Combined genome and transcriptome sequencing to investigate the plant cell wall degrading enzyme system in the thermophilic fungus Malbranchea cinnamomea
Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The information obtained enables the investigation and discovery of genes encoding proteins involved in plant cell wall degradation, which are crucial for sacc...
Saved in:
Published in | Biotechnology for biofuels Vol. 10; no. 1; p. 265 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
13.11.2017
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The information obtained enables the investigation and discovery of genes encoding proteins involved in plant cell wall degradation, which are crucial for saccharification of lignocellulosic biomass in second-generation biorefinery applications. The thermophilic fungus
is an efficient producer of many industrially relevant enzymes and a detailed analysis of its genomic content will considerably enhance our understanding of its lignocellulolytic system and promote the discovery of novel proteins.
The 25-million-base-pair genome of
FCH 10.5 was sequenced with 225× coverage. A total of 9437 protein-coding genes were predicted and annotated, among which 301 carbohydrate-active enzyme (CAZyme) domains were found. The putative CAZymes of
cover cellulases, hemicellulases, chitinases and pectinases, equipping the fungus with the ability to grow on a wide variety of biomass types. Upregulation of 438 and 150 genes during growth on wheat bran and xylan, respectively, in comparison to growth on glucose was revealed. Among the most highly upregulated CAZymes on xylan were glycoside hydrolase family GH10 and GH11 xylanases, as well as a putative glucuronoyl esterase and a putative lytic polysaccharide monooxygenase (LPMO). AA9-domain-containing proteins were also found to be upregulated on wheat bran, as well as a putative cutinase and a protein harbouring a CBM9 domain. Several genes encoding secreted proteins of unknown function were also more abundant on wheat bran and xylan than on glucose.
The comprehensive combined genome and transcriptome analysis of
provides a detailed insight into its response to growth on different types of biomass. In addition, the study facilitates the further exploration and exploitation of the repertoire of industrially relevant lignocellulolytic enzymes of this fungus. |
---|---|
AbstractList | Most enzymes used today in biomass conversion are mesophilic, but higher process temperatures could enable faster reaction rates, lower viscosity, better cell wall disintegration and enzyme penetration into the raw material, increased mass transfer and reduced risk of contamination [11-14].[...]thermophilic organisms, with growth optima between 45 and 80 °C [15], are promising sources of thermostable enzymes and have hitherto not been as extensively explored as their mesophilic counterparts [16].[ Table Omitted - see PDF ] Table 1 Comparison of the numbers of CAZymes in M. cinnamomea with those in other fungi Phylum Species GH GT PL CE AA CBM All ASC Yarrowia lipolytica a 42 45 0 1 10 8 106 Saccharomyces cerevisiae a 45 65 0 2 6 15 133 Kluyveromyces lactis a 47 63 0 1 0 11 122 Arthrobotrys oligospora a 205 87 15 30 33 180 550 Malbranchea cinnamomea b 137 62 4 24 42 32 301 Penicillium chrysogenum a 222 103 9 22 22 51 429 Aspergillus nidulans a 264 92 21 31 33 44 485 Aspergillus niger a 253 121 8 23 68 55 528 Aspergillus oryzae a 307 117 23 29 30 37 543 Leptosphaeria maculans a 220 98 19 33 33 53 456 Thielavia terrestris a 212 91 4 28 58 80 473 Myceliophthora thermophila a 195 87 8 28 50 50 418 Podospora anserina a 213 92 8 41 105 104 563 Neurospora crassa a 174 78 4 22 35 42 355 Magnaporthe grisea a 265 105 4 52 92 114 632 Fusarium graminearum a 253 110 21 45 72 87 588 BAS Rhodosporidium toruloides a 75 101 4 10 17 11 218 Sporisorium reilianum a 104 66 3 12 21 6 212 Schizophyllum commune c,d 237 77 5 40 70 39 468 Piriformospora indica a 206 73 16 45 57 141 538 Phanerochaete chrysosporium e,f 170 70 1 20 81 71 413 Postia placenta g,h 174 102 2 22 22 22 344 ZYG Rhizopus oryzae i,j 123 145 6 48 10 38 370 OOM Phytophthora infestans a 283 157 67 21 0 37 565 ASC Ascomycota, BAS Basidiomycota, ZYG Zygomycota, OOM Oomycota a[7]; bthis study; c[76]; d[77]; e[78]; f[79]; g[80]; h[81]; i[48]; j[82] The concerted action of members from various CAZy families is required for the efficient degradation of plant cell wall polymers.The intensity of the shading indicates the coverage between query and subject in the dbCAN search. a Twenty putative proteins with at least one catalytic CAZy domain in addition to one or several CBM domains were found in the M. cinnamomea genome. b Eight putative proteins without predicted catalytic domains, but one or more CBM domains were present in the genome CAZymes expressed during growth on glucose, wheat bran and xylan To investigate how gene expression is influenced by growth on an easily metabolised carbon source, where mostly constitutive genes are predicted to be expressed compared to growth on a more complex carbon sources, RNAseq analysis was conducted on M. cinnamomea cultivated on glucose, wheat bran and beechwood xylan.GH72 enzymes are known to be involved in elongation and remodelling of the ?-1,3-glucan of the fungal cell wall [53].[...]MalCi_235.14 is not likely to be involved in plant biomass degradation, but may be important for hyphal growth during an abundance of nutrients. Background: Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The information obtained enables the investigation and discovery of genes encoding proteins involved in plant cell wall degradation, which are crucial for saccharification of lignocellulosic biomass in second-generation biorefinery applications. The thermophilic fungus Malbranchea cinnamomea is an efficient producer of many industrially relevant enzymes and a detailed analysis of its genomic content will considerably enhance our understanding of its lignocellulolytic system and promote the discovery of novel proteins. Results: The 25-million-base-pair genome of M. cinnamomea FCH 10.5 was sequenced with 225× coverage. A total of 9437 protein-coding genes were predicted and annotated, among which 301 carbohydrate-active enzyme (CAZyme) domains were found. The putative CAZymes of M. cinnamomea cover cellulases, hemicellulases, chitinases and pectinases, equipping the fungus with the ability to grow on a wide variety of biomass types. Upregulation of 438 and 150 genes during growth on wheat bran and xylan, respectively, in comparison to growth on glucose was revealed. Among the most highly upregulated CAZymes on xylan were glycoside hydrolase family GH10 and GH11 xylanases, as well as a putative glucuronoyl esterase and a putative lytic polysaccharide monooxygenase (LPMO). AA9-domain-containing proteins were also found to be upregulated on wheat bran, as well as a putative cutinase and a protein harbouring a CBM9 domain. Several genes encoding secreted proteins of unknown function were also more abundant on wheat bran and xylan than on glucose. Conclusions: The comprehensive combined genome and transcriptome analysis of M. cinnamomea provides a detailed insight into its response to growth on different types of biomass. In addition, the study facilitates the further exploration and exploitation of the repertoire of industrially relevant lignocellulolytic enzymes of this fungus. Background: Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The information obtained enables the investigation and discovery of genes encoding proteins involved in plant cell wall degradation, which are crucial for saccharification of lignocellulosic biomass in second-generation biorefinery applications. The thermophilic fungus Malbranchea cinnamomea is an efficient producer of many industrially relevant enzymes and a detailed analysis of its genomic content will considerably enhance our understanding of its lignocellulolytic system and promote the discovery of novel proteins. Results: The 25-million-base-pair genome of M. cinnamomea FCH 10.5 was sequenced with 225x coverage. A total of 9437 protein-coding genes were predicted and annotated, among which 301 carbohydrate-active enzyme (CAZyme) domains were found. The putative CAZymes of M. cinnamomea cover cellulases, hemicellulases, chitinases and pectinases, equipping the fungus with the ability to grow on a wide variety of biomass types. Upregulation of 438 and 150 genes during growth on wheat bran and xylan, respectively, in comparison to growth on glucose was revealed. Among the most highly upregulated CAZymes on xylan were glycoside hydrolase family GH10 and GH11 xylanases, as well as a putative glucuronoyl esterase and a putative lytic polysaccharide monooxygenase (LPMO). AA9-domain-containing proteins were also found to be upregulated on wheat bran, as well as a putative cutinase and a protein harbouring a CBM9 domain. Several genes encoding secreted proteins of unknown function were also more abundant on wheat bran and xylan than on glucose. Conclusions: The comprehensive combined genome and transcriptome analysis of M. cinnamomea provides a detailed insight into its response to growth on different types of biomass. In addition, the study facilitates the further exploration and exploitation of the repertoire of industrially relevant lignocellulolytic enzymes of this fungus. Abstract Background Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The information obtained enables the investigation and discovery of genes encoding proteins involved in plant cell wall degradation, which are crucial for saccharification of lignocellulosic biomass in second-generation biorefinery applications. The thermophilic fungus Malbranchea cinnamomea is an efficient producer of many industrially relevant enzymes and a detailed analysis of its genomic content will considerably enhance our understanding of its lignocellulolytic system and promote the discovery of novel proteins. Results The 25-million-base-pair genome of M. cinnamomea FCH 10.5 was sequenced with 225× coverage. A total of 9437 protein-coding genes were predicted and annotated, among which 301 carbohydrate-active enzyme (CAZyme) domains were found. The putative CAZymes of M. cinnamomea cover cellulases, hemicellulases, chitinases and pectinases, equipping the fungus with the ability to grow on a wide variety of biomass types. Upregulation of 438 and 150 genes during growth on wheat bran and xylan, respectively, in comparison to growth on glucose was revealed. Among the most highly upregulated CAZymes on xylan were glycoside hydrolase family GH10 and GH11 xylanases, as well as a putative glucuronoyl esterase and a putative lytic polysaccharide monooxygenase (LPMO). AA9-domain-containing proteins were also found to be upregulated on wheat bran, as well as a putative cutinase and a protein harbouring a CBM9 domain. Several genes encoding secreted proteins of unknown function were also more abundant on wheat bran and xylan than on glucose. Conclusions The comprehensive combined genome and transcriptome analysis of M. cinnamomea provides a detailed insight into its response to growth on different types of biomass. In addition, the study facilitates the further exploration and exploitation of the repertoire of industrially relevant lignocellulolytic enzymes of this fungus. Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The information obtained enables the investigation and discovery of genes encoding proteins involved in plant cell wall degradation, which are crucial for saccharification of lignocellulosic biomass in second-generation biorefinery applications. The thermophilic fungus Malbranchea cinnamomea is an efficient producer of many industrially relevant enzymes and a detailed analysis of its genomic content will considerably enhance our understanding of its lignocellulolytic system and promote the discovery of novel proteins.BACKGROUNDGenome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The information obtained enables the investigation and discovery of genes encoding proteins involved in plant cell wall degradation, which are crucial for saccharification of lignocellulosic biomass in second-generation biorefinery applications. The thermophilic fungus Malbranchea cinnamomea is an efficient producer of many industrially relevant enzymes and a detailed analysis of its genomic content will considerably enhance our understanding of its lignocellulolytic system and promote the discovery of novel proteins.The 25-million-base-pair genome of M. cinnamomea FCH 10.5 was sequenced with 225× coverage. A total of 9437 protein-coding genes were predicted and annotated, among which 301 carbohydrate-active enzyme (CAZyme) domains were found. The putative CAZymes of M. cinnamomea cover cellulases, hemicellulases, chitinases and pectinases, equipping the fungus with the ability to grow on a wide variety of biomass types. Upregulation of 438 and 150 genes during growth on wheat bran and xylan, respectively, in comparison to growth on glucose was revealed. Among the most highly upregulated CAZymes on xylan were glycoside hydrolase family GH10 and GH11 xylanases, as well as a putative glucuronoyl esterase and a putative lytic polysaccharide monooxygenase (LPMO). AA9-domain-containing proteins were also found to be upregulated on wheat bran, as well as a putative cutinase and a protein harbouring a CBM9 domain. Several genes encoding secreted proteins of unknown function were also more abundant on wheat bran and xylan than on glucose.RESULTSThe 25-million-base-pair genome of M. cinnamomea FCH 10.5 was sequenced with 225× coverage. A total of 9437 protein-coding genes were predicted and annotated, among which 301 carbohydrate-active enzyme (CAZyme) domains were found. The putative CAZymes of M. cinnamomea cover cellulases, hemicellulases, chitinases and pectinases, equipping the fungus with the ability to grow on a wide variety of biomass types. Upregulation of 438 and 150 genes during growth on wheat bran and xylan, respectively, in comparison to growth on glucose was revealed. Among the most highly upregulated CAZymes on xylan were glycoside hydrolase family GH10 and GH11 xylanases, as well as a putative glucuronoyl esterase and a putative lytic polysaccharide monooxygenase (LPMO). AA9-domain-containing proteins were also found to be upregulated on wheat bran, as well as a putative cutinase and a protein harbouring a CBM9 domain. Several genes encoding secreted proteins of unknown function were also more abundant on wheat bran and xylan than on glucose.The comprehensive combined genome and transcriptome analysis of M. cinnamomea provides a detailed insight into its response to growth on different types of biomass. In addition, the study facilitates the further exploration and exploitation of the repertoire of industrially relevant lignocellulolytic enzymes of this fungus.CONCLUSIONSThe comprehensive combined genome and transcriptome analysis of M. cinnamomea provides a detailed insight into its response to growth on different types of biomass. In addition, the study facilitates the further exploration and exploitation of the repertoire of industrially relevant lignocellulolytic enzymes of this fungus. Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The information obtained enables the investigation and discovery of genes encoding proteins involved in plant cell wall degradation, which are crucial for saccharification of lignocellulosic biomass in second-generation biorefinery applications. The thermophilic fungus is an efficient producer of many industrially relevant enzymes and a detailed analysis of its genomic content will considerably enhance our understanding of its lignocellulolytic system and promote the discovery of novel proteins. The 25-million-base-pair genome of FCH 10.5 was sequenced with 225× coverage. A total of 9437 protein-coding genes were predicted and annotated, among which 301 carbohydrate-active enzyme (CAZyme) domains were found. The putative CAZymes of cover cellulases, hemicellulases, chitinases and pectinases, equipping the fungus with the ability to grow on a wide variety of biomass types. Upregulation of 438 and 150 genes during growth on wheat bran and xylan, respectively, in comparison to growth on glucose was revealed. Among the most highly upregulated CAZymes on xylan were glycoside hydrolase family GH10 and GH11 xylanases, as well as a putative glucuronoyl esterase and a putative lytic polysaccharide monooxygenase (LPMO). AA9-domain-containing proteins were also found to be upregulated on wheat bran, as well as a putative cutinase and a protein harbouring a CBM9 domain. Several genes encoding secreted proteins of unknown function were also more abundant on wheat bran and xylan than on glucose. The comprehensive combined genome and transcriptome analysis of provides a detailed insight into its response to growth on different types of biomass. In addition, the study facilitates the further exploration and exploitation of the repertoire of industrially relevant lignocellulolytic enzymes of this fungus. |
ArticleNumber | 265 |
Audience | Academic |
Author | Ahrén, Dag Nguyen, Thanh Thuy Granchi, Zoraide Chin-A-Woeng, Thomas Thanh, Vu Nguyen Olsson, Lisbeth Hüttner, Silvia Larsbrink, Johan |
Author_xml | – sequence: 1 givenname: Silvia orcidid: 0000-0002-7096-9680 surname: Hüttner fullname: Hüttner, Silvia – sequence: 2 givenname: Thanh Thuy surname: Nguyen fullname: Nguyen, Thanh Thuy – sequence: 3 givenname: Zoraide surname: Granchi fullname: Granchi, Zoraide – sequence: 4 givenname: Thomas surname: Chin-A-Woeng fullname: Chin-A-Woeng, Thomas – sequence: 5 givenname: Dag surname: Ahrén fullname: Ahrén, Dag – sequence: 6 givenname: Johan surname: Larsbrink fullname: Larsbrink, Johan – sequence: 7 givenname: Vu Nguyen surname: Thanh fullname: Thanh, Vu Nguyen – sequence: 8 givenname: Lisbeth surname: Olsson fullname: Olsson, Lisbeth |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29158777$$D View this record in MEDLINE/PubMed https://lup.lub.lu.se/record/77c2e50d-7561-4c2b-84c6-6a838255d142$$DView record from Swedish Publication Index oai:portal.research.lu.se:publications/77c2e50d-7561-4c2b-84c6-6a838255d142$$DView record from Swedish Publication Index https://research.chalmers.se/publication/253382$$DView record from Swedish Publication Index |
BookMark | eNqNU01v1DAQjRAISuEHcEGRuMBhix3HdnJBqio-KhUhUe6WY0-yrhJ7sZ1C-Sf8WybdUrqVCiiaJJq892YyfvO4uO-Dh6J4RskBpY14nSgjolkRKlek5WJF7hV7VPJ6JRpW37_x_qh4nNIZIYJKIh8Wj6qW8kZKuVf8PApT5zzYcgAfJii1t2WO2icT3SYvmQRfZ_DG-aHMoXT-HFJ2g85Q5jWUm1H7XBoYx_KbxpuFIWq7gMH_uFjoFynDhLxLOEacwmbtRmfKfvbDnMqPeuywolmDLrGM1xOW1U-KB70eEzy9eu4Xp-_efjn6sDr59P746PBkZfDH8qptCbCWspozY20lTF_3laE1Adq0WhrZSxDGEmqqRstOQF0LanspoeqMYfvF8VbVBn2mNtFNOl6ooJ26TIQ4KB2zMyMoQqCtOe2Y7aGuOt2hnDWm05XlUtqKXXeYvsFm7nbUIiTQ0ayVWetxgphUAmWZbHvsWWmAVtXMcNWyTirGm451RDY9MFTVd6puQsx6_CM-zossonC6Orvgk5LSVMCJVZILqmpTdaqpjVBCN6ypOLe0Xjo_ubPGOG8wuivt_5R7s5VDrQmsAY-OGnc73_ni3VoN4VxxNCvD2C9eXgnEgOZLWU0uLR7THsKcVEUuvcw4_yeUtkK0aJJmgb64BT0Lc_RoLkRJypgUbJn3wRY1aDx05_uALRq8LEzO4AL2DvOHvBZEEtK2SHi1Q0BMhu950HNK6vj08y72-c3JXI_k90IigG4BJoaUIvTXEErUsvRqu_QKl14tS68IcuQtjnH58vixczf-hfkLT2Berw |
CitedBy_id | crossref_primary_10_1016_j_biortech_2019_01_044 crossref_primary_10_1186_s13068_021_01975_1 crossref_primary_10_1186_s13068_020_01783_z crossref_primary_10_1016_j_btre_2018_e00279 crossref_primary_10_2174_0929866526666190228163629 crossref_primary_10_3390_ijms241612745 crossref_primary_10_1038_s41598_019_40213_5 crossref_primary_10_1128_Spectrum_01088_21 crossref_primary_10_1186_s12934_020_01408_y crossref_primary_10_1016_j_pmpp_2024_102479 crossref_primary_10_1186_s13068_022_02255_2 crossref_primary_10_1016_j_ijbiomac_2024_130740 crossref_primary_10_1021_acs_jafc_4c05965 crossref_primary_10_3390_jof11040250 crossref_primary_10_1107_S2059798321006628 crossref_primary_10_3390_su12187282 crossref_primary_10_1016_j_fochx_2019_100036 crossref_primary_10_1016_j_jbc_2021_101302 crossref_primary_10_1042_EBC20220155 crossref_primary_10_1128_AEM_01408_19 crossref_primary_10_1080_07388551_2018_1468316 crossref_primary_10_1128_spectrum_04247_22 crossref_primary_10_1016_j_scitotenv_2021_150451 crossref_primary_10_1186_s12870_018_1430_2 crossref_primary_10_1080_00038628_2024_2427711 crossref_primary_10_1016_j_foodchem_2019_05_199 crossref_primary_10_1128_AEM_01486_20 crossref_primary_10_3389_fbioe_2018_00123 crossref_primary_10_1016_j_ygeno_2019_01_012 crossref_primary_10_1016_j_jclepro_2021_130180 crossref_primary_10_1186_s40643_019_0286_0 crossref_primary_10_3389_fmicb_2022_844287 crossref_primary_10_1186_s13068_019_1569_6 |
Cites_doi | 10.1021/jf960311m 10.1016/j.fgb.2014.07.007 10.1002/elsc.201400196 10.1007/s00294-007-0154-x 10.1016/j.ijbiomac.2014.07.025 10.1093/nar/gkm259 10.1186/1754-6834-4-2 10.2307/3807754 10.1038/nbt967 10.1128/EC.05327-11 10.1186/s13068-015-0285-0 10.1016/j.copbio.2016.02.031 10.1155/2008/619832 10.1093/nar/gku1221 10.1186/1472-6807-10-S1-S5 10.1038/nmeth.1701 10.1016/j.biortech.2013.05.079 10.1016/j.biortech.2014.04.057 10.1016/j.fgb.2017.03.002 10.1101/pdb.prot4455 10.1186/1754-6834-6-30 10.1093/bioinformatics/bth315 10.1007/s10295-014-1494-4 10.1186/gb-2008-9-5-r77 10.1007/s00294-017-0695-6 10.1016/j.biortech.2015.09.113 10.1111/j.1365-2958.2008.06211.x 10.1016/j.funbio.2012.01.010 10.1186/gb-2010-11-10-r106 10.1111/tpj.12444 10.1016/j.biombioe.2013.08.027 10.1016/j.fgb.2008.07.021 10.1016/B978-0-12-800260-5.00004-8 10.1093/nar/gkt111 10.1093/nar/gkl828 10.1093/glycob/cwq142 10.1002/(SICI)1097-0010(19990301)79:3<428::AID-JSFA275>3.0.CO;2-J 10.1186/1471-2164-14-274 10.3109/09637486.2012.687366 10.1016/j.lwt.2013.12.004 10.1128/MMBR.64.3.461-488.2000 10.1016/j.biortech.2012.10.145 10.1007/s10529-015-1798-0 10.1186/2191-0855-3-47 10.1186/1754-6834-6-41 10.1101/gr.089532.108 10.1093/nar/gkn663 10.1093/bioinformatics/btv351 10.1021/cb200351y 10.1186/1471-2164-12-38 10.1016/j.jtice.2016.03.033 10.1007/978-3-319-30205-8_6 10.1016/j.biombioe.2013.12.013 10.1186/s12864-015-1344-4 10.1099/00207713-49-1-329 10.1016/j.bbrc.2011.06.058 10.1038/nbt.1643 10.1073/pnas.0809575106 10.1016/j.enconman.2010.01.015 10.1186/s13068-017-0912-z 10.1093/nar/gks479 10.1007/s11274-015-1971-6 10.1007/s12010-013-0198-y 10.1002/1873-3468.12290 10.1016/j.biotechadv.2013.03.001 10.1186/1754-6834-7-115 10.1016/j.enzmictec.2012.12.009 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 BioMed Central Ltd. Copyright BioMed Central 2017 The Author(s) 2017 |
Copyright_xml | – notice: COPYRIGHT 2017 BioMed Central Ltd. – notice: Copyright BioMed Central 2017 – notice: The Author(s) 2017 |
CorporateAuthor | Department of Biology Strategiska forskningsområden (SFO) Biologiska institutionen Strategic research areas (SRA) Lunds universitet Naturvetenskapliga fakulteten Profile areas and other strong research environments MEMEG BECC: Biodiversity and Ecosystem services in a Changing Climate Faculty of Science Lund University Profilområden och andra starka forskningsmiljöer |
CorporateAuthor_xml | – name: Naturvetenskapliga fakulteten – name: Strategiska forskningsområden (SFO) – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: MEMEG – name: BECC: Biodiversity and Ecosystem services in a Changing Climate – name: Biologiska institutionen – name: Profile areas and other strong research environments – name: Strategic research areas (SRA) – name: Department of Biology – name: Faculty of Science – name: Lunds universitet |
DBID | AAYXX CITATION NPM ISR 3V. 7QO 7SP 7ST 7TB 7X7 7XB 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V L7M LK8 M0S M7P M7S P5Z P62 P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS SOI 7X8 7S9 L.6 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC ABBSD F1S DOA |
DOI | 10.1186/s13068-017-0956-0 |
DatabaseName | CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Health & Medical Collection (Alumni) Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) SwePub SWEPUB Lunds universitet full text SwePub Articles SWEPUB Freely available online SWEPUB Lunds universitet SwePub Articles full text SWEPUB Chalmers tekniska högskola full text SWEPUB Chalmers tekniska högskola DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-6834 2731-3654 |
EndPage | 265 |
ExternalDocumentID | oai_doaj_org_article_00e9451b3dfe42baba7bdccba2d577d2 oai_research_chalmers_se_d379fd26_aee9_43c5_93b7_358b3b078fe3 oai_portal_research_lu_se_publications_77c2e50d_7561_4c2b_84c6_6a838255d142 oai_lup_lub_lu_se_77c2e50d_7561_4c2b_84c6_6a838255d142 PMC5683368 A546070099 29158777 10_1186_s13068_017_0956_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 2014-3523; 2014-3523 – fundername: ; grantid: Wallenberg Wood Science Center; Wallenberg Wood Science Center; Wallenberg Wood Science Center – fundername: ; grantid: OPTIBIOCAT FP7 KBBE.2013.3.3-04; OPTIBIOCAT FP7 KBBE.2013.3.3-04; OPTIBIOCAT FP7 KBBE.2013.3.3-04; OPTIBIOCAT FP7 KBBE.2013.3.3-04 |
GroupedDBID | 23N 2WC 2XV 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ AAFWJ AAHBH AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BPHCQ BVXVI CCPQU CITATION CS3 DIK DU5 E3Z EBS ECGQY EJD ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HH5 HMCUK HYE I-F IAG IAO IEA IEP ISR ITC KQ8 L6V L8X LK8 M48 M7P M7S ML0 M~E O5R O5S OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RBZ RNS ROL RPM RVI SCM TR2 TUS UKHRP ~8M 2VQ 4.4 AHSBF C1A IPNFZ NPM RIG PMFND 0R~ 3V. 7QO 7SP 7ST 7TB 7XB 8FD 8FK AAJSJ AASML ADUKV AZQEC BMC C1K C6C DWQXO EBLON FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQGLB PQUKI RSV SOI SOJ 7X8 PUEGO 7S9 L.6 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC ABBSD F1S |
ID | FETCH-LOGICAL-c834t-990e3913453cdd26cf4f2c140e189a7c7f7e6cd01c28a7b6e4461df77e2bcc3 |
IEDL.DBID | M48 |
ISSN | 1754-6834 |
IngestDate | Wed Aug 27 01:22:04 EDT 2025 Thu Aug 21 06:30:16 EDT 2025 Thu Aug 21 06:44:48 EDT 2025 Thu Jul 03 05:12:11 EDT 2025 Thu Aug 21 18:33:20 EDT 2025 Tue Aug 05 11:00:36 EDT 2025 Sun Aug 24 04:04:26 EDT 2025 Sat Aug 23 12:35:32 EDT 2025 Tue Jun 10 20:14:01 EDT 2025 Fri Jun 27 03:41:48 EDT 2025 Mon Jul 21 06:05:50 EDT 2025 Tue Jul 01 04:18:49 EDT 2025 Thu Apr 24 22:52:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Xylan Malbranchea pulchella Cellulase Plant biomass Carbohydrate-active enzymes Wheat bran |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c834t-990e3913453cdd26cf4f2c140e189a7c7f7e6cd01c28a7b6e4461df77e2bcc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7096-9680 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13068-017-0956-0 |
PMID | 29158777 |
PQID | 1971337633 |
PQPubID | 55236 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_00e9451b3dfe42baba7bdccba2d577d2 swepub_primary_oai_research_chalmers_se_d379fd26_aee9_43c5_93b7_358b3b078fe3 swepub_primary_oai_portal_research_lu_se_publications_77c2e50d_7561_4c2b_84c6_6a838255d142 swepub_primary_oai_lup_lub_lu_se_77c2e50d_7561_4c2b_84c6_6a838255d142 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5683368 proquest_miscellaneous_2000617355 proquest_miscellaneous_1966999085 proquest_journals_1971337633 gale_infotracacademiconefile_A546070099 gale_incontextgauss_ISR_A546070099 pubmed_primary_29158777 crossref_primary_10_1186_s13068_017_0956_0 crossref_citationtrail_10_1186_s13068_017_0956_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-13 |
PublicationDateYYYYMMDD | 2017-11-13 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Biotechnology for biofuels |
PublicationTitleAlternate | Biotechnol Biofuels |
PublicationYear | 2017 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | F Cherubini (956_CR1) 2010; 51 R Maheshwari (956_CR60) 2000; 64 P Horton (956_CR40) 2007; 35 LF Ribeiro (956_CR24) 2014; 7 Z Zhao (956_CR10) 2013; 14 QJ Yan (956_CR21) 2015; 37 T Costaouëc Le (956_CR69) 2013; 143 PK Busk (956_CR16) 2013; 3 D Martinez (956_CR78) 2004; 22 S Anders (956_CR31) 2010; 11 J Sambrook (956_CR30) 2006 M Matsuo (956_CR23) 1985; 49 E Espagne (956_CR61) 2008; 9 A Marchler-Bauer (956_CR42) 2015; 43 I Morgenstern (956_CR17) 2012; 116 TJ Taylor (956_CR15) 2010; 10 JT Simpson (956_CR32) 2009; 19 C Mahajan (956_CR44) 2014; 163 Y Yin (956_CR41) 2012; 40 M Ha (956_CR68) 1997; 45 E Battaglia (956_CR48) 2011; 12 J Ao (956_CR53) 2017; 101 956_CR27 A Conesa (956_CR37) 2008 M Couturier (956_CR49) 2016 Y Miao (956_CR62) 2015; 16 C Peng (956_CR73) 2014; 77 956_CR29 G Buist (956_CR72) 2008; 68 D Martinez (956_CR80) 2009; 106 J Arnling Bååth (956_CR56) 2016; 590 L Viikari (956_CR14) 2007; 108 H Kawaguchi (956_CR2) 2016; 42 S Klaubauf (956_CR66) 2014; 72 G Fan (956_CR22) 2014; 70 A Levasseur (956_CR6) 2013; 6 L Väremo (956_CR38) 2013; 41 A Várnai (956_CR52) 2014; 88 B Esteve-Zarzoso (956_CR28) 1999; 49 G Liu (956_CR9) 2013; 31 WH Majoros (956_CR33) 2004; 20 PV Dubovskii (956_CR71) 2011; 411 TN Petersen (956_CR39) 2011; 8 S Gruber (956_CR54) 2011; 21 P Phitsuwan (956_CR3) 2013; 58 TR Gregory (956_CR45) 2007; 35 AP Singh (956_CR8) 2014; 62 ES Martens-Uzunova (956_CR50) 2009; 46 G Guerriero (956_CR4) 2016; 16 956_CR34 FA Simão (956_CR47) 2015; 31 N Szijártó (956_CR13) 2011; 4 956_CR77 956_CR7 956_CR36 956_CR79 PA Kroon (956_CR55) 1999; 434 B Singh (956_CR58) 2016; 7828 P Han (956_CR20) 2013; 170 G Liu (956_CR70) 2013; 52 956_CR75 956_CR81 956_CR82 S Yang (956_CR19) 2014; 41 L Stevenson (956_CR63) 2012; 63 X Duan (956_CR25) 2017; 10 S Ahirwar (956_CR18) 2016; 63 C Mahajan (956_CR26) 2016; 200 V Kumar (956_CR12) 2016; 32 E Kunitake (956_CR57) 2017; 63 M Prückler (956_CR64) 2014; 56 BL Cantarel (956_CR5) 2009; 37 A Bhalla (956_CR11) 2013; 128 A Várnai (956_CR51) 2013; 6 I Benoit (956_CR59) 2015 956_CR46 K Brunner (956_CR65) 2007; 52 J Sun (956_CR67) 2012; 11 RA Ohm (956_CR76) 2010; 28 956_CR43 CM Phillips (956_CR74) 2011; 6 AC Testa (956_CR35) 2015; 16 |
References_xml | – volume: 45 start-page: 117 year: 1997 ident: 956_CR68 publication-title: J Agric Food Chem doi: 10.1021/jf960311m – volume: 72 start-page: 73 year: 2014 ident: 956_CR66 publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2014.07.007 – volume: 16 start-page: 1 year: 2016 ident: 956_CR4 publication-title: Eng Life Sci doi: 10.1002/elsc.201400196 – volume: 52 start-page: 213 year: 2007 ident: 956_CR65 publication-title: Curr Genet doi: 10.1007/s00294-007-0154-x – ident: 956_CR34 – volume: 70 start-page: 482 year: 2014 ident: 956_CR22 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2014.07.025 – volume: 35 start-page: 585 year: 2007 ident: 956_CR40 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm259 – volume: 4 start-page: 2 year: 2011 ident: 956_CR13 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-4-2 – ident: 956_CR43 doi: 10.2307/3807754 – volume: 22 start-page: 695 year: 2004 ident: 956_CR78 publication-title: Nat Biotechnol doi: 10.1038/nbt967 – volume: 11 start-page: 482 year: 2012 ident: 956_CR67 publication-title: Eukaryot Cell doi: 10.1128/EC.05327-11 – year: 2015 ident: 956_CR59 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-015-0285-0 – volume: 42 start-page: 30 year: 2016 ident: 956_CR2 publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2016.02.031 – year: 2008 ident: 956_CR37 publication-title: Int J Plant Genomics doi: 10.1155/2008/619832 – volume: 43 start-page: D222 year: 2015 ident: 956_CR42 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1221 – volume: 108 start-page: 121 year: 2007 ident: 956_CR14 publication-title: Adv Biochem Eng Biotechnol – volume: 10 start-page: S5 issue: Suppl 1 year: 2010 ident: 956_CR15 publication-title: BMC Struct Biol doi: 10.1186/1472-6807-10-S1-S5 – volume: 8 start-page: 785 year: 2011 ident: 956_CR39 publication-title: Nat Methods doi: 10.1038/nmeth.1701 – ident: 956_CR77 – ident: 956_CR29 – volume: 143 start-page: 196 year: 2013 ident: 956_CR69 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2013.05.079 – volume: 163 start-page: 300 year: 2014 ident: 956_CR44 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.04.057 – volume: 101 start-page: 46 year: 2017 ident: 956_CR53 publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2017.03.002 – ident: 956_CR81 – year: 2006 ident: 956_CR30 publication-title: Cold Spring Harb Protoc doi: 10.1101/pdb.prot4455 – volume: 6 start-page: 30 year: 2013 ident: 956_CR51 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-6-30 – volume: 20 start-page: 2878 year: 2004 ident: 956_CR33 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth315 – volume: 41 start-page: 1487 year: 2014 ident: 956_CR19 publication-title: J Ind Microbiol Biotechnol doi: 10.1007/s10295-014-1494-4 – volume: 9 start-page: 77 year: 2008 ident: 956_CR61 publication-title: Genome Biol doi: 10.1186/gb-2008-9-5-r77 – volume: 63 start-page: 951 year: 2017 ident: 956_CR57 publication-title: Curr Genet doi: 10.1007/s00294-017-0695-6 – volume: 200 start-page: 55 year: 2016 ident: 956_CR26 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2015.09.113 – volume: 68 start-page: 838 year: 2008 ident: 956_CR72 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2008.06211.x – ident: 956_CR36 – volume: 116 start-page: 489 year: 2012 ident: 956_CR17 publication-title: Fungal Biol doi: 10.1016/j.funbio.2012.01.010 – volume: 11 start-page: R106 year: 2010 ident: 956_CR31 publication-title: Genome Biol doi: 10.1186/gb-2010-11-10-r106 – ident: 956_CR46 – volume: 77 start-page: 917 year: 2014 ident: 956_CR73 publication-title: Plant J. doi: 10.1111/tpj.12444 – volume: 58 start-page: 390 year: 2013 ident: 956_CR3 publication-title: Biomass Bioenerg doi: 10.1016/j.biombioe.2013.08.027 – volume: 49 start-page: 839 year: 1985 ident: 956_CR23 publication-title: Agric Biol Chem – volume: 46 start-page: S170 issue: Suppl 1 year: 2009 ident: 956_CR50 publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2008.07.021 – volume: 88 start-page: 103 year: 2014 ident: 956_CR52 publication-title: Adv Appl Microbiol doi: 10.1016/B978-0-12-800260-5.00004-8 – volume: 41 start-page: 4378 year: 2013 ident: 956_CR38 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt111 – volume: 35 start-page: 332 year: 2007 ident: 956_CR45 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl828 – volume: 21 start-page: 122 year: 2011 ident: 956_CR54 publication-title: Glycobiology doi: 10.1093/glycob/cwq142 – volume: 434 start-page: 428 year: 1999 ident: 956_CR55 publication-title: J Sci Food Agric doi: 10.1002/(SICI)1097-0010(19990301)79:3<428::AID-JSFA275>3.0.CO;2-J – volume: 14 start-page: 274 year: 2013 ident: 956_CR10 publication-title: BMC Genomics doi: 10.1186/1471-2164-14-274 – volume: 63 start-page: 1001 year: 2012 ident: 956_CR63 publication-title: Int J Food Sci Nutr doi: 10.3109/09637486.2012.687366 – volume: 56 start-page: 211 year: 2014 ident: 956_CR64 publication-title: LWT Food Sci. Technol doi: 10.1016/j.lwt.2013.12.004 – volume: 64 start-page: 461 year: 2000 ident: 956_CR60 publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.64.3.461-488.2000 – volume: 128 start-page: 751 year: 2013 ident: 956_CR11 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2012.10.145 – volume: 16 start-page: 459 year: 2015 ident: 956_CR62 publication-title: Genomics – volume: 37 start-page: 1279 year: 2015 ident: 956_CR21 publication-title: Biotechnol Lett doi: 10.1007/s10529-015-1798-0 – volume: 3 start-page: 47 year: 2013 ident: 956_CR16 publication-title: AMB Express doi: 10.1186/2191-0855-3-47 – volume: 6 start-page: 41 year: 2013 ident: 956_CR6 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-6-41 – volume: 19 start-page: 1117 year: 2009 ident: 956_CR32 publication-title: Genome Res doi: 10.1101/gr.089532.108 – volume: 37 start-page: D233 year: 2009 ident: 956_CR5 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn663 – volume: 31 start-page: 3210 year: 2015 ident: 956_CR47 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv351 – volume: 6 start-page: 1399 year: 2011 ident: 956_CR74 publication-title: ACS Chem Biol doi: 10.1021/cb200351y – volume: 12 start-page: 38 year: 2011 ident: 956_CR48 publication-title: BMC Genomics doi: 10.1186/1471-2164-12-38 – volume: 63 start-page: 1 year: 2016 ident: 956_CR18 publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2016.03.033 – ident: 956_CR7 – start-page: 133 volume-title: Green Fuels Technol year: 2016 ident: 956_CR49 doi: 10.1007/978-3-319-30205-8_6 – volume: 62 start-page: 198 year: 2014 ident: 956_CR8 publication-title: Biomass Bioenerg doi: 10.1016/j.biombioe.2013.12.013 – volume: 16 start-page: 170 year: 2015 ident: 956_CR35 publication-title: BMC Genomics doi: 10.1186/s12864-015-1344-4 – volume: 49 start-page: 329 year: 1999 ident: 956_CR28 publication-title: Int J Syst Bacteriol doi: 10.1099/00207713-49-1-329 – volume: 411 start-page: 14 year: 2011 ident: 956_CR71 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2011.06.058 – ident: 956_CR75 – ident: 956_CR27 – volume: 28 start-page: 957 year: 2010 ident: 956_CR76 publication-title: Nat Biotechnol doi: 10.1038/nbt.1643 – volume: 106 start-page: 1954 year: 2009 ident: 956_CR80 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0809575106 – volume: 51 start-page: 1412 year: 2010 ident: 956_CR1 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2010.01.015 – volume: 10 start-page: 223 year: 2017 ident: 956_CR25 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-017-0912-z – ident: 956_CR79 – volume: 40 start-page: 445 year: 2012 ident: 956_CR41 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks479 – volume: 32 start-page: 1 year: 2016 ident: 956_CR12 publication-title: World J Microbiol Biotechnol doi: 10.1007/s11274-015-1971-6 – volume: 170 start-page: 420 year: 2013 ident: 956_CR20 publication-title: Appl Biochem Biotechnol doi: 10.1007/s12010-013-0198-y – volume: 590 start-page: 2611 year: 2016 ident: 956_CR56 publication-title: FEBS Lett doi: 10.1002/1873-3468.12290 – volume: 7828 start-page: 1 year: 2016 ident: 956_CR58 publication-title: Crit Rev Microbiol – ident: 956_CR82 – volume: 31 start-page: 962 year: 2013 ident: 956_CR9 publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2013.03.001 – volume: 7 start-page: 115 year: 2014 ident: 956_CR24 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-7-115 – volume: 52 start-page: 190 year: 2013 ident: 956_CR70 publication-title: Enzyme Microb Technol doi: 10.1016/j.enzmictec.2012.12.009 |
SSID | ssj0061707 ssj0002769473 |
Score | 2.3241484 |
Snippet | Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The information... Most enzymes used today in biomass conversion are mesophilic, but higher process temperatures could enable faster reaction rates, lower viscosity, better cell... BACKGROUND: Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The... Background: Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal species. The... Abstract Background Genome and transcriptome sequencing has greatly facilitated the understanding of biomass-degrading mechanisms in a number of fungal... |
SourceID | doaj swepub pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 265 |
SubjectTerms | Bacteria, Thermophilic Biodegradation Biologi Biological Sciences Biomass biorefining Carbohydrate-active enzymes Carbohydrates Carbon Carbon sources Cell walls Cellular control mechanisms Cellulase Cellulose chitinase cutinase Deoxyribonucleic acid DNA Enzymes Fungi Gene expression gene expression regulation Gene sequencing genes Genetic aspects Genetics Genetics and Genomics Genetik Genetik och genomik Genomes Genotype glucose glycosides lignocellulases Lignocellulose Malbranchea Malbranchea cinnamomea Malbranchea pulchella Mass transfer Natural Sciences Naturvetenskap Neurospora crassa Plant biomass Polymers Properties protein secretion Rice Risk reduction saccharification Thermophilic fungi transcriptomics Wheat bran Xylan xylanases |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUZBASElLUxHZs51hQq4IoBwpSxcXyK91Ku9kV2RWCf8K_ZcZJow2Ux4FD9pCMJ4lnPA9n9htCnpUlPJ7URe4qV-fClrDmdKPyKhbcQzrWiNS15PidPPoo3pxWp1utvrAmrIcH7iduryhiLarS8dBEwZx1VrngvbMsVEqFZH3B510kU70NRpRxNXzDLLXc68BSSyzaUnkC3ismXiiB9f9qkrd80s_1khNU0eSJDm-Q60MISff7R79JrsT2Frm2BSx4m3yHZQ4pbwwUMVgXkdo20DW6pWQk8MxQQw3kdL2k5yPcRqQQEtLVHGac4q4-_WLhJyCmBLo5GttvX3F4QoCGcYkco8jFcoWbM56CqzzbdPTYzh127QBrT-E2rV3Abe0dcnJ48OHVUT40Yci95mKdg7eKHD_PV9yHwKRvRMM8pGWx1LVVXjUqSh-K0jMNopER8ssyNEpF5rznd8lOu2zjfUIj96xRIMpCMSEdRCaN10XtWbAa7IDLSHEhEuMHfHJskzE3KU_R0vRSNCBFg1I0RUZejENWPTjHn4hfopxHQsTVTidA28ygbeZv2paRp6glBpEzWizNObObrjOvT96b_UpIsJ8QcWfk-UDULOENvB3-6QDzgGBbE8rdC20zg-3oTFnjxgHYfZ6RJ-NlWPUodNvG5QZppITQHuLl39OwPj6FgDIj93oFHl-e1WWFSJAZURPVnszO9Ep7Pkvo45XUnEudkYN-EUyGzDcrOBwcpotGKc9iVQSjIEo3wjNntPDSSJC4hlw2lAJm9NMlfPrc0wyAV7OB32prJ_sfmb-9hPnI1c9Sj6IOeQeu6gb029gYayO4r0zNnTK80o47CKSbyB_8DxV6SK4yNERYSsp3yc768yY-gsB27R4nG_YD-Pym-Q priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXOCAeDdQkEFISEhRE9uxnRMqqFVBlAMFqeJi-ZW20jZZml0h-Cf8W2YSN3ShVByyh2TsxJ7xvOz9hpDnZQmfJ3WRu8rVubAlrDndqLyKBfcQjjViqFqy90HufhbvDqqDlHDr07HKM504KOrQecyRb5Y1hlOwGvir-dccq0bh7moqoXGVXEPoMpRqdaCmHAtTshaKp83MUsvNHlS2xNNbKh8Q-IoVczSg9v-tm88Zpz8PTq7Aiw4maecWuZl8Sbo1Mv82uRLbO-TGOYTBu-QnrHeIfWOgCMZ6EqltA12gfRq0Bd5Jh6mBnC46ejzhbkQKviGdz2DqKab36TcLPwHBJdDe0dj--I7NByhoaDeQozt50s0xS-Mp2MzDZU_37Mxh-Q5Q-xRe09oTeK29R_Z3tj-92c1TNYbcay4WOZityHGfvuI-BCZ9IxrmIT6Lpa6t8qpRUfpQlJ5pq5yMEGiWoVEqMuc9v0_W2q6N64RG7lmjBCgDxYR04KI0Xhe1Z8FqUAguI8UZS4xPQOVYL2NmhoBFSzNy0QAXDXLRFBl5OTWZjygdlxG_Rj5PhAiwPdzoTg9NWq-mKGINn-h4aKJgzjoYUvDeWRYqpQLLyDOUEoMQGi2e0Tm0y743b_c_mq1KSFCk4Hpn5EUiajoYgbfpLw8wD4i6tUK5cSZtJimR3vwW-Yw8nR7D8kem2zZ2S6SREnx8cJz_TcNGRxU8y4w8GAV4GjyrywohITOiVkR7ZXZWn7THRwMMeSU151JnZHtcBCtNZss5XA4u00ejlGexKoJR4K4b4ZkzWnhpJHBcQ1AbSgEz-uWCfsYg1CTkq6PU3_xcSvs_O39_QedTr_5oKFbUY9-Bq7oB-TY2xtoI7itTc6cMr7TjDjzqJvKHl7PrEbnOUMXgaVG-QdYWp8v4GHzXhXsyKKhfr8adVQ priority: 102 providerName: ProQuest |
Title | Combined genome and transcriptome sequencing to investigate the plant cell wall degrading enzyme system in the thermophilic fungus Malbranchea cinnamomea |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29158777 https://www.proquest.com/docview/1971337633 https://www.proquest.com/docview/1966999085 https://www.proquest.com/docview/2000617355 https://pubmed.ncbi.nlm.nih.gov/PMC5683368 https://lup.lub.lu.se/record/77c2e50d-7561-4c2b-84c6-6a838255d142 oai:portal.research.lu.se:publications/77c2e50d-7561-4c2b-84c6-6a838255d142 https://research.chalmers.se/publication/253382 https://doaj.org/article/00e9451b3dfe42baba7bdccba2d577d2 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfG9gIPiO8FRmUQEhJSILEdO3lAqEMbY2IT2pg08WL5K9ukLi1LKxj_Cf8td25arVDQHpJKyfmS-Hxftvs7Ql7kObyeLLPUFrZKhclB58papUXIuIN0rBaxasnevtw5ErvHxfEKmZW36jqwXZraYT2po4vB6x_fLt-Bwr-NCl_KNy3YYYlbslQaYfUgg18Dx6SwoMGemC8qIPR4rLWiCpHKkotukXMpiwU3FdH8_7bZV5zWnxsqF2BHo6vavkNudzEm7U8HxV2yEpp75NYV5MH75BfYAciJg6cI0noeqGk8HaPfilYEr3SbrIGcjof0bI7HESjEjHQ0AJFQnPan3w2cPIJOoB-kofl5ic0jRDS0i-QYZp4PRzh74yj40pNJS_fMwGJZD3AHFB7TmHN4rHlADre3vrzfSbsqDamDPhyn4M4Cx_X7gjvvmXS1qJmDvC3kZWWUU7UK0vksd6w0ysoACWjua6UCs87xh2S1GTZhndDAHauVACOhmJAWQpfalVnlmDclGAqbkGwmEu06AHOsozHQMZEppZ5KUYMUNUpRZwl5NW8ymqJ3_I94E-U8J0Tg7XhheHGiOz3WWRYqeEXLfR0Es8bCJ3nnrGG-UMqzhDzHUaIRWqPBvTsnZtK2-uPhge4XQoKBhZA8IS87onoIX-BM91cI6AdE41qg3JiNNj3TDZ1XOLMAjoEn5Nn8NpgFFLppwnCCNFJC7A8B9b9p2DSAhYgzIY-mA3j-8azKC4SKTIhaGNoLvbN4pzk7jfDkBegWl2VCtqZKsNBkMBnBYeHQbdBKORaKzGsFYbwWjlldCie1BImXkOz6XECPfl3CZ2oXdIeIddrxG12Z6r4m809LmM-5utNYxKhF3p6rqobxrU0IlRbcFbriVmlelJZbiLTrwB9fR_pPyE2Ghgb3kvINsjq-mISnENmObY_cUMcKzuX2hx5Z6_d3D3fhd3Nr__NBL84W9aJF-w1bEql5 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAAYNASEhRE9uxkwNCBVpa-jjQIlUcsPxKW2mbLM2uqvJP-A_8SGaS7NKFUnHpIXvYjJ3HjL-ZsZ1vCHmepnB7Mk9im9kiFiaFMZeXKs5Cwh2kY6Voq5ZsbsnVz-LjbrY7R35OvoXBbZUTTGyB2tcO58gX0wLTKRgN_M3wW4xVo3B1dVJCozOL9XByDClb83rtPej3BWMryzvvVuO-qkDsci5GMcBv4LjenHHnPZOuFCVzkGeENC-McqpUQTqfpI7lRlkZIGFKfalUYNY5Dr1eIpcFBz-O36WvfJjO6DAlC6F4v3Sa5nKxAQchca-Yilu-v2TG-bU1Av72BKdc4Z_bNGfITFsHuHKDXO8jV7rUmdpNMheqW-TaKT7D2-QHoAtk2sFTpH49DNRUno7QG7bYhP_0W7dBnI5qejBl-QgUIlE6HICiKS4m0GMDPx6pLNC70lB9P8HmLfE0tGvFMXg9rIc4J-QoeOi9cUM3zcBisRBwMhQuU5lDuKy5Q7YvQEt3yXxVV-E-oYE7VioB0KOYkBYCotLlSeGYNznAj41IMlGJdj0tOlbnGOg2Pcql7rSoQYsataiTiLyaNhl2nCDnCb9FPU8Fkc67_aM-2tM9OugkCQXcouW-DIJZY-GRvHPWMJ8p5VlEnqGVaCTsqHBH0J4ZN41e2_6klzIhAbYh0I_Iy16orOEJnOk_sID3gBxfM5ILE2vTPWQ1-vcAi8jT6WkAG1S6qUI9RhkpIaOAMP3fMqwLiyGOjci9zoCnD8-KNEMCyoioGdOeeTuzZ6qD_Zb0PJM55zKPyHI3CGaaDMZDOCwcuglaKcdClnitIDnQwjGrc-GklqDxHFJonwp4o1_O6KdLeXXPs7Xf9zc8NYH-n51vnNH5tFe335ZGarBvz1VRgn1rE0KhBXeZLrhVmme55Rbi9zLwB-er6wm5srqzuaE31rbWH5KrDOEG96nyBTI_OhqHRxA1j-zjFqwo-Xqx2PgLFlDZnQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+genome+and+transcriptome+sequencing+to+investigate+the+plant+cell+wall+degrading+enzyme+system+in+the+thermophilic+fungus+Malbranchea+cinnamomea&rft.jtitle=Biotechnology+for+biofuels&rft.au=Huttner%2C+Silvia&rft.au=Nguyen%2C+Thanh+Thuy&rft.au=Granchi%2C+Zoraide&rft.au=Chin-A-Woeng%2C+Thomas&rft.date=2017-11-13&rft.pub=BioMed+Central+Ltd&rft.issn=1754-6834&rft.eissn=1754-6834&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1186%2Fs13068-017-0956-0&rft.externalDBID=ISR&rft.externalDocID=A546070099 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-6834&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-6834&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-6834&client=summon |