基于微区域PM2.5浓度卡尔曼插值预测模型的研究

目前颗粒物(尤其是PM2.5)污染问题日趋严重,人们对其关注度越来越高。本文提出一种结合三次样条插值方法的卡尔曼预测模型并将其应用于微区域校园环境PM2.5浓度的预测,以及实现PM2.5浓度的插值模拟图,模拟PM2.5的空间分布。本文实验基于实验室已搭建的环境信息监测系统服务器数据,其PM2.5浓度数据预测值和实际值通过Wilcoxon带符号秩检验后,双侧渐进显著性概率为0.527,远大于显著性水平α=0.05。同时,与神经网络模型预测方法(BP预测)和支持向量机预测方法(SVM预测)对比,卡尔曼预测模型的结果更理想,其日均值PM2.5浓度数据预测值和监测值的平均绝对误差(MEA)为1.8μg...

Full description

Saved in:
Bibliographic Details
Published inSheng wu yi xue gong cheng xue za zhi Vol. 35; no. 1; pp. 64 - 69
Main Author 王伟;郑斌;陈彬林;安耀明;姜小明;李章勇
Format Journal Article
LanguageChinese
English
Published 中国四川 四川大学华西医院 01.02.2018
Subjects
Online AccessGet full text
ISSN1001-5515
DOI10.7507/1001-5515.201609050

Cover

Loading…
Abstract 目前颗粒物(尤其是PM2.5)污染问题日趋严重,人们对其关注度越来越高。本文提出一种结合三次样条插值方法的卡尔曼预测模型并将其应用于微区域校园环境PM2.5浓度的预测,以及实现PM2.5浓度的插值模拟图,模拟PM2.5的空间分布。本文实验基于实验室已搭建的环境信息监测系统服务器数据,其PM2.5浓度数据预测值和实际值通过Wilcoxon带符号秩检验后,双侧渐进显著性概率为0.527,远大于显著性水平α=0.05。同时,与神经网络模型预测方法(BP预测)和支持向量机预测方法(SVM预测)对比,卡尔曼预测模型的结果更理想,其日均值PM2.5浓度数据预测值和监测值的平均绝对误差(MEA)为1.8μg/m3,平均相对误差(MER)为6%,相关系数R为0.87。实验结果表明:卡尔曼预测模型能有效地用于PM2.5浓度预测,结合样条插值方法可以较好地模拟PM2.5的空间分布及局部污染特征。
AbstractList 目前颗粒物(尤其是 PM2.5)污染问题日趋严重,人们对其关注度越来越高。本文提出一种结合三次样条插值方法的卡尔曼预测模型并将其应用于微区域校园环境 PM2.5 浓度的预测,以及实现 PM2.5 浓度的插值模拟图,模拟 PM2.5 的空间分布。本文实验基于实验室已搭建的环境信息监测系统服务器数据,其 PM2.5 浓度数据预测值和实际值通过 Wilcoxon 带符号秩检验后,双侧渐进显著性概率为 0.527,远大于显著性水平 α = 0.05。同时,与神经网络模型预测方法(BP 预测)和支持向量机预测方法(SVM 预测)对比,卡尔曼预测模型的结果更理想,其日均值 PM2.5 浓度数据预测值和监测值的平均绝对误差(MEA)为 1.8 μg/m 3 ,平均相对误差(MER)为 6%,相关系数 R 为 0.87。实验结果表明:卡尔曼预测模型能有效地用于 PM2.5 浓度预测,结合样条插值方法可以较好地模拟 PM2.5 的空间分布及局部污染特征。
目前颗粒物(尤其是PM2.5)污染问题日趋严重,人们对其关注度越来越高。本文提出一种结合三次样条插值方法的卡尔曼预测模型并将其应用于微区域校园环境PM2.5浓度的预测,以及实现PM2.5浓度的插值模拟图,模拟PM2.5的空间分布。本文实验基于实验室已搭建的环境信息监测系统服务器数据,其PM2.5浓度数据预测值和实际值通过Wilcoxon带符号秩检验后,双侧渐进显著性概率为0.527,远大于显著性水平α=0.05。同时,与神经网络模型预测方法(BP预测)和支持向量机预测方法(SVM预测)对比,卡尔曼预测模型的结果更理想,其日均值PM2.5浓度数据预测值和监测值的平均绝对误差(MEA)为1.8μg/m3,平均相对误差(MER)为6%,相关系数R为0.87。实验结果表明:卡尔曼预测模型能有效地用于PM2.5浓度预测,结合样条插值方法可以较好地模拟PM2.5的空间分布及局部污染特征。
Author 王伟;郑斌;陈彬林;安耀明;姜小明;李章勇
AuthorAffiliation 重庆邮电大学生物医学工程研究中心,重庆400065
AuthorAffiliation_xml – name: 重庆邮电大学 生物医学工程研究中心(重庆 400065) Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R.China
Author_xml – sequence: 1
  fullname: 王伟;郑斌;陈彬林;安耀明;姜小明;李章勇
BookMark eNpVTr1Lw0AcvaFia-1f4Oae-ru73F1uUaT4BRUduodLeqmBNqmtCm4O3eoHaCcFax1EF3GpQyj-NV6K_4WBSsHp8d7jfSyhXBRHGqEVDGXBQKxhAGwxhlmZAOYggUEOFeZqHpW63dDLKAabglxEeSKFzTjQAlo3w-Q7uTZf7-YyMcPh4T4ps3R8Z5IXczUyH4P0YZLe3JqLyc9zLx3309eReexP73vTp8H07XMZLQSq2dWlPyyi2vZWrbJrVQ929iqbVct3KLdsTyjlEcYV49RnDnCi6gF3As1FdosrHoBWOpC-A55HpWISROBrIjTJHKBFtDGrbZ96LV33dXTSUU233QlbqnPuxip0_ztReOQ24jMXAwXBstUiWp01-Edx1DgOo8Y8zYVtS8ywpL9to3cv
ContentType Journal Article
Copyright 版权所有©《生物医学工程学杂志》编辑部 2018 Copyright ©2018 Journal of Biomedical Engineering. All rights reserved. 2018
Copyright_xml – notice: 版权所有©《生物医学工程学杂志》编辑部 2018 Copyright ©2018 Journal of Biomedical Engineering. All rights reserved. 2018
DBID 2RA
92L
CQIGP
W91
~WA
5PM
DOI 10.7507/1001-5515.201609050
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-医药卫生
中文科技期刊数据库- 镜像站点
PubMed Central (Full Participant titles)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Research on Kalman interpolation prediction model based on micro-region PM2.5 concentration
EndPage 69
ExternalDocumentID PMC10307556
674491519
GroupedDBID ---
-05
2B.
2C~
2RA
5XA
5XF
92F
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CIEJG
CQIGP
CW9
F5P
RPM
TCJ
TGQ
U1G
U5O
W91
~WA
5PM
ABJNI
ID FETCH-LOGICAL-c836-4b7aab256a563c58062adf68fe670016a6f0eaef9c80bb39a5907fce27e2f0e03
ISSN 1001-5515
IngestDate Thu Aug 21 18:41:54 EDT 2025
Wed Feb 14 10:01:04 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 1
Language Chinese
English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c836-4b7aab256a563c58062adf68fe670016a6f0eaef9c80bb39a5907fce27e2f0e03
Notes In recent years, the pollution problem of particulate matter, especially PM2.5, is becoming more and more serious, which has attracted many people's attention from all over the world. In this paper, a Kalman prediction model combined with cubic spline interpolation is proposed, which is applied to predict the concentration of PM2.5 in the micro-regional environment of campus, and to realize interpolation simulation diagram of concentration of PM2.5 and simulate the spatial distribution of PM2.5. The experiment data are based on the environmental information monitoring system which has been set up by our laboratory. And the predicted and actual values of PM2.5 concentration data have been checked by the way of Wilcoxon signed-rank test. We find that the value of bilateral progressive significance probability was 0.527, which is much greater than the significant level α = 0.05. The mean absolute error (MEA) of Kalman prediction model was 1.8 μg/m3, the average relative error (MER) was 6%, and the correlation co
PMID 29745603
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10307556
chongqing_primary_674491519
PublicationCentury 2000
PublicationDate 20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 2
  year: 2018
  text: 20180201
  day: 1
PublicationDecade 2010
PublicationPlace 中国四川
PublicationPlace_xml – name: 中国四川
PublicationTitle Sheng wu yi xue gong cheng xue za zhi
PublicationTitleAlternate Journal of Biomedical Engineering
PublicationYear 2018
Publisher 四川大学华西医院
Publisher_xml – name: 四川大学华西医院
SSID ssib001104309
ssib017477679
ssib002806683
ssib031740855
ssib051374463
ssib023167930
ssj0042137
Score 2.1351533
Snippet ...
目前颗粒物(尤其是 PM2.5)污染问题日趋严重,人们对其关注度越来越高。本文提出一种结合三次样条插值方法的卡尔曼预测模型并将其应用于微区域校园环境 PM2.5 浓度的预测,以及实现 PM2.5 浓度的插值模拟图,模拟 PM2.5 的空间分布。本文实验基于实验室已搭建的环境信息监测系统服务器数据,其 PM2.5...
SourceID pubmedcentral
chongqing
SourceType Open Access Repository
Publisher
StartPage 64
SubjectTerms PM2.5浓度
三次样条插值
卡尔曼预测
微区域
论 著
Title 基于微区域PM2.5浓度卡尔曼插值预测模型的研究
URI http://lib.cqvip.com/qk/90574X/201801/674491519.html
https://pubmed.ncbi.nlm.nih.gov/PMC10307556
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxNBFB9ivXgRRcValRycU0jd7u583dxNNhShUjBCb2V2s2tyMK2SgObkobf6AdqTgrEeRC_ipR5C8ewf4ib4X_je7CbdlB60EIaXt28-32PmN8ObN4Tc0gC6Yy1gW6KTpOrCHqKqWUtUReQ4TAqN6xJ6W9zjqw_cuxtso1T6VfBa6vfC5Whw4r2S02gVeKBXvCX7H5qdFQoMoEG_kIKGIf0nHdOAUdWgvkcDF1MZIMcPqGcIWTOfjIxqVNbX7GVWoQGnPrAcI-pRjxvROvVWDMeiykUZ5VO_hoSEzLaRsQxHUc-m0s3LkT4Snsyzq8BwBFWekRHUywoEQlGfF7Hw_XaMB8H9yrNO5Wk_rjzEZ48iw8S_A10ZtDvFU4kVOXVkzu3I1OjjD1sOldaR8FzqCUPUj3qHQwONBLHGdGh87IvC7hRmZvT9AnjHilN3FulkzkSzeTiLjJ6v6NlbMMfXCoBKJtrAtFx08-OWsrI4uAXr2X5kzMeGnRfAQ-do4Zy5M66v1fC1NsEYP0PO2rBhsabnRhkmcO0seuussiz-FTbh9gkNwAjVeW0Y8qMNw_8YgMxxv90CEGpeIOfzHUzZy8zxIinF3UvkTjoc_R69Sn9-S1-M0uGwbIytPD54m44-py_30-974_eH49dv0ueHfz7tjA92x1_20w-7k3c7k497k68_LpNmI2jWVqv54xzVSDq86oZC6xDwsmbciZi0uK1bCZdJjPe-VrjmiRXrOFGRtMLQUZopSyRRbIvYhi-Wc4UsdLe68VVSdlrKioUE6K9sl0WhDiOpWgyXhyjhrlwkS7Mh2NzOYrBscuG6CtCqWiRyblBmEhg3ff5Lt9M28dOnurp2-qxL5NyR1V8nC70n_fgGoNNeeNMo_i9-fn_7
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%BE%AE%E5%8C%BA%E5%9F%9F+PM2.5+%E6%B5%93%E5%BA%A6%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%8F%92%E5%80%BC%E9%A2%84%E6%B5%8B%E6%A8%A1%E5%9E%8B%E7%9A%84%E7%A0%94%E7%A9%B6&rft.jtitle=Sheng+wu+yi+xue+gong+cheng+xue+za+zhi&rft.date=2018-02-01&rft.pub=%E5%9B%9B%E5%B7%9D%E5%A4%A7%E5%AD%A6%E5%8D%8E%E8%A5%BF%E5%8C%BB%E9%99%A2&rft.issn=1001-5515&rft.volume=35&rft.issue=1&rft.spage=64&rft.epage=69&rft_id=info:doi/10.7507%2F1001-5515.201609050&rft_id=info%3Apmid%2F29745603&rft.externalDocID=PMC10307556
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90574X%2F90574X.jpg