Multiple Mechanisms Promote the Retained Expression of Gene Duplicates in the Tetraploid Frog Xenopus laevis
Gene duplication provides a window of opportunity for biological variants to persist under the protection of a co-expressed copy with similar or redundant function. Duplication catalyzes innovation (neofunctionalization), subfunction degeneration (subfunctionalization), and genetic buffering (redund...
Saved in:
Published in | PLoS genetics Vol. 2; no. 4; p. e56 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.04.2006
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gene duplication provides a window of opportunity for biological variants to persist under the protection of a co-expressed copy with similar or redundant function. Duplication catalyzes innovation (neofunctionalization), subfunction degeneration (subfunctionalization), and genetic buffering (redundancy), and the genetic survival of each paralog is triggered by mechanisms that add, compromise, or do not alter protein function. We tested the applicability of three types of mechanisms for promoting the retained expression of duplicated genes in 290 expressed paralogs of the tetraploid clawed frog, Xenopus laevis. Tests were based on explicit expectations concerning the ka/ks ratio, and the number and location of nonsynonymous substitutions after duplication. Functional constraints on the majority of paralogs are not significantly different from a singleton ortholog. However, we recover strong support that some of them have an asymmetric rate of nonsynonymous substitution: 6% match predictions of the neofunctionalization hypothesis in that (1) each paralog accumulated nonsynonymous substitutions at a significantly different rate and (2) the one that evolves faster has a higher ka/ks ratio than the other paralog and than a singleton ortholog. Fewer paralogs (3%) exhibit a complementary pattern of substitution at the protein level that is predicted by enhancement or degradation of different functional domains, and the remaining 13% have a higher average ka/ks ratio in both paralogs that is consistent with altered functional constraints, diversifying selection, or activity-reducing mutations after duplication. We estimate that these paralogs have been retained since they originated by genome duplication between 21 and 41 million years ago. Multiple mechanisms operate to promote the retained expression of duplicates in the same genome, in genes in the same functional class, over the same period of time following duplication, and sometimes in the same pair of paralogs. None of these paralogs are superfluous; degradation or enhancement of different protein subfunctions and neofunctionalization are plausible hypotheses for the retained expression of some of them. Evolution of most X. laevis paralogs, however, is consistent with retained expression via mechanisms that do not radically alter functional constraints, such as selection to preserve post-duplication stoichiometry or temporal, quantitative, or spatial subfunctionalization. |
---|---|
AbstractList | Gene duplication provides a window of opportunity for biological variants to persist under the protection of a co-expressed copy with similar or redundant function. Duplication catalyzes innovation (neofunctionalization), subfunction degeneration (subfunctionalization), and genetic buffering (redundancy), and the genetic survival of each paralog is triggered by mechanisms that add, compromise, or do not alter protein function. We tested the applicability of three types of mechanisms for promoting the retained expression of duplicated genes in 290 expressed paralogs of the tetraploid clawed frog, Xenopus laevis. Tests were based on explicit expectations concerning the ka/ks ratio, and the number and location of nonsynonymous substitutions after duplication. Functional constraints on the majority of paralogs are not significantly different from a singleton ortholog. However, we recover strong support that some of them have an asymmetric rate of nonsynonymous substitution: 6% match predictions of the neofunctionalization hypothesis in that (1) each paralog accumulated nonsynonymous substitutions at a significantly different rate and (2) the one that evolves faster has a higher ka/ks ratio than the other paralog and than a singleton ortholog. Fewer paralogs (3%) exhibit a complementary pattern of substitution at the protein level that is predicted by enhancement or degradation of different functional domains, and the remaining 13% have a higher average ka/ks ratio in both paralogs that is consistent with altered functional constraints, diversifying selection, or activity-reducing mutations after duplication. We estimate that these paralogs have been retained since they originated by genome duplication between 21 and 41 million years ago. Multiple mechanisms operate to promote the retained expression of duplicates in the same genome, in genes in the same functional class, over the same period of time following duplication, and sometimes in the same pair of paralogs. None of these paralogs are superfluous; degradation or enhancement of different protein subfunctions and neofunctionalization are plausible hypotheses for the retained expression of some of them. Evolution of most X. laevis paralogs, however, is consistent with retained expression via mechanisms that do not radically alter functional constraints, such as selection to preserve post-duplication stoichiometry or temporal, quantitative, or spatial subfunctionalization. Gene duplication provides a window of opportunity for biological variants to persist under the protection of a co-expressed copy with similar or redundant function. Duplication catalyzes innovation (neofunctionalization), subfunction degeneration (subfunctionalization), and genetic buffering (redundancy), and the genetic survival of each paralog is triggered by mechanisms that add, compromise, or do not alter protein function. We tested the applicability of three types of mechanisms for promoting the retained expression of duplicated genes in 290 expressed paralogs of the tetraploid clawed frog, Xenopus laevis . Tests were based on explicit expectations concerning the ka/ks ratio, and the number and location of nonsynonymous substitutions after duplication. Functional constraints on the majority of paralogs are not significantly different from a singleton ortholog. However, we recover strong support that some of them have an asymmetric rate of nonsynonymous substitution: 6% match predictions of the neofunctionalization hypothesis in that (1) each paralog accumulated nonsynonymous substitutions at a significantly different rate and (2) the one that evolves faster has a higher ka/ks ratio than the other paralog and than a singleton ortholog. Fewer paralogs (3%) exhibit a complementary pattern of substitution at the protein level that is predicted by enhancement or degradation of different functional domains, and the remaining 13% have a higher average ka/ks ratio in both paralogs that is consistent with altered functional constraints, diversifying selection, or activity-reducing mutations after duplication. We estimate that these paralogs have been retained since they originated by genome duplication between 21 and 41 million years ago. Multiple mechanisms operate to promote the retained expression of duplicates in the same genome, in genes in the same functional class, over the same period of time following duplication, and sometimes in the same pair of paralogs. None of these paralogs are superfluous; degradation or enhancement of different protein subfunctions and neofunctionalization are plausible hypotheses for the retained expression of some of them. Evolution of most X. laevis paralogs, however, is consistent with retained expression via mechanisms that do not radically alter functional constraints, such as selection to preserve post-duplication stoichiometry or temporal, quantitative, or spatial subfunctionalization. Gene duplication plays a fundamental role in biological innovation but it is not clear how both copies of a duplicated gene manage to circumvent degradation by mutation if neither is unique. This study explores genetic mechanisms that could make each copy of a duplicate gene different, and therefore distinguishable and potentially preserved by natural selection. It is based on DNA sequences of the protein-coding region of 290 expressed duplicated genes in a frog, Xenopus laevis, that underwent complete duplication of its entire genome. Results provide evidence for multiple mechanisms acting within the same genome, within the same functional classes of genes, within the same period of time following duplication, and even on the same set of duplicated genes. Each copy of a duplicate gene may be subject to distinct evolutionary constraints, and this could be associated with degradation or enhancement of function. Functional constraints of most of these duplicates, however, are not substantially different from a single copy gene; their persistence in the first dozens of millions of years after duplication may more frequently be explained by mechanisms acting on their expression rather than their function. Gene duplication provides a window of opportunity for biological variants to persist under the protection of a co-expressed copy with similar or redundant function. Duplication catalyzes innovation (neofunctionalization), subfunction degeneration (subfunctionalization), and genetic buffering (redundancy), and the genetic survival of each paralog is triggered by mechanisms that add, compromise, or do not alter protein function. We tested the applicability of three types of mechanisms for promoting the retained expression of duplicated genes in 290 expressed paralogs of the tetraploid clawed frog, Xenopus laevis. Tests were based on explicit expectations concerning the ka/ks ratio, and the number and location of nonsynonymous substitutions after duplication. Functional constraints on the majority of paralogs are not significantly different from a singleton ortholog. However, we recover strong support that some of them have an asymmetric rate of nonsynonymous substitution: 6% match predictions of the neofunctionalization hypothesis in that (1) each paralog accumulated nonsynonymous substitutions at a significantly different rate and (2) the one that evolves faster has a higher ka/ks ratio than the other paralog and than a singleton ortholog. Fewer paralogs (3%) exhibit a complementary pattern of substitution at the protein level that is predicted by enhancement or degradation of different functional domains, and the remaining 13% have a higher average ka/ks ratio in both paralogs that is consistent with altered functional constraints, diversifying selection, or activity-reducing mutations after duplication. We estimate that these paralogs have been retained since they originated by genome duplication between 21 and 41 million years ago. Multiple mechanisms operate to promote the retained expression of duplicates in the same genome, in genes in the same functional class, over the same period of time following duplication, and sometimes in the same pair of paralogs. None of these paralogs are superfluous; degradation or enhancement of different protein subfunctions and neofunctionalization are plausible hypotheses for the retained expression of some of them. Evolution of most X. laevis paralogs, however, is consistent with retained expression via mechanisms that do not radically alter functional constraints, such as selection to preserve post-duplication stoichiometry or temporal, quantitative, or spatial subfunctionalization.Gene duplication provides a window of opportunity for biological variants to persist under the protection of a co-expressed copy with similar or redundant function. Duplication catalyzes innovation (neofunctionalization), subfunction degeneration (subfunctionalization), and genetic buffering (redundancy), and the genetic survival of each paralog is triggered by mechanisms that add, compromise, or do not alter protein function. We tested the applicability of three types of mechanisms for promoting the retained expression of duplicated genes in 290 expressed paralogs of the tetraploid clawed frog, Xenopus laevis. Tests were based on explicit expectations concerning the ka/ks ratio, and the number and location of nonsynonymous substitutions after duplication. Functional constraints on the majority of paralogs are not significantly different from a singleton ortholog. However, we recover strong support that some of them have an asymmetric rate of nonsynonymous substitution: 6% match predictions of the neofunctionalization hypothesis in that (1) each paralog accumulated nonsynonymous substitutions at a significantly different rate and (2) the one that evolves faster has a higher ka/ks ratio than the other paralog and than a singleton ortholog. Fewer paralogs (3%) exhibit a complementary pattern of substitution at the protein level that is predicted by enhancement or degradation of different functional domains, and the remaining 13% have a higher average ka/ks ratio in both paralogs that is consistent with altered functional constraints, diversifying selection, or activity-reducing mutations after duplication. We estimate that these paralogs have been retained since they originated by genome duplication between 21 and 41 million years ago. Multiple mechanisms operate to promote the retained expression of duplicates in the same genome, in genes in the same functional class, over the same period of time following duplication, and sometimes in the same pair of paralogs. None of these paralogs are superfluous; degradation or enhancement of different protein subfunctions and neofunctionalization are plausible hypotheses for the retained expression of some of them. Evolution of most X. laevis paralogs, however, is consistent with retained expression via mechanisms that do not radically alter functional constraints, such as selection to preserve post-duplication stoichiometry or temporal, quantitative, or spatial subfunctionalization. Gene duplication provides a window of opportunity for biological variants to persist under the protection of a co-expressed copy with similar or redundant function. Duplication catalyzes innovation (neofunctionalization), subfunction degeneration (subfunctionalization), and genetic buffering (redundancy), and the genetic survival of each paralog is triggered by mechanisms that add, compromise, or do not alter protein function. We tested the applicability of three types of mechanisms for promoting the retained expression of duplicated genes in 290 expressed paralogs of the tetraploid clawed frog, Xenopus laevis. Tests were based on explicit expectations concerning the ka/ks ratio, and the number and location of nonsynonymous substitutions after duplication. Functional constraints on the majority of paralogs are not significantly different from a singleton ortholog. However, we recover strong support that some of them have an asymmetric rate of nonsynonymous substitution: 6% match predictions of the neofunctionalization hypothesis in that (1) each paralog accumulated nonsynonymous substitutions at a significantly different rate and (2) the one that evolves faster has a higher ka/ks ratio than the other paralog and than a singleton ortholog. Fewer paralogs (3%) exhibit a complementary pattern of substitution at the protein level that is predicted by enhancement or degradation of different functional domains, and the remaining 13% have a higher average ka/ks ratio in both paralogs that is consistent with altered functional constraints, diversifying selection, or activity-reducing mutations after duplication. We estimate that these paralogs have been retained since they originated by genome duplication between 21 and 41 million years ago. Multiple mechanisms operate to promote the retained expression of duplicates in the same genome, in genes in the same functional class, over the same period of time following duplication, and sometimes in the same pair of paralogs. None of these paralogs are superfluous; degradation or enhancement of different protein subfunctions and neofunctionalization are plausible hypotheses for the retained expression of some of them. Evolution of most X. laevis paralogs, however, is consistent with retained expression via mechanisms that do not radically alter functional constraints, such as selection to preserve post-duplication stoichiometry or temporal, quantitative, or spatial subfunctionalization. |
Audience | Academic |
Author | Chain, Frédéric J. J Evans, Ben J |
AuthorAffiliation | Center for Environmental Genomics, Department of Biology, McMaster University, Hamilton, Ontario, Canada Fred Hutchinson Cancer Research Center, United States of America |
AuthorAffiliation_xml | – name: Fred Hutchinson Cancer Research Center, United States of America – name: Center for Environmental Genomics, Department of Biology, McMaster University, Hamilton, Ontario, Canada |
Author_xml | – sequence: 1 givenname: Frédéric J. J surname: Chain fullname: Chain, Frédéric J. J – sequence: 2 givenname: Ben J surname: Evans fullname: Evans, Ben J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16683033$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk11v0zAUhiM0xD7gHyCIhDSJixY7dmJnF0jT2EaljaExEHeW4xy3nlw7xM40_j3u2k3thPhQLhzZz_vGec85u9mW8w6y7CVGY0wYfnfth95JO-6m4MYIFQiV1ZNsB5clGTGK6Nba-3a2G8I1QqTkNXuWbeOq4gQRspPZ88FG01nIz0HNpDNhHvLPvZ_7CHmcQX4JURoHbX582_UQgvEu9zo_BQf5h6GzRskIITfujr6C2MvOetPmJ72f5t_B-W4IuZVwY8Lz7KmWNsCL1bqXfT05vjr6ODq7OJ0cHZ6NFC-qOGo50aqo6wq3JZeAqFao1U3NEKdSU9aykrWlahiTGBqsWVHKomkpV5UGDSXZy14vfdNNglgFFQQmmFCOal4lYrIkWi-vRdebuex_Ci-NuNvw_VTIPhplQXBCCKqrBqfoKC2LBoqm0FwxijWivE5e71dfG5o5tApcysBumG6eODMTU38jMKV1Mk0G-yuD3v8YIEQxN0GBtdKBH4KoWF0WOFXvbyBmRVEiTBP45hH4-xDGS2oq038ap326nkpPC3OjUrdpk_YPMa1qVlDMk-DthiAxEW7jVA4hiMmXy_9gP_07e_Ftk91fY2cgbZwFb4eYGjNsgq_Wy_JQj_veT8DBElC9D6EHLZSJcuGTYjBWYCQWg3YfnVgMmlgNWhLTR-IH_z_JfgHRiCyZ |
CitedBy_id | crossref_primary_10_1186_1471_2148_8_43 crossref_primary_10_1093_gbe_evv091 crossref_primary_10_1159_000431108 crossref_primary_10_1186_1471_2148_10_116 crossref_primary_10_1098_rstb_2020_0164 crossref_primary_10_1016_j_ydbio_2016_03_005 crossref_primary_10_1038_nrg2600 crossref_primary_10_1159_000433481 crossref_primary_10_1186_1471_2164_12_599 crossref_primary_10_1016_j_cbd_2011_03_003 crossref_primary_10_1186_1741_7007_5_31 crossref_primary_10_4161_rna_9_1_18387 crossref_primary_10_1016_j_gde_2007_09_007 crossref_primary_10_3389_fevo_2021_703163 crossref_primary_10_1186_1471_213X_10_100 crossref_primary_10_1371_journal_pone_0000781 crossref_primary_10_1016_j_peptides_2013_04_008 crossref_primary_10_1093_molbev_msp039 crossref_primary_10_1093_toxsci_kfw212 crossref_primary_10_1007_s00239_011_9463_2 crossref_primary_10_1038_nrg2482 crossref_primary_10_1073_pnas_0708705105 crossref_primary_10_1093_sysbio_sys039 crossref_primary_10_1038_hdy_2015_3 crossref_primary_10_1111_jeb_13391 crossref_primary_10_1159_000437176 crossref_primary_10_1007_s11626_015_9912_0 crossref_primary_10_1093_molbev_msn097 crossref_primary_10_1371_journal_pgen_1010990 crossref_primary_10_1016_j_biotechadv_2009_01_012 crossref_primary_10_1534_g3_112_003624 crossref_primary_10_1016_j_gene_2022_146495 crossref_primary_10_1111_mec_13076 crossref_primary_10_1016_j_margen_2008_06_002 crossref_primary_10_1021_pr300379m crossref_primary_10_1016_j_ydbio_2017_03_021 crossref_primary_10_1093_gbe_evab149 crossref_primary_10_1155_2012_292068 crossref_primary_10_1038_hdy_2013_65 crossref_primary_10_1111_j_1558_5646_2010_01163_x crossref_primary_10_1371_journal_pone_0003279 crossref_primary_10_1016_j_ydbio_2019_03_015 crossref_primary_10_1159_000351998 crossref_primary_10_1371_journal_pone_0180936 crossref_primary_10_1534_genetics_106_069690 crossref_primary_10_1146_annurev_arplant_043008_092122 crossref_primary_10_4161_org_3_2_4945 crossref_primary_10_1007_s00239_009_9197_6 crossref_primary_10_1016_j_copbio_2007_07_003 crossref_primary_10_1371_journal_pone_0024989 crossref_primary_10_1002_dvg_22007 crossref_primary_10_1016_j_dci_2015_07_002 crossref_primary_10_1093_molbev_msu145 crossref_primary_10_1016_j_peptides_2010_03_002 |
Cites_doi | 10.1086/280465 10.1093/oxfordjournals.molbev.a003849 10.1093/genetics/151.4.1531 10.1093/molbev/msi104 10.1080/106351500750049752 10.1101/gr.3992505 10.1098/rstb.2001.0975 10.1007/BF02102652 10.1126/science.1089370 10.1016/j.tig.2005.08.006 10.1073/pnas.91.8.2950 10.1105/tpc.12.7.1093 10.1105/tpc.021410 10.1023/A:1006392424384 10.1038/265258a0 10.1016/S0959-437X(96)80026-8 10.1016/S0016-6480(03)00148-5 10.1186/1471-2148-4-22 10.1073/pnas.96.12.6820 10.1038/ng852 10.1242/dev.114.3.711 10.1093/oxfordjournals.molbev.a003835 10.1007/s00239-002-2446-6 10.1098/rspb.1994.0058 10.1186/gb-2003-4-9-r56 10.1071/BT00023 10.1128/MCB.14.4.2786 10.1093/genetics/165.4.1793 10.1007/s002390010233 10.1038/nature02053 10.1093/genetics/154.1.459 10.1146/annurev.mi.30.100176.002205 10.1093/oso/9780198549741.003.0021 10.1016/j.ympev.2004.04.018 10.1016/S0168-9525(03)00015-5 10.1007/978-3-642-86659-3 10.1093/bioinformatics/14.9.817 10.1093/bioinformatics/btg114 10.1016/S0168-9525(01)02318-6 10.1126/science.290.5494.1151 10.1093/genetics/153.1.485 10.1038/ng1355 10.1073/pnas.0510388103 10.1038/40618 10.1126/science.1072047 10.1073/pnas.95.7.3708 10.1101/SQB.1987.052.01.096 10.1186/1471-2148-5-28 10.1017/S0022336000016966 10.1016/B978-0-12-297880-7.50016-0 10.1016/S0959-437X(00)00247-1 10.1007/BF01732026 10.1126/science.252.5009.1078 10.1101/gr.1257503 10.1016/j.tig.2005.08.008 10.1038/244259a0 10.1016/j.tig.2004.09.001 10.1101/gr.270902 10.1093/genetics/139.1.421 10.1016/S0168-9525(97)01367-X 10.1016/j.tig.2005.07.008 10.1093/oxfordjournals.molbev.a025957 10.1093/genetics/143.1.589 10.1093/genetics/147.3.1259 10.1016/S0169-5347(99)01638-9 10.1111/j.1420-9101.1999.00008.x 10.1073/pnas.76.9.4521 10.1007/PL00006540 10.1073/pnas.95.8.4447 10.1093/molbev/msi232 10.1093/genetics/95.1.237 10.1126/science.293.5535.1551a 10.1126/science.65013 10.1126/science.282.5394.1711 10.1007/BF02115578 10.1073/pnas.90.17.7980 10.1093/oxfordjournals.molbev.a026239 10.1146/annurev.genom.4.020303.162528 10.1093/oxfordjournals.molbev.a025932 10.1016/S1055-7903(03)00213-6 10.1093/genetics/154.3.1389 10.1038/377049a0 10.1111/j.1432-1033.1993.tb17622.x 10.1101/gr.1597404 10.1186/gb-2002-3-2-research0008 10.1093/genetics/158.2.927 10.1534/genetics.104.028944 10.1111/j.1558-5646.1989.tb04220.x 10.1006/cres.1999.0195 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2006 Public Library of Science 2006 Chain and Evans. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Chain FJJ, Evans BJ (2006) Multiple Mechanisms Promote the Retained Expression of Gene Duplicates in the Tetraploid Frog Xenopus laevis. PLoS Genet 2(4): e56. doi:10.1371/journal.pgen.0020056 2006 Chain and Evans. 2006 |
Copyright_xml | – notice: COPYRIGHT 2006 Public Library of Science – notice: 2006 Chain and Evans. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Chain FJJ, Evans BJ (2006) Multiple Mechanisms Promote the Retained Expression of Gene Duplicates in the Tetraploid Frog Xenopus laevis. PLoS Genet 2(4): e56. doi:10.1371/journal.pgen.0020056 – notice: 2006 Chain and Evans. 2006 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 3V. 7QP 7QR 7SS 7TK 7TM 7TO 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pgen.0020056 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Duplicate Gene Evolution in X. laevis |
EISSN | 1553-7404 |
ExternalDocumentID | 1313480986 oai_doaj_org_article_8333096b18974452be2b2f8c741f0489 PMC1449897 2904744071 A146972418 16683033 10_1371_journal_pgen_0020056 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV IPNFZ ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO QN7 RIG RNS RPM SV3 TR2 TUS UKHRP WOQ WOW XSB ~8M 3V. CGR CUY CVF ECM EIF M~E NPM PV9 QF4 RZL PMFND 7QP 7QR 7SS 7TK 7TM 7TO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO AAPBV ABPTK |
ID | FETCH-LOGICAL-c826t-d83fc29961d58ae04fc0dfb97084af47d757d5cb77a1eb1f725a2bd48c6fefe53 |
IEDL.DBID | M48 |
ISSN | 1553-7404 1553-7390 |
IngestDate | Sun Oct 01 00:20:33 EDT 2023 Wed Aug 27 01:31:43 EDT 2025 Thu Aug 21 17:17:06 EDT 2025 Thu Aug 07 14:05:12 EDT 2025 Fri Jul 11 03:12:35 EDT 2025 Fri Jul 25 12:08:06 EDT 2025 Tue Jun 10 21:29:57 EDT 2025 Fri Jun 27 03:40:45 EDT 2025 Fri Jun 27 05:12:04 EDT 2025 Fri Jun 27 03:48:37 EDT 2025 Thu May 22 21:17:28 EDT 2025 Wed Feb 19 02:33:34 EST 2025 Thu Apr 24 22:49:08 EDT 2025 Tue Jul 01 01:09:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c826t-d83fc29961d58ae04fc0dfb97084af47d757d5cb77a1eb1f725a2bd48c6fefe53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1313480986?pq-origsite=%requestingapplication% |
PMID | 16683033 |
PQID | 1313480986 |
PQPubID | 1436339 |
PageCount | 478 |
ParticipantIDs | plos_journals_1313480986 doaj_primary_oai_doaj_org_article_8333096b18974452be2b2f8c741f0489 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1449897 proquest_miscellaneous_67952100 proquest_miscellaneous_17225014 proquest_journals_1313480986 gale_infotracacademiconefile_A146972418 gale_incontextgauss_ISR_A146972418 gale_incontextgauss_ISN_A146972418 gale_incontextgauss_IOV_A146972418 gale_healthsolutions_A146972418 pubmed_primary_16683033 crossref_citationtrail_10_1371_journal_pgen_0020056 crossref_primary_10_1371_journal_pgen_0020056 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-04-01 |
PublicationDateYYYYMMDD | 2006-04-01 |
PublicationDate_xml | – month: 04 year: 2006 text: 2006-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2006 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | (pgen-0020056-b073) 2006; 103 (pgen-0020056-b078) 2003; 133 (pgen-0020056-b095) 2002; 19 (pgen-0020056-b109) 1991; 252 (pgen-0020056-b061) 2005; 21 (pgen-0020056-b097) 2000; 21 (pgen-0020056-b063) 1993; 90 (pgen-0020056-b004) 2002; 297 pgen-0020056-b071 (pgen-0020056-b113) 2000; 154 (pgen-0020056-b020) 2002; 12 (pgen-0020056-b084) 2000; 49 (pgen-0020056-b015) 2003; 19 (pgen-0020056-b099) 1995; 377 (pgen-0020056-b070) 1999; 96 (pgen-0020056-b108) 1987; 85 (pgen-0020056-b058) 2004; 4 (pgen-0020056-b059) 1998; 95 (pgen-0020056-b094) 1997; 19 (pgen-0020056-b101) 1979; 12 (pgen-0020056-b006) 2003; 291 (pgen-0020056-b011) 1933; 67 (pgen-0020056-b033) 2001; 158 (pgen-0020056-b038) 2003; 4 pgen-0020056-b057 (pgen-0020056-b049) 1977; 195 (pgen-0020056-b077) 2005; 15 (pgen-0020056-b018) 2001; 18 (pgen-0020056-b065) 1998; 282 (pgen-0020056-b009) 2005; 21 (pgen-0020056-b092) 1996; 143 (pgen-0020056-b021) 2004; 14 (pgen-0020056-b075) 1998; 14 (pgen-0020056-b096) 2001; 75 (pgen-0020056-b034) 2004; 168 pgen-0020056-b044 (pgen-0020056-b082) 1998; 14 (pgen-0020056-b104) 1980; 95 (pgen-0020056-b022) 2001; 293 (pgen-0020056-b100) 1994; 91 (pgen-0020056-b111) 1996; 6 (pgen-0020056-b090) 2004; 2 (pgen-0020056-b079) 1992; 114 (pgen-0020056-b026) 2005; 22 (pgen-0020056-b106) 2003; 302 (pgen-0020056-b040) 1989; 43 (pgen-0020056-b048) 2004; 33 (pgen-0020056-b091) 1937; 100 (pgen-0020056-b086) 1997; 13 (pgen-0020056-b030) 2003; 13 (pgen-0020056-b053) 1999; 12 (pgen-0020056-b002) 2000; 154 (pgen-0020056-b069) 1998; 95 (pgen-0020056-b067) 2003; 4 (pgen-0020056-b098) 2001; 49 (pgen-0020056-b051) 1995; 139 (pgen-0020056-b019) 2002; 3 (pgen-0020056-b035) 2005; 104 (pgen-0020056-b023) 1990; 7 (pgen-0020056-b064) 1997; 147 pgen-0020056-b036 (pgen-0020056-b085) 1998; 15 (pgen-0020056-b031) 2004; 22 (pgen-0020056-b068) 2004; 16 (pgen-0020056-b112) 1979; 76 (pgen-0020056-b102) 1987; 52 (pgen-0020056-b043) 2001; 18 (pgen-0020056-b105) 1982; 6 (pgen-0020056-b032) 2000; 17 (pgen-0020056-b087) 2003; 425 (pgen-0020056-b062) 1977; 265 (pgen-0020056-b046) 2004; 20 (pgen-0020056-b005) 2005; 21 pgen-0020056-b024 (pgen-0020056-b008) 2004; 36 (pgen-0020056-b050) 1986; 23 pgen-0020056-b025 (pgen-0020056-b055) 2000; 12 pgen-0020056-b028 (pgen-0020056-b013) 1999; 14 (pgen-0020056-b107) 1973; 244 (pgen-0020056-b072) 2002; 30 (pgen-0020056-b056) 2005; 21 (pgen-0020056-b074) 2005; 5 pgen-0020056-b012 (pgen-0020056-b003) 2001; 17 (pgen-0020056-b010) 2000; 42 (pgen-0020056-b093) 1999; 153 (pgen-0020056-b042) 1994; 256 (pgen-0020056-b016) 1993; 10 (pgen-0020056-b014) 2003; 29 (pgen-0020056-b047) 2003; 19 (pgen-0020056-b037) 2001; 11 (pgen-0020056-b041) 1993; 211 (pgen-0020056-b103) 1976; 30 (pgen-0020056-b054) 2003; 165 (pgen-0020056-b110) 2003; 56 (pgen-0020056-b052) 1997; 388 (pgen-0020056-b060) 1999; 49 (pgen-0020056-b088) 1988; 5 pgen-0020056-b089 (pgen-0020056-b076) 1998; 15 pgen-0020056-b083 (pgen-0020056-b080) 1994; 14 (pgen-0020056-b029) 1991; 32 (pgen-0020056-b039) 2003; 4 (pgen-0020056-b007) 2005; 3 (pgen-0020056-b066) 2001; 53 Force A, Lynch M, Pickett B, Amores A, Yan YL et al. (pgen-0020056-b017) 1999; 151 (pgen-0020056-b001) 2000; 290 (pgen-0020056-b045) 2005; 22 pgen-0020056-b081 (pgen-0020056-b027) 2001; 356 |
References_xml | – volume: 67 start-page: 5 year: 1933 ident: pgen-0020056-b011 article-title: The part played by recurrent mutation in evolution. publication-title: Am Nat doi: 10.1086/280465 – volume: 104 start-page: 14338 year: 2005 ident: pgen-0020056-b035 article-title: Why highly expressed proteins evolve slowly. publication-title: Proc Natl Acad Sci U S A – volume: 18 start-page: 681 year: 2001 ident: pgen-0020056-b018 article-title: Evolutionary rates of duplicate genes in fish and mammals. publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a003849 – volume: 151 start-page: 1531 year: 1999 ident: pgen-0020056-b017 article-title: Preservation of duplicate genes by complementary, degenerative mutations. publication-title: Genetics doi: 10.1093/genetics/151.4.1531 – volume: 22 start-page: 1193 year: 2005 ident: pgen-0020056-b026 article-title: Evolution of RAG-1 in polyploid clawed frogs. publication-title: Mol Biol Evol doi: 10.1093/molbev/msi104 – ident: pgen-0020056-b057 – volume: 49 start-page: 652 year: 2000 ident: pgen-0020056-b084 article-title: Likelihood-based tests of topologies in phylogenetics. publication-title: Syst Biol doi: 10.1080/106351500750049752 – volume: 15 start-page: 1421 year: 2005 ident: pgen-0020056-b077 article-title: Metabolic functions of duplicate genes in Saccharomyces cerevisiae. publication-title: Genome Res doi: 10.1101/gr.3992505 – volume: 356 start-page: 1661 year: 2001 ident: pgen-0020056-b027 article-title: Comparative genomics provides evidence for an ancient genome duplication event in fish. publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2001.0975 – volume: 32 start-page: 504 year: 1991 ident: pgen-0020056-b029 article-title: Correlations between the compositional properties of human genes, codon usage, and amino acid composition of proteins. publication-title: J Mol Evol doi: 10.1007/BF02102652 – volume: 302 start-page: 1401 year: 2003 ident: pgen-0020056-b106 article-title: The origins of genome complexity. publication-title: Science doi: 10.1126/science.1089370 – volume: 5 start-page: 704 year: 1988 ident: pgen-0020056-b088 article-title: “Silent” sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. publication-title: Mol Biol Evol – volume: 21 start-page: 602 year: 2005 ident: pgen-0020056-b009 article-title: Expression divergence between duplicate genes. publication-title: Trends Genet doi: 10.1016/j.tig.2005.08.006 – ident: pgen-0020056-b083 – volume: 91 start-page: 2950 year: 1994 ident: pgen-0020056-b100 article-title: Invasion and maintenance of a gene duplication. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.91.8.2950 – volume: 12 start-page: 1093 year: 2000 ident: pgen-0020056-b055 article-title: Extensive duplication and reshuffling in the Arabadopsis genome. publication-title: Plant Cell doi: 10.1105/tpc.12.7.1093 – volume: 16 start-page: 1679 year: 2004 ident: pgen-0020056-b068 article-title: Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. publication-title: Plant Cell doi: 10.1105/tpc.021410 – ident: pgen-0020056-b089 – volume: 42 start-page: 225 year: 2000 ident: pgen-0020056-b010 article-title: Genome evolution in polyploids. publication-title: Plant Mol Biol doi: 10.1023/A:1006392424384 – volume: 265 start-page: 258 year: 1977 ident: pgen-0020056-b062 article-title: Loss of duplicate gene expression after polyploidization. publication-title: Nature doi: 10.1038/265258a0 – volume: 6 start-page: 715 year: 1996 ident: pgen-0020056-b111 article-title: Gen(om)e duplications in the evolution of early vertebrates. publication-title: Curr Opin Genet Dev doi: 10.1016/S0959-437X(96)80026-8 – volume: 4 start-page: 2052 year: 2003 ident: pgen-0020056-b067 article-title: Asymmetric sequence divergence of duplicate genes. publication-title: Genome Biol – volume: 133 start-page: 38 year: 2003 ident: pgen-0020056-b078 article-title: Estrogen receptors in Xenopus: Duplicate genes, splice variants, and tissue-specific expression. publication-title: Gen Comp Endocrinol doi: 10.1016/S0016-6480(03)00148-5 – volume: 4 start-page: 22 year: 2004 ident: pgen-0020056-b058 article-title: Duplicated genes evolve slower than singletons despite the initial rate increase. publication-title: BMC Evol Biol doi: 10.1186/1471-2148-4-22 – volume: 96 start-page: 6820 year: 1999 ident: pgen-0020056-b070 article-title: Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.12.6820 – volume: 30 start-page: 411 year: 2002 ident: pgen-0020056-b072 article-title: Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. publication-title: Nat Genetics doi: 10.1038/ng852 – volume: 6 start-page: 55 year: 1982 ident: pgen-0020056-b105 article-title: Evolutionary change of duplicate genes. publication-title: Isozymes – volume: 114 start-page: 711 year: 1992 ident: pgen-0020056-b079 article-title: Expression of a novel FGF in the Xenopus embryo. A new candidate inducing factor for mesoderm formation and anteroposterior specification. publication-title: Development doi: 10.1242/dev.114.3.711 – volume: 18 start-page: 557 year: 2001 ident: pgen-0020056-b043 article-title: Differential selection after duplication in mammalian developmental genes. publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a003835 – volume: 56 start-page: 718 year: 2003 ident: pgen-0020056-b110 article-title: Epigenetic silencing may aid evolution by gene duplication. publication-title: J Mol Evol doi: 10.1007/s00239-002-2446-6 – volume: 85 start-page: 3509 year: 1987 ident: pgen-0020056-b108 article-title: Time for acquiring a new gene by duplication. publication-title: Proc Natl Acad Sci U S A – volume: 256 start-page: 119 year: 1994 ident: pgen-0020056-b042 article-title: The evolution of functionally novel proteins after gene duplication. publication-title: Proc Biol Sci doi: 10.1098/rspb.1994.0058 – volume: 4 start-page: R56 year: 2003 ident: pgen-0020056-b038 article-title: Different evolutionary patterns between young duplicate genes in the human genome. publication-title: Genome Biol doi: 10.1186/gb-2003-4-9-r56 – volume: 49 start-page: 271 year: 2001 ident: pgen-0020056-b098 article-title: The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. publication-title: Aust J Bot doi: 10.1071/BT00023 – volume: 14 start-page: 2786 year: 1994 ident: pgen-0020056-b080 article-title: FTZ-F1-related orphan receptors in Xenopus laevis: Transcriptional regulators differentially expressed during early embryogenesis. publication-title: Mol Cell Biol doi: 10.1128/MCB.14.4.2786 – volume: 165 start-page: 1793 year: 2003 ident: pgen-0020056-b054 article-title: The structure and early evolution of recently arisen gene duplicates in the Caenorhabditis elegans genome. publication-title: Genetics doi: 10.1093/genetics/165.4.1793 – volume: 53 start-page: 436 year: 2001 ident: pgen-0020056-b066 article-title: The ghost of selection past: rates of evolution and functional divergence of anciently duplicated genes. publication-title: J Mol Evol doi: 10.1007/s002390010233 – volume: 425 start-page: 798 year: 2003 ident: pgen-0020056-b087 article-title: Genome-scale approaches to resolving incongruence in molecular phylogenies. publication-title: Nature doi: 10.1038/nature02053 – ident: pgen-0020056-b071 – volume: 154 start-page: 459 year: 2000 ident: pgen-0020056-b002 article-title: The probability of duplicate gene preservation by subfunctionalization. publication-title: Genetics doi: 10.1093/genetics/154.1.459 – volume: 19 start-page: 1218 year: 2002 ident: pgen-0020056-b095 article-title: Estimating absolute rates of molecular evolution and divergence times in the absence of rate consistency. publication-title: Mol Biol Evol – volume: 30 start-page: 409 year: 1976 ident: pgen-0020056-b103 article-title: Enzyme recruitment in evolution of new function. publication-title: Ann Rev Microbiol doi: 10.1146/annurev.mi.30.100176.002205 – ident: pgen-0020056-b025 doi: 10.1093/oso/9780198549741.003.0021 – volume: 33 start-page: 197 year: 2004 ident: pgen-0020056-b048 article-title: A mitochondrial DNA phylogeny of clawed frogs: phylogeography on sub-Saharan Africa and implications for polyploid evolution. publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2004.04.018 – volume: 19 start-page: 141 year: 2003 ident: pgen-0020056-b015 article-title: Understanding mechanisms of novel gene expression in polyploids. publication-title: Trends Genet doi: 10.1016/S0168-9525(03)00015-5 – ident: pgen-0020056-b028 doi: 10.1007/978-3-642-86659-3 – volume: 14 start-page: 817 year: 1998 ident: pgen-0020056-b082 article-title: Modeltest: Testing the model of DNA substitution. publication-title: Bioinformatics doi: 10.1093/bioinformatics/14.9.817 – ident: pgen-0020056-b012 – volume: 19 start-page: 891 year: 2003 ident: pgen-0020056-b047 article-title: GeneMerge—post-genomic analysis, data mining, and hypothesis testing. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg114 – volume: 17 start-page: 299 year: 2001 ident: pgen-0020056-b003 article-title: Genome duplication, divergent resolution and speciation. publication-title: Trends Genet doi: 10.1016/S0168-9525(01)02318-6 – volume: 290 start-page: 1151 year: 2000 ident: pgen-0020056-b001 article-title: The evolutionary fate and consequences of duplicate genes. publication-title: Science doi: 10.1126/science.290.5494.1151 – volume: 10 start-page: 1360 year: 1993 ident: pgen-0020056-b016 article-title: Evolution of duplicate genes in a tetraploid animal, Xenopus laevis. publication-title: Mol Biol Evol – volume: 153 start-page: 485 year: 1999 ident: pgen-0020056-b093 article-title: Locating regions of differential variability in DNA and protein sequences. publication-title: Genetics doi: 10.1093/genetics/153.1.485 – volume: 36 start-page: 577 year: 2004 ident: pgen-0020056-b008 article-title: Duplicate genes increase gene expression diversity within and between species. publication-title: Nat Genet doi: 10.1038/ng1355 – volume: 103 start-page: 2232 year: 2006 ident: pgen-0020056-b073 article-title: Role of positive selection in the retention of duplicate genes in mammalian genomes. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0510388103 – volume: 388 start-page: 167 year: 1997 ident: pgen-0020056-b052 article-title: Evolution of genetic redundancy. publication-title: Nature doi: 10.1038/40618 – volume: 297 start-page: 1003 year: 2002 ident: pgen-0020056-b004 article-title: Recent segmental duplications in the human genome. publication-title: Science doi: 10.1126/science.1072047 – volume: 95 start-page: 3708 year: 1998 ident: pgen-0020056-b069 article-title: Positive Darwinian selection after gene duplication in primate ribonuclease genes. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.95.7.3708 – volume: 52 start-page: 875 year: 1987 ident: pgen-0020056-b102 article-title: Globins: A case study in molecular phylogeny. publication-title: Cold Spring Harb Symp Quant Biol doi: 10.1101/SQB.1987.052.01.096 – volume: 5 start-page: 28 year: 2005 ident: pgen-0020056-b074 article-title: Subfunctionalization of duplicated genes as a transition state to neofunctionalization. publication-title: BMC Evol Biol doi: 10.1186/1471-2148-5-28 – volume: 75 start-page: 870 year: 2001 ident: pgen-0020056-b096 article-title: First occurrence of Xenopus (Anura: Pipidae) on the Arabian Penninsula: A new species from the Late Oligocene of the Republic of Yemen. publication-title: J Paleontol doi: 10.1017/S0022336000016966 – ident: pgen-0020056-b024 doi: 10.1016/B978-0-12-297880-7.50016-0 – volume: 11 start-page: 642 year: 2001 ident: pgen-0020056-b037 article-title: The neutral theory in the genomic era. publication-title: Curr Opin Genet Dev doi: 10.1016/S0959-437X(00)00247-1 – volume: 12 start-page: 267 year: 1979 ident: pgen-0020056-b101 article-title: Evolution of the differential regulation of duplicate genes after polyploidization. publication-title: J Mol Evol doi: 10.1007/BF01732026 – ident: pgen-0020056-b044 – volume: 2 year: 2004 ident: pgen-0020056-b090 article-title: Preferential duplication of conserved proteins in eukaryotic genomes. publication-title: PLoS Biol – volume: 252 start-page: 1078 year: 1991 ident: pgen-0020056-b109 article-title: The recruitment of crystallins: New functions precede gene duplication. publication-title: Science doi: 10.1126/science.252.5009.1078 – volume: 13 start-page: 2042 year: 2003 ident: pgen-0020056-b030 article-title: Widespread selection for local RNA secondary structure in coding regions of bacterial genes. publication-title: Genome Res doi: 10.1101/gr.1257503 – volume: 21 start-page: 591 year: 2005 ident: pgen-0020056-b005 article-title: Gene factories, microfunctionalization and the evolution of gene families. publication-title: Trends Genet doi: 10.1016/j.tig.2005.08.008 – volume: 244 start-page: 259 year: 1973 ident: pgen-0020056-b107 article-title: Ancient linkage groups and frozen accidents. publication-title: Nature doi: 10.1038/244259a0 – volume: 13 start-page: 555 year: 1997 ident: pgen-0020056-b086 article-title: PAML: A program package for phylogenetic analysis by maximum likelihood. publication-title: Comput Appl Biosci – volume: 3 year: 2005 ident: pgen-0020056-b007 article-title: Evolution at two levels: On genes and form. publication-title: PLoS Biol – volume: 20 start-page: 544 year: 2004 ident: pgen-0020056-b046 article-title: The altered evolutionary trajectories of gene duplicates. publication-title: Trends Genet doi: 10.1016/j.tig.2004.09.001 – volume: 12 start-page: 1370 year: 2002 ident: pgen-0020056-b020 article-title: Impact of the presence of paralogs on sequence divergence in a set of mouse-human orthologs. publication-title: Genome Res doi: 10.1101/gr.270902 – volume: 139 start-page: 421 year: 1995 ident: pgen-0020056-b051 article-title: How often do duplicated genes evolve new functions? publication-title: Genetics doi: 10.1093/genetics/139.1.421 – volume: 14 start-page: 46 year: 1998 ident: pgen-0020056-b075 article-title: Genetic redundancy in vertebrates: Polyploidy and persistence of genes encoding multidomain proteins. publication-title: Trends Genet doi: 10.1016/S0168-9525(97)01367-X – volume: 21 start-page: 548 year: 2005 ident: pgen-0020056-b056 article-title: Do disparate mechanisms of duplication add similar genes to the genome? publication-title: Trends Genet doi: 10.1016/j.tig.2005.07.008 – volume: 15 start-page: 568 year: 1998 ident: pgen-0020056-b085 article-title: Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a025957 – volume: 143 start-page: 589 year: 1996 ident: pgen-0020056-b092 article-title: Detecting heterogeneity of substitution along DNA and protein sequences. publication-title: Genetics doi: 10.1093/genetics/143.1.589 – volume: 147 start-page: 1259 year: 1997 ident: pgen-0020056-b064 article-title: Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. publication-title: Genetics doi: 10.1093/genetics/147.3.1259 – volume: 14 start-page: 348 year: 1999 ident: pgen-0020056-b013 article-title: Polyploidy: Recurrent formation and genome evolution. publication-title: Trends Ecol Evol doi: 10.1016/S0169-5347(99)01638-9 – volume: 12 start-page: 1 year: 1999 ident: pgen-0020056-b053 article-title: Redundant gene functions and natural selection. publication-title: J Evol Biol doi: 10.1111/j.1420-9101.1999.00008.x – volume: 76 start-page: 4521 year: 1979 ident: pgen-0020056-b112 article-title: Polyploidization and loss of duplicate gene expression: A theoretical study with application to tetraploid fish. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.76.9.4521 – volume: 22 start-page: 650 year: 2004 ident: pgen-0020056-b031 article-title: CpG mutation rates in the human genome are highly dependent on local GC content. publication-title: Mol Biol Evol – volume: 49 start-page: 169 year: 1999 ident: pgen-0020056-b060 article-title: On the possibility of constructive neutral evolution. publication-title: J Mol Evol doi: 10.1007/PL00006540 – volume: 95 start-page: 4447 year: 1998 ident: pgen-0020056-b059 article-title: Extent of genomic rearrangement after genome duplication in yeast. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.95.8.4447 – volume: 22 start-page: 2375 year: 2005 ident: pgen-0020056-b045 article-title: Site-to-site variation of synonymous substitution rates. publication-title: Mol Biol Evol doi: 10.1093/molbev/msi232 – volume: 95 start-page: 237 year: 1980 ident: pgen-0020056-b104 article-title: Rate of gene silencing at duplicate loci: A theoretical study and interpretation of data from tetraploid fishes. publication-title: Genetics doi: 10.1093/genetics/95.1.237 – volume: 293 start-page: 1551 year: 2001 ident: pgen-0020056-b022 article-title: Gene duplication and evolution. publication-title: Science doi: 10.1126/science.293.5535.1551a – volume: 195 start-page: 785 year: 1977 ident: pgen-0020056-b049 article-title: Albumin phylogeny for clawed frogs (Xenopus). publication-title: Science doi: 10.1126/science.65013 – volume: 282 start-page: 1711 year: 1998 ident: pgen-0020056-b065 article-title: Zebrafish hox clusters and vertebrate genome evolution. publication-title: Science doi: 10.1126/science.282.5394.1711 – volume: 23 start-page: 211 year: 1986 ident: pgen-0020056-b050 article-title: Globin evolution in the genus Xenopus: Compatative analysis of cDNAs coding for adult globin polypeptides of Xenopus borealis and Xenopus tropicalis. publication-title: J Mol Evol doi: 10.1007/BF02115578 – volume: 90 start-page: 7980 year: 1993 ident: pgen-0020056-b063 article-title: Comparative linkage maps of the rice and maize genomes. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.90.17.7980 – volume: 17 start-page: 68 year: 2000 ident: pgen-0020056-b032 article-title: Determinants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rate. publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a026239 – volume: 4 start-page: 213 year: 2003 ident: pgen-0020056-b039 article-title: Sequence divergence, functional constraint, and selection in protein evolution. publication-title: Ann Rev Genomics Human Genet doi: 10.1146/annurev.genom.4.020303.162528 – volume: 15 start-page: 355 year: 1998 ident: pgen-0020056-b076 article-title: The structural basis of molecular adaptation. publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a025932 – volume: 100 start-page: 415 year: 1937 ident: pgen-0020056-b091 article-title: The frequency distribution of the difference between two independent variates following the same Poisson distribution. publication-title: J R Stat Soc [Ser A] – volume: 29 start-page: 365 year: 2003 ident: pgen-0020056-b014 article-title: Epigenetic phenomena and the evolution of plant allopolyploids. publication-title: Mol Phylogenet Evol doi: 10.1016/S1055-7903(03)00213-6 – ident: pgen-0020056-b036 – volume: 19 start-page: 101 year: 1997 ident: pgen-0020056-b094 article-title: A nonparametric approach to estimating divergence times in the absence of rate constancy. publication-title: Mol Biol Evol – volume: 154 start-page: 1389 year: 2000 ident: pgen-0020056-b113 article-title: The role of population size, pleiotropy and fitness effects of mutations in the evolution of overlapping gene functions. publication-title: Genetics doi: 10.1093/genetics/154.3.1389 – volume: 377 start-page: 49 year: 1995 ident: pgen-0020056-b099 article-title: An Early Jurrasic jumping frog. publication-title: Nature doi: 10.1038/377049a0 – volume: 211 start-page: 891 year: 1993 ident: pgen-0020056-b041 article-title: Developmental and hormonal regulation of the Xenopus liver-type arginase gene. publication-title: Eur J Biochem doi: 10.1111/j.1432-1033.1993.tb17622.x – volume: 21) start-page: 381 year: 2005 ident: pgen-0020056-b061 article-title: A highly unexpected strong correlation between fixation probability of nonsynonymous mutations and mutation rate. publication-title: Trends Genet – ident: pgen-0020056-b081 – volume: 14 start-page: 1002 year: 2004 ident: pgen-0020056-b021 article-title: Genomic regionality in rates of evolution is not explained by clustering of genes of comparable expression profile. publication-title: Genome Res doi: 10.1101/gr.1597404 – volume: 3 start-page: RESEARCH0008.1 year: 2002 ident: pgen-0020056-b019 article-title: Selection in the evolution of gene duplications. publication-title: Genome Biol doi: 10.1186/gb-2002-3-2-research0008 – volume: 158 start-page: 927 year: 2001 ident: pgen-0020056-b033 article-title: Highly expressed genes in yeast evolve slowly. publication-title: Genetics doi: 10.1093/genetics/158.2.927 – volume: 7 start-page: 515 year: 1990 ident: pgen-0020056-b023 article-title: Positive Darwinian selection promotes charge profile diversity in the antigen-binding cleft of class I major-histocompatibility-complex molecules. publication-title: Mol Biol Evol – volume: 168 start-page: 373 year: 2004 ident: pgen-0020056-b034 article-title: Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome. publication-title: Genetics doi: 10.1534/genetics.104.028944 – volume: 43 start-page: 223 year: 1989 ident: pgen-0020056-b040 article-title: Analyzing tables of statistical tests. publication-title: Evolution doi: 10.1111/j.1558-5646.1989.tb04220.x – volume: 291 start-page: 63 year: 2003 ident: pgen-0020056-b006 article-title: Role of duplicate genes in genetic robustness against null mutations. publication-title: Nature – volume: 21 start-page: 281 year: 2000 ident: pgen-0020056-b097 article-title: Continental break up and the distribution of fishes of Western Gondwana during the Early Cretaceous. publication-title: Cretaceous Res doi: 10.1006/cres.1999.0195 |
SSID | ssj0035897 |
Score | 2.091383 |
Snippet | Gene duplication provides a window of opportunity for biological variants to persist under the protection of a co-expressed copy with similar or redundant... Gene duplication provides a window of opportunity for biological variants to persist under the protection of a co-expressed copy with similar or redundant... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e56 |
SubjectTerms | Amino Acid Substitution Animals Codon - genetics Eukaryotes Evolution Evolution, Molecular Frogs Gene Duplication Gene Expression Regulation Genetic aspects Genetic Variation Genetics Genetics/Comparative Genomics Genetics/Genomics Genomes Medical research Models, Genetic Molecular Sequence Data Mutation Polyploidy Proteins Time Vertebrates Xenopus Xenopus laevis Xenopus laevis - genetics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kQPBF_G602kUEn2KTbDa7-1jFUoVWUCv3FvazPbgmobmA_vfOZvdiI5X2wdfbXyA3Mzvzm-zMLEJvJBdaq4qkQhFIUCDCplxRmuYVlaq0hdBjonh8Uh2dlp-XdHnlqi9fExbGAwfB7XMCGbeoVM6B-Za0ULZQheMaIqED6xtb9yDmbZOp4IMJ5eFaFUpJyiCtj01zhOX7UUfvOlCQ_5zih2HOgtI4u3_y0Itu3fbX0c-_qyivhKXDB-h-5JP4IPyPh-iObR6hu-GGyV-P0fo4FgziC-t7fFf9RY-7sQTPYuB-2JcbAtE02P6MJbENbh2Gt7bYDOFw2_Z41YzojYV3gFddGewu2zO8tE3bDT1eS9-k_gSdHn78_uEojRcspBqyik1qOHEa4lGVG8qlzUqnM-OUYBkvpSuZYZQZqhVjMgef7lhBZaFMyXXlrLOUPEWLpm3sDsLaHwcC17AaUhwjgXUR4Xe3qSwTzpkEka2Eax2nj_tLMNb1eKTGIAsJAqu9XuqolwSl01NdmL5xA_69V96E9bOzxx_AoupoUfVNFpWgPa_6OjSiTh6gPoCgIhgwHp6g1yPCz89ofIHOmRz6vv705cctQN9ObgP6OgO9jSDXgsy0jJ0TIHk_vGuG3PHmupVND5LKSckzwUE0u1sTvn55b1oGB-NPjWRj2wEwDFw-JNL_RlRMAAnMsgQ9Czvij66qigNHIglis70yU9B8pVmdj0POIdEXoKDn_0OjL9C98OXMF1ztosXmcrAvgUtu1KvRbfwG4SRwMg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLagCIkXxH1hg1kIiaewJI5j5wkNWDWQOtDYUN8ix5dSqSRd00rw7zkncTOCBuw1_iJZ5_jc7HMh5KWSudZlxsK8ZBCggIUNZcl5GGdclalNct0GipOT7Pg8_TjlU3_h1vi0yq1ObBW1qTXekR_ELGapjHKZvVlehDg1Cl9X_QiNm-QWti7DlC4x7QMuxmU3XIVzFgoI7n3pHBPxgefU6yWwCS9VsCXmwDS1Hfx7PT1aLurmKif0z1zK34zT-B65671Ketgdg_vkhq0ekNvdnMmfD8li4tMG6cRipe-8-d7Qz20inqXgAdJTTCQFhUuPfvjE2IrWjmJPavp-0z1x24bOqxZ9ZmEPsNW5oeNVPaNTW9XLTUMXCkvVH5Hz8dHZu-PQj1kINcQW69BI5jRYpSw2XCobpU5HxpW5iGSqXCqM4MJwXQqhYtDsTiRcJaVJpc6cdZazx2RU1ZXdIVTjoyB4HFZDoGMU-F4sRxk3mRW5cyYgbEvhQvse5DgKY1G0D2sCYpGOYAXypfB8CUjY_7XsenD8B_8WmddjsYN2-6FezQovkIVkjEH4VsZwRtKUJ6VNysRJDR6WA62WB2QfWV905ai9HigOwbTkAvweGZAXLQK7aFSYpjNTm6YpPnz6eg3Ql5PrgE4HoFce5GqgmVa-fgIojy28BsgdPK5b2jTFpewEZG97hK9e3u-XQc3g25GqbL0BjADFD-H03xGZyMEVjKKAPOkk4pJXWSbBU2IBEQNZGTBouFLNv7WtziHcz4FBT_-97V1yp7sZw4SqPTJarzb2GfiK6_J5qxB-AW-7aGU priority: 102 providerName: ProQuest |
Title | Multiple Mechanisms Promote the Retained Expression of Gene Duplicates in the Tetraploid Frog Xenopus laevis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/16683033 https://www.proquest.com/docview/1313480986 https://www.proquest.com/docview/17225014 https://www.proquest.com/docview/67952100 https://pubmed.ncbi.nlm.nih.gov/PMC1449897 https://doaj.org/article/8333096b18974452be2b2f8c741f0489 http://dx.doi.org/10.1371/journal.pgen.0020056 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdtymAvY9_11qViDPbkYluSJT-M0Y6WbpBsdMvIm7H1kQZcO4sTaP_7nWzFm0fK8hr9HMSd7kt3ukPoXSYSKfOY-ElOIEABC-uLnDE_jFmWUx0lsgkUR-P4ckK_TNl0D21mtjoC1ltDOztParIsTm5_3X0Egf_QTG3g4eajkwWQ3F6Q2PaW--gAbBO3ojqiXV6BMNGOW2GM-BzCffeY7r5_6Rmrpqd_p7kHi6Kqt7ml_1ZX_mWuLh6jR87PxKftwXiC9nT5FD1oJ0_ePUPFyBUS4htt3_7O65saL5rSPI3BJ8S2DBEcUIX1rSuVLXFlMOxaY7Vuk966xvOyQa807AG2OlfYLKsZnuqyWqxrXGT28fpzNLk4__Hp0neDF3wJ0cbKV4IYCXYqDhUTmQ6okYEyecIDQTNDueKMKyZzzrMQdL3hEcuiXFEhY6ONZuQFGpRVqQ8RljZNCD6IlhD6qAy8MZJYqVex5okxykNkQ-FUuq7kdjhGkTapNg7RSUuw1PIldXzxkN99tWi7cvwHf2aZ12FtT-3mh2o5S52IpoIQAgFdHsIZoZRFuY7yyAgJPpcBPZd46NiyPm0fqHaaIT0FY5NwOG3CQ28bhO2rUdrCnVm2ruv089efO4C-j3cBXfVA7x3IVEAzmbkXFUB529Srhzy0x3VDmxooFRIqgkQAaY42R3j78nG3DIrHZpOyUldrwHAwBRBg34-IeQLOYRB46GUrEX94FccCfCfiId6TlR6D-ivl_Lppfh5SmgCDXu1CxdfoYXtjZgutjtBgtVzrN-BDrvIh2udTPkQHZ-fjb1fD5iZm2KiK3xgbdJw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTgheEN8LDGohEE9hSezE9gNCG2vVsrVMZUN9C4ljl0olKU0r2D_F38g5cTqKBuxlr_WvkuU7_-4uvg-EXiRcSJlGxBUpgQAFLKzL0zB0_ShMUqoCIatAcTCMemf0_Tgcb6GfTS2MSatsOLEi6qyQ5hv5nk98QrknePR2_s01U6PM62ozQqNWiyN1_h1CtvJN_xDk-zIIup3Tdz3XThVwJbjSSzfjREsg4cjPQp4oj2rpZToVzOM00ZRlLGRZKFPGEh-ITLMgTII0o1xGWmllpkQA5W9TAqFMC20fdIYno4b7ScjrcS5hSFxGhGeL9Qjz96xuvJ6DYpjPOKYJ54YxrGYGrC1Daz4rysvc3j-zN38zh9076Lb1Y_F-rXh30ZbK76Eb9WTL8_toNrCJinigTG3xtPxa4pMq9U9h8DnxyKSuAsXjzg-bipvjQmPTBRsfrupHdVXiaV6hTxXsAbY6zXB3UUzwWOXFfFXiWWKK4x-gs2sRwUPUyotc7SAszTMk-DhKQmiVJeDtEWFYJYsUE1pnDiLNCcfSdj03wzdmcfWUxyD6qQ8sNnKJrVwc5K7_Na-7fvwHf2CEt8aant3VD8ViElsKiDkhBALG1AcdoTQMUhWkgeYSfDoNPCoc1Daij-sC2DXzxPtgzAQDT4s76HmFMH07cpMYNElWZRn3P3y6Aujj8Cqg0QbolQXpAs5MJrZiA07eNA3bQO4YdW3OpowvbquDdhsVvny5vV4GYjOvVUmuihVgGJgaCOD_joiYAOfT8xz0qL4RF7KKIg6-GXEQ27grGwLaXMmnX6rm6j6lAgT0-N_bbqObvdPBcXzcHx49Qbfq73ImnWsXtZaLlXoKnuoyfWbpAaPP181IvwD4SKh- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIhAviO8FBrUQiKfQJI5j5wGhQVetjJZpbKhvWeLYpVJJStMK9q_x13GXr1E0YC97rX-VLN_5d3fxfRDyPJahUknA7DBhEKCAhbVlwrntBjxOfO2FqgwUR-Ng_8R_P-GTLfKzqYXBtMqGE0uiTnOF38h7LnOZL51QBj1Tp0Uc9gdvFt9snCCFL63NOI1KRQ702XcI34rXwz7I-oXnDfaO3-3b9YQBW4FbvbJTyYwCQg7clMtYO75RTmqSUDjSj40vUsFFylUiROwCqRnh8dhLUl-qwGijcWIE0P81wbiLd0xM2mCPcVkNduGc2YKFTl22x4Tbq7Xk1QJUBD_oYDvODbNYTg9obURnMc-LixzgP_M4fzOMg9vkVu3R0t1KBe-QLZ3dJderGZdn98h8VKcs0pHGKuNZ8bWgh2USoKbgfdIjTGIFsqd7P-qk3IzmhmI_bNpfV8_ruqCzrEQfa9gDbHWW0sEyn9KJzvLFuqDzGMvk75OTKxHAA9LJ8kxvE6rwQRK8Ha0gyEpj8PtYiPySBlqExqQWYc0JR6ruf45jOOZR-agnIA6qDixCuUS1XCxit_9aVP0__oN_i8Jrsdi9u_whX06jmgwiyRiD0DFxQUd8n3uJ9hLPSAXenQFGDS3SRdFHVSlsy0HRLpi1UIDPJS3yrERgB48M78I0XhdFNPz4-RKgT-PLgI42QC9rkMnhzFRc127AyWP7sA3kNqprczZFdH5vLbLTqPDFy912GSgO363iTOdrwAgwOhDK_x0RiBDcUMexyMPqRpzLKggkeGnMImLjrmwIaHMlm30p26y7vh-CgB79e9tdcgN4KPowHB88JjerD3SY17VDOqvlWj8Bl3WVPC25gZLTqyajX7xWq04 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+mechanisms+promote+the+retained+expression+of+gene+duplicates+in+the+tetraploid+frog+Xenopus+laevis&rft.jtitle=PLoS+genetics&rft.au=Chain%2C+Frederick+J.J&rft.au=Evans%2C+Ben+J&rft.date=2006-04-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=2&rft.issue=4&rft.spage=478&rft_id=info:doi/10.1371%2Fjournal.pgen.0020056&rft.externalDBID=ISN&rft.externalDocID=A146972418 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |