Combined genome and transcriptome sequencing to investigate the plant cell wall degrading enzyme system in the thermophilic fungus Malbranchea cinnamomea

Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The information obtained enables the investigation and discovery of genes encoding proteins involved in plant cell wall degradation, which are crucial for sacc...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology for biofuels Vol. 10; no. 1; p. 265
Main Authors Hüttner, Silvia, Nguyen, Thanh Thuy, Granchi, Zoraide, Chin-A-Woeng, Thomas, Ahrén, Dag, Larsbrink, Johan, Thanh, Vu Nguyen, Olsson, Lisbeth
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 13.11.2017
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The information obtained enables the investigation and discovery of genes encoding proteins involved in plant cell wall degradation, which are crucial for saccharification of lignocellulosic biomass in second-generation biorefinery applications. The thermophilic fungus is an efficient producer of many industrially relevant enzymes and a detailed analysis of its genomic content will considerably enhance our understanding of its lignocellulolytic system and promote the discovery of novel proteins. The 25-million-base-pair genome of FCH 10.5 was sequenced with 225× coverage. A total of 9437 protein-coding genes were predicted and annotated, among which 301 carbohydrate-active enzyme (CAZyme) domains were found. The putative CAZymes of cover cellulases, hemicellulases, chitinases and pectinases, equipping the fungus with the ability to grow on a wide variety of biomass types. Upregulation of 438 and 150 genes during growth on wheat bran and xylan, respectively, in comparison to growth on glucose was revealed. Among the most highly upregulated CAZymes on xylan were glycoside hydrolase family GH10 and GH11 xylanases, as well as a putative glucuronoyl esterase and a putative lytic polysaccharide monooxygenase (LPMO). AA9-domain-containing proteins were also found to be upregulated on wheat bran, as well as a putative cutinase and a protein harbouring a CBM9 domain. Several genes encoding secreted proteins of unknown function were also more abundant on wheat bran and xylan than on glucose. The comprehensive combined genome and transcriptome analysis of provides a detailed insight into its response to growth on different types of biomass. In addition, the study facilitates the further exploration and exploitation of the repertoire of industrially relevant lignocellulolytic enzymes of this fungus.
AbstractList Most enzymes used today in biomass conversion are mesophilic, but higher process temperatures could enable faster reaction rates, lower viscosity, better cell wall disintegration and enzyme penetration into the raw material, increased mass transfer and reduced risk of contamination [11-14].[...]thermophilic organisms, with growth optima between 45 and 80 °C [15], are promising sources of thermostable enzymes and have hitherto not been as extensively explored as their mesophilic counterparts [16].[ Table Omitted - see PDF ] Table 1 Comparison of the numbers of CAZymes in M. cinnamomea with those in other fungi Phylum Species GH GT PL CE AA CBM All ASC Yarrowia lipolytica a 42 45 0 1 10 8 106 Saccharomyces cerevisiae a 45 65 0 2 6 15 133 Kluyveromyces lactis a 47 63 0 1 0 11 122 Arthrobotrys oligospora a 205 87 15 30 33 180 550 Malbranchea cinnamomea b 137 62 4 24 42 32 301 Penicillium chrysogenum a 222 103 9 22 22 51 429 Aspergillus nidulans a 264 92 21 31 33 44 485 Aspergillus niger a 253 121 8 23 68 55 528 Aspergillus oryzae a 307 117 23 29 30 37 543 Leptosphaeria maculans a 220 98 19 33 33 53 456 Thielavia terrestris a 212 91 4 28 58 80 473 Myceliophthora thermophila a 195 87 8 28 50 50 418 Podospora anserina a 213 92 8 41 105 104 563 Neurospora crassa a 174 78 4 22 35 42 355 Magnaporthe grisea a 265 105 4 52 92 114 632 Fusarium graminearum a 253 110 21 45 72 87 588 BAS Rhodosporidium toruloides a 75 101 4 10 17 11 218 Sporisorium reilianum a 104 66 3 12 21 6 212 Schizophyllum commune c,d 237 77 5 40 70 39 468 Piriformospora indica a 206 73 16 45 57 141 538 Phanerochaete chrysosporium e,f 170 70 1 20 81 71 413 Postia placenta g,h 174 102 2 22 22 22 344 ZYG Rhizopus oryzae i,j 123 145 6 48 10 38 370 OOM Phytophthora infestans a 283 157 67 21 0 37 565 ASC Ascomycota, BAS Basidiomycota, ZYG Zygomycota, OOM Oomycota a[7]; bthis study; c[76]; d[77]; e[78]; f[79]; g[80]; h[81]; i[48]; j[82] The concerted action of members from various CAZy families is required for the efficient degradation of plant cell wall polymers.The intensity of the shading indicates the coverage between query and subject in the dbCAN search. a Twenty putative proteins with at least one catalytic CAZy domain in addition to one or several CBM domains were found in the M. cinnamomea genome. b Eight putative proteins without predicted catalytic domains, but one or more CBM domains were present in the genome CAZymes expressed during growth on glucose, wheat bran and xylan To investigate how gene expression is influenced by growth on an easily metabolised carbon source, where mostly constitutive genes are predicted to be expressed compared to growth on a more complex carbon sources, RNAseq analysis was conducted on M. cinnamomea cultivated on glucose, wheat bran and beechwood xylan.GH72 enzymes are known to be involved in elongation and remodelling of the ?-1,3-glucan of the fungal cell wall [53].[...]MalCi_235.14 is not likely to be involved in plant biomass degradation, but may be important for hyphal growth during an abundance of nutrients.
Background: Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The information obtained enables the investigation and discovery of genes encoding proteins involved in plant cell wall degradation, which are crucial for saccharification of lignocellulosic biomass in second-generation biorefinery applications. The thermophilic fungus Malbranchea cinnamomea is an efficient producer of many industrially relevant enzymes and a detailed analysis of its genomic content will considerably enhance our understanding of its lignocellulolytic system and promote the discovery of novel proteins. Results: The 25-million-base-pair genome of M. cinnamomea FCH 10.5 was sequenced with 225× coverage. A total of 9437 protein-coding genes were predicted and annotated, among which 301 carbohydrate-active enzyme (CAZyme) domains were found. The putative CAZymes of M. cinnamomea cover cellulases, hemicellulases, chitinases and pectinases, equipping the fungus with the ability to grow on a wide variety of biomass types. Upregulation of 438 and 150 genes during growth on wheat bran and xylan, respectively, in comparison to growth on glucose was revealed. Among the most highly upregulated CAZymes on xylan were glycoside hydrolase family GH10 and GH11 xylanases, as well as a putative glucuronoyl esterase and a putative lytic polysaccharide monooxygenase (LPMO). AA9-domain-containing proteins were also found to be upregulated on wheat bran, as well as a putative cutinase and a protein harbouring a CBM9 domain. Several genes encoding secreted proteins of unknown function were also more abundant on wheat bran and xylan than on glucose. Conclusions: The comprehensive combined genome and transcriptome analysis of M. cinnamomea provides a detailed insight into its response to growth on different types of biomass. In addition, the study facilitates the further exploration and exploitation of the repertoire of industrially relevant lignocellulolytic enzymes of this fungus.
Background: Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The information obtained enables the investigation and discovery of genes encoding proteins involved in plant cell wall degradation, which are crucial for saccharification of lignocellulosic biomass in second-generation biorefinery applications. The thermophilic fungus Malbranchea cinnamomea is an efficient producer of many industrially relevant enzymes and a detailed analysis of its genomic content will considerably enhance our understanding of its lignocellulolytic system and promote the discovery of novel proteins. Results: The 25-million-base-pair genome of M. cinnamomea FCH 10.5 was sequenced with 225x coverage. A total of 9437 protein-coding genes were predicted and annotated, among which 301 carbohydrate-active enzyme (CAZyme) domains were found. The putative CAZymes of M. cinnamomea cover cellulases, hemicellulases, chitinases and pectinases, equipping the fungus with the ability to grow on a wide variety of biomass types. Upregulation of 438 and 150 genes during growth on wheat bran and xylan, respectively, in comparison to growth on glucose was revealed. Among the most highly upregulated CAZymes on xylan were glycoside hydrolase family GH10 and GH11 xylanases, as well as a putative glucuronoyl esterase and a putative lytic polysaccharide monooxygenase (LPMO). AA9-domain-containing proteins were also found to be upregulated on wheat bran, as well as a putative cutinase and a protein harbouring a CBM9 domain. Several genes encoding secreted proteins of unknown function were also more abundant on wheat bran and xylan than on glucose. Conclusions: The comprehensive combined genome and transcriptome analysis of M. cinnamomea provides a detailed insight into its response to growth on different types of biomass. In addition, the study facilitates the further exploration and exploitation of the repertoire of industrially relevant lignocellulolytic enzymes of this fungus.
Abstract Background Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The information obtained enables the investigation and discovery of genes encoding proteins involved in plant cell wall degradation, which are crucial for saccharification of lignocellulosic biomass in second-generation biorefinery applications. The thermophilic fungus Malbranchea cinnamomea is an efficient producer of many industrially relevant enzymes and a detailed analysis of its genomic content will considerably enhance our understanding of its lignocellulolytic system and promote the discovery of novel proteins. Results The 25-million-base-pair genome of M. cinnamomea FCH 10.5 was sequenced with 225× coverage. A total of 9437 protein-coding genes were predicted and annotated, among which 301 carbohydrate-active enzyme (CAZyme) domains were found. The putative CAZymes of M. cinnamomea cover cellulases, hemicellulases, chitinases and pectinases, equipping the fungus with the ability to grow on a wide variety of biomass types. Upregulation of 438 and 150 genes during growth on wheat bran and xylan, respectively, in comparison to growth on glucose was revealed. Among the most highly upregulated CAZymes on xylan were glycoside hydrolase family GH10 and GH11 xylanases, as well as a putative glucuronoyl esterase and a putative lytic polysaccharide monooxygenase (LPMO). AA9-domain-containing proteins were also found to be upregulated on wheat bran, as well as a putative cutinase and a protein harbouring a CBM9 domain. Several genes encoding secreted proteins of unknown function were also more abundant on wheat bran and xylan than on glucose. Conclusions The comprehensive combined genome and transcriptome analysis of M. cinnamomea provides a detailed insight into its response to growth on different types of biomass. In addition, the study facilitates the further exploration and exploitation of the repertoire of industrially relevant lignocellulolytic enzymes of this fungus.
Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The information obtained enables the investigation and discovery of genes encoding proteins involved in plant cell wall degradation, which are crucial for saccharification of lignocellulosic biomass in second-generation biorefinery applications. The thermophilic fungus Malbranchea cinnamomea is an efficient producer of many industrially relevant enzymes and a detailed analysis of its genomic content will considerably enhance our understanding of its lignocellulolytic system and promote the discovery of novel proteins.BACKGROUNDGenome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The information obtained enables the investigation and discovery of genes encoding proteins involved in plant cell wall degradation, which are crucial for saccharification of lignocellulosic biomass in second-generation biorefinery applications. The thermophilic fungus Malbranchea cinnamomea is an efficient producer of many industrially relevant enzymes and a detailed analysis of its genomic content will considerably enhance our understanding of its lignocellulolytic system and promote the discovery of novel proteins.The 25-million-base-pair genome of M. cinnamomea FCH 10.5 was sequenced with 225× coverage. A total of 9437 protein-coding genes were predicted and annotated, among which 301 carbohydrate-active enzyme (CAZyme) domains were found. The putative CAZymes of M. cinnamomea cover cellulases, hemicellulases, chitinases and pectinases, equipping the fungus with the ability to grow on a wide variety of biomass types. Upregulation of 438 and 150 genes during growth on wheat bran and xylan, respectively, in comparison to growth on glucose was revealed. Among the most highly upregulated CAZymes on xylan were glycoside hydrolase family GH10 and GH11 xylanases, as well as a putative glucuronoyl esterase and a putative lytic polysaccharide monooxygenase (LPMO). AA9-domain-containing proteins were also found to be upregulated on wheat bran, as well as a putative cutinase and a protein harbouring a CBM9 domain. Several genes encoding secreted proteins of unknown function were also more abundant on wheat bran and xylan than on glucose.RESULTSThe 25-million-base-pair genome of M. cinnamomea FCH 10.5 was sequenced with 225× coverage. A total of 9437 protein-coding genes were predicted and annotated, among which 301 carbohydrate-active enzyme (CAZyme) domains were found. The putative CAZymes of M. cinnamomea cover cellulases, hemicellulases, chitinases and pectinases, equipping the fungus with the ability to grow on a wide variety of biomass types. Upregulation of 438 and 150 genes during growth on wheat bran and xylan, respectively, in comparison to growth on glucose was revealed. Among the most highly upregulated CAZymes on xylan were glycoside hydrolase family GH10 and GH11 xylanases, as well as a putative glucuronoyl esterase and a putative lytic polysaccharide monooxygenase (LPMO). AA9-domain-containing proteins were also found to be upregulated on wheat bran, as well as a putative cutinase and a protein harbouring a CBM9 domain. Several genes encoding secreted proteins of unknown function were also more abundant on wheat bran and xylan than on glucose.The comprehensive combined genome and transcriptome analysis of M. cinnamomea provides a detailed insight into its response to growth on different types of biomass. In addition, the study facilitates the further exploration and exploitation of the repertoire of industrially relevant lignocellulolytic enzymes of this fungus.CONCLUSIONSThe comprehensive combined genome and transcriptome analysis of M. cinnamomea provides a detailed insight into its response to growth on different types of biomass. In addition, the study facilitates the further exploration and exploitation of the repertoire of industrially relevant lignocellulolytic enzymes of this fungus.
Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The information obtained enables the investigation and discovery of genes encoding proteins involved in plant cell wall degradation, which are crucial for saccharification of lignocellulosic biomass in second-generation biorefinery applications. The thermophilic fungus is an efficient producer of many industrially relevant enzymes and a detailed analysis of its genomic content will considerably enhance our understanding of its lignocellulolytic system and promote the discovery of novel proteins. The 25-million-base-pair genome of FCH 10.5 was sequenced with 225× coverage. A total of 9437 protein-coding genes were predicted and annotated, among which 301 carbohydrate-active enzyme (CAZyme) domains were found. The putative CAZymes of cover cellulases, hemicellulases, chitinases and pectinases, equipping the fungus with the ability to grow on a wide variety of biomass types. Upregulation of 438 and 150 genes during growth on wheat bran and xylan, respectively, in comparison to growth on glucose was revealed. Among the most highly upregulated CAZymes on xylan were glycoside hydrolase family GH10 and GH11 xylanases, as well as a putative glucuronoyl esterase and a putative lytic polysaccharide monooxygenase (LPMO). AA9-domain-containing proteins were also found to be upregulated on wheat bran, as well as a putative cutinase and a protein harbouring a CBM9 domain. Several genes encoding secreted proteins of unknown function were also more abundant on wheat bran and xylan than on glucose. The comprehensive combined genome and transcriptome analysis of provides a detailed insight into its response to growth on different types of biomass. In addition, the study facilitates the further exploration and exploitation of the repertoire of industrially relevant lignocellulolytic enzymes of this fungus.
ArticleNumber 265
Audience Academic
Author Ahrén, Dag
Nguyen, Thanh Thuy
Granchi, Zoraide
Chin-A-Woeng, Thomas
Thanh, Vu Nguyen
Olsson, Lisbeth
Hüttner, Silvia
Larsbrink, Johan
Author_xml – sequence: 1
  givenname: Silvia
  orcidid: 0000-0002-7096-9680
  surname: Hüttner
  fullname: Hüttner, Silvia
– sequence: 2
  givenname: Thanh Thuy
  surname: Nguyen
  fullname: Nguyen, Thanh Thuy
– sequence: 3
  givenname: Zoraide
  surname: Granchi
  fullname: Granchi, Zoraide
– sequence: 4
  givenname: Thomas
  surname: Chin-A-Woeng
  fullname: Chin-A-Woeng, Thomas
– sequence: 5
  givenname: Dag
  surname: Ahrén
  fullname: Ahrén, Dag
– sequence: 6
  givenname: Johan
  surname: Larsbrink
  fullname: Larsbrink, Johan
– sequence: 7
  givenname: Vu Nguyen
  surname: Thanh
  fullname: Thanh, Vu Nguyen
– sequence: 8
  givenname: Lisbeth
  surname: Olsson
  fullname: Olsson, Lisbeth
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29158777$$D View this record in MEDLINE/PubMed
https://lup.lub.lu.se/record/77c2e50d-7561-4c2b-84c6-6a838255d142$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/77c2e50d-7561-4c2b-84c6-6a838255d142$$DView record from Swedish Publication Index
https://research.chalmers.se/publication/253382$$DView record from Swedish Publication Index
BookMark eNqNU01v1DAQjRAISuEHcEGRuMBhix3HdnJBqio-KhUhUe6WY0-yrhJ7sZ1C-Sf8WybdUrqVCiiaJJq892YyfvO4uO-Dh6J4RskBpY14nSgjolkRKlek5WJF7hV7VPJ6JRpW37_x_qh4nNIZIYJKIh8Wj6qW8kZKuVf8PApT5zzYcgAfJii1t2WO2icT3SYvmQRfZ_DG-aHMoXT-HFJ2g85Q5jWUm1H7XBoYx_KbxpuFIWq7gMH_uFjoFynDhLxLOEacwmbtRmfKfvbDnMqPeuywolmDLrGM1xOW1U-KB70eEzy9eu4Xp-_efjn6sDr59P746PBkZfDH8qptCbCWspozY20lTF_3laE1Adq0WhrZSxDGEmqqRstOQF0LanspoeqMYfvF8VbVBn2mNtFNOl6ooJ26TIQ4KB2zMyMoQqCtOe2Y7aGuOt2hnDWm05XlUtqKXXeYvsFm7nbUIiTQ0ayVWetxgphUAmWZbHvsWWmAVtXMcNWyTirGm451RDY9MFTVd6puQsx6_CM-zossonC6Orvgk5LSVMCJVZILqmpTdaqpjVBCN6ypOLe0Xjo_ubPGOG8wuivt_5R7s5VDrQmsAY-OGnc73_ni3VoN4VxxNCvD2C9eXgnEgOZLWU0uLR7THsKcVEUuvcw4_yeUtkK0aJJmgb64BT0Lc_RoLkRJypgUbJn3wRY1aDx05_uALRq8LEzO4AL2DvOHvBZEEtK2SHi1Q0BMhu950HNK6vj08y72-c3JXI_k90IigG4BJoaUIvTXEErUsvRqu_QKl14tS68IcuQtjnH58vixczf-hfkLT2Berw
CitedBy_id crossref_primary_10_1016_j_biortech_2019_01_044
crossref_primary_10_1186_s13068_021_01975_1
crossref_primary_10_1186_s13068_020_01783_z
crossref_primary_10_1016_j_btre_2018_e00279
crossref_primary_10_2174_0929866526666190228163629
crossref_primary_10_3390_ijms241612745
crossref_primary_10_1038_s41598_019_40213_5
crossref_primary_10_1128_Spectrum_01088_21
crossref_primary_10_1186_s12934_020_01408_y
crossref_primary_10_1016_j_pmpp_2024_102479
crossref_primary_10_1186_s13068_022_02255_2
crossref_primary_10_1016_j_ijbiomac_2024_130740
crossref_primary_10_1021_acs_jafc_4c05965
crossref_primary_10_3390_jof11040250
crossref_primary_10_1107_S2059798321006628
crossref_primary_10_3390_su12187282
crossref_primary_10_1016_j_fochx_2019_100036
crossref_primary_10_1016_j_jbc_2021_101302
crossref_primary_10_1042_EBC20220155
crossref_primary_10_1128_AEM_01408_19
crossref_primary_10_1080_07388551_2018_1468316
crossref_primary_10_1128_spectrum_04247_22
crossref_primary_10_1016_j_scitotenv_2021_150451
crossref_primary_10_1186_s12870_018_1430_2
crossref_primary_10_1080_00038628_2024_2427711
crossref_primary_10_1016_j_foodchem_2019_05_199
crossref_primary_10_1128_AEM_01486_20
crossref_primary_10_3389_fbioe_2018_00123
crossref_primary_10_1016_j_ygeno_2019_01_012
crossref_primary_10_1016_j_jclepro_2021_130180
crossref_primary_10_1186_s40643_019_0286_0
crossref_primary_10_3389_fmicb_2022_844287
crossref_primary_10_1186_s13068_019_1569_6
Cites_doi 10.1021/jf960311m
10.1016/j.fgb.2014.07.007
10.1002/elsc.201400196
10.1007/s00294-007-0154-x
10.1016/j.ijbiomac.2014.07.025
10.1093/nar/gkm259
10.1186/1754-6834-4-2
10.2307/3807754
10.1038/nbt967
10.1128/EC.05327-11
10.1186/s13068-015-0285-0
10.1016/j.copbio.2016.02.031
10.1155/2008/619832
10.1093/nar/gku1221
10.1186/1472-6807-10-S1-S5
10.1038/nmeth.1701
10.1016/j.biortech.2013.05.079
10.1016/j.biortech.2014.04.057
10.1016/j.fgb.2017.03.002
10.1101/pdb.prot4455
10.1186/1754-6834-6-30
10.1093/bioinformatics/bth315
10.1007/s10295-014-1494-4
10.1186/gb-2008-9-5-r77
10.1007/s00294-017-0695-6
10.1016/j.biortech.2015.09.113
10.1111/j.1365-2958.2008.06211.x
10.1016/j.funbio.2012.01.010
10.1186/gb-2010-11-10-r106
10.1111/tpj.12444
10.1016/j.biombioe.2013.08.027
10.1016/j.fgb.2008.07.021
10.1016/B978-0-12-800260-5.00004-8
10.1093/nar/gkt111
10.1093/nar/gkl828
10.1093/glycob/cwq142
10.1002/(SICI)1097-0010(19990301)79:3<428::AID-JSFA275>3.0.CO;2-J
10.1186/1471-2164-14-274
10.3109/09637486.2012.687366
10.1016/j.lwt.2013.12.004
10.1128/MMBR.64.3.461-488.2000
10.1016/j.biortech.2012.10.145
10.1007/s10529-015-1798-0
10.1186/2191-0855-3-47
10.1186/1754-6834-6-41
10.1101/gr.089532.108
10.1093/nar/gkn663
10.1093/bioinformatics/btv351
10.1021/cb200351y
10.1186/1471-2164-12-38
10.1016/j.jtice.2016.03.033
10.1007/978-3-319-30205-8_6
10.1016/j.biombioe.2013.12.013
10.1186/s12864-015-1344-4
10.1099/00207713-49-1-329
10.1016/j.bbrc.2011.06.058
10.1038/nbt.1643
10.1073/pnas.0809575106
10.1016/j.enconman.2010.01.015
10.1186/s13068-017-0912-z
10.1093/nar/gks479
10.1007/s11274-015-1971-6
10.1007/s12010-013-0198-y
10.1002/1873-3468.12290
10.1016/j.biotechadv.2013.03.001
10.1186/1754-6834-7-115
10.1016/j.enzmictec.2012.12.009
ContentType Journal Article
Copyright COPYRIGHT 2017 BioMed Central Ltd.
Copyright BioMed Central 2017
The Author(s) 2017
Copyright_xml – notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Copyright BioMed Central 2017
– notice: The Author(s) 2017
CorporateAuthor Department of Biology
Strategiska forskningsområden (SFO)
Biologiska institutionen
Strategic research areas (SRA)
Lunds universitet
Naturvetenskapliga fakulteten
Profile areas and other strong research environments
MEMEG
BECC: Biodiversity and Ecosystem services in a Changing Climate
Faculty of Science
Lund University
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: Naturvetenskapliga fakulteten
– name: Strategiska forskningsområden (SFO)
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: MEMEG
– name: BECC: Biodiversity and Ecosystem services in a Changing Climate
– name: Biologiska institutionen
– name: Profile areas and other strong research environments
– name: Strategic research areas (SRA)
– name: Department of Biology
– name: Faculty of Science
– name: Lunds universitet
DBID AAYXX
CITATION
NPM
ISR
3V.
7QO
7SP
7ST
7TB
7X7
7XB
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
L7M
LK8
M0S
M7P
M7S
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
SOI
7X8
7S9
L.6
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ABBSD
F1S
DOA
DOI 10.1186/s13068-017-0956-0
DatabaseName CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Health & Medical Collection (Alumni)
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
SWEPUB Chalmers tekniska högskola full text
SWEPUB Chalmers tekniska högskola
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database



AGRICOLA

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-6834
2731-3654
EndPage 265
ExternalDocumentID oai_doaj_org_article_00e9451b3dfe42baba7bdccba2d577d2
oai_research_chalmers_se_d379fd26_aee9_43c5_93b7_358b3b078fe3
oai_portal_research_lu_se_publications_77c2e50d_7561_4c2b_84c6_6a838255d142
oai_lup_lub_lu_se_77c2e50d_7561_4c2b_84c6_6a838255d142
PMC5683368
A546070099
29158777
10_1186_s13068_017_0956_0
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 2014-3523; 2014-3523
– fundername: ;
  grantid: Wallenberg Wood Science Center; Wallenberg Wood Science Center; Wallenberg Wood Science Center
– fundername: ;
  grantid: OPTIBIOCAT FP7 KBBE.2013.3.3-04; OPTIBIOCAT FP7 KBBE.2013.3.3-04; OPTIBIOCAT FP7 KBBE.2013.3.3-04; OPTIBIOCAT FP7 KBBE.2013.3.3-04
GroupedDBID 23N
2WC
2XV
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBS
ECGQY
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
HMCUK
HYE
I-F
IAG
IAO
IEA
IEP
ISR
ITC
KQ8
L6V
L8X
LK8
M48
M7P
M7S
ML0
M~E
O5R
O5S
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RBZ
RNS
ROL
RPM
RVI
SCM
TR2
TUS
UKHRP
~8M
2VQ
4.4
AHSBF
C1A
IPNFZ
NPM
RIG
PMFND
0R~
3V.
7QO
7SP
7ST
7TB
7XB
8FD
8FK
AAJSJ
AASML
ADUKV
AZQEC
BMC
C1K
C6C
DWQXO
EBLON
FR3
GNUQQ
K9.
L7M
P64
PKEHL
PQEST
PQGLB
PQUKI
RSV
SOI
SOJ
7X8
PUEGO
7S9
L.6
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ABBSD
F1S
ID FETCH-LOGICAL-c834t-990e3913453cdd26cf4f2c140e189a7c7f7e6cd01c28a7b6e4461df77e2bcc3
IEDL.DBID M48
ISSN 1754-6834
IngestDate Wed Aug 27 01:22:04 EDT 2025
Thu Aug 21 06:30:16 EDT 2025
Thu Aug 21 06:44:48 EDT 2025
Thu Jul 03 05:12:11 EDT 2025
Thu Aug 21 18:33:20 EDT 2025
Tue Aug 05 11:00:36 EDT 2025
Sun Aug 24 04:04:26 EDT 2025
Sat Aug 23 12:35:32 EDT 2025
Tue Jun 10 20:14:01 EDT 2025
Fri Jun 27 03:41:48 EDT 2025
Mon Jul 21 06:05:50 EDT 2025
Tue Jul 01 04:18:49 EDT 2025
Thu Apr 24 22:52:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Xylan
Malbranchea pulchella
Cellulase
Plant biomass
Carbohydrate-active enzymes
Wheat bran
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c834t-990e3913453cdd26cf4f2c140e189a7c7f7e6cd01c28a7b6e4461df77e2bcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7096-9680
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13068-017-0956-0
PMID 29158777
PQID 1971337633
PQPubID 55236
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_00e9451b3dfe42baba7bdccba2d577d2
swepub_primary_oai_research_chalmers_se_d379fd26_aee9_43c5_93b7_358b3b078fe3
swepub_primary_oai_portal_research_lu_se_publications_77c2e50d_7561_4c2b_84c6_6a838255d142
swepub_primary_oai_lup_lub_lu_se_77c2e50d_7561_4c2b_84c6_6a838255d142
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5683368
proquest_miscellaneous_2000617355
proquest_miscellaneous_1966999085
proquest_journals_1971337633
gale_infotracacademiconefile_A546070099
gale_incontextgauss_ISR_A546070099
pubmed_primary_29158777
crossref_primary_10_1186_s13068_017_0956_0
crossref_citationtrail_10_1186_s13068_017_0956_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-13
PublicationDateYYYYMMDD 2017-11-13
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-13
  day: 13
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Biotechnology for biofuels
PublicationTitleAlternate Biotechnol Biofuels
PublicationYear 2017
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References F Cherubini (956_CR1) 2010; 51
R Maheshwari (956_CR60) 2000; 64
P Horton (956_CR40) 2007; 35
LF Ribeiro (956_CR24) 2014; 7
Z Zhao (956_CR10) 2013; 14
QJ Yan (956_CR21) 2015; 37
T Costaouëc Le (956_CR69) 2013; 143
PK Busk (956_CR16) 2013; 3
D Martinez (956_CR78) 2004; 22
S Anders (956_CR31) 2010; 11
J Sambrook (956_CR30) 2006
M Matsuo (956_CR23) 1985; 49
E Espagne (956_CR61) 2008; 9
A Marchler-Bauer (956_CR42) 2015; 43
I Morgenstern (956_CR17) 2012; 116
TJ Taylor (956_CR15) 2010; 10
JT Simpson (956_CR32) 2009; 19
C Mahajan (956_CR44) 2014; 163
Y Yin (956_CR41) 2012; 40
M Ha (956_CR68) 1997; 45
E Battaglia (956_CR48) 2011; 12
J Ao (956_CR53) 2017; 101
956_CR27
A Conesa (956_CR37) 2008
M Couturier (956_CR49) 2016
Y Miao (956_CR62) 2015; 16
C Peng (956_CR73) 2014; 77
956_CR29
G Buist (956_CR72) 2008; 68
D Martinez (956_CR80) 2009; 106
J Arnling Bååth (956_CR56) 2016; 590
L Viikari (956_CR14) 2007; 108
H Kawaguchi (956_CR2) 2016; 42
S Klaubauf (956_CR66) 2014; 72
G Fan (956_CR22) 2014; 70
A Levasseur (956_CR6) 2013; 6
L Väremo (956_CR38) 2013; 41
A Várnai (956_CR52) 2014; 88
B Esteve-Zarzoso (956_CR28) 1999; 49
G Liu (956_CR9) 2013; 31
WH Majoros (956_CR33) 2004; 20
PV Dubovskii (956_CR71) 2011; 411
TN Petersen (956_CR39) 2011; 8
S Gruber (956_CR54) 2011; 21
P Phitsuwan (956_CR3) 2013; 58
TR Gregory (956_CR45) 2007; 35
AP Singh (956_CR8) 2014; 62
ES Martens-Uzunova (956_CR50) 2009; 46
G Guerriero (956_CR4) 2016; 16
956_CR34
FA Simão (956_CR47) 2015; 31
N Szijártó (956_CR13) 2011; 4
956_CR77
956_CR7
956_CR36
956_CR79
PA Kroon (956_CR55) 1999; 434
B Singh (956_CR58) 2016; 7828
P Han (956_CR20) 2013; 170
G Liu (956_CR70) 2013; 52
956_CR75
956_CR81
956_CR82
S Yang (956_CR19) 2014; 41
L Stevenson (956_CR63) 2012; 63
X Duan (956_CR25) 2017; 10
S Ahirwar (956_CR18) 2016; 63
C Mahajan (956_CR26) 2016; 200
V Kumar (956_CR12) 2016; 32
E Kunitake (956_CR57) 2017; 63
M Prückler (956_CR64) 2014; 56
BL Cantarel (956_CR5) 2009; 37
A Bhalla (956_CR11) 2013; 128
A Várnai (956_CR51) 2013; 6
I Benoit (956_CR59) 2015
956_CR46
K Brunner (956_CR65) 2007; 52
J Sun (956_CR67) 2012; 11
RA Ohm (956_CR76) 2010; 28
956_CR43
CM Phillips (956_CR74) 2011; 6
AC Testa (956_CR35) 2015; 16
References_xml – volume: 45
  start-page: 117
  year: 1997
  ident: 956_CR68
  publication-title: J Agric Food Chem
  doi: 10.1021/jf960311m
– volume: 72
  start-page: 73
  year: 2014
  ident: 956_CR66
  publication-title: Fungal Genet Biol
  doi: 10.1016/j.fgb.2014.07.007
– volume: 16
  start-page: 1
  year: 2016
  ident: 956_CR4
  publication-title: Eng Life Sci
  doi: 10.1002/elsc.201400196
– volume: 52
  start-page: 213
  year: 2007
  ident: 956_CR65
  publication-title: Curr Genet
  doi: 10.1007/s00294-007-0154-x
– ident: 956_CR34
– volume: 70
  start-page: 482
  year: 2014
  ident: 956_CR22
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2014.07.025
– volume: 35
  start-page: 585
  year: 2007
  ident: 956_CR40
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm259
– volume: 4
  start-page: 2
  year: 2011
  ident: 956_CR13
  publication-title: Biotechnol Biofuels
  doi: 10.1186/1754-6834-4-2
– ident: 956_CR43
  doi: 10.2307/3807754
– volume: 22
  start-page: 695
  year: 2004
  ident: 956_CR78
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt967
– volume: 11
  start-page: 482
  year: 2012
  ident: 956_CR67
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.05327-11
– year: 2015
  ident: 956_CR59
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-015-0285-0
– volume: 42
  start-page: 30
  year: 2016
  ident: 956_CR2
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2016.02.031
– year: 2008
  ident: 956_CR37
  publication-title: Int J Plant Genomics
  doi: 10.1155/2008/619832
– volume: 43
  start-page: D222
  year: 2015
  ident: 956_CR42
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1221
– volume: 108
  start-page: 121
  year: 2007
  ident: 956_CR14
  publication-title: Adv Biochem Eng Biotechnol
– volume: 10
  start-page: S5
  issue: Suppl 1
  year: 2010
  ident: 956_CR15
  publication-title: BMC Struct Biol
  doi: 10.1186/1472-6807-10-S1-S5
– volume: 8
  start-page: 785
  year: 2011
  ident: 956_CR39
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1701
– ident: 956_CR77
– ident: 956_CR29
– volume: 143
  start-page: 196
  year: 2013
  ident: 956_CR69
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2013.05.079
– volume: 163
  start-page: 300
  year: 2014
  ident: 956_CR44
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2014.04.057
– volume: 101
  start-page: 46
  year: 2017
  ident: 956_CR53
  publication-title: Fungal Genet Biol
  doi: 10.1016/j.fgb.2017.03.002
– ident: 956_CR81
– year: 2006
  ident: 956_CR30
  publication-title: Cold Spring Harb Protoc
  doi: 10.1101/pdb.prot4455
– volume: 6
  start-page: 30
  year: 2013
  ident: 956_CR51
  publication-title: Biotechnol Biofuels
  doi: 10.1186/1754-6834-6-30
– volume: 20
  start-page: 2878
  year: 2004
  ident: 956_CR33
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth315
– volume: 41
  start-page: 1487
  year: 2014
  ident: 956_CR19
  publication-title: J Ind Microbiol Biotechnol
  doi: 10.1007/s10295-014-1494-4
– volume: 9
  start-page: 77
  year: 2008
  ident: 956_CR61
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-5-r77
– volume: 63
  start-page: 951
  year: 2017
  ident: 956_CR57
  publication-title: Curr Genet
  doi: 10.1007/s00294-017-0695-6
– volume: 200
  start-page: 55
  year: 2016
  ident: 956_CR26
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2015.09.113
– volume: 68
  start-page: 838
  year: 2008
  ident: 956_CR72
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2008.06211.x
– ident: 956_CR36
– volume: 116
  start-page: 489
  year: 2012
  ident: 956_CR17
  publication-title: Fungal Biol
  doi: 10.1016/j.funbio.2012.01.010
– volume: 11
  start-page: R106
  year: 2010
  ident: 956_CR31
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-10-r106
– ident: 956_CR46
– volume: 77
  start-page: 917
  year: 2014
  ident: 956_CR73
  publication-title: Plant J.
  doi: 10.1111/tpj.12444
– volume: 58
  start-page: 390
  year: 2013
  ident: 956_CR3
  publication-title: Biomass Bioenerg
  doi: 10.1016/j.biombioe.2013.08.027
– volume: 49
  start-page: 839
  year: 1985
  ident: 956_CR23
  publication-title: Agric Biol Chem
– volume: 46
  start-page: S170
  issue: Suppl 1
  year: 2009
  ident: 956_CR50
  publication-title: Fungal Genet Biol
  doi: 10.1016/j.fgb.2008.07.021
– volume: 88
  start-page: 103
  year: 2014
  ident: 956_CR52
  publication-title: Adv Appl Microbiol
  doi: 10.1016/B978-0-12-800260-5.00004-8
– volume: 41
  start-page: 4378
  year: 2013
  ident: 956_CR38
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt111
– volume: 35
  start-page: 332
  year: 2007
  ident: 956_CR45
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl828
– volume: 21
  start-page: 122
  year: 2011
  ident: 956_CR54
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwq142
– volume: 434
  start-page: 428
  year: 1999
  ident: 956_CR55
  publication-title: J Sci Food Agric
  doi: 10.1002/(SICI)1097-0010(19990301)79:3<428::AID-JSFA275>3.0.CO;2-J
– volume: 14
  start-page: 274
  year: 2013
  ident: 956_CR10
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-274
– volume: 63
  start-page: 1001
  year: 2012
  ident: 956_CR63
  publication-title: Int J Food Sci Nutr
  doi: 10.3109/09637486.2012.687366
– volume: 56
  start-page: 211
  year: 2014
  ident: 956_CR64
  publication-title: LWT Food Sci. Technol
  doi: 10.1016/j.lwt.2013.12.004
– volume: 64
  start-page: 461
  year: 2000
  ident: 956_CR60
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.64.3.461-488.2000
– volume: 128
  start-page: 751
  year: 2013
  ident: 956_CR11
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2012.10.145
– volume: 16
  start-page: 459
  year: 2015
  ident: 956_CR62
  publication-title: Genomics
– volume: 37
  start-page: 1279
  year: 2015
  ident: 956_CR21
  publication-title: Biotechnol Lett
  doi: 10.1007/s10529-015-1798-0
– volume: 3
  start-page: 47
  year: 2013
  ident: 956_CR16
  publication-title: AMB Express
  doi: 10.1186/2191-0855-3-47
– volume: 6
  start-page: 41
  year: 2013
  ident: 956_CR6
  publication-title: Biotechnol Biofuels
  doi: 10.1186/1754-6834-6-41
– volume: 19
  start-page: 1117
  year: 2009
  ident: 956_CR32
  publication-title: Genome Res
  doi: 10.1101/gr.089532.108
– volume: 37
  start-page: D233
  year: 2009
  ident: 956_CR5
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn663
– volume: 31
  start-page: 3210
  year: 2015
  ident: 956_CR47
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv351
– volume: 6
  start-page: 1399
  year: 2011
  ident: 956_CR74
  publication-title: ACS Chem Biol
  doi: 10.1021/cb200351y
– volume: 12
  start-page: 38
  year: 2011
  ident: 956_CR48
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-38
– volume: 63
  start-page: 1
  year: 2016
  ident: 956_CR18
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2016.03.033
– ident: 956_CR7
– start-page: 133
  volume-title: Green Fuels Technol
  year: 2016
  ident: 956_CR49
  doi: 10.1007/978-3-319-30205-8_6
– volume: 62
  start-page: 198
  year: 2014
  ident: 956_CR8
  publication-title: Biomass Bioenerg
  doi: 10.1016/j.biombioe.2013.12.013
– volume: 16
  start-page: 170
  year: 2015
  ident: 956_CR35
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1344-4
– volume: 49
  start-page: 329
  year: 1999
  ident: 956_CR28
  publication-title: Int J Syst Bacteriol
  doi: 10.1099/00207713-49-1-329
– volume: 411
  start-page: 14
  year: 2011
  ident: 956_CR71
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2011.06.058
– ident: 956_CR75
– ident: 956_CR27
– volume: 28
  start-page: 957
  year: 2010
  ident: 956_CR76
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1643
– volume: 106
  start-page: 1954
  year: 2009
  ident: 956_CR80
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0809575106
– volume: 51
  start-page: 1412
  year: 2010
  ident: 956_CR1
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2010.01.015
– volume: 10
  start-page: 223
  year: 2017
  ident: 956_CR25
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-017-0912-z
– ident: 956_CR79
– volume: 40
  start-page: 445
  year: 2012
  ident: 956_CR41
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks479
– volume: 32
  start-page: 1
  year: 2016
  ident: 956_CR12
  publication-title: World J Microbiol Biotechnol
  doi: 10.1007/s11274-015-1971-6
– volume: 170
  start-page: 420
  year: 2013
  ident: 956_CR20
  publication-title: Appl Biochem Biotechnol
  doi: 10.1007/s12010-013-0198-y
– volume: 590
  start-page: 2611
  year: 2016
  ident: 956_CR56
  publication-title: FEBS Lett
  doi: 10.1002/1873-3468.12290
– volume: 7828
  start-page: 1
  year: 2016
  ident: 956_CR58
  publication-title: Crit Rev Microbiol
– ident: 956_CR82
– volume: 31
  start-page: 962
  year: 2013
  ident: 956_CR9
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2013.03.001
– volume: 7
  start-page: 115
  year: 2014
  ident: 956_CR24
  publication-title: Biotechnol Biofuels
  doi: 10.1186/1754-6834-7-115
– volume: 52
  start-page: 190
  year: 2013
  ident: 956_CR70
  publication-title: Enzyme Microb Technol
  doi: 10.1016/j.enzmictec.2012.12.009
SSID ssj0061707
ssj0002769473
Score 2.3241484
Snippet Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The information...
Most enzymes used today in biomass conversion are mesophilic, but higher process temperatures could enable faster reaction rates, lower viscosity, better cell...
BACKGROUND: Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The...
Background: Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The...
Abstract Background Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal...
SourceID doaj
swepub
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 265
SubjectTerms Bacteria, Thermophilic
Biodegradation
Biologi
Biological Sciences
Biomass
biorefining
Carbohydrate-active enzymes
Carbohydrates
Carbon
Carbon sources
Cell walls
Cellular control mechanisms
Cellulase
Cellulose
chitinase
cutinase
Deoxyribonucleic acid
DNA
Enzymes
Fungi
Gene expression
gene expression regulation
Gene sequencing
genes
Genetic aspects
Genetics
Genetics and Genomics
Genetik
Genetik och genomik
Genomes
Genotype
glucose
glycosides
lignocellulases
Lignocellulose
Malbranchea
Malbranchea cinnamomea
Malbranchea pulchella
Mass transfer
Natural Sciences
Naturvetenskap
Neurospora crassa
Plant biomass
Polymers
Properties
protein secretion
Rice
Risk reduction
saccharification
Thermophilic fungi
transcriptomics
Wheat bran
Xylan
xylanases
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUZBASElLUxHZs51hQq4IoBwpSxcXyK91Ku9kV2RWCf8K_ZcZJow2Ux4FD9pCMJ4lnPA9n9htCnpUlPJ7URe4qV-fClrDmdKPyKhbcQzrWiNS15PidPPoo3pxWp1utvrAmrIcH7iduryhiLarS8dBEwZx1VrngvbMsVEqFZH3B510kU70NRpRxNXzDLLXc68BSSyzaUnkC3ismXiiB9f9qkrd80s_1khNU0eSJDm-Q60MISff7R79JrsT2Frm2BSx4m3yHZQ4pbwwUMVgXkdo20DW6pWQk8MxQQw3kdL2k5yPcRqQQEtLVHGac4q4-_WLhJyCmBLo5GttvX3F4QoCGcYkco8jFcoWbM56CqzzbdPTYzh127QBrT-E2rV3Abe0dcnJ48OHVUT40Yci95mKdg7eKHD_PV9yHwKRvRMM8pGWx1LVVXjUqSh-K0jMNopER8ssyNEpF5rznd8lOu2zjfUIj96xRIMpCMSEdRCaN10XtWbAa7IDLSHEhEuMHfHJskzE3KU_R0vRSNCBFg1I0RUZejENWPTjHn4hfopxHQsTVTidA28ygbeZv2paRp6glBpEzWizNObObrjOvT96b_UpIsJ8QcWfk-UDULOENvB3-6QDzgGBbE8rdC20zg-3oTFnjxgHYfZ6RJ-NlWPUodNvG5QZppITQHuLl39OwPj6FgDIj93oFHl-e1WWFSJAZURPVnszO9Ep7Pkvo45XUnEudkYN-EUyGzDcrOBwcpotGKc9iVQSjIEo3wjNntPDSSJC4hlw2lAJm9NMlfPrc0wyAV7OB32prJ_sfmb-9hPnI1c9Sj6IOeQeu6gb029gYayO4r0zNnTK80o47CKSbyB_8DxV6SK4yNERYSsp3yc768yY-gsB27R4nG_YD-Pym-Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXOCAeDdQkEFISEhRE9uxnRMqqFVBlAMFqeJi-ZW20jZZml0h-Cf8W2YSN3ShVByyh2TsxJ7xvOz9hpDnZQmfJ3WRu8rVubAlrDndqLyKBfcQjjViqFqy90HufhbvDqqDlHDr07HKM504KOrQecyRb5Y1hlOwGvir-dccq0bh7moqoXGVXEPoMpRqdaCmHAtTshaKp83MUsvNHlS2xNNbKh8Q-IoVczSg9v-tm88Zpz8PTq7Aiw4maecWuZl8Sbo1Mv82uRLbO-TGOYTBu-QnrHeIfWOgCMZ6EqltA12gfRq0Bd5Jh6mBnC46ejzhbkQKviGdz2DqKab36TcLPwHBJdDe0dj--I7NByhoaDeQozt50s0xS-Mp2MzDZU_37Mxh-Q5Q-xRe09oTeK29R_Z3tj-92c1TNYbcay4WOZityHGfvuI-BCZ9IxrmIT6Lpa6t8qpRUfpQlJ5pq5yMEGiWoVEqMuc9v0_W2q6N64RG7lmjBCgDxYR04KI0Xhe1Z8FqUAguI8UZS4xPQOVYL2NmhoBFSzNy0QAXDXLRFBl5OTWZjygdlxG_Rj5PhAiwPdzoTg9NWq-mKGINn-h4aKJgzjoYUvDeWRYqpQLLyDOUEoMQGi2e0Tm0y743b_c_mq1KSFCk4Hpn5EUiajoYgbfpLw8wD4i6tUK5cSZtJimR3vwW-Yw8nR7D8kem2zZ2S6SREnx8cJz_TcNGRxU8y4w8GAV4GjyrywohITOiVkR7ZXZWn7THRwMMeSU151JnZHtcBCtNZss5XA4u00ejlGexKoJR4K4b4ZkzWnhpJHBcQ1AbSgEz-uWCfsYg1CTkq6PU3_xcSvs_O39_QedTr_5oKFbUY9-Bq7oB-TY2xtoI7itTc6cMr7TjDjzqJvKHl7PrEbnOUMXgaVG-QdYWp8v4GHzXhXsyKKhfr8adVQ
  priority: 102
  providerName: ProQuest
Title Combined genome and transcriptome sequencing to investigate the plant cell wall degrading enzyme system in the thermophilic fungus Malbranchea cinnamomea
URI https://www.ncbi.nlm.nih.gov/pubmed/29158777
https://www.proquest.com/docview/1971337633
https://www.proquest.com/docview/1966999085
https://www.proquest.com/docview/2000617355
https://pubmed.ncbi.nlm.nih.gov/PMC5683368
https://lup.lub.lu.se/record/77c2e50d-7561-4c2b-84c6-6a838255d142
oai:portal.research.lu.se:publications/77c2e50d-7561-4c2b-84c6-6a838255d142
https://research.chalmers.se/publication/253382
https://doaj.org/article/00e9451b3dfe42baba7bdccba2d577d2
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfG9gIPiO8FRmUQEhJSILEdO3lAqEMbY2IT2pg08WL5K9ukLi1LKxj_Cf8td25arVDQHpJKyfmS-Hxftvs7Ql7kObyeLLPUFrZKhclB58papUXIuIN0rBaxasnevtw5ErvHxfEKmZW36jqwXZraYT2po4vB6x_fLt-Bwr-NCl_KNy3YYYlbslQaYfUgg18Dx6SwoMGemC8qIPR4rLWiCpHKkotukXMpiwU3FdH8_7bZV5zWnxsqF2BHo6vavkNudzEm7U8HxV2yEpp75NYV5MH75BfYAciJg6cI0noeqGk8HaPfilYEr3SbrIGcjof0bI7HESjEjHQ0AJFQnPan3w2cPIJOoB-kofl5ic0jRDS0i-QYZp4PRzh74yj40pNJS_fMwGJZD3AHFB7TmHN4rHlADre3vrzfSbsqDamDPhyn4M4Cx_X7gjvvmXS1qJmDvC3kZWWUU7UK0vksd6w0ysoACWjua6UCs87xh2S1GTZhndDAHauVACOhmJAWQpfalVnlmDclGAqbkGwmEu06AHOsozHQMZEppZ5KUYMUNUpRZwl5NW8ymqJ3_I94E-U8J0Tg7XhheHGiOz3WWRYqeEXLfR0Es8bCJ3nnrGG-UMqzhDzHUaIRWqPBvTsnZtK2-uPhge4XQoKBhZA8IS87onoIX-BM91cI6AdE41qg3JiNNj3TDZ1XOLMAjoEn5Nn8NpgFFLppwnCCNFJC7A8B9b9p2DSAhYgzIY-mA3j-8azKC4SKTIhaGNoLvbN4pzk7jfDkBegWl2VCtqZKsNBkMBnBYeHQbdBKORaKzGsFYbwWjlldCie1BImXkOz6XECPfl3CZ2oXdIeIddrxG12Z6r4m809LmM-5utNYxKhF3p6rqobxrU0IlRbcFbriVmlelJZbiLTrwB9fR_pPyE2Ghgb3kvINsjq-mISnENmObY_cUMcKzuX2hx5Z6_d3D3fhd3Nr__NBL84W9aJF-w1bEql5
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAAYNASEhRE9uxkwNCBVpa-jjQIlUcsPxKW2mbLM2uqvJP-A_8SGaS7NKFUnHpIXvYjJ3HjL-ZsZ1vCHmepnB7Mk9im9kiFiaFMZeXKs5Cwh2kY6Voq5ZsbsnVz-LjbrY7R35OvoXBbZUTTGyB2tcO58gX0wLTKRgN_M3wW4xVo3B1dVJCozOL9XByDClb83rtPej3BWMryzvvVuO-qkDsci5GMcBv4LjenHHnPZOuFCVzkGeENC-McqpUQTqfpI7lRlkZIGFKfalUYNY5Dr1eIpcFBz-O36WvfJjO6DAlC6F4v3Sa5nKxAQchca-Yilu-v2TG-bU1Av72BKdc4Z_bNGfITFsHuHKDXO8jV7rUmdpNMheqW-TaKT7D2-QHoAtk2sFTpH49DNRUno7QG7bYhP_0W7dBnI5qejBl-QgUIlE6HICiKS4m0GMDPx6pLNC70lB9P8HmLfE0tGvFMXg9rIc4J-QoeOi9cUM3zcBisRBwMhQuU5lDuKy5Q7YvQEt3yXxVV-E-oYE7VioB0KOYkBYCotLlSeGYNznAj41IMlGJdj0tOlbnGOg2Pcql7rSoQYsataiTiLyaNhl2nCDnCb9FPU8Fkc67_aM-2tM9OugkCQXcouW-DIJZY-GRvHPWMJ8p5VlEnqGVaCTsqHBH0J4ZN41e2_6klzIhAbYh0I_Iy16orOEJnOk_sID3gBxfM5ILE2vTPWQ1-vcAi8jT6WkAG1S6qUI9RhkpIaOAMP3fMqwLiyGOjci9zoCnD8-KNEMCyoioGdOeeTuzZ6qD_Zb0PJM55zKPyHI3CGaaDMZDOCwcuglaKcdClnitIDnQwjGrc-GklqDxHFJonwp4o1_O6KdLeXXPs7Xf9zc8NYH-n51vnNH5tFe335ZGarBvz1VRgn1rE0KhBXeZLrhVmme55Rbi9zLwB-er6wm5srqzuaE31rbWH5KrDOEG96nyBTI_OhqHRxA1j-zjFqwo-Xqx2PgLFlDZnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+genome+and+transcriptome+sequencing+to+investigate+the+plant+cell+wall+degrading+enzyme+system+in+the+thermophilic+fungus+Malbranchea+cinnamomea&rft.jtitle=Biotechnology+for+biofuels&rft.au=Huttner%2C+Silvia&rft.au=Nguyen%2C+Thanh+Thuy&rft.au=Granchi%2C+Zoraide&rft.au=Chin-A-Woeng%2C+Thomas&rft.date=2017-11-13&rft.pub=BioMed+Central+Ltd&rft.issn=1754-6834&rft.eissn=1754-6834&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1186%2Fs13068-017-0956-0&rft.externalDBID=ISR&rft.externalDocID=A546070099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-6834&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-6834&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-6834&client=summon