基于微区域PM2.5浓度卡尔曼插值预测模型的研究
目前颗粒物(尤其是PM2.5)污染问题日趋严重,人们对其关注度越来越高。本文提出一种结合三次样条插值方法的卡尔曼预测模型并将其应用于微区域校园环境PM2.5浓度的预测,以及实现PM2.5浓度的插值模拟图,模拟PM2.5的空间分布。本文实验基于实验室已搭建的环境信息监测系统服务器数据,其PM2.5浓度数据预测值和实际值通过Wilcoxon带符号秩检验后,双侧渐进显著性概率为0.527,远大于显著性水平α=0.05。同时,与神经网络模型预测方法(BP预测)和支持向量机预测方法(SVM预测)对比,卡尔曼预测模型的结果更理想,其日均值PM2.5浓度数据预测值和监测值的平均绝对误差(MEA)为1.8μg...
Saved in:
Published in | Sheng wu yi xue gong cheng xue za zhi Vol. 35; no. 1; pp. 64 - 69 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese English |
Published |
中国四川
四川大学华西医院
01.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-5515 |
DOI | 10.7507/1001-5515.201609050 |
Cover
Loading…
Abstract | 目前颗粒物(尤其是PM2.5)污染问题日趋严重,人们对其关注度越来越高。本文提出一种结合三次样条插值方法的卡尔曼预测模型并将其应用于微区域校园环境PM2.5浓度的预测,以及实现PM2.5浓度的插值模拟图,模拟PM2.5的空间分布。本文实验基于实验室已搭建的环境信息监测系统服务器数据,其PM2.5浓度数据预测值和实际值通过Wilcoxon带符号秩检验后,双侧渐进显著性概率为0.527,远大于显著性水平α=0.05。同时,与神经网络模型预测方法(BP预测)和支持向量机预测方法(SVM预测)对比,卡尔曼预测模型的结果更理想,其日均值PM2.5浓度数据预测值和监测值的平均绝对误差(MEA)为1.8μg/m3,平均相对误差(MER)为6%,相关系数R为0.87。实验结果表明:卡尔曼预测模型能有效地用于PM2.5浓度预测,结合样条插值方法可以较好地模拟PM2.5的空间分布及局部污染特征。 |
---|---|
AbstractList | 目前颗粒物(尤其是 PM2.5)污染问题日趋严重,人们对其关注度越来越高。本文提出一种结合三次样条插值方法的卡尔曼预测模型并将其应用于微区域校园环境 PM2.5 浓度的预测,以及实现 PM2.5 浓度的插值模拟图,模拟 PM2.5 的空间分布。本文实验基于实验室已搭建的环境信息监测系统服务器数据,其 PM2.5 浓度数据预测值和实际值通过 Wilcoxon 带符号秩检验后,双侧渐进显著性概率为 0.527,远大于显著性水平
α
= 0.05。同时,与神经网络模型预测方法(BP 预测)和支持向量机预测方法(SVM 预测)对比,卡尔曼预测模型的结果更理想,其日均值 PM2.5 浓度数据预测值和监测值的平均绝对误差(MEA)为 1.8 μg/m
3
,平均相对误差(MER)为 6%,相关系数
R
为 0.87。实验结果表明:卡尔曼预测模型能有效地用于 PM2.5 浓度预测,结合样条插值方法可以较好地模拟 PM2.5 的空间分布及局部污染特征。 目前颗粒物(尤其是PM2.5)污染问题日趋严重,人们对其关注度越来越高。本文提出一种结合三次样条插值方法的卡尔曼预测模型并将其应用于微区域校园环境PM2.5浓度的预测,以及实现PM2.5浓度的插值模拟图,模拟PM2.5的空间分布。本文实验基于实验室已搭建的环境信息监测系统服务器数据,其PM2.5浓度数据预测值和实际值通过Wilcoxon带符号秩检验后,双侧渐进显著性概率为0.527,远大于显著性水平α=0.05。同时,与神经网络模型预测方法(BP预测)和支持向量机预测方法(SVM预测)对比,卡尔曼预测模型的结果更理想,其日均值PM2.5浓度数据预测值和监测值的平均绝对误差(MEA)为1.8μg/m3,平均相对误差(MER)为6%,相关系数R为0.87。实验结果表明:卡尔曼预测模型能有效地用于PM2.5浓度预测,结合样条插值方法可以较好地模拟PM2.5的空间分布及局部污染特征。 |
Author | 王伟;郑斌;陈彬林;安耀明;姜小明;李章勇 |
AuthorAffiliation | 重庆邮电大学生物医学工程研究中心,重庆400065 |
AuthorAffiliation_xml | – name: 重庆邮电大学 生物医学工程研究中心(重庆 400065) Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R.China |
Author_xml | – sequence: 1 fullname: 王伟;郑斌;陈彬林;安耀明;姜小明;李章勇 |
BookMark | eNpVTr1Lw0AcvaFia-1f4Oae-ru73F1uUaT4BRUduodLeqmBNqmtCm4O3eoHaCcFax1EF3GpQyj-NV6K_4WBSsHp8d7jfSyhXBRHGqEVDGXBQKxhAGwxhlmZAOYggUEOFeZqHpW63dDLKAabglxEeSKFzTjQAlo3w-Q7uTZf7-YyMcPh4T4ps3R8Z5IXczUyH4P0YZLe3JqLyc9zLx3309eReexP73vTp8H07XMZLQSq2dWlPyyi2vZWrbJrVQ929iqbVct3KLdsTyjlEcYV49RnDnCi6gF3As1FdosrHoBWOpC-A55HpWISROBrIjTJHKBFtDGrbZ96LV33dXTSUU233QlbqnPuxip0_ztReOQ24jMXAwXBstUiWp01-Edx1DgOo8Y8zYVtS8ywpL9to3cv |
ContentType | Journal Article |
Copyright | 版权所有©《生物医学工程学杂志》编辑部 2018 Copyright ©2018 Journal of Biomedical Engineering. All rights reserved. 2018 |
Copyright_xml | – notice: 版权所有©《生物医学工程学杂志》编辑部 2018 Copyright ©2018 Journal of Biomedical Engineering. All rights reserved. 2018 |
DBID | 2RA 92L CQIGP W91 ~WA 5PM |
DOI | 10.7507/1001-5515.201609050 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-医药卫生 中文科技期刊数据库- 镜像站点 PubMed Central (Full Participant titles) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | Research on Kalman interpolation prediction model based on micro-region PM2.5 concentration |
EndPage | 69 |
ExternalDocumentID | PMC10307556 674491519 |
GroupedDBID | --- -05 2B. 2C~ 2RA 5XA 5XF 92F 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CIEJG CQIGP CW9 F5P RPM TCJ TGQ U1G U5O W91 ~WA 5PM ABJNI |
ID | FETCH-LOGICAL-c836-4b7aab256a563c58062adf68fe670016a6f0eaef9c80bb39a5907fce27e2f0e03 |
ISSN | 1001-5515 |
IngestDate | Thu Aug 21 18:41:54 EDT 2025 Wed Feb 14 10:01:04 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | Chinese English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c836-4b7aab256a563c58062adf68fe670016a6f0eaef9c80bb39a5907fce27e2f0e03 |
Notes | In recent years, the pollution problem of particulate matter, especially PM2.5, is becoming more and more serious, which has attracted many people's attention from all over the world. In this paper, a Kalman prediction model combined with cubic spline interpolation is proposed, which is applied to predict the concentration of PM2.5 in the micro-regional environment of campus, and to realize interpolation simulation diagram of concentration of PM2.5 and simulate the spatial distribution of PM2.5. The experiment data are based on the environmental information monitoring system which has been set up by our laboratory. And the predicted and actual values of PM2.5 concentration data have been checked by the way of Wilcoxon signed-rank test. We find that the value of bilateral progressive significance probability was 0.527, which is much greater than the significant level α = 0.05. The mean absolute error (MEA) of Kalman prediction model was 1.8 μg/m3, the average relative error (MER) was 6%, and the correlation co |
PMID | 29745603 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10307556 chongqing_primary_674491519 |
PublicationCentury | 2000 |
PublicationDate | 20180201 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 2 year: 2018 text: 20180201 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | 中国四川 |
PublicationPlace_xml | – name: 中国四川 |
PublicationTitle | Sheng wu yi xue gong cheng xue za zhi |
PublicationTitleAlternate | Journal of Biomedical Engineering |
PublicationYear | 2018 |
Publisher | 四川大学华西医院 |
Publisher_xml | – name: 四川大学华西医院 |
SSID | ssib001104309 ssib017477679 ssib002806683 ssib031740855 ssib051374463 ssib023167930 ssj0042137 |
Score | 2.1351533 |
Snippet | ... 目前颗粒物(尤其是 PM2.5)污染问题日趋严重,人们对其关注度越来越高。本文提出一种结合三次样条插值方法的卡尔曼预测模型并将其应用于微区域校园环境 PM2.5 浓度的预测,以及实现 PM2.5 浓度的插值模拟图,模拟 PM2.5 的空间分布。本文实验基于实验室已搭建的环境信息监测系统服务器数据,其 PM2.5... |
SourceID | pubmedcentral chongqing |
SourceType | Open Access Repository Publisher |
StartPage | 64 |
SubjectTerms | PM2.5浓度 三次样条插值 卡尔曼预测 微区域 论 著 |
Title | 基于微区域PM2.5浓度卡尔曼插值预测模型的研究 |
URI | http://lib.cqvip.com/qk/90574X/201801/674491519.html https://pubmed.ncbi.nlm.nih.gov/PMC10307556 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxNBFB9ivXgRRcValRycU0jd7u583dxNNhShUjBCb2V2s2tyMK2SgObkobf6AdqTgrEeRC_ipR5C8ewf4ib4X_je7CbdlB60EIaXt28-32PmN8ObN4Tc0gC6Yy1gW6KTpOrCHqKqWUtUReQ4TAqN6xJ6W9zjqw_cuxtso1T6VfBa6vfC5Whw4r2S02gVeKBXvCX7H5qdFQoMoEG_kIKGIf0nHdOAUdWgvkcDF1MZIMcPqGcIWTOfjIxqVNbX7GVWoQGnPrAcI-pRjxvROvVWDMeiykUZ5VO_hoSEzLaRsQxHUc-m0s3LkT4Snsyzq8BwBFWekRHUywoEQlGfF7Hw_XaMB8H9yrNO5Wk_rjzEZ48iw8S_A10ZtDvFU4kVOXVkzu3I1OjjD1sOldaR8FzqCUPUj3qHQwONBLHGdGh87IvC7hRmZvT9AnjHilN3FulkzkSzeTiLjJ6v6NlbMMfXCoBKJtrAtFx08-OWsrI4uAXr2X5kzMeGnRfAQ-do4Zy5M66v1fC1NsEYP0PO2rBhsabnRhkmcO0seuussiz-FTbh9gkNwAjVeW0Y8qMNw_8YgMxxv90CEGpeIOfzHUzZy8zxIinF3UvkTjoc_R69Sn9-S1-M0uGwbIytPD54m44-py_30-974_eH49dv0ueHfz7tjA92x1_20w-7k3c7k497k68_LpNmI2jWVqv54xzVSDq86oZC6xDwsmbciZi0uK1bCZdJjPe-VrjmiRXrOFGRtMLQUZopSyRRbIvYhi-Wc4UsdLe68VVSdlrKioUE6K9sl0WhDiOpWgyXhyjhrlwkS7Mh2NzOYrBscuG6CtCqWiRyblBmEhg3ff5Lt9M28dOnurp2-qxL5NyR1V8nC70n_fgGoNNeeNMo_i9-fn_7 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%BE%AE%E5%8C%BA%E5%9F%9F+PM2.5+%E6%B5%93%E5%BA%A6%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%8F%92%E5%80%BC%E9%A2%84%E6%B5%8B%E6%A8%A1%E5%9E%8B%E7%9A%84%E7%A0%94%E7%A9%B6&rft.jtitle=Sheng+wu+yi+xue+gong+cheng+xue+za+zhi&rft.date=2018-02-01&rft.pub=%E5%9B%9B%E5%B7%9D%E5%A4%A7%E5%AD%A6%E5%8D%8E%E8%A5%BF%E5%8C%BB%E9%99%A2&rft.issn=1001-5515&rft.volume=35&rft.issue=1&rft.spage=64&rft.epage=69&rft_id=info:doi/10.7507%2F1001-5515.201609050&rft_id=info%3Apmid%2F29745603&rft.externalDocID=PMC10307556 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90574X%2F90574X.jpg |