Patterns and Mechanisms of Ancestral Histone Protein Inheritance in Budding Yeast
Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal histones are randomly segregated to the two daughters, but little is known about the fine details of this process: do maternal histones re-a...
Saved in:
Published in | PLoS biology Vol. 9; no. 6; p. e1001075 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.06.2011
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1545-7885 1544-9173 1545-7885 |
DOI | 10.1371/journal.pbio.1001075 |
Cover
Loading…
Abstract | Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal histones are randomly segregated to the two daughters, but little is known about the fine details of this process: do maternal histones re-assemble at preferred locations or close to their original loci? Here, we use a recently developed method for swapping epitope tags to measure the disposition of ancestral histone H3 across the yeast genome over six generations. We find that ancestral H3 is preferentially retained at the 5' ends of most genes, with strongest retention at long, poorly transcribed genes. We recapitulate these observations with a quantitative model in which the majority of maternal histones are reincorporated within 400 bp of their pre-replication locus during replication, with replication-independent replacement and transcription-related retrograde nucleosome movement shaping the resulting distributions of ancestral histones. We find a key role for Topoisomerase I in retrograde histone movement during transcription, and we find that loss of Chromatin Assembly Factor-1 affects replication-independent turnover. Together, these results show that specific loci are enriched for histone proteins first synthesized several generations beforehand, and that maternal histones re-associate close to their original locations on daughter genomes after replication. Our findings further suggest that accumulation of ancestral histones could play a role in shaping histone modification patterns. |
---|---|
AbstractList | Tracking of ancestral histone proteins over multiple generations of genome replication in yeast reveals that old histones move along genes from 3' toward 5' over time, and that maternal histones move up to around 400 bp during genomic replication. Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal histones are randomly segregated to the two daughters, but little is known about the fine details of this process: do maternal histones re-assemble at preferred locations or close to their original loci? Here, we use a recently developed method for swapping epitope tags to measure the disposition of ancestral histone H3 across the yeast genome over six generations. We find that ancestral H3 is preferentially retained at the 5' ends of most genes, with strongest retention at long, poorly transcribed genes. We recapitulate these observations with a quantitative model in which the majority of maternal histones are reincorporated within 400 bp of their pre-replication locus during replication, with replication-independent replacement and transcription-related retrograde nucleosome movement shaping the resulting distributions of ancestral histones. We find a key role for Topoisomerase I in retrograde histone movement during transcription, and we find that loss of Chromatin Assembly Factor-1 affects replication-independent turnover. Together, these results show that specific loci are enriched for histone proteins first synthesized several generations beforehand, and that maternal histones re-associate close to their original locations on daughter genomes after replication. Our findings further suggest that accumulation of ancestral histones could play a role in shaping histone modification patterns. It is widely believed that chromatin, the nucleoprotein packaged state of eukaryotic genomes, can carry epigenetic information and thus transmit gene expression patterns to replicating cells. However, the inheritance of genomic packaging status is subject to mechanistic challenges that do not confront the inheritance of genomic DNA sequence. Most notably, histone proteins must at least transiently dissociate from the maternal genome during replication, and it is unknown whether or not maternal proteins re-associate with daughter genomes near the sequence they originally occupied on the maternal genome. Here, we use a novel method for tracking old proteins to determine where histone proteins accumulate after 1, 3, or 6 generations of growth in yeast. To our surprise, ancestral histones accumulate near the 5' end of long, relatively inactive genes. Using a mathematical model, we show that our results can be explained by the combined effects of histone replacement, histone movement along genes from 3' towards 5' ends, and histone spreading during replication. Our results show that old histones do move but stay relatively close to their original location (within around 400 base-pairs), which places important constraints on how chromatin could potentially carry epigenetic information. Our findings also suggest that accumulation of the ancestral histones that are inherited can influence histone modification patterns. Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal histones are randomly segregated to the two daughters, but little is known about the fine details of this process: do maternal histones re-assemble at preferred locations or close to their original loci? Here, we use a recently developed method for swapping epitope tags to measure the disposition of ancestral histone H3 across the yeast genome over six generations. We find that ancestral H3 is preferentially retained at the 5' ends of most genes, with strongest retention at long, poorly transcribed genes. We recapitulate these observations with a quantitative model in which the majority of maternal histones are reincorporated within 400 bp of their pre-replication locus during replication, with replication-independent replacement and transcription-related retrograde nucleosome movement shaping the resulting distributions of ancestral histones. We find a key role for Topoisomerase I in retrograde histone movement during transcription, and we find that loss of Chromatin Assembly Factor-1 affects replication-independent turnover. Together, these results show that specific loci are enriched for histone proteins first synthesized several generations beforehand, and that maternal histones re-associate close to their original locations on daughter genomes after replication. Our findings further suggest that accumulation of ancestral histones could play a role in shaping histone modification patterns. Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal histones are randomly segregated to the two daughters, but little is known about the fine details of this process: do maternal histones re-assemble at preferred locations or close to their original loci? Here, we use a recently developed method for swapping epitope tags to measure the disposition of ancestral histone H3 across the yeast genome over six generations. We find that ancestral H3 is preferentially retained at the 5' ends of most genes, with strongest retention at long, poorly transcribed genes. We recapitulate these observations with a quantitative model in which the majority of maternal histones are reincorporated within 400 bp of their pre-replication locus during replication, with replication-independent replacement and transcription-related retrograde nucleosome movement shaping the resulting distributions of ancestral histones. We find a key role for Topoisomerase I in retrograde histone movement during transcription, and we find that loss of Chromatin Assembly Factor-1 affects replication-independent turnover. Together, these results show that specific loci are enriched for histone proteins first synthesized several generations beforehand, and that maternal histones re-associate close to their original locations on daughter genomes after replication. Our findings further suggest that accumulation of ancestral histones could play a role in shaping histone modification patterns.Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal histones are randomly segregated to the two daughters, but little is known about the fine details of this process: do maternal histones re-assemble at preferred locations or close to their original loci? Here, we use a recently developed method for swapping epitope tags to measure the disposition of ancestral histone H3 across the yeast genome over six generations. We find that ancestral H3 is preferentially retained at the 5' ends of most genes, with strongest retention at long, poorly transcribed genes. We recapitulate these observations with a quantitative model in which the majority of maternal histones are reincorporated within 400 bp of their pre-replication locus during replication, with replication-independent replacement and transcription-related retrograde nucleosome movement shaping the resulting distributions of ancestral histones. We find a key role for Topoisomerase I in retrograde histone movement during transcription, and we find that loss of Chromatin Assembly Factor-1 affects replication-independent turnover. Together, these results show that specific loci are enriched for histone proteins first synthesized several generations beforehand, and that maternal histones re-associate close to their original locations on daughter genomes after replication. Our findings further suggest that accumulation of ancestral histones could play a role in shaping histone modification patterns. Tracking of ancestral histone proteins over multiple generations of genome replication in yeast reveals that old histones move along genes from 3′ toward 5′ over time, and that maternal histones move up to around 400 bp during genomic replication. Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal histones are randomly segregated to the two daughters, but little is known about the fine details of this process: do maternal histones re-assemble at preferred locations or close to their original loci? Here, we use a recently developed method for swapping epitope tags to measure the disposition of ancestral histone H3 across the yeast genome over six generations. We find that ancestral H3 is preferentially retained at the 5′ ends of most genes, with strongest retention at long, poorly transcribed genes. We recapitulate these observations with a quantitative model in which the majority of maternal histones are reincorporated within 400 bp of their pre-replication locus during replication, with replication-independent replacement and transcription-related retrograde nucleosome movement shaping the resulting distributions of ancestral histones. We find a key role for Topoisomerase I in retrograde histone movement during transcription, and we find that loss of Chromatin Assembly Factor-1 affects replication-independent turnover. Together, these results show that specific loci are enriched for histone proteins first synthesized several generations beforehand, and that maternal histones re-associate close to their original locations on daughter genomes after replication. Our findings further suggest that accumulation of ancestral histones could play a role in shaping histone modification patterns. It is widely believed that chromatin, the nucleoprotein packaged state of eukaryotic genomes, can carry epigenetic information and thus transmit gene expression patterns to replicating cells. However, the inheritance of genomic packaging status is subject to mechanistic challenges that do not confront the inheritance of genomic DNA sequence. Most notably, histone proteins must at least transiently dissociate from the maternal genome during replication, and it is unknown whether or not maternal proteins re-associate with daughter genomes near the sequence they originally occupied on the maternal genome. Here, we use a novel method for tracking old proteins to determine where histone proteins accumulate after 1, 3, or 6 generations of growth in yeast. To our surprise, ancestral histones accumulate near the 5′ end of long, relatively inactive genes. Using a mathematical model, we show that our results can be explained by the combined effects of histone replacement, histone movement along genes from 3′ towards 5′ ends, and histone spreading during replication. Our results show that old histones do move but stay relatively close to their original location (within around 400 base-pairs), which places important constraints on how chromatin could potentially carry epigenetic information. Our findings also suggest that accumulation of the ancestral histones that are inherited can influence histone modification patterns. Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal histones are randomly segregated to the two daughters, but little is known about the fine details of this process: do maternal histones re-assemble at preferred locations or close to their original loci? Here, we use a recently developed method for swapping epitope tags to measure the disposition of ancestral histone H3 across the yeast genome over six generations. We find that ancestral H3 is preferentially retained at the 5' ends of most genes, with strongest retention at long, poorly transcribed genes. We recapitulate these observations with a quantitative model in which the majority of maternal histones are reincorporated within 400 bp of their pre-replication locus during replication, with replication-independent replacement and transcription-related retrograde nucleosome movement shaping the resulting distributions of ancestral histones. We find a key role for Topoisomerase I in retrograde histone movement during transcription, and we find that loss of Chromatin Assembly Factor-1 affects replication-independent turnover. Together, these results show that specific loci are enriched for histone proteins first synthesized several generations beforehand, and that maternal histones re-associate close to their original locations on daughter genomes after replication. Our findings further suggest that accumulation of ancestral histones could play a role in shaping histone modification patterns. |
Audience | Academic |
Author | Weiner, Assaf van Welsem, Tibor Rando, Oliver J. Friedman, Nir Verzijlbergen, Kitty F. van Leeuwen, Fred Radman-Livaja, Marta |
AuthorAffiliation | 3 School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel 1 Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America 2 Division of Gene Regulation, Netherlands Cancer Institute, and Netherlands Proteomics Center, Amsterdam, The Netherlands Adolf Butenandt Institute, Germany 4 Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel |
AuthorAffiliation_xml | – name: 4 Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel – name: 1 Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America – name: Adolf Butenandt Institute, Germany – name: 3 School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel – name: 2 Division of Gene Regulation, Netherlands Cancer Institute, and Netherlands Proteomics Center, Amsterdam, The Netherlands |
Author_xml | – sequence: 1 givenname: Marta surname: Radman-Livaja fullname: Radman-Livaja, Marta – sequence: 2 givenname: Kitty F. surname: Verzijlbergen fullname: Verzijlbergen, Kitty F. – sequence: 3 givenname: Assaf surname: Weiner fullname: Weiner, Assaf – sequence: 4 givenname: Tibor surname: van Welsem fullname: van Welsem, Tibor – sequence: 5 givenname: Nir surname: Friedman fullname: Friedman, Nir – sequence: 6 givenname: Oliver J. surname: Rando fullname: Rando, Oliver J. – sequence: 7 givenname: Fred surname: van Leeuwen fullname: van Leeuwen, Fred |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21666805$$D View this record in MEDLINE/PubMed https://hal.science/hal-02193327$$DView record in HAL |
BookMark | eNqVk0uP0zAUhSM0iHnAP0AQiQWaRYtfiW0WSGUEtFJhBhghsbIc56Z1ldolTkbw73FoiqbViIeySOx851z5XN_T5Mh5B0nyGKMxphy_WPmucboebwrrxxghjHh2LznBGctGXIjs6Nb3cXIawgohQiQRD5JjgvM8Fyg7ST5e6baFxoVUuzJ9D2apnQ3rkPoqnTgDoW10nU5taGP19KrxLViXztwSGtvqCKRx-borS-sW6VfQoX2Y3K90HeDR8D5Lrt--ub6YjuaX72YXk_nICJK3IyEFSMpYxaHSBRCNKMZc54gaTYosK0SODAaayariCJXAGdN5yQEI8KKgZ8nTre2m9kENYQSFiYzOlHMeidmWKL1eqU1j17r5oby26teGbxZKN601NajKCE2RkKWkhrGy0pnOqOQcpGBGMhG9Xg3VumINpQHX57Jnuv_H2aVa-BsVD4WwwNHgfGuwPJBNJ3PV7yGCJaWE3_Ts86FY4791sQVqbYOButYOfBeUkBIzKkX-d5KTCDLZh_HsgLw7soFa6JiKdZWPhzG9p5qQHAlOGSGRGt9BxaeEtTXxnlQ27u8JzvcEkWnhe7vQXQhq9vnTf7Af_p29_LLPPrndwd892I1CBF5uAdP4EBqolIk3vLW-b6itFUaqn7tdbqqfOzXMXRSzA_HO_4-ynxf1LxE |
CitedBy_id | crossref_primary_10_1073_pnas_1911943116 crossref_primary_10_3390_genes13061002 crossref_primary_10_1016_j_tig_2011_11_005 crossref_primary_10_1534_g3_113_006213 crossref_primary_10_1016_j_bbagrm_2018_07_008 crossref_primary_10_1371_journal_pone_0028980 crossref_primary_10_1126_science_1258699 crossref_primary_10_1016_j_bbagrm_2011_07_005 crossref_primary_10_1126_science_abo3851 crossref_primary_10_1093_nar_gku1190 crossref_primary_10_1016_j_cell_2013_07_034 crossref_primary_10_1093_nar_gku165 crossref_primary_10_2217_epi_11_113 crossref_primary_10_1080_15592294_2015_1017200 crossref_primary_10_1093_nar_gkad1098 crossref_primary_10_1371_journal_pgen_1006900 crossref_primary_10_1016_j_tcb_2012_02_004 crossref_primary_10_1038_s41580_022_00518_2 crossref_primary_10_1371_journal_pgen_1002811 crossref_primary_10_1007_s00412_014_0501_x crossref_primary_10_1016_j_jmb_2016_11_011 crossref_primary_10_15252_embj_201488398 crossref_primary_10_15252_embj_201798714 crossref_primary_10_1016_j_molcel_2015_02_002 crossref_primary_10_1128_MCB_00835_15 crossref_primary_10_1016_j_jmb_2024_168845 crossref_primary_10_15252_embr_202051184 crossref_primary_10_1093_nar_gkv666 crossref_primary_10_1007_s11427_022_2267_6 crossref_primary_10_1101_gr_275387_121 crossref_primary_10_1016_j_tibs_2020_08_009 crossref_primary_10_3389_fmicb_2022_888746 crossref_primary_10_1016_j_ceb_2012_03_009 crossref_primary_10_1016_j_molcel_2017_10_013 crossref_primary_10_1534_genetics_115_186452 crossref_primary_10_1016_j_ceb_2012_02_003 crossref_primary_10_1126_science_aaj2114 crossref_primary_10_1093_nar_gku784 crossref_primary_10_1093_nar_gkw840 crossref_primary_10_1016_j_gde_2024_102163 crossref_primary_10_1038_ncomms13337 crossref_primary_10_1101_gr_201244_115 crossref_primary_10_1016_j_cell_2011_07_013 crossref_primary_10_1111_imr_12207 crossref_primary_10_1128_MCB_00007_21 crossref_primary_10_1002_bies_201200026 crossref_primary_10_1016_j_bbagrm_2011_10_006 crossref_primary_10_1128_EC_00334_12 crossref_primary_10_1016_j_celrep_2016_07_083 crossref_primary_10_3390_biology9060140 crossref_primary_10_1080_15592294_2020_1741777 crossref_primary_10_1103_PhysRevE_93_062417 crossref_primary_10_1093_nar_gks813 crossref_primary_10_1016_j_molcel_2014_04_032 crossref_primary_10_1016_j_molcel_2018_10_028 crossref_primary_10_1016_j_molcel_2018_08_010 crossref_primary_10_1038_s41598_019_49894_4 crossref_primary_10_1042_BSR20182006 crossref_primary_10_7554_eLife_07205 crossref_primary_10_1002_0471143030_cb0808s55 crossref_primary_10_1016_j_gde_2012_11_002 crossref_primary_10_1002_pmic_201400060 crossref_primary_10_15252_embr_201438793 crossref_primary_10_1038_nrm3288 crossref_primary_10_1093_nar_gky207 crossref_primary_10_1016_j_gde_2012_12_007 crossref_primary_10_1016_j_sbi_2023_102690 crossref_primary_10_1016_j_celrep_2017_10_033 crossref_primary_10_15252_embj_2019101564 crossref_primary_10_1038_s41467_019_10823_8 crossref_primary_10_1042_EBC20180055 crossref_primary_10_1016_j_bbagrm_2014_06_006 crossref_primary_10_1038_srep09824 crossref_primary_10_1002_bies_201200076 crossref_primary_10_1016_j_cub_2011_06_062 crossref_primary_10_7554_eLife_18919 crossref_primary_10_3390_genes6020353 crossref_primary_10_1016_j_ab_2020_114067 crossref_primary_10_1093_femsyr_fov073 crossref_primary_10_1016_j_tibs_2017_12_003 crossref_primary_10_1091_mbc_E17_10_0596 crossref_primary_10_1073_pnas_1914581116 crossref_primary_10_1038_nsmb_2737 crossref_primary_10_1073_pnas_2111841118 crossref_primary_10_1016_j_celrep_2014_02_017 crossref_primary_10_1016_j_cell_2012_06_046 crossref_primary_10_1038_nrm3789 crossref_primary_10_1242_jcs_084764 crossref_primary_10_1038_s41596_021_00520_6 crossref_primary_10_1016_j_molcel_2021_07_017 crossref_primary_10_1126_sciadv_1601865 crossref_primary_10_1038_embor_2011_131 crossref_primary_10_1093_nar_gky823 crossref_primary_10_1371_journal_pgen_1002284 crossref_primary_10_1038_nrm3146 crossref_primary_10_15252_embj_201899021 crossref_primary_10_1093_nar_gkt1239 crossref_primary_10_1016_j_bbagrm_2011_11_002 crossref_primary_10_1371_journal_pcbi_1011725 crossref_primary_10_1371_journal_pone_0077944 crossref_primary_10_3389_fpls_2016_00038 crossref_primary_10_1016_j_jmb_2014_09_013 crossref_primary_10_1016_j_jtbi_2013_07_012 crossref_primary_10_1074_jbc_RA118_003873 crossref_primary_10_1038_nprot_2013_077 crossref_primary_10_1101_gr_276674_122 crossref_primary_10_1042_BST20110730 crossref_primary_10_1007_s00018_022_04352_9 crossref_primary_10_1073_pnas_2400610121 crossref_primary_10_1016_j_cell_2024_07_006 crossref_primary_10_1002_bies_201600150 crossref_primary_10_1002_wsbm_1165 crossref_primary_10_1371_journal_pgen_1007969 crossref_primary_10_1038_srep19729 crossref_primary_10_1534_genetics_114_168039 crossref_primary_10_1016_j_ddstr_2011_08_002 |
Cites_doi | 10.1016/j.molcel.2009.07.017 10.1126/science.1112178 10.1073/pnas.1001148107 10.1126/science.278.5345.1960 10.1006/jmbi.1996.0245 10.1126/science.1134053 10.1016/j.bbagrm.2009.11.010 10.1021/bi00382a037 10.1016/j.cell.2005.06.026 10.1146/annurev.biochem.72.121801.161547 10.1016/j.cell.2007.02.005 10.1534/genetics.108.088518 10.1371/journal.pbio.0020259 10.1016/0092-8674(94)90343-3 10.1038/nsmb.1689 10.1146/annurev.biochem.78.071107.134639 10.1088/1478-3975/4/4/002 10.1371/journal.pgen.1000270 10.1016/S0092-8674(00)81326-4 10.1016/j.molcel.2005.05.028 10.1146/annurev.genet.38.072902.091907 10.1038/emboj.2010.109 10.1126/science.1172926 10.1101/gr.098509.109 10.1021/bi00345a027 10.1101/gad.1265205 10.1016/0092-8674(90)90141-Z 10.1038/nrc1977 10.1126/science.294.5540.115 10.1016/j.cell.2010.08.001 10.1016/S0021-9258(19)49706-8 10.1002/j.1460-2075.1993.tb06142.x 10.1021/bi00406a044 10.1371/journal.pbio.0030328 10.1016/0092-8674(89)90009-3 10.1038/343719a0 10.1016/0014-5793(96)00317-1 10.1016/j.molcel.2007.07.011 10.1016/j.cell.2007.02.053 10.1016/S1097-2765(03)00033-9 10.1038/nrm1008 10.1038/nrg1920 10.1016/S0092-8674(00)81641-4 10.1016/j.molcel.2007.01.019 10.1016/S1097-2765(04)00087-5 10.1128/MCB.11.12.6257 10.1128/MCB.24.7.2605-2613.2004 10.1371/journal.pcbi.1000282 10.1038/ng1637 10.1016/S0021-9258(18)90981-6 10.1038/nrm2640 10.1038/nature02742 10.1186/gb-2010-11-7-r75 10.1016/0022-2836(86)90390-6 10.1186/jbiol204 10.1016/j.tcb.2008.10.002 10.1016/j.cub.2007.02.030 10.1074/jbc.R400039200 10.1016/j.cell.2007.01.030 10.1534/genetics.105.044719 10.1016/j.mrfmmm.2006.05.040 10.1038/nsmb.1432 10.1038/nrg2522 10.1371/journal.pgen.1000837 10.1126/science.1186777 10.1007/s00232-001-0102-5 10.1073/pnas.0911164107 10.1016/0092-8674(89)90398-X 10.1016/j.ydbio.2009.06.012 10.1074/jbc.M513178200 10.1038/nature06107 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2011 Public Library of Science 2011 Radman-Livaja et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Radman-Livaja M, Verzijlbergen KF, Weiner A, van Welsem T, Friedman N, et al. (2011) Patterns and Mechanisms of Ancestral Histone Protein Inheritance in Budding Yeast. PLoS Biol 9(6): e1001075. doi:10.1371/journal.pbio.1001075 Attribution Radman-Livaja et al. 2011 |
Copyright_xml | – notice: COPYRIGHT 2011 Public Library of Science – notice: 2011 Radman-Livaja et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Radman-Livaja M, Verzijlbergen KF, Weiner A, van Welsem T, Friedman N, et al. (2011) Patterns and Mechanisms of Ancestral Histone Protein Inheritance in Budding Yeast. PLoS Biol 9(6): e1001075. doi:10.1371/journal.pbio.1001075 – notice: Attribution – notice: Radman-Livaja et al. 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 3V. 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY RC3 7X8 1XC VOOES 5PM DOA CZG |
DOI | 10.1371/journal.pbio.1001075 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Opposing Viewpoints in Context Gale In Context: Canada Science in Context ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Database ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals PLoS Biology |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Transgenerational Histone Retention in Yeast |
EISSN | 1545-7885 |
ExternalDocumentID | 1298983777 oai_doaj_org_article_fc8a3089d93c44dfa5a53977e984c948 PMC3110181 oai_HAL_hal_02193327v1 2898943081 A260873422 21666805 10_1371_journal_pbio_1001075 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States Netherlands Israel |
GeographicLocations_xml | – name: Israel – name: Netherlands – name: United States |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM079205 – fundername: NIGMS NIH HHS grantid: R01 GM079205 |
GroupedDBID | --- 123 29O 2WC 36B 53G 5VS 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AFXKF AHMBA AKRSQ ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBS EJD EMB EMK EMOBN EPL ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IGS IHR IOV ISE ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PATMY PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PYCSY QN7 RNS RPM SJN SV3 TR2 TUS UKHRP WOW XSB YZZ ~8M .GJ ADXHL CGR CUY CVF ECM EIF IPNFZ NPM PJZUB PPXIY PQGLB PV9 QF4 RIG RZL WOQ PMFND 3V. 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 1XC UMC VOOES 5PM PUEGO AAPBV ABPTK AGJBV CZG M~E ZA5 |
ID | FETCH-LOGICAL-c826t-898e9344f7efabe2a03117a603ca2b55b860c1e359ff700de744a6d7ee2e7bb3 |
IEDL.DBID | M48 |
ISSN | 1545-7885 1544-9173 |
IngestDate | Sun Oct 01 00:20:28 EDT 2023 Wed Aug 27 01:30:18 EDT 2025 Thu Aug 21 18:13:56 EDT 2025 Fri May 09 12:24:21 EDT 2025 Tue Aug 05 11:08:59 EDT 2025 Fri Jul 11 15:52:35 EDT 2025 Fri Jul 25 10:23:59 EDT 2025 Tue Jun 17 22:02:03 EDT 2025 Tue Jun 10 21:02:03 EDT 2025 Fri Jun 27 05:31:33 EDT 2025 Fri Jun 27 05:31:17 EDT 2025 Fri Jun 27 05:30:03 EDT 2025 Mon Jul 21 06:04:03 EDT 2025 Thu Apr 24 22:58:53 EDT 2025 Tue Jul 01 03:38:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | DNA Topoisomerases, Type I Saccharomycetales Inheritance Patterns Models, Biological Saccharomyces cerevisiae Proteins Histones DNA Replication Timing Genes, Fungal Nucleosomes Transcription, Genetic Protein Processing, Post-Translational Kinetics Mutation |
Language | English |
License | Attribution: http://creativecommons.org/licenses/by This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c826t-898e9344f7efabe2a03117a603ca2b55b860c1e359ff700de744a6d7ee2e7bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: FvL OJR KFV MRL. Performed the experiments: KFV MRL. Analyzed the data: MRL AW NF OJR. Contributed reagents/materials/analysis tools: TvW. Wrote the paper: MRL KFV AW NF OJR FvL. |
ORCID | 0000-0003-4987-0608 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pbio.1001075 |
PMID | 21666805 |
PQID | 1298983777 |
PQPubID | 1436341 |
ParticipantIDs | plos_journals_1298983777 doaj_primary_oai_doaj_org_article_fc8a3089d93c44dfa5a53977e984c948 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3110181 hal_primary_oai_HAL_hal_02193327v1 proquest_miscellaneous_899143986 proquest_miscellaneous_872439497 proquest_journals_1298983777 gale_infotracmisc_A260873422 gale_infotracacademiconefile_A260873422 gale_incontextgauss_ISR_A260873422 gale_incontextgauss_ISN_A260873422 gale_incontextgauss_IOV_A260873422 pubmed_primary_21666805 crossref_citationtrail_10_1371_journal_pbio_1001075 crossref_primary_10_1371_journal_pbio_1001075 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-06-01 |
PublicationDateYYYYMMDD | 2011-06-01 |
PublicationDate_xml | – month: 06 year: 2011 text: 2011-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PLoS biology |
PublicationTitleAlternate | PLoS Biol |
PublicationYear | 2011 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | A Groth (ref6) 2007; 128 M. E Fernandez-Beros (ref46) 1996; 384 O. I Kulaeva (ref61) 2007; 618 F Frederiks (ref55) 2008; 15 C Thiriet (ref22) 2005; 19 A Groth (ref5) 2009; 87 P. D Kaufman (ref7) 2010 M Durand-Dubief (ref60) 2010; 29 D. J Stillman (ref73) 2010; 1799 L. N Rusche (ref3) 2003; 72 S. K Randall (ref65) 1992; 267 R. B Deal (ref23) 2010; 328 M Sedighi (ref58) 2007; 4 U. J Schermer (ref14) 2005; 19 A. V Probst (ref57) 2009; 10 I. B Dodd (ref12) 2007; 129 T. S Kim (ref75) 2010; 11 W. C Au (ref18) 2008; 179 A Rufiange (ref17) 2007; 27 M Radman-Livaja (ref68) 2010; 6 A Weiner (ref34) 2010; 20 V. M Studitsky (ref30) 1997; 278 C. L Liu (ref19) 2005; 3 C Jiang (ref41) 2009; 10 J. M Schulze (ref53) 2009; 35 M Ptashne (ref1) 2007; 17 R Gasser (ref35) 1996; 258 T Goto (ref47) 1984; 259 C Hodges (ref33) 2009; 325 I Wapinski (ref37) 2007; 449 C Bonne-Andrea (ref64) 1990; 343 V Jackson (ref8) 1985; 24 E. K Hoffmann (ref63) 2001; 184 A Lengronne (ref28) 2004; 430 I Gat-Viks (ref56) 2009; 5 O Matangkasombut (ref42) 2003; 11 D. K Pokholok (ref52) 2005; 122 K. L Huisinga (ref38) 2004; 13 T Kaplan (ref26) 2008; 4 M. K Raghuraman (ref74) 2001; 294 T Kouzarides (ref29) 2007; 128 O. I Kulaeva (ref62) 2010; 107 L Pillus (ref25) 1989; 59 A. T Annunziato (ref4) 2005; 280 A Jamai (ref16) 2007; 25 J. A Sharp (ref51) 2005; 171 K. F Verzijlbergen (ref13) 2010; 107 C Yu (ref43) 2006; 281 M Radman-Livaja (ref39) 2010; 339 G. C Yuan (ref20) 2005; 309 L Ringrose (ref2) 2004; 38 O. J Rando (ref54) 2009; 78 S Smith (ref49) 1989; 58 A. D McConnell (ref70) 2004; 24 M. F Dion (ref15) 2007; 315 V Jackson (ref10) 1988; 27 I Tirosh (ref40) 2009; 8 T Krude (ref66) 1991; 11 C Gruss (ref67) 1993; 12 D. A Koster (ref45) 2010; 142 J. M Sogo (ref36) 1986; 189 A Goren (ref59) 2003; 4 E. F Glynn (ref27) 2004; 2 J Lopes da Rosa (ref50) 2010 Y Pommier (ref44) 2006; 6 F. C Holstege (ref71) 1998; 95 V. M Studitsky (ref31) 1994; 76 V Jackson (ref9) 1987; 26 Y Mito (ref21) 2005; 37 T Tsubota (ref72) 2007 D. E Gottschling (ref24) 1990; 63 P. B Talbert (ref69) 2006; 7 A Verreault (ref48) 1996; 87 O. I Kulaeva (ref32) 2009; 16 A Corpet (ref11) 2009; 19 15024052 - Mol Cell Biol. 2004 Apr;24(7):2605-13 19644123 - Science. 2009 Jul 31;325(5940):626-8 20017897 - J Biol. 2009;8(11):95 20526281 - EMBO J. 2010 Jul 7;29(13):2126-34 17679090 - Mol Cell. 2007 Aug 3;27(3):393-405 15769942 - Genes Dev. 2005 Mar 15;19(6):677-82 17320507 - Cell. 2007 Feb 23;128(4):693-705 20944015 - Genetics. 2011 Jan;187(1):9-19 8293470 - Cell. 1994 Jan 28;76(2):371-82 12511866 - Nat Rev Mol Cell Biol. 2003 Jan;4(1):25-32 14992726 - Mol Cell. 2004 Feb 27;13(4):573-85 17512413 - Cell. 2007 May 18;129(4):813-22 1658628 - Mol Cell Biol. 1991 Dec;11(12):6257-67 17347438 - Science. 2007 Mar 9;315(5817):1405-8 19023413 - PLoS Genet. 2008 Nov;4(11):e1000270 12620224 - Mol Cell. 2003 Feb;11(2):353-63 2684414 - Cell. 1989 Nov 17;59(4):637-47 20123079 - Biochim Biophys Acta. 2010 Jan-Feb;1799(1-2):175-80 15961632 - Science. 2005 Jul 22;309(5734):626-30 20723754 - Cell. 2010 Aug 20;142(4):519-30 2225075 - Cell. 1990 Nov 16;63(4):751-62 17320445 - Mol Cell. 2007 Mar 9;25(5):703-12 19234478 - Nat Rev Mol Cell Biol. 2009 Mar;10(3):192-206 16155569 - Nat Genet. 2005 Oct;37(10):1090-7 3620448 - Biochemistry. 1987 Apr 21;26(8):2315-25 17407749 - Curr Biol. 2007 Apr 3;17(7):R233-6 16122352 - PLoS Biol. 2005 Oct;3(10):e328 1321140 - J Biol Chem. 1992 Jul 15;267(20):14259-65 8617368 - FEBS Lett. 1996 Apr 22;384(3):265-8 19027300 - Trends Cell Biol. 2009 Jan;19(1):29-41 8627621 - J Mol Biol. 1996 May 3;258(2):224-39 9395401 - Science. 1997 Dec 12;278(5345):1960-3 20018668 - Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):64-8 16122420 - Cell. 2005 Aug 26;122(4):517-27 19234523 - Biochem Cell Biol. 2009 Feb;87(1):51-63 2304549 - Nature. 1990 Feb 22;343(6260):719-26 16020781 - Genetics. 2005 Nov;171(3):885-99 9845373 - Cell. 1998 Nov 25;95(5):717-28 19935686 - Nat Struct Mol Biol. 2009 Dec;16(12):1272-8 11891558 - J Membr Biol. 2001 Dec 1;184(3):321-30 20508129 - Science. 2010 May 28;328(5982):1161-4 19682934 - Mol Cell. 2009 Sep 11;35(5):626-41 20534568 - Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11325-30 16983375 - Nat Rev Genet. 2006 Oct;7(10):793-803 3378048 - Biochemistry. 1988 Mar 22;27(6):2109-20 18511943 - Nat Struct Mol Biol. 2008 Jun;15(6):550-7 20299197 - Curr Opin Cell Biol. 2010 Jun;22(3):284-90 19317649 - Annu Rev Biochem. 2009;78:245-71 16461773 - J Biol Chem. 2006 Apr 7;281(14):9755-64 16039596 - Mol Cell. 2005 Jul 22;19(2):279-85 17289583 - Mol Cell. 2007 Feb 9;25(3):345-55 20637075 - Genome Biol. 2010;11(7):R75 2546672 - Cell. 1989 Jul 14;58(1):15-25 17313961 - Mutat Res. 2007 May 1;618(1-2):116-29 17991991 - Phys Biol. 2007 Nov;4(4):246-55 17805289 - Nature. 2007 Sep 6;449(7158):54-61 15229615 - Nature. 2004 Jul 29;430(6999):573-8 15568982 - Annu Rev Genet. 2004;38:413-43 11588253 - Science. 2001 Oct 5;294(5540):115-21 8223463 - EMBO J. 1993 Dec;12(12):4533-45 16990856 - Nat Rev Cancer. 2006 Oct;6(10):789-802 19197343 - PLoS Comput Biol. 2009 Feb;5(2):e1000282 15664979 - J Biol Chem. 2005 Apr 1;280(13):12065-8 21666804 - PLoS Biol. 2011 Jun;9(6):e1001072 8858152 - Cell. 1996 Oct 4;87(1):95-104 18458100 - Genetics. 2008 May;179(1):263-75 15309048 - PLoS Biol. 2004 Sep;2(9):E259 12676793 - Annu Rev Biochem. 2003;72:481-516 17320509 - Cell. 2007 Feb 23;128(4):721-33 3935168 - Biochemistry. 1985 Nov 19;24(24):6930-8 3023620 - J Mol Biol. 1986 May 5;189(1):189-204 19846608 - Genome Res. 2010 Jan;20(1):90-100 19204718 - Nat Rev Genet. 2009 Mar;10(3):161-72 20140185 - PLoS Genet. 2010 Feb;6(2):e1000837 6088500 - J Biol Chem. 1984 Aug 25;259(16):10422-9 19527704 - Dev Biol. 2010 Mar 15;339(2):258-66 |
References_xml | – volume: 35 start-page: 626 year: 2009 ident: ref53 article-title: Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of H3K79 dimethylation. publication-title: Mol Cell doi: 10.1016/j.molcel.2009.07.017 – volume: 309 start-page: 626 year: 2005 ident: ref20 article-title: Genome-scale identification of nucleosome positions in S. cerevisiae. publication-title: Science doi: 10.1126/science.1112178 – volume: 107 start-page: 11325 year: 2010 ident: ref62 article-title: RNA polymerase complexes cooperate to relieve the nucleosomal barrier and evict histones. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1001148107 – volume: 278 start-page: 1960 year: 1997 ident: ref30 article-title: Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase. publication-title: Science doi: 10.1126/science.278.5345.1960 – volume: 258 start-page: 224 year: 1996 ident: ref35 article-title: The stability of nucleosomes at the replication fork. publication-title: J Mol Biol doi: 10.1006/jmbi.1996.0245 – volume: 315 start-page: 1405 year: 2007 ident: ref15 article-title: Dynamics of replication-independent histone turnover in budding yeast. publication-title: Science doi: 10.1126/science.1134053 – volume: 1799 start-page: 175 year: 2010 ident: ref73 article-title: Nhp6: a small but powerful effector of chromatin structure in Saccharomyces cerevisiae. publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagrm.2009.11.010 – volume: 26 start-page: 2315 year: 1987 ident: ref9 article-title: Deposition of newly synthesized histones: new histones H2A and H2B do not deposit in the same nucleosome with new histones H3 and H4. publication-title: Biochemistry doi: 10.1021/bi00382a037 – volume: 122 start-page: 517 year: 2005 ident: ref52 article-title: Genome-wide map of nucleosome acetylation and methylation in yeast. publication-title: Cell doi: 10.1016/j.cell.2005.06.026 – volume: 72 start-page: 481 year: 2003 ident: ref3 article-title: The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.72.121801.161547 – volume: 128 start-page: 693 year: 2007 ident: ref29 article-title: Chromatin modifications and their function. publication-title: Cell doi: 10.1016/j.cell.2007.02.005 – volume: 179 start-page: 263 year: 2008 ident: ref18 article-title: Altered dosage and mislocalization of histone H3 and Cse4p lead to chromosome loss in Saccharomyces cerevisiae. publication-title: Genetics doi: 10.1534/genetics.108.088518 – volume: 2 start-page: E259 year: 2004 ident: ref27 article-title: Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. publication-title: PLoS Biol doi: 10.1371/journal.pbio.0020259 – volume: 76 start-page: 371 year: 1994 ident: ref31 article-title: A histone octamer can step around a transcribing polymerase without leaving the template. publication-title: Cell doi: 10.1016/0092-8674(94)90343-3 – volume: 16 start-page: 1272 year: 2009 ident: ref32 article-title: Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II. publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1689 – volume: 78 start-page: 245 year: 2009 ident: ref54 article-title: Genome-wide views of chromatin structure. publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.78.071107.134639 – volume: 4 start-page: 246 year: 2007 ident: ref58 article-title: Epigenetic chromatin silencing: bistability and front propagation. publication-title: Phys Biol doi: 10.1088/1478-3975/4/4/002 – volume: 4 start-page: e1000270 year: 2008 ident: ref26 article-title: Cell cycle- and chaperone-mediated regulation of H3K56ac incorporation in yeast. publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000270 – volume: 87 start-page: 95 year: 1996 ident: ref48 article-title: Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. publication-title: Cell doi: 10.1016/S0092-8674(00)81326-4 – volume: 19 start-page: 279 year: 2005 ident: ref14 article-title: Histones are incorporated in trans during reassembly of the yeast PHO5 promoter. publication-title: Mol Cell doi: 10.1016/j.molcel.2005.05.028 – year: 2010 ident: ref50 article-title: Overlapping regulation of CenH3 localization and Histone H3 turnover by CAF-1 and HIR proteins in Saccharomyces cerevisiae. publication-title: Genetics – volume: 38 start-page: 413 year: 2004 ident: ref2 article-title: Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. publication-title: Annu Rev Genet doi: 10.1146/annurev.genet.38.072902.091907 – volume: 29 start-page: 2126 year: 2010 ident: ref60 article-title: Topoisomerase I regulates open chromatin and controls gene expression in vivo. publication-title: Embo J doi: 10.1038/emboj.2010.109 – volume: 325 start-page: 626 year: 2009 ident: ref33 article-title: Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. publication-title: Science doi: 10.1126/science.1172926 – volume: 20 start-page: 90 year: 2010 ident: ref34 article-title: High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. publication-title: Genome Res doi: 10.1101/gr.098509.109 – volume: 24 start-page: 6930 year: 1985 ident: ref8 article-title: Histone segregation on replicating chromatin. publication-title: Biochemistry doi: 10.1021/bi00345a027 – year: 2010 ident: ref7 article-title: Chromatin as a potential carrier of heritable information. publication-title: Curr Opin Cell Biol – volume: 19 start-page: 677 year: 2005 ident: ref22 article-title: Replication-independent core histone dynamics at transcriptionally active loci in vivo. publication-title: Genes Dev doi: 10.1101/gad.1265205 – volume: 63 start-page: 751 year: 1990 ident: ref24 article-title: Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. publication-title: Cell doi: 10.1016/0092-8674(90)90141-Z – volume: 6 start-page: 789 year: 2006 ident: ref44 article-title: Topoisomerase I inhibitors: camptothecins and beyond. publication-title: Nat Rev Cancer doi: 10.1038/nrc1977 – volume: 294 start-page: 115 year: 2001 ident: ref74 article-title: Replication dynamics of the yeast genome. publication-title: Science doi: 10.1126/science.294.5540.115 – volume: 142 start-page: 519 year: 2010 ident: ref45 article-title: Cellular strategies for regulating DNA supercoiling: a single-molecule perspective. publication-title: Cell doi: 10.1016/j.cell.2010.08.001 – volume: 267 start-page: 14259 year: 1992 ident: ref65 article-title: The fate of parental nucleosomes during SV40 DNA replication. publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)49706-8 – volume: 12 start-page: 4533 year: 1993 ident: ref67 article-title: Disruption of the nucleosomes at the replication fork. publication-title: Embo J doi: 10.1002/j.1460-2075.1993.tb06142.x – volume: 87 start-page: 51 year: 2009 ident: ref5 article-title: Replicating chromatin: a tale of histones. publication-title: Biochem Cell Biol – volume: 27 start-page: 2109 year: 1988 ident: ref10 article-title: Deposition of newly synthesized histones: hybrid nucleosomes are not tandemly arranged on daughter DNA strands. publication-title: Biochemistry doi: 10.1021/bi00406a044 – volume: 3 start-page: e328 year: 2005 ident: ref19 article-title: Single-nucleosome mapping of histone modifications in S. cerevisiae. publication-title: PLoS Biol doi: 10.1371/journal.pbio.0030328 – volume: 59 start-page: 637 year: 1989 ident: ref25 article-title: Epigenetic inheritance of transcriptional states in S. cerevisiae. publication-title: Cell doi: 10.1016/0092-8674(89)90009-3 – volume: 343 start-page: 719 year: 1990 ident: ref64 article-title: In vitro replication through nucleosomes without histone displacement. publication-title: Nature doi: 10.1038/343719a0 – volume: 384 start-page: 265 year: 1996 ident: ref46 article-title: Vaccinia virus DNA topoisomerase I preferentially removes positive supercoils from DNA. publication-title: FEBS Lett doi: 10.1016/0014-5793(96)00317-1 – volume: 27 start-page: 393 year: 2007 ident: ref17 article-title: Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. publication-title: Mol Cell doi: 10.1016/j.molcel.2007.07.011 – volume: 129 start-page: 813 year: 2007 ident: ref12 article-title: Theoretical analysis of epigenetic cell memory by nucleosome modification. publication-title: Cell doi: 10.1016/j.cell.2007.02.053 – volume: 11 start-page: 353 year: 2003 ident: ref42 article-title: Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation. publication-title: Mol Cell doi: 10.1016/S1097-2765(03)00033-9 – volume: 4 start-page: 25 year: 2003 ident: ref59 article-title: Replicating by the clock. publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1008 – volume: 7 start-page: 793 year: 2006 ident: ref69 article-title: Spreading of silent chromatin: inaction at a distance. publication-title: Nat Rev Genet doi: 10.1038/nrg1920 – volume: 95 start-page: 717 year: 1998 ident: ref71 article-title: Dissecting the regulatory circuitry of a eukaryotic genome. publication-title: Cell doi: 10.1016/S0092-8674(00)81641-4 – volume: 25 start-page: 345 year: 2007 ident: ref16 article-title: Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication. publication-title: Mol Cell doi: 10.1016/j.molcel.2007.01.019 – volume: 13 start-page: 573 year: 2004 ident: ref38 article-title: A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. publication-title: Mol Cell doi: 10.1016/S1097-2765(04)00087-5 – volume: 11 start-page: 6257 year: 1991 ident: ref66 article-title: Transfer of nucleosomes from parental to replicated chromatin. publication-title: Mol Cell Biol doi: 10.1128/MCB.11.12.6257 – volume: 24 start-page: 2605 year: 2004 ident: ref70 article-title: Histone fold protein Dls1p is required for Isw2-dependent chromatin remodeling in vivo. publication-title: Mol Cell Biol doi: 10.1128/MCB.24.7.2605-2613.2004 – volume: 5 start-page: e1000282 year: 2009 ident: ref56 article-title: Evidence for gene-specific rather than transcription rate-dependent histone H3 exchange in yeast coding regions. publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000282 – volume: 37 start-page: 1090 year: 2005 ident: ref21 article-title: Genome-scale profiling of histone H3.3 replacement patterns. publication-title: Nat Genet doi: 10.1038/ng1637 – volume: 259 start-page: 10422 year: 1984 ident: ref47 article-title: The purification and characterization of DNA topoisomerases I and II of the yeast Saccharomyces cerevisiae. publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)90981-6 – volume: 10 start-page: 192 year: 2009 ident: ref57 article-title: Epigenetic inheritance during the cell cycle. publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2640 – volume: 430 start-page: 573 year: 2004 ident: ref28 article-title: Cohesin relocation from sites of chromosomal loading to places of convergent transcription. publication-title: Nature doi: 10.1038/nature02742 – volume: 11 start-page: R75 year: 2010 ident: ref75 article-title: RNA Polymerase mapping during stress responses reveals widespread nonproductive transcription in yeast. publication-title: Genome Biol doi: 10.1186/gb-2010-11-7-r75 – volume: 189 start-page: 189 year: 1986 ident: ref36 article-title: Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. publication-title: J Mol Biol doi: 10.1016/0022-2836(86)90390-6 – volume: 8 start-page: 95 year: 2009 ident: ref40 article-title: Promoter architecture and the evolvability of gene expression. publication-title: J Biol doi: 10.1186/jbiol204 – volume: 19 start-page: 29 year: 2009 ident: ref11 article-title: Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information. publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2008.10.002 – volume: 17 start-page: R233 year: 2007 ident: ref1 article-title: On the use of the word ‘epigenetic’. publication-title: Curr Biol doi: 10.1016/j.cub.2007.02.030 – volume: 280 start-page: 12065 year: 2005 ident: ref4 article-title: Split decision: what happens to nucleosomes during DNA replication? publication-title: J Biol Chem doi: 10.1074/jbc.R400039200 – volume: 128 start-page: 721 year: 2007 ident: ref6 article-title: Chromatin challenges during DNA replication and repair. publication-title: Cell doi: 10.1016/j.cell.2007.01.030 – volume: 171 start-page: 885 year: 2005 ident: ref51 article-title: Regulation of histone deposition proteins Asf1/Hir1 by multiple DNA damage checkpoint kinases in Saccharomyces cerevisiae. publication-title: Genetics doi: 10.1534/genetics.105.044719 – year: 2007 ident: ref72 article-title: Histone H3-K56 acetylation is catalyzed by histone chaperone-dependent complexes. publication-title: Mol Cell – volume: 618 start-page: 116 year: 2007 ident: ref61 article-title: Transcription through chromatin by RNA polymerase II: histone displacement and exchange. publication-title: Mutat Res doi: 10.1016/j.mrfmmm.2006.05.040 – volume: 15 start-page: 550 year: 2008 ident: ref55 article-title: Nonprocessive methylation by Dot1 leads to functional redundancy of histone H3K79 methylation states. publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1432 – volume: 10 start-page: 161 year: 2009 ident: ref41 article-title: Nucleosome positioning and gene regulation: advances through genomics. publication-title: Nat Rev Genet doi: 10.1038/nrg2522 – volume: 6 start-page: e1000837 year: 2010 ident: ref68 article-title: Replication and active demethylation represent partially overlapping mechanisms for erasure of H3K4me3 in budding yeast. publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000837 – volume: 328 start-page: 1161 year: 2010 ident: ref23 article-title: Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. publication-title: Science doi: 10.1126/science.1186777 – volume: 184 start-page: 321 year: 2001 ident: ref63 article-title: The pump and leak steady-state concept with a variety of regulated leak pathways. publication-title: J Membr Biol doi: 10.1007/s00232-001-0102-5 – volume: 107 start-page: 64 year: 2010 ident: ref13 article-title: Recombination-induced tag exchange to track old and new proteins. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0911164107 – volume: 58 start-page: 15 year: 1989 ident: ref49 article-title: Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. publication-title: Cell doi: 10.1016/0092-8674(89)90398-X – volume: 339 start-page: 258 year: 2010 ident: ref39 article-title: Nucleosome positioning: how is it established, and why does it matter? publication-title: Dev Biol doi: 10.1016/j.ydbio.2009.06.012 – volume: 281 start-page: 9755 year: 2006 ident: ref43 article-title: Contribution of the histone H3 and H4 amino termini to Gcn4p- and Gcn5p-mediated transcription in yeast. publication-title: J Biol Chem doi: 10.1074/jbc.M513178200 – volume: 449 start-page: 54 year: 2007 ident: ref37 article-title: Natural history and evolutionary principles of gene duplication in fungi. publication-title: Nature doi: 10.1038/nature06107 – reference: 17320507 - Cell. 2007 Feb 23;128(4):693-705 – reference: 11588253 - Science. 2001 Oct 5;294(5540):115-21 – reference: 12620224 - Mol Cell. 2003 Feb;11(2):353-63 – reference: 19935686 - Nat Struct Mol Biol. 2009 Dec;16(12):1272-8 – reference: 19317649 - Annu Rev Biochem. 2009;78:245-71 – reference: 20534568 - Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11325-30 – reference: 8617368 - FEBS Lett. 1996 Apr 22;384(3):265-8 – reference: 1321140 - J Biol Chem. 1992 Jul 15;267(20):14259-65 – reference: 20299197 - Curr Opin Cell Biol. 2010 Jun;22(3):284-90 – reference: 17289583 - Mol Cell. 2007 Feb 9;25(3):345-55 – reference: 19644123 - Science. 2009 Jul 31;325(5940):626-8 – reference: 11891558 - J Membr Biol. 2001 Dec 1;184(3):321-30 – reference: 17679090 - Mol Cell. 2007 Aug 3;27(3):393-405 – reference: 15664979 - J Biol Chem. 2005 Apr 1;280(13):12065-8 – reference: 2684414 - Cell. 1989 Nov 17;59(4):637-47 – reference: 15961632 - Science. 2005 Jul 22;309(5734):626-30 – reference: 17320445 - Mol Cell. 2007 Mar 9;25(5):703-12 – reference: 8858152 - Cell. 1996 Oct 4;87(1):95-104 – reference: 3935168 - Biochemistry. 1985 Nov 19;24(24):6930-8 – reference: 17407749 - Curr Biol. 2007 Apr 3;17(7):R233-6 – reference: 19527704 - Dev Biol. 2010 Mar 15;339(2):258-66 – reference: 9395401 - Science. 1997 Dec 12;278(5345):1960-3 – reference: 17991991 - Phys Biol. 2007 Nov;4(4):246-55 – reference: 16983375 - Nat Rev Genet. 2006 Oct;7(10):793-803 – reference: 16122352 - PLoS Biol. 2005 Oct;3(10):e328 – reference: 16020781 - Genetics. 2005 Nov;171(3):885-99 – reference: 19234478 - Nat Rev Mol Cell Biol. 2009 Mar;10(3):192-206 – reference: 20723754 - Cell. 2010 Aug 20;142(4):519-30 – reference: 8293470 - Cell. 1994 Jan 28;76(2):371-82 – reference: 20637075 - Genome Biol. 2010;11(7):R75 – reference: 9845373 - Cell. 1998 Nov 25;95(5):717-28 – reference: 19234523 - Biochem Cell Biol. 2009 Feb;87(1):51-63 – reference: 20508129 - Science. 2010 May 28;328(5982):1161-4 – reference: 17320509 - Cell. 2007 Feb 23;128(4):721-33 – reference: 8223463 - EMBO J. 1993 Dec;12(12):4533-45 – reference: 18458100 - Genetics. 2008 May;179(1):263-75 – reference: 20123079 - Biochim Biophys Acta. 2010 Jan-Feb;1799(1-2):175-80 – reference: 1658628 - Mol Cell Biol. 1991 Dec;11(12):6257-67 – reference: 15568982 - Annu Rev Genet. 2004;38:413-43 – reference: 2546672 - Cell. 1989 Jul 14;58(1):15-25 – reference: 19846608 - Genome Res. 2010 Jan;20(1):90-100 – reference: 17805289 - Nature. 2007 Sep 6;449(7158):54-61 – reference: 8627621 - J Mol Biol. 1996 May 3;258(2):224-39 – reference: 20017897 - J Biol. 2009;8(11):95 – reference: 16039596 - Mol Cell. 2005 Jul 22;19(2):279-85 – reference: 15309048 - PLoS Biol. 2004 Sep;2(9):E259 – reference: 20018668 - Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):64-8 – reference: 16461773 - J Biol Chem. 2006 Apr 7;281(14):9755-64 – reference: 19204718 - Nat Rev Genet. 2009 Mar;10(3):161-72 – reference: 19682934 - Mol Cell. 2009 Sep 11;35(5):626-41 – reference: 17347438 - Science. 2007 Mar 9;315(5817):1405-8 – reference: 16122420 - Cell. 2005 Aug 26;122(4):517-27 – reference: 21666804 - PLoS Biol. 2011 Jun;9(6):e1001072 – reference: 20140185 - PLoS Genet. 2010 Feb;6(2):e1000837 – reference: 16155569 - Nat Genet. 2005 Oct;37(10):1090-7 – reference: 18511943 - Nat Struct Mol Biol. 2008 Jun;15(6):550-7 – reference: 17313961 - Mutat Res. 2007 May 1;618(1-2):116-29 – reference: 20944015 - Genetics. 2011 Jan;187(1):9-19 – reference: 3378048 - Biochemistry. 1988 Mar 22;27(6):2109-20 – reference: 17512413 - Cell. 2007 May 18;129(4):813-22 – reference: 3620448 - Biochemistry. 1987 Apr 21;26(8):2315-25 – reference: 15769942 - Genes Dev. 2005 Mar 15;19(6):677-82 – reference: 3023620 - J Mol Biol. 1986 May 5;189(1):189-204 – reference: 19027300 - Trends Cell Biol. 2009 Jan;19(1):29-41 – reference: 2304549 - Nature. 1990 Feb 22;343(6260):719-26 – reference: 15229615 - Nature. 2004 Jul 29;430(6999):573-8 – reference: 19023413 - PLoS Genet. 2008 Nov;4(11):e1000270 – reference: 20526281 - EMBO J. 2010 Jul 7;29(13):2126-34 – reference: 12676793 - Annu Rev Biochem. 2003;72:481-516 – reference: 14992726 - Mol Cell. 2004 Feb 27;13(4):573-85 – reference: 15024052 - Mol Cell Biol. 2004 Apr;24(7):2605-13 – reference: 6088500 - J Biol Chem. 1984 Aug 25;259(16):10422-9 – reference: 12511866 - Nat Rev Mol Cell Biol. 2003 Jan;4(1):25-32 – reference: 16990856 - Nat Rev Cancer. 2006 Oct;6(10):789-802 – reference: 19197343 - PLoS Comput Biol. 2009 Feb;5(2):e1000282 – reference: 2225075 - Cell. 1990 Nov 16;63(4):751-62 |
SSID | ssj0022928 |
Score | 2.3874233 |
Snippet | Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal... Tracking of ancestral histone proteins over multiple generations of genome replication in yeast reveals that old histones move along genes from 3' toward 5'... Tracking of ancestral histone proteins over multiple generations of genome replication in yeast reveals that old histones move along genes from 3′ toward 5′... Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk,... |
SourceID | plos doaj pubmedcentral hal proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1001075 |
SubjectTerms | Analysis Biochemistry, Molecular Biology Biology Chromatin Deoxyribonucleic acid DNA DNA Replication Timing DNA Topoisomerases, Type I - metabolism Epigenetics Genes, Fungal - genetics Genetic aspects Genetics Genomics Histones Histones - chemistry Histones - genetics Histones - metabolism Inheritance Patterns - genetics Kinetics Life Sciences Models, Biological Mutation - genetics Nucleosomes - metabolism Physiological aspects Protein Processing, Post-Translational Proteins Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins - genetics Saccharomycetales - genetics Transcription, Genetic Yeast Yeast fungi Yeasts |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELegEhIviO8VBrIQEk9hie3E9mNBTAXB-Bpob5a_slba0oq0SPvvuXPSqkGD8cBbFf_SxHfn2Gff_Y6Q5zG4UubMZ7HwOhOxqDJVyCLzpbM4Y1auwOTkD0fV9Jt4d1Ke7JT6wpiwjh64E9xB7ZXludJBcy9EqG1pS1y0RK2E1yKl-cKct3GmeleL6VRVFalmYDhL3ifNcVkc9Dp6uXTzRWIgyjHGcGdSStz92y_09RkGSI6WZ4v2skXo77GUO5PT4W1yq19V0knXmzvkWmzukhtdncmLe-Tzp8Si2bTUNoGeR8z2nbfnLV3UFLWetjtooh5uIk3UDfOGzhvMDVwhAH5Ttw44z9ELrPZznxwfvjl-Pc36WgqZBwdilSmtouZC1DLW1kVmYTAX0lY595a5snSqyn0ReYl7uHkeohTCVkHGyKJ0jj8gowZeYY9QJnwQPArQiRVwhy2lDTqKkNvaBlWOCd_I0vieZxzLXZyZdHgmwd_ohGJQA6bXwJhk27uWHc_GFfhXqKYtFlmy0wWwHdPbjrnKdsbkGSrZIA9Gg4E2p3bdtubtx-9mAn6eklww9ifQ16N_AX0ZgF70oHoBEvG2z4AAuSIJ1wC5P0DCkPfDp81QHjt9n07eG7wGSzbNOZM_izHZQ6PdSK81BZLtKy6lhL_fGPLlzXTbjE_GMLwmLtatUZJhJrX-GwQcDsCoakwediNj-54Mj6hVDrqTgzEz6MiwpZnPEuU5GCsyyz36H1p_TG52BwO4lbZPRqsf6_gEVpYr9zR9RH4BD9d0kQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdYERIvE98rDGQhJJ7CEtuJnSfUIaYOsTFgoPJkObazVhpJWVok_nvuErdr0Bg8Jr4kzp3PvrPvfkfIC--KVMbMRj6xeSR8kkUqkUlk08LgipkVCSYnHx1n4y_i3SSdhA23JoRVrubEdqJ2tcU98r0EocLBm5Ly9fxHhFWj8HQ1lNDYIjcRugydLzm5dLhY3tZWRcAZUGrJQ-ocl8lekNSreTGrWxyiGCMNN5amFsF_PU9vTTFMcjA_r5urTNE_Iyo3lqiDO2Q72JZ01A2Gu-SGr-6RW121yV_3yceTFkuzaqipHD3ymPM7a743tC7pCKOp8Z20xQ2pPD1BAIdZRQ8rzBBc4OCgcLm_dLja0W9Y8-cBOT14e_pmHIWKCpEFN2IRAQd9zoUopS9N4ZkBlU6kyWJuDSvStFBZbBPPU9zJjWPnpRAmc9J75mVR8IdkUEEXdghlwjrBvYhVbgQ8YVJpXO6Fi01pnEqHhK94qW1AG8eiF-e6PUKT4HV0TNEoAR0kMCTR-ql5h7bxD_p9FNOaFrGy2xv1xZkOqqdLqwyHfrqcWyFcaVKTotnrcyVsLtSQPEcha0TDqDDc5swsm0YffviqR-DtKckFY38j-nz8P0SfekQvA1FZA0esCXkQwFeE4upR7vYoQfFt_2tT5MfGv49H7zXeA8Mt55zJn8mQ7OCgXXGv0Zd6BK9fDeSrm-m6Gb-MwXiVr5eNVpJhPnV-HQm4HUCjsiF51GnGup8MD6pVDLKTPZ3p_Ui_pZpNW-BzGKyIL_f4-o4_Ibe7jX_cKtslg8XF0j8Fy3FRPGunh99Q2Gtf priority: 102 providerName: ProQuest |
Title | Patterns and Mechanisms of Ancestral Histone Protein Inheritance in Budding Yeast |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21666805 https://www.proquest.com/docview/1298983777 https://www.proquest.com/docview/872439497 https://www.proquest.com/docview/899143986 https://hal.science/hal-02193327 https://pubmed.ncbi.nlm.nih.gov/PMC3110181 https://doaj.org/article/fc8a3089d93c44dfa5a53977e984c948 http://dx.doi.org/10.1371/journal.pbio.1001075 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfWTki8IL4XGJWFkHjKlMRO7Dwg1KJNHbDSjQ2VJ8txnLVSSUvTIvbf43M-1KAOEC-VGp8d5-zz3dm-3yH0SqdJyLxAudpXsUu1H7ncZ76rwkSCxowSH4KTz0bR8Iq-n4STPVTnbK0YWOx07SCf1NVqfvTz-81bI_BvbNYG5teVjpbJbGExhYwa7KB9o5sYJHM4o825QhDENtsqQNAYMWekCqa7rRULFWwMfA7Z7bb0loX3bxbxzhTuUHaX80Wxy079_brllv46uY_uVYYn7pcz5QHa0_lDdKdMRXnzCJ2PLdBmXmCZp_hMQ0DwrPhW4EWG-3DVGtrEFlQk13gM6A6zHJ_mED64hpmDzd_BJgVViL9CQqDH6PLk-PLd0K3SLbjK-Bhrl8dcx4TSjOlMJjqQRt59JiOPKBkkYZjwyFO-JiFs83peqhmlMkqZ1oFmSUKeoG5uunCAcEBVSommHo8lNTVkyGQaa5p6MpMpDx1Eal4KVUGRQ0aMubDna8y4JCVTBAyGqAbDQW5Ta1lCcfyFfgDD1NACkLZ9sFhdi0ouRaa4JKafaUwUpWkmQxmCTaxjTlVMuYNewiALgMrI4S7OtdwUhTj99EX0jSvIGaFBcBvR59G_EF20iF5XRNnCcETJKkjC8BVwulqUhy1Ksyqo9tumwI-tbx_2Pwp4Zqy6mJCA_fAddACTtuZeIXzA4-eEMWaaryfy7mLcFMOb4aZerhebQnAWQLB1_CcS45MYGh456GkpGU0_a2lzEGvJTOtD2iX5bGpR0c1kBfC5Z_9d8zm6Wx4YwBbbIequVxv9wlic66SHOmzCemh_cDwaX_Tsvo35_XDOe3Z5-QXloIKk |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELe2IgQviP8rDLAQiKewxHbi5AGhDpha1pYBHSpPluM4a6WRlKUF7UPxHblL0q5BY_CyxyQXxzmf78723e8IeWaT2JcuM471TOQI6wVO6EnPMX6s0WIGsYfJyYNh0D0U78f-eIP8WubCYFjlUieWijrJDe6R73gIFQ6rKSlfz747WDUKT1eXJTQqsdi3pz9hyVa86r2F8X3O2N670ZuuU1cVcAy40nMHWrERFyKVNtWxZRrE2pM6cLnRLPb9OAxc41nu426m6yZWCqGDRFrLrIxjDs1ukitgd12MIJTjs_Udi8pSrohvAzpE8jpTj0tvpxaMl7N4mpewRy4GNq5ZwrJgwMosbE4wKrM1O86L8zzfPwM41yzi3k1yo3ZlaaeSvVtkw2a3ydWquOXpHfLxoITuzAqqs4QOLKYYT4tvBc1T2sHgbWyTljAlmaUHiBcxzWgvw4TEOcoihcvdRYLGlX7FEkN3yegyWH2PtDLowhahTJhEcCvcMNIC3tC-1ElkReLqVCeh3yZ8yUtlanBzrLFxrMoTOwmLnIopCkdA1SPQJs7qrVkF7vEP-l0cphUtQnOXN_KTI1XPdJWaUHPoZxJxI0SSal_76GXbKBQmEmGbPMVBVgi-kWF0z5FeFIXqffiiOrC4DCUXjP2N6PPwf4g-NYhe1ERpDhwxuk67AL4i8leDcrtBCXrGNL82QX6s_Xu301d4D_zEiHMmf3htsoVCu-Reoc6mLTS_FOTzH9PVY_wyxv5lNl8UKpQM07eji0hglQM0YdAm96uZseonw3Px0IWxk4050_iR5pNsOilx1kFYEc7uwcUdf0KudUeDvur3hvsPyfXqzAF36bZJa36ysI_AaZ3Hj0tVQYm6ZNX0G_u9qFo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IhAviO8VBlgIxFNoYjtx8oBQx6hatpUCA5Uny3GctdJIytKC9qfx33GXpF2DxuBlj0kujnN3vvPH3e8IeWaT2JcuM471TOQI6wVO6EnPMX6s0WMGsYfJyQfDoP9ZvBv74w3ya5kLg2GVS5tYGuokN7hH3vEQKhxWU1J20josYrTbez377mAFKTxpXZbTqFRkz57-hOVb8WqwC7J-zljv7eGbvlNXGHAMTKvnDrRoIy5EKm2qY8s0qLgndeByo1ns-3EYuMaz3MedTddNrBRCB4m0llkZxxya3SRXJAevCUNJjs_Weiwqy7oi1g3YE8nrrD0uvU6tJC9n8TQvIZBcDHJc84pl8YCVi9icYIRma3acF-fNgv8M5lzzjr2b5EY9raXdSg9vkQ2b3SZXq0KXp3fIh1EJ45kVVGcJPbCYbjwtvhU0T2kXA7mxTVpClmSWjhA7YprRQYbJiXPUSwqXO4sEHS39iuWG7pLDy2D1PdLKoAtbhDJhEsGtcMNIC3hD-1InkRWJq1OdhH6b8CUvlamBzrHexrEqT-8kLHgqpiiUgKol0CbO6q1ZBfTxD_odFNOKFmG6yxv5yZGqR71KTag59DOJuBEiSbWvfZxx2ygUJhJhmzxFISsE4shQpY_0oijU4P0X1YWFZii5YOxvRJ-G_0P0sUH0oiZKc-CI0XUKBvAVUcAalNsNSrA5pvm1CfJj7d_73X2F92DOGHHO5A-vTbZQaZfcK9TZEIbml4p8_mO6eoxfxjjAzOaLQoWSYSp3dBEJrHiAJgza5H41Mlb9ZHhGHrogO9kYM40faT7JppMScx2UFaHtHlzc8SfkGhgltT8Y7j0k16vjB9yw2yat-cnCPoL56zx-XFoKStQlW6bfC6WskA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterns+and+Mechanisms+of+Ancestral+Histone+Protein+Inheritance+in+Budding+Yeast&rft.jtitle=PLoS+biology&rft.au=Radman-Livaja%2C+Marta&rft.au=Verzijlbergen%2C+Kitty+F.&rft.au=Weiner%2C+Assaf&rft.au=van+Welsem%2C+Tibor&rft.date=2011-06-01&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.eissn=1545-7885&rft.volume=9&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.pbio.1001075&rft_id=info%3Apmid%2F21666805&rft.externalDocID=PMC3110181 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon |