Characterization of Regional Influenza Seasonality Patterns in China and Implications for Vaccination Strategies: Spatio-Temporal Modeling of Surveillance Data

The complexity of influenza seasonal patterns in the inter-tropical zone impedes the establishment of effective routine immunization programs. China is a climatologically and economically diverse country, which has yet to establish a national influenza vaccination program. Here we characterize the d...

Full description

Saved in:
Bibliographic Details
Published inPLoS medicine Vol. 10; no. 11; p. e1001552
Main Authors Yu, Hongjie, Alonso, Wladimir J., Feng, Luzhao, Tan, Yi, Shu, Yuelong, Yang, Weizhong, Viboud, Cécile
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.11.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The complexity of influenza seasonal patterns in the inter-tropical zone impedes the establishment of effective routine immunization programs. China is a climatologically and economically diverse country, which has yet to establish a national influenza vaccination program. Here we characterize the diversity of influenza seasonality in China and make recommendations to guide future vaccination programs. We compiled weekly reports of laboratory-confirmed influenza A and B infections from sentinel hospitals in cities representing 30 Chinese provinces, 2005-2011, and data on population demographics, mobility patterns, socio-economic, and climate factors. We applied linear regression models with harmonic terms to estimate influenza seasonal characteristics, including the amplitude of annual and semi-annual periodicities, their ratio, and peak timing. Hierarchical Bayesian modeling and hierarchical clustering were used to identify predictors of influenza seasonal characteristics and define epidemiologically-relevant regions. The annual periodicity of influenza A epidemics increased with latitude (mean amplitude of annual cycle standardized by mean incidence, 140% [95% CI 128%-151%] in the north versus 37% [95% CI 27%-47%] in the south, p<0.0001). Epidemics peaked in January-February in Northern China (latitude ≥33°N) and April-June in southernmost regions (latitude <27°N). Provinces at intermediate latitudes experienced dominant semi-annual influenza A periodicity with peaks in January-February and June-August (periodicity ratio >0.6 in provinces located within 27.4°N-31.3°N, slope of latitudinal gradient with latitude -0.016 [95% CI -0.025 to -0.008], p<0.001). In contrast, influenza B activity predominated in colder months throughout most of China. Climate factors were the strongest predictors of influenza seasonality, including minimum temperature, hours of sunshine, and maximum rainfall. Our main study limitations include a short surveillance period and sparse influenza sampling in some of the southern provinces. Regional-specific influenza vaccination strategies would be optimal in China; in particular, annual campaigns should be initiated 4-6 months apart in Northern and Southern China. Influenza surveillance should be strengthened in mid-latitude provinces, given the complexity of seasonal patterns in this region. More broadly, our findings are consistent with the role of climatic factors on influenza transmission dynamics. Please see later in the article for the Editors' Summary.
AbstractList   Background The complexity of influenza seasonal patterns in the inter-tropical zone impedes the establishment of effective routine immunization programs. China is a climatologically and economically diverse country, which has yet to establish a national influenza vaccination program. Here we characterize the diversity of influenza seasonality in China and make recommendations to guide future vaccination programs. Methods and Findings We compiled weekly reports of laboratory-confirmed influenza A and B infections from sentinel hospitals in cities representing 30 Chinese provinces, 2005-2011, and data on population demographics, mobility patterns, socio-economic, and climate factors. We applied linear regression models with harmonic terms to estimate influenza seasonal characteristics, including the amplitude of annual and semi-annual periodicities, their ratio, and peak timing. Hierarchical Bayesian modeling and hierarchical clustering were used to identify predictors of influenza seasonal characteristics and define epidemiologically-relevant regions. The annual periodicity of influenza A epidemics increased with latitude (mean amplitude of annual cycle standardized by mean incidence, 140% [95% CI 128%-151%] in the north versus 37% [95% CI 27%-47%] in the south, p<0.0001). Epidemics peaked in January-February in Northern China (latitude ≥33°N) and April-June in southernmost regions (latitude <27°N). Provinces at intermediate latitudes experienced dominant semi-annual influenza A periodicity with peaks in January-February and June-August (periodicity ratio >0.6 in provinces located within 27.4°N-31.3°N, slope of latitudinal gradient with latitude -0.016 [95% CI -0.025 to -0.008], p<0.001). In contrast, influenza B activity predominated in colder months throughout most of China. Climate factors were the strongest predictors of influenza seasonality, including minimum temperature, hours of sunshine, and maximum rainfall. Our main study limitations include a short surveillance period and sparse influenza sampling in some of the southern provinces. Conclusions Regional-specific influenza vaccination strategies would be optimal in China; in particular, annual campaigns should be initiated 4-6 months apart in Northern and Southern China. Influenza surveillance should be strengthened in mid-latitude provinces, given the complexity of seasonal patterns in this region. More broadly, our findings are consistent with the role of climatic factors on influenza transmission dynamics. Please see later in the article for the Editors' Summary
Please see later in the article for the Editors' Summary.
Cécile Viboud and colleagues describe epidemiological patterns of influenza incidence across China to support the design of a national vaccination program. Please see later in the article for the Editors' Summary
Background: The complexity of influenza seasonal patterns in the inter-tropical zone impedes the establishment of effective routine immunization programs. China is a climatologically and economically diverse country, which has yet to establish a national influenza vaccination program. Here we characterize the diversity of influenza seasonality in China and make recommendations to guide future vaccination programs. Methods and Findings: We compiled weekly reports of laboratory-confirmed influenza A and B infections from sentinel hospitals in cities representing 30 Chinese provinces, 2005-2011, and data on population demographics, mobility patterns, socio-economic, and climate factors. We applied linear regression models with harmonic terms to estimate influenza seasonal characteristics, including the amplitude of annual and semi-annual periodicities, their ratio, and peak timing. Hierarchical Bayesian modeling and hierarchical clustering were used to identify predictors of influenza seasonal characteristics and define epidemiologically-relevant regions. The annual periodicity of influenza A epidemics increased with latitude (mean amplitude of annual cycle standardized by mean incidence, 140% [95% CI 128%-151%] in the north versus 37% [95% CI 27%-47%] in the south, p < 0.0001). Epidemics peaked in January-February in Northern China (latitude ≥ 33°N) and April-June in southernmost regions (latitude <27°N). Provinces at intermediate latitudes experienced dominant semi-annual influenza A periodicity with peaks in January-February and June-August (periodicity ratio >0.6 in provinces located within 27.4°N-31.3°N, slope of latitudinal gradient with latitude -0.016 [95% CI - 0.025 to -0.008], p < 0.001). In contrast, influenza B activity predominated in colder months throughout most of China. Climate factors were the strongest predictors of influenza seasonality, including minimum temperature, hours of sunshine, and maximum rainfall. Our main study limitations include a short surveillance period and sparse influenza sampling in some of the southern provinces. Conclusions: Regional-specific influenza vaccination strategies would be optimal in China; in particular, annual campaigns should be initiated 4-6 months apart in Northern and Southern China. Influenza surveillance should be strengthened in mid-latitude provinces, given the complexity of seasonal patterns in this region. More broadly, our findings are consistent with the role of climatic factors on influenza transmission dynamics. Please see later in the article for the Editors' Summary.
BackgroundThe complexity of influenza seasonal patterns in the inter-tropical zone impedes the establishment of effective routine immunization programs. China is a climatologically and economically diverse country, which has yet to establish a national influenza vaccination program. Here we characterize the diversity of influenza seasonality in China and make recommendations to guide future vaccination programs.Methods and findingsWe compiled weekly reports of laboratory-confirmed influenza A and B infections from sentinel hospitals in cities representing 30 Chinese provinces, 2005-2011, and data on population demographics, mobility patterns, socio-economic, and climate factors. We applied linear regression models with harmonic terms to estimate influenza seasonal characteristics, including the amplitude of annual and semi-annual periodicities, their ratio, and peak timing. Hierarchical Bayesian modeling and hierarchical clustering were used to identify predictors of influenza seasonal characteristics and define epidemiologically-relevant regions. The annual periodicity of influenza A epidemics increased with latitude (mean amplitude of annual cycle standardized by mean incidence, 140% [95% CI 128%-151%] in the north versus 37% [95% CI 27%-47%] in the south, p<0.0001). Epidemics peaked in January-February in Northern China (latitude ≥33°N) and April-June in southernmost regions (latitude <27°N). Provinces at intermediate latitudes experienced dominant semi-annual influenza A periodicity with peaks in January-February and June-August (periodicity ratio >0.6 in provinces located within 27.4°N-31.3°N, slope of latitudinal gradient with latitude -0.016 [95% CI -0.025 to -0.008], p<0.001). In contrast, influenza B activity predominated in colder months throughout most of China. Climate factors were the strongest predictors of influenza seasonality, including minimum temperature, hours of sunshine, and maximum rainfall. Our main study limitations include a short surveillance period and sparse influenza sampling in some of the southern provinces.ConclusionsRegional-specific influenza vaccination strategies would be optimal in China; in particular, annual campaigns should be initiated 4-6 months apart in Northern and Southern China. Influenza surveillance should be strengthened in mid-latitude provinces, given the complexity of seasonal patterns in this region. More broadly, our findings are consistent with the role of climatic factors on influenza transmission dynamics. Please see later in the article for the Editors' Summary.
The complexity of influenza seasonal patterns in the inter-tropical zone impedes the establishment of effective routine immunization programs. China is a climatologically and economically diverse country, which has yet to establish a national influenza vaccination program. Here we characterize the diversity of influenza seasonality in China and make recommendations to guide future vaccination programs.BACKGROUNDThe complexity of influenza seasonal patterns in the inter-tropical zone impedes the establishment of effective routine immunization programs. China is a climatologically and economically diverse country, which has yet to establish a national influenza vaccination program. Here we characterize the diversity of influenza seasonality in China and make recommendations to guide future vaccination programs.We compiled weekly reports of laboratory-confirmed influenza A and B infections from sentinel hospitals in cities representing 30 Chinese provinces, 2005-2011, and data on population demographics, mobility patterns, socio-economic, and climate factors. We applied linear regression models with harmonic terms to estimate influenza seasonal characteristics, including the amplitude of annual and semi-annual periodicities, their ratio, and peak timing. Hierarchical Bayesian modeling and hierarchical clustering were used to identify predictors of influenza seasonal characteristics and define epidemiologically-relevant regions. The annual periodicity of influenza A epidemics increased with latitude (mean amplitude of annual cycle standardized by mean incidence, 140% [95% CI 128%-151%] in the north versus 37% [95% CI 27%-47%] in the south, p<0.0001). Epidemics peaked in January-February in Northern China (latitude ≥33°N) and April-June in southernmost regions (latitude <27°N). Provinces at intermediate latitudes experienced dominant semi-annual influenza A periodicity with peaks in January-February and June-August (periodicity ratio >0.6 in provinces located within 27.4°N-31.3°N, slope of latitudinal gradient with latitude -0.016 [95% CI -0.025 to -0.008], p<0.001). In contrast, influenza B activity predominated in colder months throughout most of China. Climate factors were the strongest predictors of influenza seasonality, including minimum temperature, hours of sunshine, and maximum rainfall. Our main study limitations include a short surveillance period and sparse influenza sampling in some of the southern provinces.METHODS AND FINDINGSWe compiled weekly reports of laboratory-confirmed influenza A and B infections from sentinel hospitals in cities representing 30 Chinese provinces, 2005-2011, and data on population demographics, mobility patterns, socio-economic, and climate factors. We applied linear regression models with harmonic terms to estimate influenza seasonal characteristics, including the amplitude of annual and semi-annual periodicities, their ratio, and peak timing. Hierarchical Bayesian modeling and hierarchical clustering were used to identify predictors of influenza seasonal characteristics and define epidemiologically-relevant regions. The annual periodicity of influenza A epidemics increased with latitude (mean amplitude of annual cycle standardized by mean incidence, 140% [95% CI 128%-151%] in the north versus 37% [95% CI 27%-47%] in the south, p<0.0001). Epidemics peaked in January-February in Northern China (latitude ≥33°N) and April-June in southernmost regions (latitude <27°N). Provinces at intermediate latitudes experienced dominant semi-annual influenza A periodicity with peaks in January-February and June-August (periodicity ratio >0.6 in provinces located within 27.4°N-31.3°N, slope of latitudinal gradient with latitude -0.016 [95% CI -0.025 to -0.008], p<0.001). In contrast, influenza B activity predominated in colder months throughout most of China. Climate factors were the strongest predictors of influenza seasonality, including minimum temperature, hours of sunshine, and maximum rainfall. Our main study limitations include a short surveillance period and sparse influenza sampling in some of the southern provinces.Regional-specific influenza vaccination strategies would be optimal in China; in particular, annual campaigns should be initiated 4-6 months apart in Northern and Southern China. Influenza surveillance should be strengthened in mid-latitude provinces, given the complexity of seasonal patterns in this region. More broadly, our findings are consistent with the role of climatic factors on influenza transmission dynamics. Please see later in the article for the Editors' Summary.CONCLUSIONSRegional-specific influenza vaccination strategies would be optimal in China; in particular, annual campaigns should be initiated 4-6 months apart in Northern and Southern China. Influenza surveillance should be strengthened in mid-latitude provinces, given the complexity of seasonal patterns in this region. More broadly, our findings are consistent with the role of climatic factors on influenza transmission dynamics. Please see later in the article for the Editors' Summary.
The complexity of influenza seasonal patterns in the inter-tropical zone impedes the establishment of effective routine immunization programs. China is a climatologically and economically diverse country, which has yet to establish a national influenza vaccination program. Here we characterize the diversity of influenza seasonality in China and make recommendations to guide future vaccination programs. We compiled weekly reports of laboratory-confirmed influenza A and B infections from sentinel hospitals in cities representing 30 Chinese provinces, 2005-2011, and data on population demographics, mobility patterns, socio-economic, and climate factors. We applied linear regression models with harmonic terms to estimate influenza seasonal characteristics, including the amplitude of annual and semi-annual periodicities, their ratio, and peak timing. Hierarchical Bayesian modeling and hierarchical clustering were used to identify predictors of influenza seasonal characteristics and define epidemiologically-relevant regions. The annual periodicity of influenza A epidemics increased with latitude (mean amplitude of annual cycle standardized by mean incidence, 140% [95% CI 128%-151%] in the north versus 37% [95% CI 27%-47%] in the south, p<0.0001). Epidemics peaked in January-February in Northern China (latitude ≥33°N) and April-June in southernmost regions (latitude <27°N). Provinces at intermediate latitudes experienced dominant semi-annual influenza A periodicity with peaks in January-February and June-August (periodicity ratio >0.6 in provinces located within 27.4°N-31.3°N, slope of latitudinal gradient with latitude -0.016 [95% CI -0.025 to -0.008], p<0.001). In contrast, influenza B activity predominated in colder months throughout most of China. Climate factors were the strongest predictors of influenza seasonality, including minimum temperature, hours of sunshine, and maximum rainfall. Our main study limitations include a short surveillance period and sparse influenza sampling in some of the southern provinces. Regional-specific influenza vaccination strategies would be optimal in China; in particular, annual campaigns should be initiated 4-6 months apart in Northern and Southern China. Influenza surveillance should be strengthened in mid-latitude provinces, given the complexity of seasonal patterns in this region. More broadly, our findings are consistent with the role of climatic factors on influenza transmission dynamics. Please see later in the article for the Editors' Summary.
Cecile Viboud and colleagues describe epidemiological patterns of influenza incidence across China to support the design of a national vaccination program. Please see later in the article for the Editors' Summary The complexity of influenza seasonal patterns in the inter-tropical zone impedes the establishment of effective routine immunization programs. China is a climatologically and economically diverse country, which has yet to establish a national influenza vaccination program. Here we characterize the diversity of influenza seasonality in China and make recommendations to guide future vaccination programs. We compiled weekly reports of laboratory-confirmed influenza A and B infections from sentinel hospitals in cities representing 30 Chinese provinces, 2005-2011, and data on population demographics, mobility patterns, socio-economic, and climate factors. We applied linear regression models with harmonic terms to estimate influenza seasonal characteristics, including the amplitude of annual and semi-annual periodicities, their ratio, and peak timing. Hierarchical Bayesian modeling and hierarchical clustering were used to identify predictors of influenza seasonal characteristics and define epidemiologically-relevant regions. The annual periodicity of influenza A epidemics increased with latitude (mean amplitude of annual cycle standardized by mean incidence, 140% [95% CI 128%-151%] in the north versus 37% [95% CI 27%-47%] in the south, p<0.0001). Epidemics peaked in January-February in Northern China (latitude greater than or equal to 33 degree N) and April-June in southernmost regions (latitude <27 degree N). Provinces at intermediate latitudes experienced dominant semi-annual influenza A periodicity with peaks in January-February and June-August (periodicity ratio >0.6 in provinces located within 27.4 degree N-31.3 degree N, slope of latitudinal gradient with latitude -0.016 [95% CI -0.025 to -0.008], p<0.001). In contrast, influenza B activity predominated in colder months throughout most of China. Climate factors were the strongest predictors of influenza seasonality, including minimum temperature, hours of sunshine, and maximum rainfall. Our main study limitations include a short surveillance period and sparse influenza sampling in some of the southern provinces. Regional-specific influenza vaccination strategies would be optimal in China; in particular, annual campaigns should be initiated 4-6 months apart in Northern and Southern China. Influenza surveillance should be strengthened in mid-latitude provinces, given the complexity of seasonal patterns in this region. More broadly, our findings are consistent with the role of climatic factors on influenza transmission dynamics. Please see later in the article for the Editors' Summary Every year, millions of people worldwide catch influenza, a viral disease of the airways. Most infected individuals recover quickly but seasonal influenza outbreaks (epidemics) kill about half a million people annually. These epidemics occur because antigenic drift-frequent small changes in the viral proteins to which the immune system responds-means that an immune response produced one year provides only partial protection against influenza the next year. Annual vaccination with a mixture of killed influenza viruses of the major circulating strains boosts this natural immunity and greatly reduces the risk of catching influenza. Consequently, many countries run seasonal influenza vaccination programs. Because the immune response induced by vaccination decays within 4-8 months of vaccination and because of antigenic drift, it is important that these programs are initiated only a few weeks before the onset of local influenza activity. Thus, vaccination starts in early autumn in temperate zones (regions of the world that have a mild climate, part way between a tropical and a polar climate), because seasonal influenza outbreaks occur in the winter months when low humidity and low temperatures favor the transmission of the influenza virus. Unlike temperate regions, seasonal influenza patterns are very diverse in tropical countries, which lie between latitudes 23.5 degree N and 23.5 degree S, and in the subtropical countries slightly north and south of these latitudes. In some of these countries, there is year-round influenza activity, in others influenza epidemics occur annually or semi-annually (twice yearly). This complexity, which is perhaps driven by rainfall fluctuations, complicates the establishment of effective routine immunization programs in tropical and subtropical countries. Take China as an example. Before a national influenza vaccination program can be established in this large, climatologically diverse country, public-health experts need a clear picture of influenza seasonality across the country. Here, the researchers use spatio-temporal modeling of influenza surveillance data to characterize the seasonality of influenza A and B (the two types of influenza that usually cause epidemics) in China, to assess the role of putative drivers of seasonality, and to identify broad epidemiological regions (areas with specific patterns of disease) that could be used as a basis to optimize the timing of future Chinese vaccination programs. The researchers collected together the weekly reports of laboratory-confirmed influenza prepared by the Chinese national sentinel hospital-based surveillance network between 2005 and 2011, data on population size and density, mobility patterns, and socio-economic factors, and daily meteorological data for the cities participating in the surveillance network. They then used various statistical modeling approaches to estimate influenza seasonal characteristics, to assess predictors of influenza seasonal characteristics, and to identify epidemiologically relevant regions. These analyses indicate that, over the study period, northern provinces...
Audience Academic
Author Viboud, Cécile
Tan, Yi
Yu, Hongjie
Yang, Weizhong
Feng, Luzhao
Alonso, Wladimir J.
Shu, Yuelong
AuthorAffiliation 2 Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
Imperial College London, United Kingdom
1 Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
3 National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
AuthorAffiliation_xml – name: Imperial College London, United Kingdom
– name: 2 Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
– name: 3 National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
– name: 1 Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
Author_xml – sequence: 1
  givenname: Hongjie
  surname: Yu
  fullname: Yu, Hongjie
– sequence: 2
  givenname: Wladimir J.
  surname: Alonso
  fullname: Alonso, Wladimir J.
– sequence: 3
  givenname: Luzhao
  surname: Feng
  fullname: Feng, Luzhao
– sequence: 4
  givenname: Yi
  surname: Tan
  fullname: Tan, Yi
– sequence: 5
  givenname: Yuelong
  surname: Shu
  fullname: Shu, Yuelong
– sequence: 6
  givenname: Weizhong
  surname: Yang
  fullname: Yang, Weizhong
– sequence: 7
  givenname: Cécile
  surname: Viboud
  fullname: Viboud, Cécile
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24348203$$D View this record in MEDLINE/PubMed
BookMark eNqVk1tv0zAUxyM0xC7wDRBEQkLw0GLHjlPvAWkqt0qDoXXs1XKck9aTaxfbmdi-DF8Vp-2mFU1oKA-xjn_nf47PZT_bsc5Clj3HaIhJhd9duM5baYbLBTRDjBAuy-JRtodLygeYVWznznk32w_hAqGCI46eZLsFJXRUILKX_R7PpZcqgtfXMmpnc9fmpzBLJ2nyiW1NB_Za5lOQoTfpeJV_lzHxNuTa5uO5tjKXtskni6XRaqUR8tb5_FwqlS5XotPoZUyqEA7z6bK3Dc5gsXQ-BfnqGjDazvrI085fgjZGWgX5Bxnl0-xxK02AZ5v_Qfbj08ez8ZfB8cnnyfjoeKBGpIyDAgpaVFDVDWJVo0YVY8AUtITypq0rpBjhdaHqAoAUuKYNMMpYgxmtEUa0IQfZy7Xu0rggNrUNAlM2KiuMCUnEZE00Tl6IpdcL6a-Ek1qsDM7PhPRRKwMCNWVVpDCIc0xrxmtSY1LSuuCEAyZt0nq_idbVqX0KbKqP2RLdvrF6LmbuUpBRyjulc5C92Qh497ODEMVCBwV94cB1fd68YCVCI_4AlHHGECVFQl-t0ZlMr9C2dSm46nFxRErCOCFVlajBPdQMLKRM04y2Opm3-OE9fPoaWGh1r8PbLYfERPgVZ7ILQUymp__Bfns4e3K-zb6-w85BmjgPznSr8d4GX9xt5W0Pb1YsAXQNKO9C8NDeIhiJfpNvpk30myw2m5zcDv9yUzqulilVT5t_O_8B6uVPdw
CitedBy_id crossref_primary_10_1016_S2214_109X_22_00212_1
crossref_primary_10_1016_S2213_2600_14_70053_0
crossref_primary_10_46234_ccdcw2024_166
crossref_primary_10_1016_j_idm_2024_04_010
crossref_primary_10_1186_s12879_015_0884_1
crossref_primary_10_1038_s41467_021_25120_6
crossref_primary_10_1186_s12879_021_05769_6
crossref_primary_10_1093_infdis_jiaa570
crossref_primary_10_1007_s12250_021_00437_0
crossref_primary_10_1016_j_scitotenv_2020_136682
crossref_primary_10_1016_j_scitotenv_2022_157024
crossref_primary_10_1111_irv_12711
crossref_primary_10_1016_S2214_109X_24_00090_1
crossref_primary_10_1016_S2542_5196_20_30297_7
crossref_primary_10_1371_journal_pone_0099419
crossref_primary_10_1007_s00477_015_1140_3
crossref_primary_10_1016_j_ijid_2021_01_058
crossref_primary_10_1080_21645515_2017_1285475
crossref_primary_10_2139_ssrn_3576902
crossref_primary_10_2196_41435
crossref_primary_10_3390_v12101125
crossref_primary_10_1016_j_ijid_2020_06_026
crossref_primary_10_1186_s12879_018_3484_z
crossref_primary_10_1111_irv_12935
crossref_primary_10_1093_bmb_ldz011
crossref_primary_10_1017_S0950268818003485
crossref_primary_10_7717_peerj_8626
crossref_primary_10_1007_s11356_021_13107_1
crossref_primary_10_3201_eid2010_140431
crossref_primary_10_1111_irv_12805
crossref_primary_10_1007_s00484_016_1284_y
crossref_primary_10_1016_j_cmi_2015_03_009
crossref_primary_10_1080_21645515_2021_2007013
crossref_primary_10_3389_fpubh_2022_951578
crossref_primary_10_1111_irv_12372
crossref_primary_10_2471_BLT_14_139428
crossref_primary_10_1080_22221751_2024_2396867
crossref_primary_10_1093_sleep_zsac325
crossref_primary_10_1016_S2214_109X_19_30277_3
crossref_primary_10_1186_s12879_019_3777_x
crossref_primary_10_1002_jmv_29858
crossref_primary_10_1017_S095026881500309X
crossref_primary_10_1371_journal_pone_0104329
crossref_primary_10_1093_cid_ciaa1584
crossref_primary_10_1111_irv_12487
crossref_primary_10_1371_journal_pone_0202880
crossref_primary_10_3390_ijerph19031677
crossref_primary_10_3390_ijerph16020222
crossref_primary_10_1002_jmv_29186
crossref_primary_10_3945_jn_116_234856
crossref_primary_10_1021_acs_est_6b05146
crossref_primary_10_1186_s12879_016_2087_9
crossref_primary_10_1371_journal_pone_0246023
crossref_primary_10_1136_bmjopen_2019_030913
crossref_primary_10_1038_s41598_022_19228_y
crossref_primary_10_1128_spectrum_00216_24
crossref_primary_10_1186_s40249_024_01173_9
crossref_primary_10_1111_irv_12515
crossref_primary_10_1136_bmjgh_2023_013054
crossref_primary_10_1186_s12879_019_3689_9
crossref_primary_10_3390_ijerph120707886
crossref_primary_10_1111_irv_13047
crossref_primary_10_1016_j_scitotenv_2019_134607
crossref_primary_10_1111_gean_12241
crossref_primary_10_1186_s12985_023_02092_1
crossref_primary_10_1016_j_ijmedinf_2018_03_017
crossref_primary_10_3390_molecules27227797
crossref_primary_10_1073_pnas_1616052113
crossref_primary_10_1016_j_envres_2022_114100
crossref_primary_10_1038_s41467_024_52460_w
crossref_primary_10_1371_journal_pone_0167866
crossref_primary_10_1016_j_lanwpc_2022_100443
crossref_primary_10_1371_journal_pone_0153003
crossref_primary_10_1080_09603123_2023_2167948
crossref_primary_10_1111_irv_12617
crossref_primary_10_1016_j_jiph_2023_05_014
crossref_primary_10_1038_ncomms5116
crossref_primary_10_1080_21645515_2019_1693721
crossref_primary_10_1016_j_jhazmat_2024_136114
crossref_primary_10_1016_j_vaccine_2017_07_020
crossref_primary_10_1016_j_jhazmat_2025_137865
crossref_primary_10_3389_fpubh_2022_825645
crossref_primary_10_1371_journal_pmed_1001553
crossref_primary_10_1093_pubmed_fdw041
crossref_primary_10_1097_INF_0000000000002178
crossref_primary_10_1155_2015_436495
crossref_primary_10_1016_j_jinf_2019_11_017
crossref_primary_10_1093_aje_kwab101
crossref_primary_10_1136_bmjopen_2016_013159
crossref_primary_10_1016_j_vaccine_2020_01_093
crossref_primary_10_1016_j_isci_2022_104789
crossref_primary_10_3389_fpubh_2024_1326225
crossref_primary_10_1371_journal_pcbi_1006020
crossref_primary_10_1080_21645515_2022_2071558
crossref_primary_10_1016_j_epidem_2015_06_002
crossref_primary_10_3390_vaccines11091439
crossref_primary_10_4161_hv_27816
crossref_primary_10_1371_journal_ppat_1011046
crossref_primary_10_1016_j_antiviral_2017_11_013
crossref_primary_10_1073_pnas_1721159115
crossref_primary_10_1111_irv_12959
crossref_primary_10_1038_s41426_018_0086_1
crossref_primary_10_1136_bmjresp_2017_000267
crossref_primary_10_1186_s12916_022_02269_5
crossref_primary_10_7717_peerj_4440
crossref_primary_10_1016_j_ijheh_2023_114200
crossref_primary_10_1371_journal_pone_0124122
crossref_primary_10_3390_v15030594
crossref_primary_10_1186_s12916_020_01545_6
crossref_primary_10_1097_MD_0000000000003359
crossref_primary_10_1017_S0950268817001133
crossref_primary_10_2807_1560_7917_ES_2017_22_40_17_00671
crossref_primary_10_1038_s41426_018_0172_4
crossref_primary_10_1038_s41598_019_56104_8
crossref_primary_10_1371_journal_pone_0167712
crossref_primary_10_1111_irv_12308
crossref_primary_10_1016_j_ijid_2017_01_039
crossref_primary_10_1016_S2213_2600_17_30377_6
crossref_primary_10_1186_1476_069X_13_102
crossref_primary_10_1186_s40249_019_0618_5
crossref_primary_10_3390_ijerph14020217
crossref_primary_10_1016_j_ijid_2022_12_026
crossref_primary_10_1371_journal_pntd_0009997
crossref_primary_10_1088_1748_9326_abca65
crossref_primary_10_1136_bmjopen_2017_017503
crossref_primary_10_1016_j_jinf_2018_07_004
crossref_primary_10_1097_JOM_0000000000002075
crossref_primary_10_2196_jmir_3099
crossref_primary_10_1007_s00484_016_1238_4
crossref_primary_10_1097_TP_0000000000003486
crossref_primary_10_1111_irv_12544
crossref_primary_10_1038_s41598_017_17806_z
crossref_primary_10_1016_j_tree_2015_03_012
crossref_primary_10_1016_j_vaccine_2020_07_019
crossref_primary_10_1016_j_scitotenv_2022_158525
crossref_primary_10_1007_s00484_021_02204_y
crossref_primary_10_1186_s13052_024_01742_6
crossref_primary_10_1371_journal_pone_0174592
crossref_primary_10_1186_s12879_017_2863_1
crossref_primary_10_3201_eid2606_191168
crossref_primary_10_1016_S2214_109X_22_00364_3
crossref_primary_10_1016_S1473_3099_13_70342_6
crossref_primary_10_1038_s41467_025_55840_y
crossref_primary_10_1007_s12665_016_5275_4
crossref_primary_10_1016_j_ahj_2019_02_009
crossref_primary_10_1002_agm2_12102
crossref_primary_10_1111_irv_13067
crossref_primary_10_1016_j_envint_2024_108783
crossref_primary_10_1080_21645515_2019_1703455
crossref_primary_10_1186_s12879_015_1218_z
crossref_primary_10_1186_s12889_023_16646_z
crossref_primary_10_1016_j_jinf_2015_08_007
crossref_primary_10_1093_pnasnexus_pgad152
crossref_primary_10_1016_j_jpeds_2018_12_024
crossref_primary_10_1016_S2468_2667_19_30163_X
crossref_primary_10_1038_s41598_023_33726_7
crossref_primary_10_1038_s41598_022_06318_0
crossref_primary_10_1093_ve_veac062
crossref_primary_10_3201_eid2411_171410
crossref_primary_10_1111_irv_12888
crossref_primary_10_1186_s12862_014_0272_2
crossref_primary_10_1093_epirev_mxz008
crossref_primary_10_1016_j_scitotenv_2018_07_065
crossref_primary_10_1016_j_epidem_2022_100650
crossref_primary_10_3934_mbe_2023616
crossref_primary_10_2807_1560_7917_ES_2017_22_35_30606
crossref_primary_10_3201_eid2401_171393
crossref_primary_10_1093_cid_ciae559
crossref_primary_10_1186_s12879_023_08769_w
crossref_primary_10_1093_ofid_ofae163
crossref_primary_10_1371_journal_pone_0100659
crossref_primary_10_1038_srep17214
crossref_primary_10_1007_s11356_022_19279_8
crossref_primary_10_3390_vaccines8010108
crossref_primary_10_1016_j_virol_2014_05_025
crossref_primary_10_1016_j_epidem_2018_10_004
crossref_primary_10_1111_irv_12595
crossref_primary_10_7717_peerj_6919
crossref_primary_10_1093_jrsssc_qlad104
crossref_primary_10_1371_journal_pone_0152310
crossref_primary_10_1016_j_idh_2020_03_002
crossref_primary_10_1371_journal_pone_0172012
crossref_primary_10_1017_S0950268819002140
crossref_primary_10_2196_44238
crossref_primary_10_1038_srep40085
crossref_primary_10_1093_cid_ciab942
crossref_primary_10_1016_j_envres_2019_01_053
crossref_primary_10_3390_v14092063
crossref_primary_10_1038_s41598_018_21059_9
crossref_primary_10_1186_s12889_024_17978_0
crossref_primary_10_1111_irv_13301
crossref_primary_10_1016_j_vaccine_2022_11_055
crossref_primary_10_3390_vaccines8010007
crossref_primary_10_1186_s40249_021_00911_7
crossref_primary_10_1186_s12879_017_2888_5
crossref_primary_10_1016_j_idm_2023_07_005
crossref_primary_10_1016_S2214_109X_22_00240_6
crossref_primary_10_1073_pnas_1518587113
crossref_primary_10_7189_jogh_12_04009
crossref_primary_10_1093_pnasnexus_pgae561
crossref_primary_10_3390_vaccines10111873
crossref_primary_10_1080_21645515_2015_1027470
crossref_primary_10_1093_pubmed_fdu046
crossref_primary_10_1051_e3sconf_202235603037
crossref_primary_10_1371_journal_pone_0197519
crossref_primary_10_1371_journal_ppat_1004591
crossref_primary_10_1016_j_ijid_2019_01_027
crossref_primary_10_1371_journal_pcbi_1011317
Cites_doi 10.1093/cid/cis549
10.1093/aje/kwq347
10.1097/INF.0b013e31827d3b68
10.1126/science.1097211
10.1080/00034983.1996.11813049
10.1126/science.1154137
10.1186/1471-2458-12-982
10.1093/cid/cis211
10.1038/ncomms1710
10.1073/pnas.0806852106
10.1111/j.1348-0421.1986.tb03043.x
10.1017/S0950268806006698
10.1126/science.1125237
10.1371/journal.pone.0037568
10.1371/journal.pone.0005095
10.1371/journal.ppat.0030151
10.1371/journal.pbio.1000316
10.1371/journal.pone.0016364
10.1093/aje/kwm012
10.1371/journal.pone.0058434
10.1093/infdis/jis467
10.4269/ajtmh.2000.62.639
10.1098/rspb.2009.1897
10.1371/journal.ppat.1000918
10.2471/BLT.11.095653
10.1371/journal.ppat.1003194
10.1371/journal.pone.0054445
10.5694/j.1326-5377.2009.tb02723.x
10.1007/s00357-005-0012-9
10.2471/BLT.11.096958
10.1371/journal.ppat.1002225
10.1097/INF.0b013e31817d53c5
10.1371/journal.pone.0052842
10.1007/s00239-008-9119-z
10.1371/journal.pmed.0040247
10.1371/journal.pmed.0030089
10.1098/rspb.2010.0994
10.1371/journal.pone.0001399
10.1128/JVI.06645-11
10.1086/657314
10.1001/jama.289.2.179
10.1017/S0950268807009144
10.1016/j.vaccine.2010.07.064
10.3201/eid1604.091578
10.1289/ehp.1002383
10.1371/journal.pone.0001296
10.1080/01621459.1963.10500845
ContentType Journal Article
Copyright COPYRIGHT 2013 Public Library of Science
2013
2013 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Yu H, Alonso WJ, Feng L, Tan Y, Shu Y, et al. (2013) Characterization of Regional Influenza Seasonality Patterns in China and Implications for Vaccination Strategies: Spatio-Temporal Modeling of Surveillance Data. PLoS Med 10(11): e1001552. doi:10.1371/journal.pmed.1001552
Copyright_xml – notice: COPYRIGHT 2013 Public Library of Science
– notice: 2013
– notice: 2013 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Yu H, Alonso WJ, Feng L, Tan Y, Shu Y, et al. (2013) Characterization of Regional Influenza Seasonality Patterns in China and Implications for Vaccination Strategies: Spatio-Temporal Modeling of Surveillance Data. PLoS Med 10(11): e1001552. doi:10.1371/journal.pmed.1001552
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
7T2
7U1
7U9
C1K
H94
5PM
DOA
CZK
DOI 10.1371/journal.pmed.1001552
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale in Context. Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
Health and Safety Science Abstracts (Full archive)
Risk Abstracts
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
PLoS Medicine
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Risk Abstracts
AIDS and Cancer Research Abstracts
Health & Safety Science Abstracts
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList




MEDLINE - Academic
MEDLINE





Risk Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Influenza Seasonality in China
EISSN 1549-1676
ExternalDocumentID 1468571133
oai_doaj_org_article_0d57221b09914b69b3b1354b2939e13f
PMC3864611
A353693377
24348203
10_1371_journal_pmed_1001552
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations China
China, People's Rep
GeographicLocations_xml – name: China
– name: China, People's Rep
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: U19 AI051915
– fundername: NIAID NIH HHS
  grantid: U19 AI51915
– fundername: Medical Research Council
  grantid: MR/J008761/1
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAWTL
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AFXKF
AHMBA
AKRSQ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
IHW
INH
INR
IOF
IOV
IPO
ISN
ISR
ITC
KQ8
M1P
M48
MK0
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
YZZ
~8M
ADXHL
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PV9
RIG
RZL
WOQ
PMFND
7X8
7T2
7U1
7U9
C1K
H94
5PM
PUEGO
3V.
AAPBV
ABPTK
BCGST
CZK
ICW
M~E
ID FETCH-LOGICAL-c835t-2e2427e7bd067dc8766e6cef349dfb70c639b2cb2ee321b4de6466d164b0104d3
IEDL.DBID M48
ISSN 1549-1676
1549-1277
IngestDate Sun Oct 01 00:20:29 EDT 2023
Wed Aug 27 01:01:23 EDT 2025
Thu Aug 21 13:53:40 EDT 2025
Fri Jul 11 07:05:32 EDT 2025
Wed Jul 30 11:30:48 EDT 2025
Tue Jun 17 21:49:13 EDT 2025
Thu Jun 12 23:52:19 EDT 2025
Tue Jun 10 20:40:04 EDT 2025
Fri Jun 27 04:55:39 EDT 2025
Fri Jun 27 04:41:44 EDT 2025
Fri Jun 27 04:23:01 EDT 2025
Thu May 22 21:22:33 EDT 2025
Mon Jul 21 05:53:01 EDT 2025
Tue Jul 01 01:44:29 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Epidemics
Climate
Temperature
Humans
Vaccination
Geographic Mapping
Linear Models
Influenza B virus
Socioeconomic Factors
Incidence
Hospitals
Influenza A virus
Models, Biological
China
Bayes Theorem
Influenza, Human
Seasons
Population Surveillance
Language English
License This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c835t-2e2427e7bd067dc8766e6cef349dfb70c639b2cb2ee321b4de6466d164b0104d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Conceived and designed the experiments: HY WA CV. Performed the experiments: WA CV. Analyzed the data: LF YT WA CV. Contributed reagents/materials/analysis tools: YS WY. Wrote the first draft of the manuscript: CV. Contributed to the writing of the manuscript: HY WA YT LF YS WY CV. ICMJE criteria for authorship read and met: HY WA YT LF YS WY CV. Agree with manuscript results and conclusions: HY WA YT LF YS WY CV.
The authors have declared that no competing interests exist.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pmed.1001552
PMID 24348203
PQID 1469660432
PQPubID 23479
ParticipantIDs plos_journals_1468571133
doaj_primary_oai_doaj_org_article_0d57221b09914b69b3b1354b2939e13f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3864611
proquest_miscellaneous_1492650089
proquest_miscellaneous_1469660432
gale_infotracmisc_A353693377
gale_infotracgeneralonefile_A353693377
gale_infotracacademiconefile_A353693377
gale_incontextgauss_ISR_A353693377
gale_incontextgauss_ISN_A353693377
gale_incontextgauss_IOV_A353693377
gale_healthsolutions_A353693377
pubmed_primary_24348203
crossref_primary_10_1371_journal_pmed_1001552
crossref_citationtrail_10_1371_journal_pmed_1001552
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS medicine
PublicationTitleAlternate PLoS Med
PublicationYear 2013
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References WW Thompson (ref30) 2003; 289
MM Patel (ref50) 2012; 32
DM Weinberger (ref38) 2012; 207
WJ Alonso (ref26) 2007; 165
L Opatowski (ref54) 2011; 7
AC Lowen (ref40) 2007; 3
DR Olson (ref44) 2007; 4
L Feng (ref16) 2010; 28
J Tamerius (ref8) 2012; 9
ref19
JH Ward (ref31) 1963; 58
CA Russell (ref56) 2008; 320
C Cohen (ref12) 2010; 51
J Zheng (ref23) 2010; 65
J Shaman (ref6) 2009; 106
X Cheng (ref37) 2012
BS Finkelman (ref34) 2007; 2
J Shaman (ref5) 2011; 173
R Chen (ref42) 2008; 66
J Zou (ref4) 2013; 8
V Gupta (ref10) 2012; 7
X Du (ref18) 2012; 3
H Zhou (ref25) 2012; 54
H Yu (ref45) 2013
L Feng (ref11) 2012; 90
PF Wright (ref46) 2008; 27
N Homaira (ref14) 2012; 90
DJ Smith (ref48) 2004; 305
ref33
YL Shu (ref17) 2010; 16
T Garske (ref21) 2011; 6
EN Naumova (ref28) 2007; 135
E Azziz Baumgartner (ref2) 2012; 206
H Broutin (ref24) 2010; 277
HA Kelly (ref43) 2009; 191
WA de Mello (ref9) 2009; 4
C Viboud (ref27) 2006; 312
G Chowell (ref52) 2010; 277
DJ Rogers (ref29) 1996; 90
C Viboud (ref1) 2006; 3
A Dosseh (ref39) 2000; 62
G Chowell (ref53) 2008; 136
(ref35) 2012; 7
ref20
J Shaman (ref7) 2010; 8
C Cohen (ref13) 2012; 55
H Yu (ref15) 2013
ref22
GJ Székely (ref32) 2005; 22
H Ochiai (ref47) 1986; 30
WJ Alonso (ref51) 2012; 12
L Yang (ref36) 2008; 3
N Pica (ref41) 2012; 86
K Bloom-Feshbach (ref3) 2012; 8
J Tamerius (ref49) 2011; 119
T Bedford (ref55) 2010; 6
24260027 - PLoS Med. 2013 Nov;10(11):e1001553. doi: 10.1371/journal.pmed.1001553.
References_xml – volume: 55
  start-page: 996
  year: 2012
  ident: ref13
  article-title: Influenza-related mortality among adults age 25–54 years with AIDS in South Africa and the United States of America
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/cis549
– volume: 173
  start-page: 127
  year: 2011
  ident: ref5
  article-title: Absolute humidity and pandemic versus epidemic influenza
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwq347
– volume: 32
  start-page: e134
  year: 2012
  ident: ref50
  article-title: Global seasonality of Rotavirus disease
  publication-title: Pediatr Infect Dis J
  doi: 10.1097/INF.0b013e31827d3b68
– volume: 305
  start-page: 371
  year: 2004
  ident: ref48
  article-title: Mapping the antigenic and genetic evolution of influenza virus
  publication-title: Science
  doi: 10.1126/science.1097211
– ident: ref20
– volume: 90
  start-page: 225
  year: 1996
  ident: ref29
  article-title: Predicting the distribution of tsetse flies in West Africa using temporal Fourier processed meteorological satellite data
  publication-title: Ann Trop Med Parasitol
  doi: 10.1080/00034983.1996.11813049
– volume: 320
  start-page: 340
  year: 2008
  ident: ref56
  article-title: The global circulation of seasonal influenza A (H3N2) viruses
  publication-title: Science
  doi: 10.1126/science.1154137
– volume: 12
  start-page: 982
  year: 2012
  ident: ref51
  article-title: EPIPOI: a user-friendly analytical tool for the extraction and visualization of temporal parameters from epidemiological time series
  publication-title: BMC Public Health
  doi: 10.1186/1471-2458-12-982
– volume: 54
  start-page: 1427
  year: 2012
  ident: ref25
  article-title: Hospitalizations associated with influenza and respiratory syncytial virus in the United States, 1993--2008
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/cis211
– volume: 3
  start-page: 709
  year: 2012
  ident: ref18
  article-title: Mapping of H3N2 influenza antigenic evolution in China reveals a strategy for vaccine strain recommendation
  publication-title: Nat Commun
  doi: 10.1038/ncomms1710
– volume: 207
  start-page: 106
  year: 2012
  ident: ref38
  article-title: Influenza epidemics in Iceland over nine decades: Changes in timing and synchrony with the United States and Europe
  publication-title: Am J Epidemiol
– volume: 106
  start-page: 3243
  year: 2009
  ident: ref6
  article-title: Absolute humidity modulates influenza survival, transmission, and seasonality
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0806852106
– volume: 30
  start-page: 1141
  year: 1986
  ident: ref47
  article-title: Evaluation of the efficacy of split-product trivalent A(H1N1), A(H3N2), and B influenza vaccines: reactogenicity, immunogenicity and persistence of antibodies following two doses of vaccines
  publication-title: Microbiol Immunol
  doi: 10.1111/j.1348-0421.1986.tb03043.x
– volume: 135
  start-page: 281
  year: 2007
  ident: ref28
  article-title: Seasonality in six enterically transmitted diseases and ambient temperature
  publication-title: Epidemiol Infect
  doi: 10.1017/S0950268806006698
– volume: 312
  start-page: 447
  year: 2006
  ident: ref27
  article-title: Synchrony, waves, and spatial hierarchies in the spread of influenza
  publication-title: Science
  doi: 10.1126/science.1125237
– volume: 7
  start-page: e37568
  year: 2012
  ident: ref35
  article-title: Epidemiological and virological characteristics of influenza in the Western Pacific Region of the World Health Organization, 2006–2010
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0037568
– volume: 4
  start-page: e5095
  year: 2009
  ident: ref9
  article-title: The dilemma of influenza vaccine recommendations when applied to the tropics: the Brazilian case examined under alternative scenarios
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0005095
– volume: 3
  start-page: 1470
  year: 2007
  ident: ref40
  article-title: Influenza virus transmission is dependent on relative humidity and temperature
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.0030151
– volume: 8
  start-page: e1000316
  year: 2010
  ident: ref7
  article-title: Absolute humidity and the seasonal onset of influenza in the continental United States
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000316
– volume: 6
  start-page: e16364
  year: 2011
  ident: ref21
  article-title: Travel patterns in China
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0016364
– volume: 165
  start-page: 1434
  year: 2007
  ident: ref26
  article-title: Seasonality of influenza in Brazil: a traveling wave from the Amazon to the subtropics
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwm012
– volume: 8
  start-page: e58434
  year: 2013
  ident: ref4
  article-title: Geographic divisions and modeling of virological data on seasonal influenza in the Chinese mainland during the 2006–2009 monitoring years
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0058434
– volume: 206
  start-page: 838
  year: 2012
  ident: ref2
  article-title: Seasonality, timing, and climate drivers of influenza activity worldwide
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jis467
– volume: 62
  start-page: 639
  year: 2000
  ident: ref39
  article-title: Epidemiological and virological influenza survey in Dakar, Senegal: 1996–1998
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2000.62.639
– ident: ref33
– volume: 277
  start-page: 1857
  year: 2010
  ident: ref52
  article-title: The reproduction number of seasonal influenza epidemics in Brazil, 1996–2006
  publication-title: Proc Biol Sci
  doi: 10.1098/rspb.2009.1897
– year: 2012
  ident: ref37
  article-title: Epidemiological dynamics and phylogeography of influenza in southern China
  publication-title: J Infect Dis
– volume: 6
  start-page: e1000918
  year: 2010
  ident: ref55
  article-title: Global migration dynamics underlie evolution and persistence of human influenza A (H3N2)
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000918
– volume: 90
  start-page: 272
  year: 2012
  ident: ref14
  article-title: Influenza-associated mortality in 2009 in four sentinel sites in Bangladesh
  publication-title: Bull World Health Organ
  doi: 10.2471/BLT.11.095653
– volume: 9
  start-page: e1003194
  year: 2012
  ident: ref8
  article-title: Environmental predictors of seasonal influenza epidemics across temperate and tropical climates
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003194
– volume: 8
  start-page: e54445
  year: 2012
  ident: ref3
  article-title: Latitudinal variations in seasonal activity of influenza and respiratory syncytial virus (RSV): a global comparative review
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0054445
– volume: 191
  start-page: 146
  year: 2009
  ident: ref43
  article-title: Epidemiological characteristics of pandemic influenza H1N1 2009 and seasonal influenza infection
  publication-title: Med J Aust
  doi: 10.5694/j.1326-5377.2009.tb02723.x
– volume: 22
  start-page: 151
  year: 2005
  ident: ref32
  article-title: Hierarchical clustering via joint between-within distances: extending ward's minimum variance method
  publication-title: J Classif
  doi: 10.1007/s00357-005-0012-9
– volume: 90
  start-page: 279
  year: 2012
  ident: ref11
  article-title: Influenza-associated mortality in temperate and subtropical Chinese cities, 2003–2008
  publication-title: Bull World Health Organ
  doi: 10.2471/BLT.11.096958
– volume: 7
  start-page: e1002225
  year: 2011
  ident: ref54
  article-title: Transmission characteristics of the 2009 H1N1 influenza pandemic: comparison of 8 southern hemisphere countries
  publication-title: Plos Pathogens
  doi: 10.1371/journal.ppat.1002225
– volume: 27
  start-page: 1004
  year: 2008
  ident: ref46
  article-title: Antibody responses after inactivated influenza vaccine in young children
  publication-title: Pediatr Infect Dis J
  doi: 10.1097/INF.0b013e31817d53c5
– volume: 7
  start-page: e52842
  year: 2012
  ident: ref10
  article-title: Influenza vaccination guidelines and vaccine sales in southeast Asia: 2008–2011
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0052842
– volume: 66
  start-page: 655
  year: 2008
  ident: ref42
  article-title: The evolutionary dynamics of human influenza B virus
  publication-title: J Mol Evol
  doi: 10.1007/s00239-008-9119-z
– ident: ref22
– volume: 4
  start-page: e247
  year: 2007
  ident: ref44
  article-title: Monitoring the impact of influenza by age: emergency department fever and respiratory complaint surveillance in New York City
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0040247
– ident: ref19
– volume: 3
  start-page: e89
  year: 2006
  ident: ref1
  article-title: Influenza in tropical regions
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0030089
– volume: 277
  start-page: 3239
  year: 2010
  ident: ref24
  article-title: Impact of vaccination and birth rate on the epidemiology of pertussis: a comparative study in 64 countries
  publication-title: Proc Biol Sci
  doi: 10.1098/rspb.2010.0994
– volume: 3
  start-page: e1399
  year: 2008
  ident: ref36
  article-title: Synchrony of clinical and laboratory surveillance for influenza in Hong Kong
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0001399
– volume: 86
  start-page: 4279
  year: 2012
  ident: ref41
  article-title: Transmission of influenza B viruses in the guinea pig
  publication-title: J Virol
  doi: 10.1128/JVI.06645-11
– year: 2013
  ident: ref45
  article-title: The substantial hospitalization burden of influenza in central China: surveillance for severe, acute respiratory infection and influenza viruses, 2010–2012
  publication-title: Influenza Other Respi Viruses
– volume: 65
  start-page: 3
  year: 2010
  ident: ref23
  article-title: A new scheme for climate regionalization in China
  publication-title: Acta Geographica Sinica
– volume: 51
  start-page: 1362
  year: 2010
  ident: ref12
  article-title: Elevated influenza-related excess mortality in South African elderly individuals, 1998–2005
  publication-title: Clin Infect Dis
  doi: 10.1086/657314
– volume: 289
  start-page: 179
  year: 2003
  ident: ref30
  article-title: Mortality associated with influenza and respiratory syncytial virus in the United States
  publication-title: JAMA
  doi: 10.1001/jama.289.2.179
– volume: 136
  start-page: 852
  year: 2008
  ident: ref53
  article-title: Seasonal influenza in the United States, France, and Australia: transmission and prospects for control
  publication-title: Epidemiol Infect
  doi: 10.1017/S0950268807009144
– year: 2013
  ident: ref15
  article-title: Regional variation in mortality impact of the 2009 A(H1N1) influenza pandemic in China
  publication-title: Influenza Other Respi Viruses
– volume: 28
  start-page: 6778
  year: 2010
  ident: ref16
  article-title: Seasonal influenza vaccine supply and target vaccinated population in China, 2004–2009
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2010.07.064
– volume: 16
  start-page: 725
  year: 2010
  ident: ref17
  article-title: Dual seasonal patterns for influenza, China
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid1604.091578
– volume: 119
  start-page: 439
  year: 2011
  ident: ref49
  article-title: Global influenza seasonality: reconciling patterns across temperate and tropical regions
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.1002383
– volume: 2
  start-page: e1296
  year: 2007
  ident: ref34
  article-title: Global patterns in seasonal activity of influenza A/H3N2, A/H1N1, and B from 1997 to 2005: viral coexistence and latitudinal gradients
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0001296
– volume: 58
  start-page: 236
  year: 1963
  ident: ref31
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1963.10500845
– reference: 24260027 - PLoS Med. 2013 Nov;10(11):e1001553. doi: 10.1371/journal.pmed.1001553.
SSID ssj0029090
Score 2.5485222
Snippet The complexity of influenza seasonal patterns in the inter-tropical zone impedes the establishment of effective routine immunization programs. China is a...
Background: The complexity of influenza seasonal patterns in the inter-tropical zone impedes the establishment of effective routine immunization programs....
Please see later in the article for the Editors' Summary.
Cecile Viboud and colleagues describe epidemiological patterns of influenza incidence across China to support the design of a national vaccination program....
Cécile Viboud and colleagues describe epidemiological patterns of influenza incidence across China to support the design of a national vaccination program....
BackgroundThe complexity of influenza seasonal patterns in the inter-tropical zone impedes the establishment of effective routine immunization programs. China...
  Background The complexity of influenza seasonal patterns in the inter-tropical zone impedes the establishment of effective routine immunization programs....
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1001552
SubjectTerms Bayes Theorem
China - epidemiology
Climate
Distribution
Epidemics
Geographic Mapping
Hospitals
Humans
Incidence
Influenza
Influenza A virus
Influenza B virus
Influenza vaccines
Influenza virus
Influenza, Human - epidemiology
Influenza, Human - prevention & control
Influenza, Human - transmission
Influenza, Human - virology
Linear Models
Management
Models, Biological
Population Surveillance
Prevention
Provinces
Regression analysis
Seasonal variations (Diseases)
Seasons
Socioeconomic Factors
Studies
Temperature
Time series
Vaccination
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQHhAXxLuBAgYhOIXGj9hrbqWiKkgtElDUWxTHTrvSKrtqdnvgz_BXmbG9UYMq2gPX9ZdE6xnPI5n5hpA3qmitF67MuRQ-l7XguTGe5860rBbSS6OxG_nwSB0cyy8n5cmlUV9YExbpgePG7RSu1JwzC5EMk1YZKywTpbTgpoxnokXrCz5vk0ylVMsU4e0K8o_ljGudmuaEZjtJRu-X4G0CA1FZ8pFTCtz9g4WeLOeL_qrw8-8qyktuaf8euZviSbob_8d9cst3D8jtw_TF_CH5vTcwMseGS7poKU5jwAiczuKIkl81xXeFKSiny8C52fWwTMN8bVp3js4u1Z5TCHXpRd3AM-JN-9WGcuID7UORdp5Ir-Y0DNsBD4lP7tfnFx4HHYGuUaxOfUSO9z_92DvI01CGvIFgbZVzD05de20d-DnXgDFVXjW-FdK41uqigZDH8sZy7wWITTqvpFIOsjKLqZ8Tj8mkW3R-i1Bl7bRtmfMefKSpS4tWmzOlrS-aoi0yIjZSqZrEWI6DM-ZV-AynIXOJm1yhLKsky4zkw1XLyNhxDf4jCnzAIt92-AG0sEpaWF2nhRl5iepSxebVwWpUu6IUygihdUZeBwRybnRY1HNar_u--vz15w1A349uAvo2Ar1LoHYBe9bUqdsCdh4Jv0bItyPkaaQ7vwq4PQKCHWpGy1t4VDZ73GNSOS01Y0Jk5NXm-FR4Fdb1dX6xDhikh5WC_wtjOOQRxdRk5Ek8coOwwMJIiGHhCXp0GEfSHK90s7PAoi6moJiMPf0f4n9G7nAckxJ6VLfJZHW-9s8hWF3ZF8Eu_QFb05Mi
  priority: 102
  providerName: Directory of Open Access Journals
Title Characterization of Regional Influenza Seasonality Patterns in China and Implications for Vaccination Strategies: Spatio-Temporal Modeling of Surveillance Data
URI https://www.ncbi.nlm.nih.gov/pubmed/24348203
https://www.proquest.com/docview/1469660432
https://www.proquest.com/docview/1492650089
https://pubmed.ncbi.nlm.nih.gov/PMC3864611
https://doaj.org/article/0d57221b09914b69b3b1354b2939e13f
http://dx.doi.org/10.1371/journal.pmed.1001552
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZGJyFeJu4LjGIQgqdM8SVxg4TQNm0aoBYYFPUtihOnVKqS0rQT8Gf4q5zjXLSgAn3pQ_05UXx8br58h5BngZdpI1Lf5VIYV8aCu2FouJuGGYuFNDJUeBt5OArOx_LtxJ_skKZmaz2A5cbUDutJjZfzw-_ffrwGhX9lqzYo1nQ6XID_sJxCvg9GeRd8k8KaBkPZ7ivw0LOrLshL5jKuVH2Z7m9P6Tgry-nfWu7eYl6Um8LSP09XXnFXZzfJXh1n0qNqYtwiOya_Ta4P6530O-TXScvUXF3EpEVGsUoDRuZ0VpUu-RlTXEOsg3W6sFyceQnN1NbdpnGe0tmVM-kUQmB6GSfwjuqh5aqhonhJS3t4263JsObUFuEBz4lvLtfLS4MFkGAOUjy1epeMz04_n5y7dbEGN4EgbuVyA85eGaVT8H9pAkY2MEFiMiHDNNPKSyAU0jzR3BjBmZapCWQQpJCtaUwJU3GP9PIiN_uEBloPsoylxoDvDGNfozXnLFDaeImXeQ4RjVSipGYyx4Ia88huzynIaKpBjlCWUS1Lh7htr0XF5PEf_DEKvMUiD7f9o1hOo1qtIy_1FYfPgTibSR2EWmgmfKkhiAoNE5lDHuN0iapLra01iY6EL4JQCKUc8tQikIsjx8M-03hdltGb91-2AH0abQO66IBe1KCsgDFL4voWBow8EoF1kM87yGlFg74JeNABgn1KOs37qCrNGJeYbA58xZgQDnnSqE-EvfC8X26KtcUgbawU_F-YkEN-4Q1Ch9yvVK4VFlgeCbEtvEF1lLEjzW5LPvtq2dXFACYmYw-2Gc2H5AbH8ij2buoB6a2Wa_MIgtSV7pNraqL6ZPf4dPThom-XeuD33cdB31qk3zXtmE8
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+regional+influenza+seasonality+patterns+in+China+and+implications+for+vaccination+strategies%3A+spatio-temporal+modeling+of+surveillance+data&rft.jtitle=PLoS+medicine&rft.au=Yu%2C+Hongjie&rft.au=Alonso%2C+Wladimir+J&rft.au=Feng%2C+Luzhao&rft.au=Tan%2C+Yi&rft.date=2013-11-01&rft.pub=Public+Library+of+Science&rft.issn=1549-1277&rft.volume=10&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.pmed.1001552&rft.externalDBID=ISR&rft.externalDocID=A353693377
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-1676&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-1676&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-1676&client=summon