Patterns and Mechanisms of Ancestral Histone Protein Inheritance in Budding Yeast

Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal histones are randomly segregated to the two daughters, but little is known about the fine details of this process: do maternal histones re-a...

Full description

Saved in:
Bibliographic Details
Published inPLoS biology Vol. 9; no. 6; p. e1001075
Main Authors Radman-Livaja, Marta, Verzijlbergen, Kitty F., Weiner, Assaf, van Welsem, Tibor, Friedman, Nir, Rando, Oliver J., van Leeuwen, Fred
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.06.2011
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1545-7885
1544-9173
1545-7885
DOI10.1371/journal.pbio.1001075

Cover

Loading…
Abstract Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal histones are randomly segregated to the two daughters, but little is known about the fine details of this process: do maternal histones re-assemble at preferred locations or close to their original loci? Here, we use a recently developed method for swapping epitope tags to measure the disposition of ancestral histone H3 across the yeast genome over six generations. We find that ancestral H3 is preferentially retained at the 5' ends of most genes, with strongest retention at long, poorly transcribed genes. We recapitulate these observations with a quantitative model in which the majority of maternal histones are reincorporated within 400 bp of their pre-replication locus during replication, with replication-independent replacement and transcription-related retrograde nucleosome movement shaping the resulting distributions of ancestral histones. We find a key role for Topoisomerase I in retrograde histone movement during transcription, and we find that loss of Chromatin Assembly Factor-1 affects replication-independent turnover. Together, these results show that specific loci are enriched for histone proteins first synthesized several generations beforehand, and that maternal histones re-associate close to their original locations on daughter genomes after replication. Our findings further suggest that accumulation of ancestral histones could play a role in shaping histone modification patterns.
AbstractList Tracking of ancestral histone proteins over multiple generations of genome replication in yeast reveals that old histones move along genes from 3' toward 5' over time, and that maternal histones move up to around 400 bp during genomic replication. Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal histones are randomly segregated to the two daughters, but little is known about the fine details of this process: do maternal histones re-assemble at preferred locations or close to their original loci? Here, we use a recently developed method for swapping epitope tags to measure the disposition of ancestral histone H3 across the yeast genome over six generations. We find that ancestral H3 is preferentially retained at the 5' ends of most genes, with strongest retention at long, poorly transcribed genes. We recapitulate these observations with a quantitative model in which the majority of maternal histones are reincorporated within 400 bp of their pre-replication locus during replication, with replication-independent replacement and transcription-related retrograde nucleosome movement shaping the resulting distributions of ancestral histones. We find a key role for Topoisomerase I in retrograde histone movement during transcription, and we find that loss of Chromatin Assembly Factor-1 affects replication-independent turnover. Together, these results show that specific loci are enriched for histone proteins first synthesized several generations beforehand, and that maternal histones re-associate close to their original locations on daughter genomes after replication. Our findings further suggest that accumulation of ancestral histones could play a role in shaping histone modification patterns. It is widely believed that chromatin, the nucleoprotein packaged state of eukaryotic genomes, can carry epigenetic information and thus transmit gene expression patterns to replicating cells. However, the inheritance of genomic packaging status is subject to mechanistic challenges that do not confront the inheritance of genomic DNA sequence. Most notably, histone proteins must at least transiently dissociate from the maternal genome during replication, and it is unknown whether or not maternal proteins re-associate with daughter genomes near the sequence they originally occupied on the maternal genome. Here, we use a novel method for tracking old proteins to determine where histone proteins accumulate after 1, 3, or 6 generations of growth in yeast. To our surprise, ancestral histones accumulate near the 5' end of long, relatively inactive genes. Using a mathematical model, we show that our results can be explained by the combined effects of histone replacement, histone movement along genes from 3' towards 5' ends, and histone spreading during replication. Our results show that old histones do move but stay relatively close to their original location (within around 400 base-pairs), which places important constraints on how chromatin could potentially carry epigenetic information. Our findings also suggest that accumulation of the ancestral histones that are inherited can influence histone modification patterns.
Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal histones are randomly segregated to the two daughters, but little is known about the fine details of this process: do maternal histones re-assemble at preferred locations or close to their original loci? Here, we use a recently developed method for swapping epitope tags to measure the disposition of ancestral histone H3 across the yeast genome over six generations. We find that ancestral H3 is preferentially retained at the 5' ends of most genes, with strongest retention at long, poorly transcribed genes. We recapitulate these observations with a quantitative model in which the majority of maternal histones are reincorporated within 400 bp of their pre-replication locus during replication, with replication-independent replacement and transcription-related retrograde nucleosome movement shaping the resulting distributions of ancestral histones. We find a key role for Topoisomerase I in retrograde histone movement during transcription, and we find that loss of Chromatin Assembly Factor-1 affects replication-independent turnover. Together, these results show that specific loci are enriched for histone proteins first synthesized several generations beforehand, and that maternal histones re-associate close to their original locations on daughter genomes after replication. Our findings further suggest that accumulation of ancestral histones could play a role in shaping histone modification patterns.
Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal histones are randomly segregated to the two daughters, but little is known about the fine details of this process: do maternal histones re-assemble at preferred locations or close to their original loci? Here, we use a recently developed method for swapping epitope tags to measure the disposition of ancestral histone H3 across the yeast genome over six generations. We find that ancestral H3 is preferentially retained at the 5' ends of most genes, with strongest retention at long, poorly transcribed genes. We recapitulate these observations with a quantitative model in which the majority of maternal histones are reincorporated within 400 bp of their pre-replication locus during replication, with replication-independent replacement and transcription-related retrograde nucleosome movement shaping the resulting distributions of ancestral histones. We find a key role for Topoisomerase I in retrograde histone movement during transcription, and we find that loss of Chromatin Assembly Factor-1 affects replication-independent turnover. Together, these results show that specific loci are enriched for histone proteins first synthesized several generations beforehand, and that maternal histones re-associate close to their original locations on daughter genomes after replication. Our findings further suggest that accumulation of ancestral histones could play a role in shaping histone modification patterns.Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal histones are randomly segregated to the two daughters, but little is known about the fine details of this process: do maternal histones re-assemble at preferred locations or close to their original loci? Here, we use a recently developed method for swapping epitope tags to measure the disposition of ancestral histone H3 across the yeast genome over six generations. We find that ancestral H3 is preferentially retained at the 5' ends of most genes, with strongest retention at long, poorly transcribed genes. We recapitulate these observations with a quantitative model in which the majority of maternal histones are reincorporated within 400 bp of their pre-replication locus during replication, with replication-independent replacement and transcription-related retrograde nucleosome movement shaping the resulting distributions of ancestral histones. We find a key role for Topoisomerase I in retrograde histone movement during transcription, and we find that loss of Chromatin Assembly Factor-1 affects replication-independent turnover. Together, these results show that specific loci are enriched for histone proteins first synthesized several generations beforehand, and that maternal histones re-associate close to their original locations on daughter genomes after replication. Our findings further suggest that accumulation of ancestral histones could play a role in shaping histone modification patterns.
Tracking of ancestral histone proteins over multiple generations of genome replication in yeast reveals that old histones move along genes from 3′ toward 5′ over time, and that maternal histones move up to around 400 bp during genomic replication. Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal histones are randomly segregated to the two daughters, but little is known about the fine details of this process: do maternal histones re-assemble at preferred locations or close to their original loci? Here, we use a recently developed method for swapping epitope tags to measure the disposition of ancestral histone H3 across the yeast genome over six generations. We find that ancestral H3 is preferentially retained at the 5′ ends of most genes, with strongest retention at long, poorly transcribed genes. We recapitulate these observations with a quantitative model in which the majority of maternal histones are reincorporated within 400 bp of their pre-replication locus during replication, with replication-independent replacement and transcription-related retrograde nucleosome movement shaping the resulting distributions of ancestral histones. We find a key role for Topoisomerase I in retrograde histone movement during transcription, and we find that loss of Chromatin Assembly Factor-1 affects replication-independent turnover. Together, these results show that specific loci are enriched for histone proteins first synthesized several generations beforehand, and that maternal histones re-associate close to their original locations on daughter genomes after replication. Our findings further suggest that accumulation of ancestral histones could play a role in shaping histone modification patterns. It is widely believed that chromatin, the nucleoprotein packaged state of eukaryotic genomes, can carry epigenetic information and thus transmit gene expression patterns to replicating cells. However, the inheritance of genomic packaging status is subject to mechanistic challenges that do not confront the inheritance of genomic DNA sequence. Most notably, histone proteins must at least transiently dissociate from the maternal genome during replication, and it is unknown whether or not maternal proteins re-associate with daughter genomes near the sequence they originally occupied on the maternal genome. Here, we use a novel method for tracking old proteins to determine where histone proteins accumulate after 1, 3, or 6 generations of growth in yeast. To our surprise, ancestral histones accumulate near the 5′ end of long, relatively inactive genes. Using a mathematical model, we show that our results can be explained by the combined effects of histone replacement, histone movement along genes from 3′ towards 5′ ends, and histone spreading during replication. Our results show that old histones do move but stay relatively close to their original location (within around 400 base-pairs), which places important constraints on how chromatin could potentially carry epigenetic information. Our findings also suggest that accumulation of the ancestral histones that are inherited can influence histone modification patterns.
  Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal histones are randomly segregated to the two daughters, but little is known about the fine details of this process: do maternal histones re-assemble at preferred locations or close to their original loci? Here, we use a recently developed method for swapping epitope tags to measure the disposition of ancestral histone H3 across the yeast genome over six generations. We find that ancestral H3 is preferentially retained at the 5' ends of most genes, with strongest retention at long, poorly transcribed genes. We recapitulate these observations with a quantitative model in which the majority of maternal histones are reincorporated within 400 bp of their pre-replication locus during replication, with replication-independent replacement and transcription-related retrograde nucleosome movement shaping the resulting distributions of ancestral histones. We find a key role for Topoisomerase I in retrograde histone movement during transcription, and we find that loss of Chromatin Assembly Factor-1 affects replication-independent turnover. Together, these results show that specific loci are enriched for histone proteins first synthesized several generations beforehand, and that maternal histones re-associate close to their original locations on daughter genomes after replication. Our findings further suggest that accumulation of ancestral histones could play a role in shaping histone modification patterns.
Audience Academic
Author Weiner, Assaf
van Welsem, Tibor
Rando, Oliver J.
Friedman, Nir
Verzijlbergen, Kitty F.
van Leeuwen, Fred
Radman-Livaja, Marta
AuthorAffiliation 3 School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
1 Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
2 Division of Gene Regulation, Netherlands Cancer Institute, and Netherlands Proteomics Center, Amsterdam, The Netherlands
Adolf Butenandt Institute, Germany
4 Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
AuthorAffiliation_xml – name: 4 Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
– name: 1 Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
– name: Adolf Butenandt Institute, Germany
– name: 3 School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
– name: 2 Division of Gene Regulation, Netherlands Cancer Institute, and Netherlands Proteomics Center, Amsterdam, The Netherlands
Author_xml – sequence: 1
  givenname: Marta
  surname: Radman-Livaja
  fullname: Radman-Livaja, Marta
– sequence: 2
  givenname: Kitty F.
  surname: Verzijlbergen
  fullname: Verzijlbergen, Kitty F.
– sequence: 3
  givenname: Assaf
  surname: Weiner
  fullname: Weiner, Assaf
– sequence: 4
  givenname: Tibor
  surname: van Welsem
  fullname: van Welsem, Tibor
– sequence: 5
  givenname: Nir
  surname: Friedman
  fullname: Friedman, Nir
– sequence: 6
  givenname: Oliver J.
  surname: Rando
  fullname: Rando, Oliver J.
– sequence: 7
  givenname: Fred
  surname: van Leeuwen
  fullname: van Leeuwen, Fred
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21666805$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02193327$$DView record in HAL
BookMark eNqVk0uP0zAUhSM0iHnAP0AQiQWaRYtfiW0WSGUEtFJhBhghsbIc56Z1ldolTkbw73FoiqbViIeySOx851z5XN_T5Mh5B0nyGKMxphy_WPmucboebwrrxxghjHh2LznBGctGXIjs6Nb3cXIawgohQiQRD5JjgvM8Fyg7ST5e6baFxoVUuzJ9D2apnQ3rkPoqnTgDoW10nU5taGP19KrxLViXztwSGtvqCKRx-borS-sW6VfQoX2Y3K90HeDR8D5Lrt--ub6YjuaX72YXk_nICJK3IyEFSMpYxaHSBRCNKMZc54gaTYosK0SODAaayariCJXAGdN5yQEI8KKgZ8nTre2m9kENYQSFiYzOlHMeidmWKL1eqU1j17r5oby26teGbxZKN601NajKCE2RkKWkhrGy0pnOqOQcpGBGMhG9Xg3VumINpQHX57Jnuv_H2aVa-BsVD4WwwNHgfGuwPJBNJ3PV7yGCJaWE3_Ts86FY4791sQVqbYOButYOfBeUkBIzKkX-d5KTCDLZh_HsgLw7soFa6JiKdZWPhzG9p5qQHAlOGSGRGt9BxaeEtTXxnlQ27u8JzvcEkWnhe7vQXQhq9vnTf7Af_p29_LLPPrndwd892I1CBF5uAdP4EBqolIk3vLW-b6itFUaqn7tdbqqfOzXMXRSzA_HO_4-ynxf1LxE
CitedBy_id crossref_primary_10_1073_pnas_1911943116
crossref_primary_10_3390_genes13061002
crossref_primary_10_1016_j_tig_2011_11_005
crossref_primary_10_1534_g3_113_006213
crossref_primary_10_1016_j_bbagrm_2018_07_008
crossref_primary_10_1371_journal_pone_0028980
crossref_primary_10_1126_science_1258699
crossref_primary_10_1016_j_bbagrm_2011_07_005
crossref_primary_10_1126_science_abo3851
crossref_primary_10_1093_nar_gku1190
crossref_primary_10_1016_j_cell_2013_07_034
crossref_primary_10_1093_nar_gku165
crossref_primary_10_2217_epi_11_113
crossref_primary_10_1080_15592294_2015_1017200
crossref_primary_10_1093_nar_gkad1098
crossref_primary_10_1371_journal_pgen_1006900
crossref_primary_10_1016_j_tcb_2012_02_004
crossref_primary_10_1038_s41580_022_00518_2
crossref_primary_10_1371_journal_pgen_1002811
crossref_primary_10_1007_s00412_014_0501_x
crossref_primary_10_1016_j_jmb_2016_11_011
crossref_primary_10_15252_embj_201488398
crossref_primary_10_15252_embj_201798714
crossref_primary_10_1016_j_molcel_2015_02_002
crossref_primary_10_1128_MCB_00835_15
crossref_primary_10_1016_j_jmb_2024_168845
crossref_primary_10_15252_embr_202051184
crossref_primary_10_1093_nar_gkv666
crossref_primary_10_1007_s11427_022_2267_6
crossref_primary_10_1101_gr_275387_121
crossref_primary_10_1016_j_tibs_2020_08_009
crossref_primary_10_3389_fmicb_2022_888746
crossref_primary_10_1016_j_ceb_2012_03_009
crossref_primary_10_1016_j_molcel_2017_10_013
crossref_primary_10_1534_genetics_115_186452
crossref_primary_10_1016_j_ceb_2012_02_003
crossref_primary_10_1126_science_aaj2114
crossref_primary_10_1093_nar_gku784
crossref_primary_10_1093_nar_gkw840
crossref_primary_10_1016_j_gde_2024_102163
crossref_primary_10_1038_ncomms13337
crossref_primary_10_1101_gr_201244_115
crossref_primary_10_1016_j_cell_2011_07_013
crossref_primary_10_1111_imr_12207
crossref_primary_10_1128_MCB_00007_21
crossref_primary_10_1002_bies_201200026
crossref_primary_10_1016_j_bbagrm_2011_10_006
crossref_primary_10_1128_EC_00334_12
crossref_primary_10_1016_j_celrep_2016_07_083
crossref_primary_10_3390_biology9060140
crossref_primary_10_1080_15592294_2020_1741777
crossref_primary_10_1103_PhysRevE_93_062417
crossref_primary_10_1093_nar_gks813
crossref_primary_10_1016_j_molcel_2014_04_032
crossref_primary_10_1016_j_molcel_2018_10_028
crossref_primary_10_1016_j_molcel_2018_08_010
crossref_primary_10_1038_s41598_019_49894_4
crossref_primary_10_1042_BSR20182006
crossref_primary_10_7554_eLife_07205
crossref_primary_10_1002_0471143030_cb0808s55
crossref_primary_10_1016_j_gde_2012_11_002
crossref_primary_10_1002_pmic_201400060
crossref_primary_10_15252_embr_201438793
crossref_primary_10_1038_nrm3288
crossref_primary_10_1093_nar_gky207
crossref_primary_10_1016_j_gde_2012_12_007
crossref_primary_10_1016_j_sbi_2023_102690
crossref_primary_10_1016_j_celrep_2017_10_033
crossref_primary_10_15252_embj_2019101564
crossref_primary_10_1038_s41467_019_10823_8
crossref_primary_10_1042_EBC20180055
crossref_primary_10_1016_j_bbagrm_2014_06_006
crossref_primary_10_1038_srep09824
crossref_primary_10_1002_bies_201200076
crossref_primary_10_1016_j_cub_2011_06_062
crossref_primary_10_7554_eLife_18919
crossref_primary_10_3390_genes6020353
crossref_primary_10_1016_j_ab_2020_114067
crossref_primary_10_1093_femsyr_fov073
crossref_primary_10_1016_j_tibs_2017_12_003
crossref_primary_10_1091_mbc_E17_10_0596
crossref_primary_10_1073_pnas_1914581116
crossref_primary_10_1038_nsmb_2737
crossref_primary_10_1073_pnas_2111841118
crossref_primary_10_1016_j_celrep_2014_02_017
crossref_primary_10_1016_j_cell_2012_06_046
crossref_primary_10_1038_nrm3789
crossref_primary_10_1242_jcs_084764
crossref_primary_10_1038_s41596_021_00520_6
crossref_primary_10_1016_j_molcel_2021_07_017
crossref_primary_10_1126_sciadv_1601865
crossref_primary_10_1038_embor_2011_131
crossref_primary_10_1093_nar_gky823
crossref_primary_10_1371_journal_pgen_1002284
crossref_primary_10_1038_nrm3146
crossref_primary_10_15252_embj_201899021
crossref_primary_10_1093_nar_gkt1239
crossref_primary_10_1016_j_bbagrm_2011_11_002
crossref_primary_10_1371_journal_pcbi_1011725
crossref_primary_10_1371_journal_pone_0077944
crossref_primary_10_3389_fpls_2016_00038
crossref_primary_10_1016_j_jmb_2014_09_013
crossref_primary_10_1016_j_jtbi_2013_07_012
crossref_primary_10_1074_jbc_RA118_003873
crossref_primary_10_1038_nprot_2013_077
crossref_primary_10_1101_gr_276674_122
crossref_primary_10_1042_BST20110730
crossref_primary_10_1007_s00018_022_04352_9
crossref_primary_10_1073_pnas_2400610121
crossref_primary_10_1016_j_cell_2024_07_006
crossref_primary_10_1002_bies_201600150
crossref_primary_10_1002_wsbm_1165
crossref_primary_10_1371_journal_pgen_1007969
crossref_primary_10_1038_srep19729
crossref_primary_10_1534_genetics_114_168039
crossref_primary_10_1016_j_ddstr_2011_08_002
Cites_doi 10.1016/j.molcel.2009.07.017
10.1126/science.1112178
10.1073/pnas.1001148107
10.1126/science.278.5345.1960
10.1006/jmbi.1996.0245
10.1126/science.1134053
10.1016/j.bbagrm.2009.11.010
10.1021/bi00382a037
10.1016/j.cell.2005.06.026
10.1146/annurev.biochem.72.121801.161547
10.1016/j.cell.2007.02.005
10.1534/genetics.108.088518
10.1371/journal.pbio.0020259
10.1016/0092-8674(94)90343-3
10.1038/nsmb.1689
10.1146/annurev.biochem.78.071107.134639
10.1088/1478-3975/4/4/002
10.1371/journal.pgen.1000270
10.1016/S0092-8674(00)81326-4
10.1016/j.molcel.2005.05.028
10.1146/annurev.genet.38.072902.091907
10.1038/emboj.2010.109
10.1126/science.1172926
10.1101/gr.098509.109
10.1021/bi00345a027
10.1101/gad.1265205
10.1016/0092-8674(90)90141-Z
10.1038/nrc1977
10.1126/science.294.5540.115
10.1016/j.cell.2010.08.001
10.1016/S0021-9258(19)49706-8
10.1002/j.1460-2075.1993.tb06142.x
10.1021/bi00406a044
10.1371/journal.pbio.0030328
10.1016/0092-8674(89)90009-3
10.1038/343719a0
10.1016/0014-5793(96)00317-1
10.1016/j.molcel.2007.07.011
10.1016/j.cell.2007.02.053
10.1016/S1097-2765(03)00033-9
10.1038/nrm1008
10.1038/nrg1920
10.1016/S0092-8674(00)81641-4
10.1016/j.molcel.2007.01.019
10.1016/S1097-2765(04)00087-5
10.1128/MCB.11.12.6257
10.1128/MCB.24.7.2605-2613.2004
10.1371/journal.pcbi.1000282
10.1038/ng1637
10.1016/S0021-9258(18)90981-6
10.1038/nrm2640
10.1038/nature02742
10.1186/gb-2010-11-7-r75
10.1016/0022-2836(86)90390-6
10.1186/jbiol204
10.1016/j.tcb.2008.10.002
10.1016/j.cub.2007.02.030
10.1074/jbc.R400039200
10.1016/j.cell.2007.01.030
10.1534/genetics.105.044719
10.1016/j.mrfmmm.2006.05.040
10.1038/nsmb.1432
10.1038/nrg2522
10.1371/journal.pgen.1000837
10.1126/science.1186777
10.1007/s00232-001-0102-5
10.1073/pnas.0911164107
10.1016/0092-8674(89)90398-X
10.1016/j.ydbio.2009.06.012
10.1074/jbc.M513178200
10.1038/nature06107
ContentType Journal Article
Copyright COPYRIGHT 2011 Public Library of Science
2011 Radman-Livaja et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Radman-Livaja M, Verzijlbergen KF, Weiner A, van Welsem T, Friedman N, et al. (2011) Patterns and Mechanisms of Ancestral Histone Protein Inheritance in Budding Yeast. PLoS Biol 9(6): e1001075. doi:10.1371/journal.pbio.1001075
Attribution
Radman-Livaja et al. 2011
Copyright_xml – notice: COPYRIGHT 2011 Public Library of Science
– notice: 2011 Radman-Livaja et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Radman-Livaja M, Verzijlbergen KF, Weiner A, van Welsem T, Friedman N, et al. (2011) Patterns and Mechanisms of Ancestral Histone Protein Inheritance in Budding Yeast. PLoS Biol 9(6): e1001075. doi:10.1371/journal.pbio.1001075
– notice: Attribution
– notice: Radman-Livaja et al. 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
3V.
7QG
7QL
7SN
7SS
7T5
7TK
7TM
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
RC3
7X8
1XC
VOOES
5PM
DOA
CZG
DOI 10.1371/journal.pbio.1001075
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Opposing Viewpoints in Context
Gale In Context: Canada
Science in Context
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
PLoS Biology
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts

MEDLINE - Academic


Publicly Available Content Database
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Transgenerational Histone Retention in Yeast
EISSN 1545-7885
ExternalDocumentID 1298983777
oai_doaj_org_article_fc8a3089d93c44dfa5a53977e984c948
PMC3110181
oai_HAL_hal_02193327v1
2898943081
A260873422
21666805
10_1371_journal_pbio_1001075
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
Netherlands
Israel
GeographicLocations_xml – name: Israel
– name: Netherlands
– name: United States
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM079205
– fundername: NIGMS NIH HHS
  grantid: R01 GM079205
GroupedDBID ---
123
29O
2WC
36B
53G
5VS
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AFXKF
AHMBA
AKRSQ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBS
EJD
EMB
EMK
EMOBN
EPL
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IGS
IHR
IOV
ISE
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PATMY
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PYCSY
QN7
RNS
RPM
SJN
SV3
TR2
TUS
UKHRP
WOW
XSB
YZZ
~8M
.GJ
ADXHL
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
PV9
QF4
RIG
RZL
WOQ
PMFND
3V.
7QG
7QL
7SN
7SS
7T5
7TK
7TM
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
1XC
UMC
VOOES
5PM
PUEGO
AAPBV
ABPTK
AGJBV
CZG
M~E
ZA5
ID FETCH-LOGICAL-c826t-898e9344f7efabe2a03117a603ca2b55b860c1e359ff700de744a6d7ee2e7bb3
IEDL.DBID M48
ISSN 1545-7885
1544-9173
IngestDate Sun Oct 01 00:20:28 EDT 2023
Wed Aug 27 01:30:18 EDT 2025
Thu Aug 21 18:13:56 EDT 2025
Fri May 09 12:24:21 EDT 2025
Tue Aug 05 11:08:59 EDT 2025
Fri Jul 11 15:52:35 EDT 2025
Fri Jul 25 10:23:59 EDT 2025
Tue Jun 17 22:02:03 EDT 2025
Tue Jun 10 21:02:03 EDT 2025
Fri Jun 27 05:31:33 EDT 2025
Fri Jun 27 05:31:17 EDT 2025
Fri Jun 27 05:30:03 EDT 2025
Mon Jul 21 06:04:03 EDT 2025
Thu Apr 24 22:58:53 EDT 2025
Tue Jul 01 03:38:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords DNA Topoisomerases, Type I
Saccharomycetales
Inheritance Patterns
Models, Biological
Saccharomyces cerevisiae Proteins
Histones
DNA Replication Timing
Genes, Fungal
Nucleosomes
Transcription, Genetic
Protein Processing, Post-Translational
Kinetics
Mutation
Language English
License Attribution: http://creativecommons.org/licenses/by
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c826t-898e9344f7efabe2a03117a603ca2b55b860c1e359ff700de744a6d7ee2e7bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: FvL OJR KFV MRL. Performed the experiments: KFV MRL. Analyzed the data: MRL AW NF OJR. Contributed reagents/materials/analysis tools: TvW. Wrote the paper: MRL KFV AW NF OJR FvL.
ORCID 0000-0003-4987-0608
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pbio.1001075
PMID 21666805
PQID 1298983777
PQPubID 1436341
ParticipantIDs plos_journals_1298983777
doaj_primary_oai_doaj_org_article_fc8a3089d93c44dfa5a53977e984c948
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3110181
hal_primary_oai_HAL_hal_02193327v1
proquest_miscellaneous_899143986
proquest_miscellaneous_872439497
proquest_journals_1298983777
gale_infotracmisc_A260873422
gale_infotracacademiconefile_A260873422
gale_incontextgauss_ISR_A260873422
gale_incontextgauss_ISN_A260873422
gale_incontextgauss_IOV_A260873422
pubmed_primary_21666805
crossref_citationtrail_10_1371_journal_pbio_1001075
crossref_primary_10_1371_journal_pbio_1001075
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-06-01
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PLoS biology
PublicationTitleAlternate PLoS Biol
PublicationYear 2011
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Groth (ref6) 2007; 128
M. E Fernandez-Beros (ref46) 1996; 384
O. I Kulaeva (ref61) 2007; 618
F Frederiks (ref55) 2008; 15
C Thiriet (ref22) 2005; 19
A Groth (ref5) 2009; 87
P. D Kaufman (ref7) 2010
M Durand-Dubief (ref60) 2010; 29
D. J Stillman (ref73) 2010; 1799
L. N Rusche (ref3) 2003; 72
S. K Randall (ref65) 1992; 267
R. B Deal (ref23) 2010; 328
M Sedighi (ref58) 2007; 4
U. J Schermer (ref14) 2005; 19
A. V Probst (ref57) 2009; 10
I. B Dodd (ref12) 2007; 129
T. S Kim (ref75) 2010; 11
W. C Au (ref18) 2008; 179
A Rufiange (ref17) 2007; 27
M Radman-Livaja (ref68) 2010; 6
A Weiner (ref34) 2010; 20
V. M Studitsky (ref30) 1997; 278
C. L Liu (ref19) 2005; 3
C Jiang (ref41) 2009; 10
J. M Schulze (ref53) 2009; 35
M Ptashne (ref1) 2007; 17
R Gasser (ref35) 1996; 258
T Goto (ref47) 1984; 259
C Hodges (ref33) 2009; 325
I Wapinski (ref37) 2007; 449
C Bonne-Andrea (ref64) 1990; 343
V Jackson (ref8) 1985; 24
E. K Hoffmann (ref63) 2001; 184
A Lengronne (ref28) 2004; 430
I Gat-Viks (ref56) 2009; 5
O Matangkasombut (ref42) 2003; 11
D. K Pokholok (ref52) 2005; 122
K. L Huisinga (ref38) 2004; 13
T Kaplan (ref26) 2008; 4
M. K Raghuraman (ref74) 2001; 294
T Kouzarides (ref29) 2007; 128
O. I Kulaeva (ref62) 2010; 107
L Pillus (ref25) 1989; 59
A. T Annunziato (ref4) 2005; 280
A Jamai (ref16) 2007; 25
J. A Sharp (ref51) 2005; 171
K. F Verzijlbergen (ref13) 2010; 107
C Yu (ref43) 2006; 281
M Radman-Livaja (ref39) 2010; 339
G. C Yuan (ref20) 2005; 309
L Ringrose (ref2) 2004; 38
O. J Rando (ref54) 2009; 78
S Smith (ref49) 1989; 58
A. D McConnell (ref70) 2004; 24
M. F Dion (ref15) 2007; 315
V Jackson (ref10) 1988; 27
I Tirosh (ref40) 2009; 8
T Krude (ref66) 1991; 11
C Gruss (ref67) 1993; 12
D. A Koster (ref45) 2010; 142
J. M Sogo (ref36) 1986; 189
A Goren (ref59) 2003; 4
E. F Glynn (ref27) 2004; 2
J Lopes da Rosa (ref50) 2010
Y Pommier (ref44) 2006; 6
F. C Holstege (ref71) 1998; 95
V. M Studitsky (ref31) 1994; 76
V Jackson (ref9) 1987; 26
Y Mito (ref21) 2005; 37
T Tsubota (ref72) 2007
D. E Gottschling (ref24) 1990; 63
P. B Talbert (ref69) 2006; 7
A Verreault (ref48) 1996; 87
O. I Kulaeva (ref32) 2009; 16
A Corpet (ref11) 2009; 19
15024052 - Mol Cell Biol. 2004 Apr;24(7):2605-13
19644123 - Science. 2009 Jul 31;325(5940):626-8
20017897 - J Biol. 2009;8(11):95
20526281 - EMBO J. 2010 Jul 7;29(13):2126-34
17679090 - Mol Cell. 2007 Aug 3;27(3):393-405
15769942 - Genes Dev. 2005 Mar 15;19(6):677-82
17320507 - Cell. 2007 Feb 23;128(4):693-705
20944015 - Genetics. 2011 Jan;187(1):9-19
8293470 - Cell. 1994 Jan 28;76(2):371-82
12511866 - Nat Rev Mol Cell Biol. 2003 Jan;4(1):25-32
14992726 - Mol Cell. 2004 Feb 27;13(4):573-85
17512413 - Cell. 2007 May 18;129(4):813-22
1658628 - Mol Cell Biol. 1991 Dec;11(12):6257-67
17347438 - Science. 2007 Mar 9;315(5817):1405-8
19023413 - PLoS Genet. 2008 Nov;4(11):e1000270
12620224 - Mol Cell. 2003 Feb;11(2):353-63
2684414 - Cell. 1989 Nov 17;59(4):637-47
20123079 - Biochim Biophys Acta. 2010 Jan-Feb;1799(1-2):175-80
15961632 - Science. 2005 Jul 22;309(5734):626-30
20723754 - Cell. 2010 Aug 20;142(4):519-30
2225075 - Cell. 1990 Nov 16;63(4):751-62
17320445 - Mol Cell. 2007 Mar 9;25(5):703-12
19234478 - Nat Rev Mol Cell Biol. 2009 Mar;10(3):192-206
16155569 - Nat Genet. 2005 Oct;37(10):1090-7
3620448 - Biochemistry. 1987 Apr 21;26(8):2315-25
17407749 - Curr Biol. 2007 Apr 3;17(7):R233-6
16122352 - PLoS Biol. 2005 Oct;3(10):e328
1321140 - J Biol Chem. 1992 Jul 15;267(20):14259-65
8617368 - FEBS Lett. 1996 Apr 22;384(3):265-8
19027300 - Trends Cell Biol. 2009 Jan;19(1):29-41
8627621 - J Mol Biol. 1996 May 3;258(2):224-39
9395401 - Science. 1997 Dec 12;278(5345):1960-3
20018668 - Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):64-8
16122420 - Cell. 2005 Aug 26;122(4):517-27
19234523 - Biochem Cell Biol. 2009 Feb;87(1):51-63
2304549 - Nature. 1990 Feb 22;343(6260):719-26
16020781 - Genetics. 2005 Nov;171(3):885-99
9845373 - Cell. 1998 Nov 25;95(5):717-28
19935686 - Nat Struct Mol Biol. 2009 Dec;16(12):1272-8
11891558 - J Membr Biol. 2001 Dec 1;184(3):321-30
20508129 - Science. 2010 May 28;328(5982):1161-4
19682934 - Mol Cell. 2009 Sep 11;35(5):626-41
20534568 - Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11325-30
16983375 - Nat Rev Genet. 2006 Oct;7(10):793-803
3378048 - Biochemistry. 1988 Mar 22;27(6):2109-20
18511943 - Nat Struct Mol Biol. 2008 Jun;15(6):550-7
20299197 - Curr Opin Cell Biol. 2010 Jun;22(3):284-90
19317649 - Annu Rev Biochem. 2009;78:245-71
16461773 - J Biol Chem. 2006 Apr 7;281(14):9755-64
16039596 - Mol Cell. 2005 Jul 22;19(2):279-85
17289583 - Mol Cell. 2007 Feb 9;25(3):345-55
20637075 - Genome Biol. 2010;11(7):R75
2546672 - Cell. 1989 Jul 14;58(1):15-25
17313961 - Mutat Res. 2007 May 1;618(1-2):116-29
17991991 - Phys Biol. 2007 Nov;4(4):246-55
17805289 - Nature. 2007 Sep 6;449(7158):54-61
15229615 - Nature. 2004 Jul 29;430(6999):573-8
15568982 - Annu Rev Genet. 2004;38:413-43
11588253 - Science. 2001 Oct 5;294(5540):115-21
8223463 - EMBO J. 1993 Dec;12(12):4533-45
16990856 - Nat Rev Cancer. 2006 Oct;6(10):789-802
19197343 - PLoS Comput Biol. 2009 Feb;5(2):e1000282
15664979 - J Biol Chem. 2005 Apr 1;280(13):12065-8
21666804 - PLoS Biol. 2011 Jun;9(6):e1001072
8858152 - Cell. 1996 Oct 4;87(1):95-104
18458100 - Genetics. 2008 May;179(1):263-75
15309048 - PLoS Biol. 2004 Sep;2(9):E259
12676793 - Annu Rev Biochem. 2003;72:481-516
17320509 - Cell. 2007 Feb 23;128(4):721-33
3935168 - Biochemistry. 1985 Nov 19;24(24):6930-8
3023620 - J Mol Biol. 1986 May 5;189(1):189-204
19846608 - Genome Res. 2010 Jan;20(1):90-100
19204718 - Nat Rev Genet. 2009 Mar;10(3):161-72
20140185 - PLoS Genet. 2010 Feb;6(2):e1000837
6088500 - J Biol Chem. 1984 Aug 25;259(16):10422-9
19527704 - Dev Biol. 2010 Mar 15;339(2):258-66
References_xml – volume: 35
  start-page: 626
  year: 2009
  ident: ref53
  article-title: Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of H3K79 dimethylation.
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.07.017
– volume: 309
  start-page: 626
  year: 2005
  ident: ref20
  article-title: Genome-scale identification of nucleosome positions in S. cerevisiae.
  publication-title: Science
  doi: 10.1126/science.1112178
– volume: 107
  start-page: 11325
  year: 2010
  ident: ref62
  article-title: RNA polymerase complexes cooperate to relieve the nucleosomal barrier and evict histones.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1001148107
– volume: 278
  start-page: 1960
  year: 1997
  ident: ref30
  article-title: Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase.
  publication-title: Science
  doi: 10.1126/science.278.5345.1960
– volume: 258
  start-page: 224
  year: 1996
  ident: ref35
  article-title: The stability of nucleosomes at the replication fork.
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1996.0245
– volume: 315
  start-page: 1405
  year: 2007
  ident: ref15
  article-title: Dynamics of replication-independent histone turnover in budding yeast.
  publication-title: Science
  doi: 10.1126/science.1134053
– volume: 1799
  start-page: 175
  year: 2010
  ident: ref73
  article-title: Nhp6: a small but powerful effector of chromatin structure in Saccharomyces cerevisiae.
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbagrm.2009.11.010
– volume: 26
  start-page: 2315
  year: 1987
  ident: ref9
  article-title: Deposition of newly synthesized histones: new histones H2A and H2B do not deposit in the same nucleosome with new histones H3 and H4.
  publication-title: Biochemistry
  doi: 10.1021/bi00382a037
– volume: 122
  start-page: 517
  year: 2005
  ident: ref52
  article-title: Genome-wide map of nucleosome acetylation and methylation in yeast.
  publication-title: Cell
  doi: 10.1016/j.cell.2005.06.026
– volume: 72
  start-page: 481
  year: 2003
  ident: ref3
  article-title: The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae.
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.72.121801.161547
– volume: 128
  start-page: 693
  year: 2007
  ident: ref29
  article-title: Chromatin modifications and their function.
  publication-title: Cell
  doi: 10.1016/j.cell.2007.02.005
– volume: 179
  start-page: 263
  year: 2008
  ident: ref18
  article-title: Altered dosage and mislocalization of histone H3 and Cse4p lead to chromosome loss in Saccharomyces cerevisiae.
  publication-title: Genetics
  doi: 10.1534/genetics.108.088518
– volume: 2
  start-page: E259
  year: 2004
  ident: ref27
  article-title: Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae.
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0020259
– volume: 76
  start-page: 371
  year: 1994
  ident: ref31
  article-title: A histone octamer can step around a transcribing polymerase without leaving the template.
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90343-3
– volume: 16
  start-page: 1272
  year: 2009
  ident: ref32
  article-title: Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II.
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1689
– volume: 78
  start-page: 245
  year: 2009
  ident: ref54
  article-title: Genome-wide views of chromatin structure.
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.78.071107.134639
– volume: 4
  start-page: 246
  year: 2007
  ident: ref58
  article-title: Epigenetic chromatin silencing: bistability and front propagation.
  publication-title: Phys Biol
  doi: 10.1088/1478-3975/4/4/002
– volume: 4
  start-page: e1000270
  year: 2008
  ident: ref26
  article-title: Cell cycle- and chaperone-mediated regulation of H3K56ac incorporation in yeast.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000270
– volume: 87
  start-page: 95
  year: 1996
  ident: ref48
  article-title: Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4.
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81326-4
– volume: 19
  start-page: 279
  year: 2005
  ident: ref14
  article-title: Histones are incorporated in trans during reassembly of the yeast PHO5 promoter.
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2005.05.028
– year: 2010
  ident: ref50
  article-title: Overlapping regulation of CenH3 localization and Histone H3 turnover by CAF-1 and HIR proteins in Saccharomyces cerevisiae.
  publication-title: Genetics
– volume: 38
  start-page: 413
  year: 2004
  ident: ref2
  article-title: Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins.
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.38.072902.091907
– volume: 29
  start-page: 2126
  year: 2010
  ident: ref60
  article-title: Topoisomerase I regulates open chromatin and controls gene expression in vivo.
  publication-title: Embo J
  doi: 10.1038/emboj.2010.109
– volume: 325
  start-page: 626
  year: 2009
  ident: ref33
  article-title: Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II.
  publication-title: Science
  doi: 10.1126/science.1172926
– volume: 20
  start-page: 90
  year: 2010
  ident: ref34
  article-title: High-resolution nucleosome mapping reveals transcription-dependent promoter packaging.
  publication-title: Genome Res
  doi: 10.1101/gr.098509.109
– volume: 24
  start-page: 6930
  year: 1985
  ident: ref8
  article-title: Histone segregation on replicating chromatin.
  publication-title: Biochemistry
  doi: 10.1021/bi00345a027
– year: 2010
  ident: ref7
  article-title: Chromatin as a potential carrier of heritable information.
  publication-title: Curr Opin Cell Biol
– volume: 19
  start-page: 677
  year: 2005
  ident: ref22
  article-title: Replication-independent core histone dynamics at transcriptionally active loci in vivo.
  publication-title: Genes Dev
  doi: 10.1101/gad.1265205
– volume: 63
  start-page: 751
  year: 1990
  ident: ref24
  article-title: Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription.
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90141-Z
– volume: 6
  start-page: 789
  year: 2006
  ident: ref44
  article-title: Topoisomerase I inhibitors: camptothecins and beyond.
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1977
– volume: 294
  start-page: 115
  year: 2001
  ident: ref74
  article-title: Replication dynamics of the yeast genome.
  publication-title: Science
  doi: 10.1126/science.294.5540.115
– volume: 142
  start-page: 519
  year: 2010
  ident: ref45
  article-title: Cellular strategies for regulating DNA supercoiling: a single-molecule perspective.
  publication-title: Cell
  doi: 10.1016/j.cell.2010.08.001
– volume: 267
  start-page: 14259
  year: 1992
  ident: ref65
  article-title: The fate of parental nucleosomes during SV40 DNA replication.
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)49706-8
– volume: 12
  start-page: 4533
  year: 1993
  ident: ref67
  article-title: Disruption of the nucleosomes at the replication fork.
  publication-title: Embo J
  doi: 10.1002/j.1460-2075.1993.tb06142.x
– volume: 87
  start-page: 51
  year: 2009
  ident: ref5
  article-title: Replicating chromatin: a tale of histones.
  publication-title: Biochem Cell Biol
– volume: 27
  start-page: 2109
  year: 1988
  ident: ref10
  article-title: Deposition of newly synthesized histones: hybrid nucleosomes are not tandemly arranged on daughter DNA strands.
  publication-title: Biochemistry
  doi: 10.1021/bi00406a044
– volume: 3
  start-page: e328
  year: 2005
  ident: ref19
  article-title: Single-nucleosome mapping of histone modifications in S. cerevisiae.
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0030328
– volume: 59
  start-page: 637
  year: 1989
  ident: ref25
  article-title: Epigenetic inheritance of transcriptional states in S. cerevisiae.
  publication-title: Cell
  doi: 10.1016/0092-8674(89)90009-3
– volume: 343
  start-page: 719
  year: 1990
  ident: ref64
  article-title: In vitro replication through nucleosomes without histone displacement.
  publication-title: Nature
  doi: 10.1038/343719a0
– volume: 384
  start-page: 265
  year: 1996
  ident: ref46
  article-title: Vaccinia virus DNA topoisomerase I preferentially removes positive supercoils from DNA.
  publication-title: FEBS Lett
  doi: 10.1016/0014-5793(96)00317-1
– volume: 27
  start-page: 393
  year: 2007
  ident: ref17
  article-title: Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1.
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2007.07.011
– volume: 129
  start-page: 813
  year: 2007
  ident: ref12
  article-title: Theoretical analysis of epigenetic cell memory by nucleosome modification.
  publication-title: Cell
  doi: 10.1016/j.cell.2007.02.053
– volume: 11
  start-page: 353
  year: 2003
  ident: ref42
  article-title: Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation.
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(03)00033-9
– volume: 4
  start-page: 25
  year: 2003
  ident: ref59
  article-title: Replicating by the clock.
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm1008
– volume: 7
  start-page: 793
  year: 2006
  ident: ref69
  article-title: Spreading of silent chromatin: inaction at a distance.
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1920
– volume: 95
  start-page: 717
  year: 1998
  ident: ref71
  article-title: Dissecting the regulatory circuitry of a eukaryotic genome.
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81641-4
– volume: 25
  start-page: 345
  year: 2007
  ident: ref16
  article-title: Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication.
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2007.01.019
– volume: 13
  start-page: 573
  year: 2004
  ident: ref38
  article-title: A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae.
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(04)00087-5
– volume: 11
  start-page: 6257
  year: 1991
  ident: ref66
  article-title: Transfer of nucleosomes from parental to replicated chromatin.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.11.12.6257
– volume: 24
  start-page: 2605
  year: 2004
  ident: ref70
  article-title: Histone fold protein Dls1p is required for Isw2-dependent chromatin remodeling in vivo.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.24.7.2605-2613.2004
– volume: 5
  start-page: e1000282
  year: 2009
  ident: ref56
  article-title: Evidence for gene-specific rather than transcription rate-dependent histone H3 exchange in yeast coding regions.
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000282
– volume: 37
  start-page: 1090
  year: 2005
  ident: ref21
  article-title: Genome-scale profiling of histone H3.3 replacement patterns.
  publication-title: Nat Genet
  doi: 10.1038/ng1637
– volume: 259
  start-page: 10422
  year: 1984
  ident: ref47
  article-title: The purification and characterization of DNA topoisomerases I and II of the yeast Saccharomyces cerevisiae.
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)90981-6
– volume: 10
  start-page: 192
  year: 2009
  ident: ref57
  article-title: Epigenetic inheritance during the cell cycle.
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2640
– volume: 430
  start-page: 573
  year: 2004
  ident: ref28
  article-title: Cohesin relocation from sites of chromosomal loading to places of convergent transcription.
  publication-title: Nature
  doi: 10.1038/nature02742
– volume: 11
  start-page: R75
  year: 2010
  ident: ref75
  article-title: RNA Polymerase mapping during stress responses reveals widespread nonproductive transcription in yeast.
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-7-r75
– volume: 189
  start-page: 189
  year: 1986
  ident: ref36
  article-title: Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures.
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(86)90390-6
– volume: 8
  start-page: 95
  year: 2009
  ident: ref40
  article-title: Promoter architecture and the evolvability of gene expression.
  publication-title: J Biol
  doi: 10.1186/jbiol204
– volume: 19
  start-page: 29
  year: 2009
  ident: ref11
  article-title: Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information.
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2008.10.002
– volume: 17
  start-page: R233
  year: 2007
  ident: ref1
  article-title: On the use of the word ‘epigenetic’.
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2007.02.030
– volume: 280
  start-page: 12065
  year: 2005
  ident: ref4
  article-title: Split decision: what happens to nucleosomes during DNA replication?
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R400039200
– volume: 128
  start-page: 721
  year: 2007
  ident: ref6
  article-title: Chromatin challenges during DNA replication and repair.
  publication-title: Cell
  doi: 10.1016/j.cell.2007.01.030
– volume: 171
  start-page: 885
  year: 2005
  ident: ref51
  article-title: Regulation of histone deposition proteins Asf1/Hir1 by multiple DNA damage checkpoint kinases in Saccharomyces cerevisiae.
  publication-title: Genetics
  doi: 10.1534/genetics.105.044719
– year: 2007
  ident: ref72
  article-title: Histone H3-K56 acetylation is catalyzed by histone chaperone-dependent complexes.
  publication-title: Mol Cell
– volume: 618
  start-page: 116
  year: 2007
  ident: ref61
  article-title: Transcription through chromatin by RNA polymerase II: histone displacement and exchange.
  publication-title: Mutat Res
  doi: 10.1016/j.mrfmmm.2006.05.040
– volume: 15
  start-page: 550
  year: 2008
  ident: ref55
  article-title: Nonprocessive methylation by Dot1 leads to functional redundancy of histone H3K79 methylation states.
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1432
– volume: 10
  start-page: 161
  year: 2009
  ident: ref41
  article-title: Nucleosome positioning and gene regulation: advances through genomics.
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2522
– volume: 6
  start-page: e1000837
  year: 2010
  ident: ref68
  article-title: Replication and active demethylation represent partially overlapping mechanisms for erasure of H3K4me3 in budding yeast.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000837
– volume: 328
  start-page: 1161
  year: 2010
  ident: ref23
  article-title: Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones.
  publication-title: Science
  doi: 10.1126/science.1186777
– volume: 184
  start-page: 321
  year: 2001
  ident: ref63
  article-title: The pump and leak steady-state concept with a variety of regulated leak pathways.
  publication-title: J Membr Biol
  doi: 10.1007/s00232-001-0102-5
– volume: 107
  start-page: 64
  year: 2010
  ident: ref13
  article-title: Recombination-induced tag exchange to track old and new proteins.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0911164107
– volume: 58
  start-page: 15
  year: 1989
  ident: ref49
  article-title: Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro.
  publication-title: Cell
  doi: 10.1016/0092-8674(89)90398-X
– volume: 339
  start-page: 258
  year: 2010
  ident: ref39
  article-title: Nucleosome positioning: how is it established, and why does it matter?
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2009.06.012
– volume: 281
  start-page: 9755
  year: 2006
  ident: ref43
  article-title: Contribution of the histone H3 and H4 amino termini to Gcn4p- and Gcn5p-mediated transcription in yeast.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M513178200
– volume: 449
  start-page: 54
  year: 2007
  ident: ref37
  article-title: Natural history and evolutionary principles of gene duplication in fungi.
  publication-title: Nature
  doi: 10.1038/nature06107
– reference: 17320507 - Cell. 2007 Feb 23;128(4):693-705
– reference: 11588253 - Science. 2001 Oct 5;294(5540):115-21
– reference: 12620224 - Mol Cell. 2003 Feb;11(2):353-63
– reference: 19935686 - Nat Struct Mol Biol. 2009 Dec;16(12):1272-8
– reference: 19317649 - Annu Rev Biochem. 2009;78:245-71
– reference: 20534568 - Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11325-30
– reference: 8617368 - FEBS Lett. 1996 Apr 22;384(3):265-8
– reference: 1321140 - J Biol Chem. 1992 Jul 15;267(20):14259-65
– reference: 20299197 - Curr Opin Cell Biol. 2010 Jun;22(3):284-90
– reference: 17289583 - Mol Cell. 2007 Feb 9;25(3):345-55
– reference: 19644123 - Science. 2009 Jul 31;325(5940):626-8
– reference: 11891558 - J Membr Biol. 2001 Dec 1;184(3):321-30
– reference: 17679090 - Mol Cell. 2007 Aug 3;27(3):393-405
– reference: 15664979 - J Biol Chem. 2005 Apr 1;280(13):12065-8
– reference: 2684414 - Cell. 1989 Nov 17;59(4):637-47
– reference: 15961632 - Science. 2005 Jul 22;309(5734):626-30
– reference: 17320445 - Mol Cell. 2007 Mar 9;25(5):703-12
– reference: 8858152 - Cell. 1996 Oct 4;87(1):95-104
– reference: 3935168 - Biochemistry. 1985 Nov 19;24(24):6930-8
– reference: 17407749 - Curr Biol. 2007 Apr 3;17(7):R233-6
– reference: 19527704 - Dev Biol. 2010 Mar 15;339(2):258-66
– reference: 9395401 - Science. 1997 Dec 12;278(5345):1960-3
– reference: 17991991 - Phys Biol. 2007 Nov;4(4):246-55
– reference: 16983375 - Nat Rev Genet. 2006 Oct;7(10):793-803
– reference: 16122352 - PLoS Biol. 2005 Oct;3(10):e328
– reference: 16020781 - Genetics. 2005 Nov;171(3):885-99
– reference: 19234478 - Nat Rev Mol Cell Biol. 2009 Mar;10(3):192-206
– reference: 20723754 - Cell. 2010 Aug 20;142(4):519-30
– reference: 8293470 - Cell. 1994 Jan 28;76(2):371-82
– reference: 20637075 - Genome Biol. 2010;11(7):R75
– reference: 9845373 - Cell. 1998 Nov 25;95(5):717-28
– reference: 19234523 - Biochem Cell Biol. 2009 Feb;87(1):51-63
– reference: 20508129 - Science. 2010 May 28;328(5982):1161-4
– reference: 17320509 - Cell. 2007 Feb 23;128(4):721-33
– reference: 8223463 - EMBO J. 1993 Dec;12(12):4533-45
– reference: 18458100 - Genetics. 2008 May;179(1):263-75
– reference: 20123079 - Biochim Biophys Acta. 2010 Jan-Feb;1799(1-2):175-80
– reference: 1658628 - Mol Cell Biol. 1991 Dec;11(12):6257-67
– reference: 15568982 - Annu Rev Genet. 2004;38:413-43
– reference: 2546672 - Cell. 1989 Jul 14;58(1):15-25
– reference: 19846608 - Genome Res. 2010 Jan;20(1):90-100
– reference: 17805289 - Nature. 2007 Sep 6;449(7158):54-61
– reference: 8627621 - J Mol Biol. 1996 May 3;258(2):224-39
– reference: 20017897 - J Biol. 2009;8(11):95
– reference: 16039596 - Mol Cell. 2005 Jul 22;19(2):279-85
– reference: 15309048 - PLoS Biol. 2004 Sep;2(9):E259
– reference: 20018668 - Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):64-8
– reference: 16461773 - J Biol Chem. 2006 Apr 7;281(14):9755-64
– reference: 19204718 - Nat Rev Genet. 2009 Mar;10(3):161-72
– reference: 19682934 - Mol Cell. 2009 Sep 11;35(5):626-41
– reference: 17347438 - Science. 2007 Mar 9;315(5817):1405-8
– reference: 16122420 - Cell. 2005 Aug 26;122(4):517-27
– reference: 21666804 - PLoS Biol. 2011 Jun;9(6):e1001072
– reference: 20140185 - PLoS Genet. 2010 Feb;6(2):e1000837
– reference: 16155569 - Nat Genet. 2005 Oct;37(10):1090-7
– reference: 18511943 - Nat Struct Mol Biol. 2008 Jun;15(6):550-7
– reference: 17313961 - Mutat Res. 2007 May 1;618(1-2):116-29
– reference: 20944015 - Genetics. 2011 Jan;187(1):9-19
– reference: 3378048 - Biochemistry. 1988 Mar 22;27(6):2109-20
– reference: 17512413 - Cell. 2007 May 18;129(4):813-22
– reference: 3620448 - Biochemistry. 1987 Apr 21;26(8):2315-25
– reference: 15769942 - Genes Dev. 2005 Mar 15;19(6):677-82
– reference: 3023620 - J Mol Biol. 1986 May 5;189(1):189-204
– reference: 19027300 - Trends Cell Biol. 2009 Jan;19(1):29-41
– reference: 2304549 - Nature. 1990 Feb 22;343(6260):719-26
– reference: 15229615 - Nature. 2004 Jul 29;430(6999):573-8
– reference: 19023413 - PLoS Genet. 2008 Nov;4(11):e1000270
– reference: 20526281 - EMBO J. 2010 Jul 7;29(13):2126-34
– reference: 12676793 - Annu Rev Biochem. 2003;72:481-516
– reference: 14992726 - Mol Cell. 2004 Feb 27;13(4):573-85
– reference: 15024052 - Mol Cell Biol. 2004 Apr;24(7):2605-13
– reference: 6088500 - J Biol Chem. 1984 Aug 25;259(16):10422-9
– reference: 12511866 - Nat Rev Mol Cell Biol. 2003 Jan;4(1):25-32
– reference: 16990856 - Nat Rev Cancer. 2006 Oct;6(10):789-802
– reference: 19197343 - PLoS Comput Biol. 2009 Feb;5(2):e1000282
– reference: 2225075 - Cell. 1990 Nov 16;63(4):751-62
SSID ssj0022928
Score 2.3874233
Snippet Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal...
Tracking of ancestral histone proteins over multiple generations of genome replication in yeast reveals that old histones move along genes from 3' toward 5'...
Tracking of ancestral histone proteins over multiple generations of genome replication in yeast reveals that old histones move along genes from 3′ toward 5′...
  Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk,...
SourceID plos
doaj
pubmedcentral
hal
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1001075
SubjectTerms Analysis
Biochemistry, Molecular Biology
Biology
Chromatin
Deoxyribonucleic acid
DNA
DNA Replication Timing
DNA Topoisomerases, Type I - metabolism
Epigenetics
Genes, Fungal - genetics
Genetic aspects
Genetics
Genomics
Histones
Histones - chemistry
Histones - genetics
Histones - metabolism
Inheritance Patterns - genetics
Kinetics
Life Sciences
Models, Biological
Mutation - genetics
Nucleosomes - metabolism
Physiological aspects
Protein Processing, Post-Translational
Proteins
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins - genetics
Saccharomycetales - genetics
Transcription, Genetic
Yeast
Yeast fungi
Yeasts
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELegEhIviO8VBrIQEk9hie3E9mNBTAXB-Bpob5a_slba0oq0SPvvuXPSqkGD8cBbFf_SxHfn2Gff_Y6Q5zG4UubMZ7HwOhOxqDJVyCLzpbM4Y1auwOTkD0fV9Jt4d1Ke7JT6wpiwjh64E9xB7ZXludJBcy9EqG1pS1y0RK2E1yKl-cKct3GmeleL6VRVFalmYDhL3ifNcVkc9Dp6uXTzRWIgyjHGcGdSStz92y_09RkGSI6WZ4v2skXo77GUO5PT4W1yq19V0knXmzvkWmzukhtdncmLe-Tzp8Si2bTUNoGeR8z2nbfnLV3UFLWetjtooh5uIk3UDfOGzhvMDVwhAH5Ttw44z9ELrPZznxwfvjl-Pc36WgqZBwdilSmtouZC1DLW1kVmYTAX0lY595a5snSqyn0ReYl7uHkeohTCVkHGyKJ0jj8gowZeYY9QJnwQPArQiRVwhy2lDTqKkNvaBlWOCd_I0vieZxzLXZyZdHgmwd_ohGJQA6bXwJhk27uWHc_GFfhXqKYtFlmy0wWwHdPbjrnKdsbkGSrZIA9Gg4E2p3bdtubtx-9mAn6eklww9ifQ16N_AX0ZgF70oHoBEvG2z4AAuSIJ1wC5P0DCkPfDp81QHjt9n07eG7wGSzbNOZM_izHZQ6PdSK81BZLtKy6lhL_fGPLlzXTbjE_GMLwmLtatUZJhJrX-GwQcDsCoakwediNj-54Mj6hVDrqTgzEz6MiwpZnPEuU5GCsyyz36H1p_TG52BwO4lbZPRqsf6_gEVpYr9zR9RH4BD9d0kQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdYERIvE98rDGQhJJ7CEtuJnSfUIaYOsTFgoPJkObazVhpJWVok_nvuErdr0Bg8Jr4kzp3PvrPvfkfIC--KVMbMRj6xeSR8kkUqkUlk08LgipkVCSYnHx1n4y_i3SSdhA23JoRVrubEdqJ2tcU98r0EocLBm5Ly9fxHhFWj8HQ1lNDYIjcRugydLzm5dLhY3tZWRcAZUGrJQ-ocl8lekNSreTGrWxyiGCMNN5amFsF_PU9vTTFMcjA_r5urTNE_Iyo3lqiDO2Q72JZ01A2Gu-SGr-6RW121yV_3yceTFkuzaqipHD3ymPM7a743tC7pCKOp8Z20xQ2pPD1BAIdZRQ8rzBBc4OCgcLm_dLja0W9Y8-cBOT14e_pmHIWKCpEFN2IRAQd9zoUopS9N4ZkBlU6kyWJuDSvStFBZbBPPU9zJjWPnpRAmc9J75mVR8IdkUEEXdghlwjrBvYhVbgQ8YVJpXO6Fi01pnEqHhK94qW1AG8eiF-e6PUKT4HV0TNEoAR0kMCTR-ql5h7bxD_p9FNOaFrGy2xv1xZkOqqdLqwyHfrqcWyFcaVKTotnrcyVsLtSQPEcha0TDqDDc5swsm0YffviqR-DtKckFY38j-nz8P0SfekQvA1FZA0esCXkQwFeE4upR7vYoQfFt_2tT5MfGv49H7zXeA8Mt55zJn8mQ7OCgXXGv0Zd6BK9fDeSrm-m6Gb-MwXiVr5eNVpJhPnV-HQm4HUCjsiF51GnGup8MD6pVDLKTPZ3p_Ui_pZpNW-BzGKyIL_f4-o4_Ibe7jX_cKtslg8XF0j8Fy3FRPGunh99Q2Gtf
  priority: 102
  providerName: ProQuest
Title Patterns and Mechanisms of Ancestral Histone Protein Inheritance in Budding Yeast
URI https://www.ncbi.nlm.nih.gov/pubmed/21666805
https://www.proquest.com/docview/1298983777
https://www.proquest.com/docview/872439497
https://www.proquest.com/docview/899143986
https://hal.science/hal-02193327
https://pubmed.ncbi.nlm.nih.gov/PMC3110181
https://doaj.org/article/fc8a3089d93c44dfa5a53977e984c948
http://dx.doi.org/10.1371/journal.pbio.1001075
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfWTki8IL4XGJWFkHjKlMRO7Dwg1KJNHbDSjQ2VJ8txnLVSSUvTIvbf43M-1KAOEC-VGp8d5-zz3dm-3yH0SqdJyLxAudpXsUu1H7ncZ76rwkSCxowSH4KTz0bR8Iq-n4STPVTnbK0YWOx07SCf1NVqfvTz-81bI_BvbNYG5teVjpbJbGExhYwa7KB9o5sYJHM4o825QhDENtsqQNAYMWekCqa7rRULFWwMfA7Z7bb0loX3bxbxzhTuUHaX80Wxy079_brllv46uY_uVYYn7pcz5QHa0_lDdKdMRXnzCJ2PLdBmXmCZp_hMQ0DwrPhW4EWG-3DVGtrEFlQk13gM6A6zHJ_mED64hpmDzd_BJgVViL9CQqDH6PLk-PLd0K3SLbjK-Bhrl8dcx4TSjOlMJjqQRt59JiOPKBkkYZjwyFO-JiFs83peqhmlMkqZ1oFmSUKeoG5uunCAcEBVSommHo8lNTVkyGQaa5p6MpMpDx1Eal4KVUGRQ0aMubDna8y4JCVTBAyGqAbDQW5Ta1lCcfyFfgDD1NACkLZ9sFhdi0ouRaa4JKafaUwUpWkmQxmCTaxjTlVMuYNewiALgMrI4S7OtdwUhTj99EX0jSvIGaFBcBvR59G_EF20iF5XRNnCcETJKkjC8BVwulqUhy1Ksyqo9tumwI-tbx_2Pwp4Zqy6mJCA_fAddACTtuZeIXzA4-eEMWaaryfy7mLcFMOb4aZerhebQnAWQLB1_CcS45MYGh456GkpGU0_a2lzEGvJTOtD2iX5bGpR0c1kBfC5Z_9d8zm6Wx4YwBbbIequVxv9wlic66SHOmzCemh_cDwaX_Tsvo35_XDOe3Z5-QXloIKk
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELe2IgQviP8rDLAQiKewxHbi5AGhDpha1pYBHSpPluM4a6WRlKUF7UPxHblL0q5BY_CyxyQXxzmf78723e8IeWaT2JcuM471TOQI6wVO6EnPMX6s0WIGsYfJyYNh0D0U78f-eIP8WubCYFjlUieWijrJDe6R73gIFQ6rKSlfz747WDUKT1eXJTQqsdi3pz9hyVa86r2F8X3O2N670ZuuU1cVcAy40nMHWrERFyKVNtWxZRrE2pM6cLnRLPb9OAxc41nu426m6yZWCqGDRFrLrIxjDs1ukitgd12MIJTjs_Udi8pSrohvAzpE8jpTj0tvpxaMl7N4mpewRy4GNq5ZwrJgwMosbE4wKrM1O86L8zzfPwM41yzi3k1yo3ZlaaeSvVtkw2a3ydWquOXpHfLxoITuzAqqs4QOLKYYT4tvBc1T2sHgbWyTljAlmaUHiBcxzWgvw4TEOcoihcvdRYLGlX7FEkN3yegyWH2PtDLowhahTJhEcCvcMNIC3tC-1ElkReLqVCeh3yZ8yUtlanBzrLFxrMoTOwmLnIopCkdA1SPQJs7qrVkF7vEP-l0cphUtQnOXN_KTI1XPdJWaUHPoZxJxI0SSal_76GXbKBQmEmGbPMVBVgi-kWF0z5FeFIXqffiiOrC4DCUXjP2N6PPwf4g-NYhe1ERpDhwxuk67AL4i8leDcrtBCXrGNL82QX6s_Xu301d4D_zEiHMmf3htsoVCu-Reoc6mLTS_FOTzH9PVY_wyxv5lNl8UKpQM07eji0hglQM0YdAm96uZseonw3Px0IWxk4050_iR5pNsOilx1kFYEc7uwcUdf0KudUeDvur3hvsPyfXqzAF36bZJa36ysI_AaZ3Hj0tVQYm6ZNX0G_u9qFo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IhAviO8VBlgIxFNoYjtx8oBQx6hatpUCA5Uny3GctdJIytKC9qfx33GXpF2DxuBlj0kujnN3vvPH3e8IeWaT2JcuM471TOQI6wVO6EnPMX6s0WMGsYfJyQfDoP9ZvBv74w3ya5kLg2GVS5tYGuokN7hH3vEQKhxWU1J20josYrTbez377mAFKTxpXZbTqFRkz57-hOVb8WqwC7J-zljv7eGbvlNXGHAMTKvnDrRoIy5EKm2qY8s0qLgndeByo1ns-3EYuMaz3MedTddNrBRCB4m0llkZxxya3SRXJAevCUNJjs_Weiwqy7oi1g3YE8nrrD0uvU6tJC9n8TQvIZBcDHJc84pl8YCVi9icYIRma3acF-fNgv8M5lzzjr2b5EY9raXdSg9vkQ2b3SZXq0KXp3fIh1EJ45kVVGcJPbCYbjwtvhU0T2kXA7mxTVpClmSWjhA7YprRQYbJiXPUSwqXO4sEHS39iuWG7pLDy2D1PdLKoAtbhDJhEsGtcMNIC3hD-1InkRWJq1OdhH6b8CUvlamBzrHexrEqT-8kLHgqpiiUgKol0CbO6q1ZBfTxD_odFNOKFmG6yxv5yZGqR71KTag59DOJuBEiSbWvfZxx2ygUJhJhmzxFISsE4shQpY_0oijU4P0X1YWFZii5YOxvRJ-G_0P0sUH0oiZKc-CI0XUKBvAVUcAalNsNSrA5pvm1CfJj7d_73X2F92DOGHHO5A-vTbZQaZfcK9TZEIbml4p8_mO6eoxfxjjAzOaLQoWSYSp3dBEJrHiAJgza5H41Mlb9ZHhGHrogO9kYM40faT7JppMScx2UFaHtHlzc8SfkGhgltT8Y7j0k16vjB9yw2yat-cnCPoL56zx-XFoKStQlW6bfC6WskA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterns+and+Mechanisms+of+Ancestral+Histone+Protein+Inheritance+in+Budding+Yeast&rft.jtitle=PLoS+biology&rft.au=Radman-Livaja%2C+Marta&rft.au=Verzijlbergen%2C+Kitty+F.&rft.au=Weiner%2C+Assaf&rft.au=van+Welsem%2C+Tibor&rft.date=2011-06-01&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.eissn=1545-7885&rft.volume=9&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.pbio.1001075&rft_id=info%3Apmid%2F21666805&rft.externalDocID=PMC3110181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon