_primary_10_1371_journal_pbio_3000159 crossref_primary_10_3389_fncir_2020_00044 crossref_primary_10_1523_JNEUROSCI_2098_17_2017 crossref_primary_10_3389_fncel_2022_896854 crossref_primary_10_1016_j_celrep_2014_10_001 crossref_primary_10_3389_fncel_2020_622808 crossref_primary_10_3389_fncel_2021_734938 crossref_primary_10_7554_eLife_89532 crossref_primary_10_1038_nrn_2015_3 crossref_primary_10_7554_eLife_05491 crossref_primary_10_1073_pnas_1821063116 crossref_primary_10_1016_j_preteyeres_2021_101038 crossref_primary_10_1016_j_neuron_2016_01_020 crossref_primary_10_1016_j_cell_2020_06_027 crossref_primary_10_1038_srep06902 crossref_primary_10_1016_j_semcdb_2017_07_037 crossref_primary_10_1242_dev_158246 crossref_primary_10_1016_j_ceb_2013_10_001 crossref_primary_10_1073_pnas_1921983117 crossref_primary_10_1016_j_cell_2014_06_047 crossref_primary_10_1016_j_cub_2018_03_001 crossref_primary_10_1016_j_neuron_2012_06_039 crossref_primary_10_3390_ijms23084161 crossref_primary_10_1126_science_aai8801 crossref_primary_10_1016_j_conb_2020_01_002 crossref_primary_10_7554_eLife_18345 crossref_primary_10_1007_s11064_013_0999_y crossref_primary_10_3109_01677063_2013_801969 crossref_primary_10_1016_j_stemcr_2017_07_008 crossref_primary_10_1016_j_devcel_2014_07_015 crossref_primary_10_2217_epi_15_60 crossref_primary_10_1016_j_molcel_2016_05_023 crossref_primary_10_1016_j_cub_2024_08_002 crossref_primary_10_7554_eLife_75827 crossref_primary_10_1016_j_gde_2020_05_041 crossref_primary_10_1038_s41551_021_00703_2 crossref_primary_10_1016_j_devcel_2018_04_008 crossref_primary_10_1126_sciadv_abn9458 crossref_primary_10_1126_science_1251852 crossref_primary_10_1016_j_semcdb_2017_07_023 crossref_primary_10_1073_pnas_1411270111 crossref_primary_10_1002_cne_24666 crossref_primary_10_1017_S1431927621001598 crossref_primary_10_1016_j_isci_2023_107238 crossref_primary_10_3390_cells9122711 crossref_primary_10_1016_j_jgg_2020_06_008 crossref_primary_10_3389_fncel_2019_00250 crossref_primary_10_1016_j_neuron_2024_03_018 crossref_primary_10_1016_j_tibs_2023_09_001 crossref_primary_10_1038_nn_3772 crossref_primary_10_1016_j_celrep_2018_06_013 crossref_primary_10_1038_s41380_021_01199_7 crossref_primary_10_1016_j_ydbio_2019_04_002 crossref_primary_10_1093_texcom_tgaa089 crossref_primary_10_1186_s12860_015_0074_4 crossref_primary_10_1016_j_tcb_2013_04_005 crossref_primary_10_1371_journal_pone_0052652 crossref_primary_10_1007_s12311_014_0585_0 crossref_primary_10_3389_fphar_2021_796179 crossref_primary_10_1016_j_gep_2014_07_003 crossref_primary_10_1016_j_celrep_2016_05_003 crossref_primary_10_1038_s42003_019_0586_0 crossref_primary_10_1073_pnas_2301003120 crossref_primary_10_1126_sciadv_adk3384 crossref_primary_10_1016_j_neuron_2014_02_005 crossref_primary_10_1002_cne_23666 crossref_primary_10_1016_j_tcb_2014_03_007 crossref_primary_10_1093_gbe_evz098 crossref_primary_10_1146_annurev_cellbio_120420_100215 crossref_primary_10_3389_fcell_2023_1261048 crossref_primary_10_7554_eLife_08964 crossref_primary_10_1038_nature14682 crossref_primary_10_1523_JNEUROSCI_3035_17_2018 crossref_primary_10_1371_journal_pone_0154836 crossref_primary_10_1002_wrna_1762 crossref_primary_10_3390_ijms24032992 crossref_primary_10_1038_s41467_024_46333_5 crossref_primary_10_1073_pnas_1713548114 crossref_primary_10_7554_eLife_18529 crossref_primary_10_1523_JNEUROSCI_4067_13_2013 crossref_primary_10_1007_s12311_015_0724_2 crossref_primary_10_1016_j_celrep_2024_114005 crossref_primary_10_4161_cam_27839 crossref_primary_10_1016_j_neuron_2016_04_004 crossref_primary_10_1016_j_devcel_2015_08_011 crossref_primary_10_1016_j_it_2014_03_004 crossref_primary_10_1038_s41467_024_54573_8 crossref_primary_10_1523_JNEUROSCI_2387_13_2013 crossref_primary_10_1371_journal_pgen_1008554 crossref_primary_10_1002_cbin_10980 crossref_primary_10_3389_fnins_2022_889155 crossref_primary_10_1111_brv_12139 crossref_primary_10_7554_eLife_10233 crossref_primary_10_1016_j_preteyeres_2022_101131 crossref_primary_10_1016_j_celrep_2016_03_093 crossref_primary_10_1038_cr_2012_137 crossref_primary_10_1523_JNEUROSCI_0729_22_2022 crossref_primary_10_1038_nn_3390 crossref_primary_10_1016_j_semcdb_2017_07_040 crossref_primary_10_1016_j_tins_2021_04_001 crossref_primary_10_1101_gad_248245_114 crossref_primary_10_1042_BST20160103 crossref_primary_10_1016_j_abb_2018_01_001 crossref_primary_10_7554_eLife_55374 crossref_primary_10_1016_j_cell_2013_08_059 crossref_primary_10_1016_j_cub_2022_05_030 crossref_primary_10_1146_annurev_neuro_072116_031607 crossref_primary_10_1186_s12864_017_4420_0 crossref_primary_10_1080_19336918_2014_1000069 crossref_primary_10_3390_ijms22158220 crossref_primary_10_1186_s40478_022_01478_6 crossref_primary_10_1016_j_ydbio_2021_06_004 crossref_primary_10_1016_j_neuron_2017_12_005 crossref_primary_10_1016_j_devcel_2023_07_011 crossref_primary_10_1038_mp_2016_43 crossref_primary_10_1016_j_preteyeres_2014_06_003 crossref_primary_10_1038_emboj_2013_144 crossref_primary_10_1080_19336918_2014_1000072 crossref_primary_10_1152_jn_00044_2018 crossref_primary_10_1073_pnas_1713449114 crossref_primary_10_1186_s13064_018_0109_6 crossref_primary_10_1016_j_neuron_2014_01_009 crossref_primary_10_1126_sciadv_1501118 crossref_primary_10_1016_j_neuron_2018_08_019 crossref_primary_10_1126_science_1241974 crossref_primary_10_1126_science_1248806 crossref_primary_10_1016_j_ydbio_2018_12_005 crossref_primary_10_1007_s00018_017_2588_8 crossref_primary_10_1007_s12311_018_0984_8 crossref_primary_10_1002_dvdy_24611 crossref_primary_10_1038_s41586_022_05495_2 crossref_primary_10_1523_JNEUROSCI_1940_22_2023 crossref_primary_10_1016_j_celrep_2018_07_092 crossref_primary_10_1038_nn_3290 crossref_primary_10_1128_JB_00347_21 |
Cites_doi | 10.1073/pnas.86.18.7223 10.1074/jbc.M605677200 10.1016/j.neuron.2008.06.008 10.1523/JNEUROSCI.18-04-01428.1998 10.1002/cne.21630 10.1101/cshperspect.a001750 10.1016/j.neuron.2004.06.033 10.1126/science.270.5233.96 10.1523/JNEUROSCI.11-05-01440.1991 10.1016/j.cell.2004.08.021 10.1038/292344a0 10.1038/nature08431 10.1016/S0092-8674(00)80789-8 10.1371/journal.pone.0020108 10.1038/nature06469 10.1016/j.cmet.2011.01.010 10.1038/nn.2467 10.1016/j.neuron.2007.03.029 10.1016/j.cell.2007.04.013 10.1016/j.neuron.2006.08.007 10.1002/1526-968X(200011/12)28:3/4<106::AID-GENE30>3.0.CO;2-T 10.3389/fnmol.2012.00018 10.1002/(SICI)1526-968X(200002)26:2<130::AID-GENE9>3.0.CO;2-I 10.1073/pnas.1004526107 10.1016/j.cell.2010.10.009 10.1016/S0165-0270(96)00080-5 10.1017/S095252380001049X 10.1016/j.jneumeth.2008.03.013 10.1016/S0896-6273(02)01090-5 10.1016/S0896-6273(00)80495-X 10.1038/nature06514 10.1016/j.ydbio.2004.03.039 10.1038/nn.2859 10.1242/dev.026807 10.1002/gene.20062 10.1016/j.neuron.2010.01.018 10.1523/JNEUROSCI.0907-11.2011 10.1073/pnas.0407931101 10.1016/j.neuron.2004.07.020 10.1242/dev.027912 10.1002/cne.10509 10.1523/JNEUROSCI.03-12-02474.1983 10.1016/S0165-0270(98)00021-1 10.1038/ng1299 10.1016/j.neuron.2007.04.013 10.1002/cne.22595 10.1016/0896-6273(95)90172-8 10.1016/j.neuron.2009.09.027 10.1002/(SICI)1520-6408(1999)24:3/4<241::AID-DVG7>3.0.CO;2-R |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2012 2015 INIST-CNRS COPYRIGHT 2012 Nature Publishing Group Copyright Nature Publishing Group Aug 23, 2012 |
Copyright_xml | – notice: Springer Nature Limited 2012 – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2012 Nature Publishing Group – notice: Copyright Nature Publishing Group Aug 23, 2012 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
DOI | 10.1038/nature11305 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Agricultural Science Database Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 521 |
ExternalDocumentID | PMC3427422 2752632861 A630205789 A301776586 22842903 26256107 10_1038_nature11305 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: F31 NS078893 – fundername: NINDS NIH HHS grantid: R01 NS043915 – fundername: NINDS NIH HHS grantid: R01 NS029169 – fundername: NINDS NIH HHS grantid: R01NS043915 – fundername: NEI NIH HHS grantid: R01EY022073 – fundername: NEI NIH HHS grantid: R01 EY022073 – fundername: NINDS NIH HHS grantid: R01NS029169 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .HR .XZ 00M 07C 08P 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH AAZLF ABAWZ ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABNNU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACRPL ACUHS ACWUS ADBBV ADFRT ADNMO ADUKH ADYSU ADZCM AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGGDT AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCR BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L-9 L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OHT OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PEA PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~G0 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AEZWR AFANA AGQPQ AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ 1CY 1VW 354 3EH 3O- 41~ 42X 4R4 663 79B 9M8 AAJYS AAVBQ ABDPE ABEFU ACBNA ACBTR ACTDY ADRHT AFBBN AFFDN AFHIU AFHKK AGCDD AHWEU AJUXI BES BKOMP DB5 FA8 FAC HG6 IQODW J5H LGEZI LOTEE MVM N4W NADUK NFIDA NXXTH ODYON PJZUB PPXIY PQGLB PV9 QS- R4F RHI SKT TUD UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZGI ZHY ZY4 CGR CUY CVF ECM EIF NPM AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c836t-eeaba868fd1b62941307947da33c6e1a49b81bee80339c29685a03eaae5b30b23 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:18:29 EDT 2025 Fri Jul 11 15:48:36 EDT 2025 Fri Jul 11 04:49:36 EDT 2025 Fri Jul 25 09:05:48 EDT 2025 Tue Jun 17 21:47:01 EDT 2025 Tue Jun 17 21:11:23 EDT 2025 Thu Jun 12 23:35:16 EDT 2025 Tue Jun 10 15:32:22 EDT 2025 Tue Jun 10 15:34:57 EDT 2025 Tue Jun 10 20:46:07 EDT 2025 Fri Jun 27 04:59:35 EDT 2025 Fri Jun 27 03:31:14 EDT 2025 Fri Jun 27 03:35:13 EDT 2025 Fri Jun 27 04:16:22 EDT 2025 Wed Feb 19 02:33:22 EST 2025 Mon Jul 21 09:14:37 EDT 2025 Tue Jul 01 02:56:53 EDT 2025 Thu Apr 24 22:57:16 EDT 2025 Fri Feb 21 02:37:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7412 |
Keywords | Cerebellum Transmembrane protein Molecular form Amacrine neuron Rodentia Central nervous system Purkinje neuron Retina Nervous system Down syndrome Cadherin Adhesion Encephalon Dendrite Eye Visual system Vertebrata Discrimination Mammalia Mouse Animal Avoidance |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c836t-eeaba868fd1b62941307947da33c6e1a49b81bee80339c29685a03eaae5b30b23 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3427422 |
PMID | 22842903 |
PQID | 1037972707 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3427422 proquest_miscellaneous_1439238018 proquest_miscellaneous_1035106316 proquest_journals_1037972707 gale_infotracmisc_A630205789 gale_infotracmisc_A301776586 gale_infotracgeneralonefile_A301776586 gale_infotraccpiq_630205789 gale_infotraccpiq_301776586 gale_infotracacademiconefile_A301776586 gale_incontextgauss_ISR_A630205789 gale_incontextgauss_ISR_A301776586 gale_incontextgauss_ATWCN_A630205789 gale_incontextgauss_ATWCN_A301776586 pubmed_primary_22842903 pascalfrancis_primary_26256107 crossref_citationtrail_10_1038_nature11305 crossref_primary_10_1038_nature11305 springer_journals_10_1038_nature11305 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-08-23 |
PublicationDateYYYYMMDD | 2012-08-23 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2012 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Jelinek, Fernandez (CR27) 1998; 81 Srinivas (CR38) 1999; 24 Smith, Lange, Marks (CR48) 1996; 69 Rowan, Cepko (CR31) 2004; 271 CR39 Weiner, Wang, Tapia, Sanes (CR23) 2005; 102 Rossi (CR35) 2011; 13 Kohmura (CR9) 1998; 20 Kay (CR37) 2011; 31 Matthews (CR4) 2007; 129 Schreiner, Weiner (CR11) 2010; 107 Kaneko (CR10) 2006; 281 Farley, Soriano, Steffen, Dymecki (CR40) 2000; 28 Lee, Zhou (CR25) 2006; 51 Montague, Friedlander (CR47) 1991; 11 Chen (CR44) 2008; 171 Grueber, Sagasti (CR3) 2010; 2 Montague, Friedlander (CR2) 1989; 86 Fuerst, Koizumi, Masland, Burgess (CR17) 2008; 451 Kuchibhotla (CR41) 2008; 59 Hughes (CR6) 2007; 54 Hong, Kim, Sanes (CR42) 2011; 519 Sanes, Zipursky (CR19) 2010; 66 Wojtowicz, Flanagan, Millard, Zipursky, Clemens (CR13) 2004; 118 Wu, Maniatis (CR8) 1999; 97 Prasad, Wang, Gray, Weiner (CR21) 2008; 135 Furuta, Lagutin, Hogan, Oliver (CR32) 2000; 26 Neves, Zucker, Daly, Chess (CR14) 2004; 36 Whitney, Keeley, Raven, Reese (CR45) 2008; 508 Zhan (CR12) 2004; 43 Fuerst (CR18) 2009; 64 Kramer, Kuwada (CR1) 1983; 3 Lefebvre, Zhang, Meister, Wang, Sanes (CR22) 2008; 135 Hattori (CR15) 2009; 461 Stacy, Wong (CR24) 2003; 456 Zipursky, Sanes (CR7) 2010; 143 CR28 Wang (CR29) 2004; 43 Rodieck (CR46) 1991; 6 White, Keller-Peck, Knudson, Korsmeyer, Snider (CR26) 1998; 18 Zhang (CR34) 2004; 40 Soba (CR5) 2007; 54 Yamagata, Sanes (CR16) 2008; 451 Kaneko (CR30) 2011; 6 Madisen (CR36) 2010; 13 Kay, Voinescu, Chu, Sanes (CR50) 2011; 14 Wang (CR20) 2002; 36 Meyer-Franke, Kaplan, Pfrieger, Barres (CR43) 1995; 15 Knudson, Tung, Tourtellotte, Brown, Korsmeyer (CR33) 1995; 270 Wässle, Peichl, Boycott (CR49) 1981; 292 M Kaneko (BFnature11305_CR30) 2011; 6 JA Weiner (BFnature11305_CR23) 2005; 102 Y Chen (BFnature11305_CR44) 2008; 171 AP Kramer (BFnature11305_CR1) 1983; 3 TG Smith Jr (BFnature11305_CR48) 1996; 69 D Schreiner (BFnature11305_CR11) 2010; 107 X Wang (BFnature11305_CR20) 2002; 36 S Rowan (BFnature11305_CR31) 2004; 271 PG Fuerst (BFnature11305_CR18) 2009; 64 WB Grueber (BFnature11305_CR3) 2010; 2 WM Wojtowicz (BFnature11305_CR13) 2004; 118 RW Rodieck (BFnature11305_CR46) 1991; 6 D Hattori (BFnature11305_CR15) 2009; 461 XL Zhan (BFnature11305_CR12) 2004; 43 PR Montague (BFnature11305_CR47) 1991; 11 N Kohmura (BFnature11305_CR9) 1998; 20 XM Zhang (BFnature11305_CR34) 2004; 40 S Srinivas (BFnature11305_CR38) 1999; 24 Y Furuta (BFnature11305_CR32) 2000; 26 L Madisen (BFnature11305_CR36) 2010; 13 R Kaneko (BFnature11305_CR10) 2006; 281 G Neves (BFnature11305_CR14) 2004; 36 BFnature11305_CR28 BJ Matthews (BFnature11305_CR4) 2007; 129 JR Sanes (BFnature11305_CR19) 2010; 66 HF Jelinek (BFnature11305_CR27) 1998; 81 IE Whitney (BFnature11305_CR45) 2008; 508 H Wässle (BFnature11305_CR49) 1981; 292 JN Kay (BFnature11305_CR50) 2011; 14 SL Zipursky (BFnature11305_CR7) 2010; 143 PR Montague (BFnature11305_CR2) 1989; 86 M Yamagata (BFnature11305_CR16) 2008; 451 BFnature11305_CR39 A Meyer-Franke (BFnature11305_CR43) 1995; 15 J Rossi (BFnature11305_CR35) 2011; 13 RC Stacy (BFnature11305_CR24) 2003; 456 JN Kay (BFnature11305_CR37) 2011; 31 ME Hughes (BFnature11305_CR6) 2007; 54 T Prasad (BFnature11305_CR21) 2008; 135 PG Fuerst (BFnature11305_CR17) 2008; 451 S Lee (BFnature11305_CR25) 2006; 51 Q Wu (BFnature11305_CR8) 1999; 97 CM Knudson (BFnature11305_CR33) 1995; 270 KV Kuchibhotla (BFnature11305_CR41) 2008; 59 YK Hong (BFnature11305_CR42) 2011; 519 JL Lefebvre (BFnature11305_CR22) 2008; 135 P Soba (BFnature11305_CR5) 2007; 54 FA White (BFnature11305_CR26) 1998; 18 J Wang (BFnature11305_CR29) 2004; 43 FW Farley (BFnature11305_CR40) 2000; 28 |
References_xml | – volume: 54 start-page: 417 year: 2007 end-page: 427 ident: CR6 article-title: Homophilic Dscam interactions control complex dendrite morphogenesis publication-title: Neuron – volume: 11 start-page: 1440 year: 1991 end-page: 1457 ident: CR47 article-title: Morphogenesis and territorial coverage by isolated mammalian retinal ganglion cells publication-title: J. Neurosci. – volume: 129 start-page: 593 year: 2007 end-page: 604 ident: CR4 article-title: Dendrite self-avoidance is controlled by Dscam publication-title: Cell – volume: 81 start-page: 9 year: 1998 end-page: 18 ident: CR27 article-title: Neurons and fractals: how reliable and useful are calculations of fractal dimensions? publication-title: J. Neurosci. Methods – ident: CR39 – volume: 270 start-page: 96 year: 1995 end-page: 99 ident: CR33 article-title: Bax-deficient mice with lymphoid hyperplasia and male germ cell death publication-title: Science – volume: 171 start-page: 239 year: 2008 end-page: 247 ident: CR44 article-title: NS21: re-defined and modified supplement B27 for neuronal cultures publication-title: J. Neurosci. Methods – volume: 86 start-page: 7223 year: 1989 end-page: 7227 ident: CR2 article-title: Expression of an intrinsic growth strategy by mammalian retinal neurons publication-title: Proc. Natl Acad. Sci. USA – volume: 97 start-page: 779 year: 1999 end-page: 790 ident: CR8 article-title: A striking organization of a large family of human neural cadherin-like cell adhesion genes publication-title: Cell – volume: 2 start-page: a001750 year: 2010 ident: CR3 article-title: Self-avoidance and tiling: mechanisms of dendrite and axon spacing publication-title: Cold Spring Harb. Perspect. Biol. – volume: 271 start-page: 388 year: 2004 end-page: 402 ident: CR31 article-title: Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter publication-title: Dev. Biol. – volume: 102 start-page: 8 year: 2005 end-page: 14 ident: CR23 article-title: Gamma protocadherins are required for synaptic development in the spinal cord publication-title: Proc. Natl Acad. Sci. USA – volume: 51 start-page: 787 year: 2006 end-page: 799 ident: CR25 article-title: The synaptic mechanism of direction selectivity in distal processes of starburst amacrine cells publication-title: Neuron – volume: 69 start-page: 123 year: 1996 end-page: 136 ident: CR48 article-title: Fractal methods and results in cellular morphology—dimensions, lacunarity and multifractals publication-title: J. Neurosci. Methods – volume: 18 start-page: 1428 year: 1998 end-page: 1439 ident: CR26 article-title: Widespread elimination of naturally occurring neuronal death in Bax-deficient mice publication-title: J. Neurosci. – volume: 26 start-page: 130 year: 2000 end-page: 132 ident: CR32 article-title: Retina- and ventral forebrain-specific Cre recombinase activity in transgenic mice publication-title: Genesis – volume: 64 start-page: 484 year: 2009 end-page: 497 ident: CR18 article-title: DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the developing mouse retina publication-title: Neuron – volume: 135 start-page: 4153 year: 2008 end-page: 4164 ident: CR21 article-title: A differential developmental pattern of spinal interneuron apoptosis during synaptogenesis: insights from genetic analyses of the protocadherin-γ gene cluster publication-title: Development – volume: 143 start-page: 343 year: 2010 end-page: 353 ident: CR7 article-title: Chemoaffinity revisited: dscams, protocadherins, and neural circuit assembly publication-title: Cell – volume: 456 start-page: 154 year: 2003 end-page: 166 ident: CR24 article-title: Developmental relationship between cholinergic amacrine cell processes and ganglion cell dendrites of the mouse retina publication-title: J. Comp. Neurol. – volume: 59 start-page: 214 year: 2008 end-page: 225 ident: CR41 article-title: Aβ plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks publication-title: Neuron – volume: 13 start-page: 133 year: 2010 end-page: 140 ident: CR36 article-title: A robust and high-throughput Cre reporting and characterization system for the whole mouse brain publication-title: Nature Neurosci. – volume: 3 start-page: 2474 year: 1983 end-page: 2486 ident: CR1 article-title: Formation of the receptive fields of leech mechanosensory neurons during embryonic development publication-title: J. Neurosci. – volume: 31 start-page: 7753 year: 2011 end-page: 7762 ident: CR37 article-title: Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections publication-title: J. Neurosci. – volume: 28 start-page: 106 year: 2000 end-page: 110 ident: CR40 article-title: Widespread recombinase expression using FLPeR (flipper) mice publication-title: Genesis – volume: 451 start-page: 465 year: 2008 end-page: 469 ident: CR16 article-title: Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina publication-title: Nature – volume: 281 start-page: 30551 year: 2006 end-page: 30560 ident: CR10 article-title: Allelic gene regulation of -α and -γ clusters involving both monoallelic and biallelic expression in single Purkinje cells publication-title: J. Biol. Chem. – volume: 107 start-page: 14893 year: 2010 end-page: 14898 ident: CR11 article-title: Combinatorial homophilic interaction between γ-protocadherin multimers greatly expands the molecular diversity of cell adhesion publication-title: Proc. Natl Acad. Sci. USA – volume: 508 start-page: 1 year: 2008 end-page: 12 ident: CR45 article-title: Spatial patterning of cholinergic amacrine cells in the mouse retina publication-title: J. Comp. Neurol. – volume: 13 start-page: 195 year: 2011 end-page: 204 ident: CR35 article-title: Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis publication-title: Cell Metab. – volume: 36 start-page: 843 year: 2002 end-page: 854 ident: CR20 article-title: Gamma protocadherins are required for survival of spinal interneurons publication-title: Neuron – volume: 461 start-page: 644 year: 2009 end-page: 648 ident: CR15 article-title: Robust discrimination between self and non-self neurites requires thousands of Dscam1 isoforms publication-title: Nature – volume: 118 start-page: 619 year: 2004 end-page: 633 ident: CR13 article-title: Alternative splicing of Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding publication-title: Cell – volume: 135 start-page: 4141 year: 2008 end-page: 4151 ident: CR22 article-title: γ-Protocadherins regulate neuronal survival but are dispensable for circuit formation in retina publication-title: Development – volume: 24 start-page: 241 year: 1999 end-page: 251 ident: CR38 article-title: Expression of green fluorescent protein in the ureteric bud of transgenic mice: a new tool for the analysis of ureteric bud morphogenesis publication-title: Dev. Genet. – volume: 66 start-page: 15 year: 2010 end-page: 36 ident: CR19 article-title: Design principles of insect and vertebrate visual systems publication-title: Neuron – volume: 15 start-page: 805 year: 1995 end-page: 819 ident: CR43 article-title: Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture publication-title: Neuron – volume: 14 start-page: 965 year: 2011 end-page: 972 ident: CR50 article-title: Neurod6 expression defines new retinal amacrine cell subtypes and regulates their fate publication-title: Nature Neurosci. – volume: 36 start-page: 240 year: 2004 end-page: 246 ident: CR14 article-title: Stochastic yet biased expression of multiple Dscam splice variants by individual cells publication-title: Nature Genet. – volume: 20 start-page: 1137 year: 1998 end-page: 1151 ident: CR9 article-title: Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex publication-title: Neuron – volume: 43 start-page: 663 year: 2004 end-page: 672 ident: CR29 article-title: Transmembrane/juxtamembrane domain-dependent Dscam distribution and function during mushroom body neuronal morphogenesis publication-title: Neuron – volume: 54 start-page: 403 year: 2007 end-page: 416 ident: CR5 article-title: sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization publication-title: Neuron – volume: 292 start-page: 344 year: 1981 end-page: 345 ident: CR49 article-title: Dendritic territories of cat retinal ganglion cells publication-title: Nature – volume: 6 start-page: e20108 year: 2011 ident: CR30 article-title: Remodeling of monoplanar Purkinje cell dendrites during cerebellar circuit formation publication-title: PLoS ONE – volume: 40 start-page: 45 year: 2004 end-page: 51 ident: CR34 article-title: Highly restricted expression of Cre recombinase in cerebellar Purkinje cells publication-title: Genesis – volume: 6 start-page: 95 year: 1991 end-page: 111 ident: CR46 article-title: The density recovery profile: a method for the analysis of points in the plane applicable to retinal studies publication-title: Vis. Neurosci. – volume: 43 start-page: 673 year: 2004 end-page: 686 ident: CR12 article-title: Analysis of Dscam diversity in regulating axon guidance in mushroom bodies publication-title: Neuron – volume: 451 start-page: 470 year: 2008 end-page: 474 ident: CR17 article-title: Neurite arborization and mosaic spacing in the mouse retina require DSCAM publication-title: Nature – ident: CR28 – volume: 519 start-page: 1691 year: 2011 end-page: 1711 ident: CR42 article-title: Stereotyped axonal arbors of retinal ganglion cell subsets in the mouse superior colliculus publication-title: J. Comp. Neurol. – volume: 86 start-page: 7223 year: 1989 ident: BFnature11305_CR2 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.86.18.7223 – volume: 281 start-page: 30551 year: 2006 ident: BFnature11305_CR10 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M605677200 – volume: 59 start-page: 214 year: 2008 ident: BFnature11305_CR41 publication-title: Neuron doi: 10.1016/j.neuron.2008.06.008 – volume: 18 start-page: 1428 year: 1998 ident: BFnature11305_CR26 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.18-04-01428.1998 – volume: 508 start-page: 1 year: 2008 ident: BFnature11305_CR45 publication-title: J. Comp. Neurol. doi: 10.1002/cne.21630 – volume: 2 start-page: a001750 year: 2010 ident: BFnature11305_CR3 publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a001750 – volume: 43 start-page: 663 year: 2004 ident: BFnature11305_CR29 publication-title: Neuron doi: 10.1016/j.neuron.2004.06.033 – volume: 270 start-page: 96 year: 1995 ident: BFnature11305_CR33 publication-title: Science doi: 10.1126/science.270.5233.96 – volume: 11 start-page: 1440 year: 1991 ident: BFnature11305_CR47 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.11-05-01440.1991 – volume: 118 start-page: 619 year: 2004 ident: BFnature11305_CR13 publication-title: Cell doi: 10.1016/j.cell.2004.08.021 – volume: 292 start-page: 344 year: 1981 ident: BFnature11305_CR49 publication-title: Nature doi: 10.1038/292344a0 – volume: 461 start-page: 644 year: 2009 ident: BFnature11305_CR15 publication-title: Nature doi: 10.1038/nature08431 – volume: 97 start-page: 779 year: 1999 ident: BFnature11305_CR8 publication-title: Cell doi: 10.1016/S0092-8674(00)80789-8 – volume: 6 start-page: e20108 year: 2011 ident: BFnature11305_CR30 publication-title: PLoS ONE doi: 10.1371/journal.pone.0020108 – volume: 451 start-page: 465 year: 2008 ident: BFnature11305_CR16 publication-title: Nature doi: 10.1038/nature06469 – volume: 13 start-page: 195 year: 2011 ident: BFnature11305_CR35 publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.01.010 – volume: 13 start-page: 133 year: 2010 ident: BFnature11305_CR36 publication-title: Nature Neurosci. doi: 10.1038/nn.2467 – volume: 54 start-page: 403 year: 2007 ident: BFnature11305_CR5 publication-title: Neuron doi: 10.1016/j.neuron.2007.03.029 – volume: 129 start-page: 593 year: 2007 ident: BFnature11305_CR4 publication-title: Cell doi: 10.1016/j.cell.2007.04.013 – volume: 51 start-page: 787 year: 2006 ident: BFnature11305_CR25 publication-title: Neuron doi: 10.1016/j.neuron.2006.08.007 – volume: 28 start-page: 106 year: 2000 ident: BFnature11305_CR40 publication-title: Genesis doi: 10.1002/1526-968X(200011/12)28:3/4<106::AID-GENE30>3.0.CO;2-T – ident: BFnature11305_CR39 doi: 10.3389/fnmol.2012.00018 – volume: 26 start-page: 130 year: 2000 ident: BFnature11305_CR32 publication-title: Genesis doi: 10.1002/(SICI)1526-968X(200002)26:2<130::AID-GENE9>3.0.CO;2-I – volume: 107 start-page: 14893 year: 2010 ident: BFnature11305_CR11 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1004526107 – volume: 143 start-page: 343 year: 2010 ident: BFnature11305_CR7 publication-title: Cell doi: 10.1016/j.cell.2010.10.009 – volume: 69 start-page: 123 year: 1996 ident: BFnature11305_CR48 publication-title: J. Neurosci. Methods doi: 10.1016/S0165-0270(96)00080-5 – volume: 6 start-page: 95 year: 1991 ident: BFnature11305_CR46 publication-title: Vis. Neurosci. doi: 10.1017/S095252380001049X – volume: 171 start-page: 239 year: 2008 ident: BFnature11305_CR44 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2008.03.013 – volume: 36 start-page: 843 year: 2002 ident: BFnature11305_CR20 publication-title: Neuron doi: 10.1016/S0896-6273(02)01090-5 – volume: 20 start-page: 1137 year: 1998 ident: BFnature11305_CR9 publication-title: Neuron doi: 10.1016/S0896-6273(00)80495-X – volume: 451 start-page: 470 year: 2008 ident: BFnature11305_CR17 publication-title: Nature doi: 10.1038/nature06514 – volume: 271 start-page: 388 year: 2004 ident: BFnature11305_CR31 publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2004.03.039 – volume: 14 start-page: 965 year: 2011 ident: BFnature11305_CR50 publication-title: Nature Neurosci. doi: 10.1038/nn.2859 – ident: BFnature11305_CR28 – volume: 135 start-page: 4153 year: 2008 ident: BFnature11305_CR21 publication-title: Development doi: 10.1242/dev.026807 – volume: 40 start-page: 45 year: 2004 ident: BFnature11305_CR34 publication-title: Genesis doi: 10.1002/gene.20062 – volume: 66 start-page: 15 year: 2010 ident: BFnature11305_CR19 publication-title: Neuron doi: 10.1016/j.neuron.2010.01.018 – volume: 31 start-page: 7753 year: 2011 ident: BFnature11305_CR37 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0907-11.2011 – volume: 102 start-page: 8 year: 2005 ident: BFnature11305_CR23 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0407931101 – volume: 43 start-page: 673 year: 2004 ident: BFnature11305_CR12 publication-title: Neuron doi: 10.1016/j.neuron.2004.07.020 – volume: 135 start-page: 4141 year: 2008 ident: BFnature11305_CR22 publication-title: Development doi: 10.1242/dev.027912 – volume: 456 start-page: 154 year: 2003 ident: BFnature11305_CR24 publication-title: J. Comp. Neurol. doi: 10.1002/cne.10509 – volume: 3 start-page: 2474 year: 1983 ident: BFnature11305_CR1 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.03-12-02474.1983 – volume: 81 start-page: 9 year: 1998 ident: BFnature11305_CR27 publication-title: J. Neurosci. Methods doi: 10.1016/S0165-0270(98)00021-1 – volume: 36 start-page: 240 year: 2004 ident: BFnature11305_CR14 publication-title: Nature Genet. doi: 10.1038/ng1299 – volume: 54 start-page: 417 year: 2007 ident: BFnature11305_CR6 publication-title: Neuron doi: 10.1016/j.neuron.2007.04.013 – volume: 519 start-page: 1691 year: 2011 ident: BFnature11305_CR42 publication-title: J. Comp. Neurol. doi: 10.1002/cne.22595 – volume: 15 start-page: 805 year: 1995 ident: BFnature11305_CR43 publication-title: Neuron doi: 10.1016/0896-6273(95)90172-8 – volume: 64 start-page: 484 year: 2009 ident: BFnature11305_CR18 publication-title: Neuron doi: 10.1016/j.neuron.2009.09.027 – volume: 24 start-page: 241 year: 1999 ident: BFnature11305_CR38 publication-title: Dev. Genet. doi: 10.1002/(SICI)1520-6408(1999)24:3/4<241::AID-DVG7>3.0.CO;2-R |
SSID | ssj0005174 |
Score | 2.5525637 |
Snippet | Protocadherins are found to potentially provide the molecular diversity and complexity required to promote dendritic self-avoidance in mouse retina and... Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other. By... Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other... Dendritic arbors of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other 1 - 7 . By... |
SourceID | pubmedcentral proquest gale pubmed pascalfrancis crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 517 |
SubjectTerms | 631/378/1697 631/378/2571 631/80/79/1902 Adhesion Amacrine Cells - cytology Amacrine Cells - metabolism Animals Biological and medical sciences Cadherins Cadherins - genetics Cadherins - metabolism Cell Adhesion Molecules - genetics Cell Adhesion Molecules - metabolism Cells, Cultured Cerebellum Chromosome aberrations Dendrites Dendrites - metabolism Dendritic cells Drosophila Drosophila melanogaster - genetics Drosophila melanogaster - metabolism Drosophila Proteins - genetics Drosophila Proteins - metabolism Evolution, Molecular Eye and associated structures. Visual pathways and centers. Vision Fundamental and applied biological sciences. Psychology Humanities and Social Sciences Insects letter Medical genetics Medical sciences Mice Mice, Transgenic Multiculturalism & pluralism multidisciplinary Nervous system Physiological aspects Protein Isoforms - genetics Protein Isoforms - metabolism Proteins Purkinje Cells - cytology Purkinje Cells - metabolism Retina Science Vertebrates: nervous system and sense organs |
Title | Protocadherins mediate dendritic self-avoidance in the mammalian nervous system |
URI | https://link.springer.com/article/10.1038/nature11305 https://www.ncbi.nlm.nih.gov/pubmed/22842903 https://www.proquest.com/docview/1037972707 https://www.proquest.com/docview/1035106316 https://www.proquest.com/docview/1439238018 https://pubmed.ncbi.nlm.nih.gov/PMC3427422 |
Volume | 488 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bT9swFLY20KRJaBrslsEqb9pdikjixomfpq6iY5PWIQaib5HjOFCJJoWk_P6dk7htAqV7yYtPjxP7XL7a50LIe6U41zLVtgx9bXeFcu1YxSDLwo-ZxKwBjYnCv4f88LT7a-SPzIFbYcIq5zaxMtRJrvCMfB_z2QQ4Wyf4Nr2ysWsU3q6aFhoPySaWLsOQrmAULEM8blVhNvl5Dgv367KZLlhwv-WRjF3emsoC1iitm1usQp93gyhv3aRWDmrwlDwxyJL2alHYJg90tkMeVRGeqtgh20aLC_rZlJr-8oz8ObrOS_BmSZUFWNAqj6TUFIxRUvVAoIW-TG15k48TFA86ziggRjqRk0l1QEKB000-K2hdEfo5OR0cnPQPbdNiwVawHqWttYxlyMM0cWPuCfRooKBBIhlTXLuyK2LAtVqHDmNCeYKHvnSYllLDVjqxx16QjSzP9CtCQ8U08GEs9Xk3SYQU0gN7Ih039aV2PYt8nS9zpEz9cWyDcRlV9-AsjBp7YoEUzYmnddmNe8hwvyIsZJFhpMy5nBVF1Ds56w-jHtiuIACExdeTcQaQGQyXsMi7VWQ__x63eN1P1OD0yRClOXyjkibXAVYKy2212O22KNV0fBWtH23M8rE1el5Lz6pJ9lqEYEHUf4cb03Ra2rDYEA_-OwP6DuD3c_WIjAUsoqW-WuTtYhhZY1RfpkE0kQZcAmcuX0MDiBlgpeOGFnlZa9zyBQBbecJhFglaurggwNrp7ZFsfFHVUGddjFEAofww19rmq98RtNfrP3GXPAYg7dVhTntko7ye6TcAVsu4U1kkeIZ9F5-DHx2y-f1geHT8Dz78lbU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwELemIQQSQmy8wsYwiPGSoiVx4sQfEKoGU8u2gqAT_RYcxxmV1qRb2iH-Kf5G7vJom60rn_bZl7Nj3_3uEt-DkJdKca5lok0ZeNp0hbLNSEUgy8KLmMSsAY2Jwodd3j5yP_e9_gr5W-fCYFhljYkFUMeZwn_kO5jPJsDYWv6H0amJXaPwdrVuoVGKxb7-8xs-2fL3nY9wvtuOs_ept9s2q64CpoKpx6bWMpIBD5LYjrgjEMRBJv1YMqa4tqUrInDltA4sxoRyBA88aTEtpYbVWxEWOgDIvwGG10KN8vv-LKTkQtXnKh_QYsFOWabThsm8hgWs7MCdkczhTJKymcYib_dy0OaFm9vCIO7dI3crT5a2StFbIys6XSc3i4hSla-TtQo1cvqmKm399j758vUsG4P1jIusw5wWeStjTQH84qLnAs31SWLK82wQozjSQUrBQ6VDORwWP2QocDrPJjktK1A_IEfXsvkPyWqapfoxoYFiGvgwlnjcjWMhhXQAv6RlJ57UtmOQd_U2h6qqd45tN07C4t6dBeHcmRggtTXxqCzzcQUZnleIhTNSjMw5lpM8D1u9H7vdsAVY6fvg0fHlZJyBiw5AKQzyYhFZ5_u3Bq-rieY4va6IkgzeUckqtwJ2Cst7NdhtNCjVaHAaLh-dm-VVY_S4lJ5Fk2w2CAGx1H-H56bZamjD9EAc-FYHb9-H52v1CCvEzcMZPhjk-XQYWWMUYapBNJEGTBBnNl9CAx46uLGWHRjkUalxswWAL-cIixnEb-jilABrtTdH0sGvomY7czEmAoRyu9ba-aVfErQny1_xGbnV7h0ehAed7v4GuQ1OvIP3HA7bJKvjs4l-Co7yONoq0ImSn9cNh_8A-MjPZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIRASQmx8hY1hEONLiprEiZM8IFRtVCuDMsEm-hYcxxmV1qRb2iH-Nf467hKnbbauPO3Zl7Nj3_3uEt8HIS-l5FyJVJki8JTphtI2YxmDLIdezARmDShMFP7S43tH7qe-118hf-tcGAyrrDGxBOokl_iPvIX5bCEYW8tvpTos4mC382F0amIHKbxprdtpVCKyr_78hs-34n13F85623E6Hw939kzdYcCUsIyxqZSIRcCDNLFj7oQI6CCffiIYk1zZwg1jcOuUCizGQumEPPCExZQQCt7EirHoAcD_DZ95NuqY3_dn4SUXKkDr3ECLBa2qZKcNk3kNa6htwp2RKOB80qqxxiLP93IA54Vb3NI4du6Ru9qrpe1KDNfIisrWyc0yulQW62RNI0hB3-gy12_vk68HZ_kYLGlSZiAWtMxhGSsKQJiU_RdooU5SU5zngwRFkw4yCt4qHYrhsPw5Q4HTeT4paFWN-gE5upbNf0hWszxTjwkNJFPAh7HU426ShCIUDmCZsOzUE8p2DPKu3uZI6trn2ILjJCrv4FkQzZ2JARJcE4-qkh9XkOF5RVhEI0NxPBaToojahz92elEbcNP3wbvjy8k4A3cdQDM0yItFZN3v3xq8riaa4_RaE6U5vKMUOs8CdgpLfTXYbTQo5WhwGi0fnZvlVWP0uJKeRZNsNggBveR_h-em2Wpow_RAHPhuB8_fh-dr9Yg0-hbRDCsM8nw6jKwxojBTIJpIA-aIM5svoQFvHVxayw4M8qjSuNkCwK9zQosZxG_o4pQA67Y3R7LBr7J-O3MxPgKEcrvW2vmlXxK0J8tf8Rm5BUAYfe729jfIbfDnHbzycNgmWR2fTdRT8JnH8VYJTpT8vG40_AcBONOa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protocadherins+mediate+dendritic+self%E2%80%95avoidance+in+the+mammalian+nervous+system&rft.jtitle=Nature+%28London%29&rft.au=LEFEBVRE%2C+Julie+L&rft.au=KOSTADINOV%2C+Dimitar&rft.au=CHEN%2C+Weisheng+V&rft.au=MANIATIS%2C+Tom&rft.date=2012-08-23&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=488&rft.issue=7412&rft.spage=517&rft.epage=521&rft_id=info:doi/10.1038%2Fnature11305&rft.externalDBID=n%2Fa&rft.externalDocID=26256107 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |