Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology
Summary Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) technology. This powerful tool allows substantial improvement in plant traits in addition to those provided by classical breeding. Here, we dem...
Saved in:
Published in | Molecular plant pathology Vol. 17; no. 7; pp. 1140 - 1153 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.09.2016
John Wiley & Sons, Inc John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) technology. This powerful tool allows substantial improvement in plant traits in addition to those provided by classical breeding. Here, we demonstrate the development of virus resistance in cucumber (Cucumis sativus L.) using Cas9/subgenomic RNA (sgRNA) technology to disrupt the function of the recessive eIF4E (eukaryotic translation initiation factor 4E) gene. Cas9/sgRNA constructs were targeted to the N′ and C′ termini of the eIF4E gene. Small deletions and single nucleotide polymorphisms (SNPs) were observed in the eIF4E gene targeted sites of transformed T1 generation cucumber plants, but not in putative off‐target sites. Non‐transgenic heterozygous eif4e mutant plants were selected for the production of non‐transgenic homozygous T3 generation plants. Homozygous T3 progeny following Cas9/sgRNA that had been targeted to both eif4e sites exhibited immunity to Cucumber vein yellowing virus (Ipomovirus) infection and resistance to the potyviruses Zucchini yellow mosaic virus and Papaya ring spot mosaic virus‐W. In contrast, heterozygous mutant and non‐mutant plants were highly susceptible to these viruses. For the first time, virus resistance has been developed in cucumber, non‐transgenically, not visibly affecting plant development and without long‐term backcrossing, via a new technology that can be expected to be applicable to a wide range of crop plants. |
---|---|
AbstractList | Summary Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) technology. This powerful tool allows substantial improvement in plant traits in addition to those provided by classical breeding. Here, we demonstrate the development of virus resistance in cucumber (Cucumis sativus L.) using Cas9/subgenomic RNA (sgRNA) technology to disrupt the function of the recessive eIF4E (eukaryotic translation initiation factor 4E) gene. Cas9/sgRNA constructs were targeted to the N' and C' termini of the eIF4E gene. Small deletions and single nucleotide polymorphisms (SNPs) were observed in the eIF4E gene targeted sites of transformed T1 generation cucumber plants, but not in putative off-target sites. Non-transgenic heterozygous eif4e mutant plants were selected for the production of non-transgenic homozygous T3 generation plants. Homozygous T3 progeny following Cas9/sgRNA that had been targeted to both eif4e sites exhibited immunity to Cucumber vein yellowing virus (Ipomovirus) infection and resistance to the potyviruses Zucchini yellow mosaic virus and Papaya ring spot mosaic virus-W. In contrast, heterozygous mutant and non-mutant plants were highly susceptible to these viruses. For the first time, virus resistance has been developed in cucumber, non-transgenically, not visibly affecting plant development and without long-term backcrossing, via a new technology that can be expected to be applicable to a wide range of crop plants. Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) technology. This powerful tool allows substantial improvement in plant traits in addition to those provided by classical breeding. Here, we demonstrate the development of virus resistance in cucumber ( Cucumis sativus L.) using Cas9/subgenomic RNA (sgRNA) technology to disrupt the function of the recessive eIF4E ( eukaryotic translation initiation factor 4E ) gene. Cas9/sgRNA constructs were targeted to the N′ and C′ termini of the eIF4E gene. Small deletions and single nucleotide polymorphisms (SNPs) were observed in the eIF4E gene targeted sites of transformed T1 generation cucumber plants, but not in putative off‐target sites. Non‐transgenic heterozygous eif4e mutant plants were selected for the production of non‐transgenic homozygous T3 generation plants. Homozygous T3 progeny following Cas9/sgRNA that had been targeted to both eif4e sites exhibited immunity to Cucumber vein yellowing virus ( Ipomovirus ) infection and resistance to the potyviruses Zucchini yellow mosaic virus and Papaya ring spot mosaic virus‐W . In contrast, heterozygous mutant and non‐mutant plants were highly susceptible to these viruses. For the first time, virus resistance has been developed in cucumber, non‐transgenically, not visibly affecting plant development and without long‐term backcrossing, via a new technology that can be expected to be applicable to a wide range of crop plants. Summary Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) technology. This powerful tool allows substantial improvement in plant traits in addition to those provided by classical breeding. Here, we demonstrate the development of virus resistance in cucumber (Cucumis sativus L.) using Cas9/subgenomic RNA (sgRNA) technology to disrupt the function of the recessive eIF4E (eukaryotic translation initiation factor 4E) gene. Cas9/sgRNA constructs were targeted to the N′ and C′ termini of the eIF4E gene. Small deletions and single nucleotide polymorphisms (SNPs) were observed in the eIF4E gene targeted sites of transformed T1 generation cucumber plants, but not in putative off‐target sites. Non‐transgenic heterozygous eif4e mutant plants were selected for the production of non‐transgenic homozygous T3 generation plants. Homozygous T3 progeny following Cas9/sgRNA that had been targeted to both eif4e sites exhibited immunity to Cucumber vein yellowing virus (Ipomovirus) infection and resistance to the potyviruses Zucchini yellow mosaic virus and Papaya ring spot mosaic virus‐W. In contrast, heterozygous mutant and non‐mutant plants were highly susceptible to these viruses. For the first time, virus resistance has been developed in cucumber, non‐transgenically, not visibly affecting plant development and without long‐term backcrossing, via a new technology that can be expected to be applicable to a wide range of crop plants. Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) technology. This powerful tool allows substantial improvement in plant traits in addition to those provided by classical breeding. Here, we demonstrate the development of virus resistance in cucumber (Cucumis sativus L.) using Cas9/subgenomic RNA (sgRNA) technology to disrupt the function of the recessive eIF4E (eukaryotic translation initiation factor 4E) gene. Cas9/sgRNA constructs were targeted to the N′ and C′ termini of the eIF4E gene. Small deletions and single nucleotide polymorphisms (SNPs) were observed in the eIF4E gene targeted sites of transformed T1 generation cucumber plants, but not in putative off‐target sites. Non‐transgenic heterozygous eif4e mutant plants were selected for the production of non‐transgenic homozygous T3 generation plants. Homozygous T3 progeny following Cas9/sgRNA that had been targeted to both eif4e sites exhibited immunity to Cucumber vein yellowing virus (Ipomovirus) infection and resistance to the potyviruses Zucchini yellow mosaic virus and Papaya ring spot mosaic virus‐W. In contrast, heterozygous mutant and non‐mutant plants were highly susceptible to these viruses. For the first time, virus resistance has been developed in cucumber, non‐transgenically, not visibly affecting plant development and without long‐term backcrossing, via a new technology that can be expected to be applicable to a wide range of crop plants. |
Author | Chandrasekaran, Jeyabharathy Leibman, Diana Wolf, Dalia Brumin, Marina Gal-On, Amit Klap, Chen Pearlsman, Mali Arazi, Tzahi Sherman, Amir |
AuthorAffiliation | 1 Department of Plant Pathology and Weed Research ARO, Volcani Center Bet‐Dagan 50250 Israel 4 Department of Ornamental Plants and Agricultural Biotechnology ARO, Volcani Center Bet‐Dagan 50250 Israel 3 Department of Fruit Tree Sciences ARO, Volcani Center Bet‐Dagan 50250 Israel 2 Department of Vegetable Research ARO, Volcani Center Bet‐Dagan 50250 Israel |
AuthorAffiliation_xml | – name: 3 Department of Fruit Tree Sciences ARO, Volcani Center Bet‐Dagan 50250 Israel – name: 1 Department of Plant Pathology and Weed Research ARO, Volcani Center Bet‐Dagan 50250 Israel – name: 2 Department of Vegetable Research ARO, Volcani Center Bet‐Dagan 50250 Israel – name: 4 Department of Ornamental Plants and Agricultural Biotechnology ARO, Volcani Center Bet‐Dagan 50250 Israel |
Author_xml | – sequence: 1 givenname: Jeyabharathy surname: Chandrasekaran fullname: Chandrasekaran, Jeyabharathy organization: Department of Plant Pathology and Weed Research, ARO, Volcani Center, 50250, Bet-Dagan, Israel – sequence: 2 givenname: Marina surname: Brumin fullname: Brumin, Marina organization: Department of Plant Pathology and Weed Research, ARO, Volcani Center, 50250, Bet-Dagan, Israel – sequence: 3 givenname: Dalia surname: Wolf fullname: Wolf, Dalia organization: Department of Vegetable Research, ARO, Volcani Center, 50250, Bet-Dagan, Israel – sequence: 4 givenname: Diana surname: Leibman fullname: Leibman, Diana organization: Department of Plant Pathology and Weed Research, ARO, Volcani Center, 50250, Bet-Dagan, Israel – sequence: 5 givenname: Chen surname: Klap fullname: Klap, Chen organization: Department of Plant Pathology and Weed Research, ARO, Volcani Center, 50250, Bet-Dagan, Israel – sequence: 6 givenname: Mali surname: Pearlsman fullname: Pearlsman, Mali organization: Department of Plant Pathology and Weed Research, ARO, Volcani Center, 50250, Bet-Dagan, Israel – sequence: 7 givenname: Amir surname: Sherman fullname: Sherman, Amir organization: Department of Fruit Tree Sciences, ARO, Volcani Center, 50250, Bet-Dagan, Israel – sequence: 8 givenname: Tzahi surname: Arazi fullname: Arazi, Tzahi organization: Department of Ornamental Plants and Agricultural Biotechnology, ARO, Volcani Center, 50250, Bet-Dagan, Israel – sequence: 9 givenname: Amit surname: Gal-On fullname: Gal-On, Amit email: amitg@volcani.agri.gov.il organization: Department of Plant Pathology and Weed Research, ARO, Volcani Center, 50250, Bet-Dagan, Israel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26808139$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFDEUhgep2A-98A_IgDd6Md18bDKZG0FGrYVVl1pbECRkMifb1JlkTWZW99-bddtFC4q5SSDP-55zkvcw23PeQZY9xugYpzXpl8tjTGjJ7mUHmPJpQUtE99J5ms68JGQ_O4zxGiFcVoQ9yPYJF0hgWh1kX17BCjq_7MENuTd5E7xq85UNY8wDRBsH5TTk1uWpZjEE5eICnNW5HvXYNxDyMVq3yOuz04_zs0mtYpUPoK-c7_xi_TC7b1QX4dHNfpR9evP6vH5bzD6cnNYvZ4UWhLJCMCNwa8qqFW3L28aoVhgOmgjUNtMKKkOJYlqBgFJXCHNOSmWaShijGGWGHmUvtr7Lsemh1WmYoDq5DLZXYS29svLPG2ev5MKvJOdUUIaSwbMbg-C_jRAH2duooeuUAz9GicWUU8IYqv4DxYxXuMQioU_voNd-DC69xIZCqXXCN7Wf_N78ruvbT0rA8y2gg48xgNkhGMlNAGQKgPwVgMRO7rDaDmqwfjO37f6l-G47WP_dWr6bz28VxVaR0gE_dgoVvkpebsjL9ycSzWrx-eLyQp7Tnx6V0i4 |
CODEN | MPPAFD |
CitedBy_id | crossref_primary_10_3389_fsufs_2021_685801 crossref_primary_10_1098_rstb_2018_0322 crossref_primary_10_3389_fgene_2022_880195 crossref_primary_10_1094_PHYTO_06_21_0263_R crossref_primary_10_1094_PHYTO_07_19_0267_IA crossref_primary_10_1080_14620316_2022_2038699 crossref_primary_10_3390_plants10091914 crossref_primary_10_1371_journal_pone_0181998 crossref_primary_10_3389_fmicb_2019_00017 crossref_primary_10_1002_smtd_201800473 crossref_primary_10_1016_j_jenvman_2023_117382 crossref_primary_10_7717_peerj_17402 crossref_primary_10_3389_fsufs_2021_683635 crossref_primary_10_3389_fgene_2021_735489 crossref_primary_10_1016_j_apsb_2017_01_002 crossref_primary_10_1093_hr_uhad078 crossref_primary_10_1371_journal_ppat_1011417 crossref_primary_10_3389_fpls_2020_01126 crossref_primary_10_3389_fmicb_2017_00047 crossref_primary_10_1080_21645698_2023_2219111 crossref_primary_10_21566_tarbitderg_323614 crossref_primary_10_1134_S0006297918120131 crossref_primary_10_3389_fgeed_2022_876697 crossref_primary_10_3390_plants9020219 crossref_primary_10_3389_fpls_2018_00985 crossref_primary_10_3390_ijms22073327 crossref_primary_10_3390_ijms20246347 crossref_primary_10_1007_s12033_024_01337_w crossref_primary_10_1093_bfgp_ely016 crossref_primary_10_1016_j_pbi_2020_101987 crossref_primary_10_3390_ijms20112647 crossref_primary_10_3390_ijms20164045 crossref_primary_10_3390_agriculture14010090 crossref_primary_10_1093_g3journal_jkab028 crossref_primary_10_3389_fpls_2022_861637 crossref_primary_10_3389_fpls_2021_691576 crossref_primary_10_1007_s12355_023_01252_5 crossref_primary_10_1002_fes3_168 crossref_primary_10_1016_j_molp_2020_11_002 crossref_primary_10_1007_s00122_019_03500_3 crossref_primary_10_1094_PHYTO_03_17_0086_RVW crossref_primary_10_1094_PHYTO_10_19_0404_FI crossref_primary_10_3389_fmicb_2020_609784 crossref_primary_10_3390_genes12111781 crossref_primary_10_3390_biology13060421 crossref_primary_10_1007_s11033_020_05652_8 crossref_primary_10_1094_PHYTO_01_23_0002_V crossref_primary_10_2222_jsv_70_61 crossref_primary_10_1007_s13562_022_00767_4 crossref_primary_10_1111_pbi_12896 crossref_primary_10_3390_plants9101360 crossref_primary_10_17660_ActaHortic_2020_1294_23 crossref_primary_10_1007_s12600_017_0636_4 crossref_primary_10_5423_RPD_2019_25_2_49 crossref_primary_10_1007_s11033_022_07704_7 crossref_primary_10_1007_s00299_016_2089_5 crossref_primary_10_1371_journal_ppat_1006287 crossref_primary_10_3390_ijms241713241 crossref_primary_10_1007_s10142_024_01325_y crossref_primary_10_3390_ijms252111468 crossref_primary_10_1007_s10529_020_02950_w crossref_primary_10_1111_pbi_12662 crossref_primary_10_7717_peerj_16110 crossref_primary_10_1007_s11248_021_00262_x crossref_primary_10_3389_fgene_2023_1180083 crossref_primary_10_1111_tpj_14679 crossref_primary_10_3389_fpls_2016_01673 crossref_primary_10_3389_fgene_2022_876987 crossref_primary_10_1002_aps3_11314 crossref_primary_10_1007_s13237_024_00472_8 crossref_primary_10_1016_j_gene_2023_147334 crossref_primary_10_3389_fmicb_2020_564310 crossref_primary_10_1007_s12033_022_00456_6 crossref_primary_10_1016_j_scienta_2025_113957 crossref_primary_10_62300_HJVU4083 crossref_primary_10_1093_fqsafe_fyad045 crossref_primary_10_1007_s00299_016_1989_8 crossref_primary_10_1101_cshperspect_a034595 crossref_primary_10_1111_pbi_13885 crossref_primary_10_1038_s41588_019_0503_y crossref_primary_10_1016_j_coviro_2017_07_024 crossref_primary_10_3389_frsus_2024_1378712 crossref_primary_10_3389_fbioe_2019_00387 crossref_primary_10_3389_fgeed_2024_1415244 crossref_primary_10_3389_fgeed_2022_937853 crossref_primary_10_1080_07388551_2021_2007842 crossref_primary_10_3389_fpls_2023_1260102 crossref_primary_10_1186_s13059_020_02204_y crossref_primary_10_3390_ijms19102856 crossref_primary_10_1016_j_hpj_2022_04_007 crossref_primary_10_1080_21655979_2017_1297347 crossref_primary_10_3389_fgeed_2023_1094965 crossref_primary_10_3389_fbioe_2024_1483857 crossref_primary_10_3389_fbioe_2019_00031 crossref_primary_10_1016_j_jbiotec_2020_09_013 crossref_primary_10_1080_07352689_2020_1782568 crossref_primary_10_1111_jipb_13063 crossref_primary_10_1007_s11032_021_01215_2 crossref_primary_10_1016_j_plantsci_2021_111160 crossref_primary_10_3389_fpls_2023_1041868 crossref_primary_10_1080_21645698_2024_2411767 crossref_primary_10_1111_mpp_13252 crossref_primary_10_1021_acs_jafc_2c06749 crossref_primary_10_1111_tpj_15710 crossref_primary_10_1016_j_coviro_2017_07_005 crossref_primary_10_1134_S0003683819090047 crossref_primary_10_1016_j_coviro_2017_07_004 crossref_primary_10_3389_fpls_2020_01092 crossref_primary_10_1111_pbi_12736 crossref_primary_10_3389_fpls_2020_01098 crossref_primary_10_1007_s11032_017_0620_1 crossref_primary_10_1007_s10327_024_01189_x crossref_primary_10_3389_fbioe_2018_00079 crossref_primary_10_3389_fpls_2017_00241 crossref_primary_10_3389_fpls_2018_01415 crossref_primary_10_1042_ETLS20170010 crossref_primary_10_1007_s13237_021_00353_4 crossref_primary_10_1007_s13205_024_04010_w crossref_primary_10_1111_pbi_12987 crossref_primary_10_3390_ijms22158093 crossref_primary_10_1080_15427528_2018_1544954 crossref_primary_10_1007_s00438_019_01564_w crossref_primary_10_3389_fpls_2019_00550 crossref_primary_10_3389_fpls_2022_1027828 crossref_primary_10_3390_agronomy10050662 crossref_primary_10_3389_fmicb_2022_899512 crossref_primary_10_3389_fpls_2023_1164461 crossref_primary_10_1016_j_ymeth_2017_04_024 crossref_primary_10_1007_s11248_023_00333_1 crossref_primary_10_1007_s43538_022_00100_6 crossref_primary_10_1038_s41438_019_0196_5 crossref_primary_10_1111_ppl_13686 crossref_primary_10_1111_pbi_12634 crossref_primary_10_1016_j_scienta_2022_111059 crossref_primary_10_1007_s11240_024_02807_4 crossref_primary_10_29328_journal_jpsp_1001028 crossref_primary_10_1007_s11240_019_01707_2 crossref_primary_10_3390_ijms21165665 crossref_primary_10_3389_fgeed_2021_784233 crossref_primary_10_1080_21655979_2022_2099599 crossref_primary_10_1007_s13205_017_0870_y crossref_primary_10_3390_plants10102055 crossref_primary_10_1042_ETLS20170033 crossref_primary_10_1134_S0003683823060212 crossref_primary_10_3390_plants11141795 crossref_primary_10_3390_agronomy11010023 crossref_primary_10_3390_agriculture11080751 crossref_primary_10_3390_biology12071037 crossref_primary_10_1007_s13205_021_03041_x crossref_primary_10_1016_j_sajb_2019_06_018 crossref_primary_10_17660_ActaHortic_2020_1294_17 crossref_primary_10_18699_VJGB_22_83 crossref_primary_10_1007_s00299_020_02516_0 crossref_primary_10_1186_s12896_019_0507_9 crossref_primary_10_1016_j_bbagen_2024_130685 crossref_primary_10_1007_s12033_022_00507_y crossref_primary_10_3389_fpls_2021_688980 crossref_primary_10_4236_ajmb_2022_124017 crossref_primary_10_1007_s00705_022_05401_1 crossref_primary_10_1002_jcp_25970 crossref_primary_10_1111_jipb_13029 crossref_primary_10_3389_fgeed_2022_987817 crossref_primary_10_1007_s44297_023_00020_x crossref_primary_10_1016_j_virusres_2016_08_001 crossref_primary_10_3390_agronomy10091441 crossref_primary_10_1016_j_molp_2017_09_005 crossref_primary_10_1007_s41348_022_00677_6 crossref_primary_10_1016_j_envexpbot_2022_104824 crossref_primary_10_1099_jgv_0_000609 crossref_primary_10_1007_s13562_021_00765_y crossref_primary_10_1007_s11427_019_9722_2 crossref_primary_10_1016_j_coviro_2020_04_005 crossref_primary_10_1080_07352689_2021_1883826 crossref_primary_10_1080_21645698_2021_1938488 crossref_primary_10_1007_s11816_021_00734_w crossref_primary_10_3390_agronomy10010036 crossref_primary_10_1111_odi_12487 crossref_primary_10_1111_nph_14954 crossref_primary_10_3389_fpls_2018_01323 crossref_primary_10_1155_2017_7315351 crossref_primary_10_1111_nph_14702 crossref_primary_10_1111_mpp_13031 crossref_primary_10_3389_fmicb_2016_01325 crossref_primary_10_3390_plants13233313 crossref_primary_10_3390_ijms20122888 crossref_primary_10_1590_s1678_3921_pab2021_v56_02109 crossref_primary_10_3389_fpls_2018_01245 crossref_primary_10_46653_jhst20030359 crossref_primary_10_1016_j_hpj_2020_03_001 crossref_primary_10_3389_fpls_2018_00268 crossref_primary_10_1007_s11627_021_10187_z crossref_primary_10_3389_fpls_2019_00114 crossref_primary_10_3390_cells11233928 crossref_primary_10_1016_j_plantsci_2018_04_011 crossref_primary_10_1038_s43016_020_0072_3 crossref_primary_10_5511_plantbiotechnology_20_0525a crossref_primary_10_1016_j_sajb_2024_06_011 crossref_primary_10_3390_biotech10030014 crossref_primary_10_1080_14620316_2021_1945956 crossref_primary_10_1111_mpp_13167 crossref_primary_10_1186_s43897_023_00049_0 crossref_primary_10_1007_s11676_016_0281_7 crossref_primary_10_3390_ijms222111423 crossref_primary_10_3390_v13010141 crossref_primary_10_3389_fmicb_2020_593700 crossref_primary_10_1016_j_biotechadv_2021_107729 crossref_primary_10_3389_fmicb_2016_01695 crossref_primary_10_31857_S0026898423030151 crossref_primary_10_3389_fpls_2018_01106 crossref_primary_10_1016_j_tplants_2019_09_006 crossref_primary_10_1007_s11105_021_01286_7 crossref_primary_10_1016_j_molp_2019_03_016 crossref_primary_10_1080_00288233_2023_2187425 crossref_primary_10_3389_fgene_2020_01001 crossref_primary_10_1007_s00299_020_02605_0 crossref_primary_10_1146_annurev_arplant_010720_022215 crossref_primary_10_3389_fpls_2020_00056 crossref_primary_10_1007_s12033_018_0144_x crossref_primary_10_1016_j_virol_2023_02_008 crossref_primary_10_1016_j_biotechadv_2019_02_006 crossref_primary_10_1016_j_heliyon_2023_e14624 crossref_primary_10_1007_s11816_016_0417_4 crossref_primary_10_1042_ETLS20170085 crossref_primary_10_3389_fpls_2019_01219 crossref_primary_10_3390_ijms242316656 crossref_primary_10_1007_s11540_018_9387_y crossref_primary_10_1111_mpp_13418 crossref_primary_10_12688_f1000research_20179_1 crossref_primary_10_3390_plants12193462 crossref_primary_10_5294_pebi_2021_25_2_9 crossref_primary_10_1016_j_jbiotec_2022_11_010 crossref_primary_10_1007_s11033_021_06926_5 crossref_primary_10_3389_fpls_2021_705249 crossref_primary_10_1038_nrg_2017_82 crossref_primary_10_1007_s00425_023_04259_0 crossref_primary_10_1016_j_plaphy_2019_12_022 crossref_primary_10_1007_s11816_017_0446_7 crossref_primary_10_1146_annurev_phyto_080417_050158 crossref_primary_10_1007_s10725_021_00742_4 crossref_primary_10_1080_21683565_2024_2429620 crossref_primary_10_1016_j_indcrop_2024_120430 crossref_primary_10_1080_07352689_2017_1402989 crossref_primary_10_3390_horticulturae10010057 crossref_primary_10_3390_agronomy13041000 crossref_primary_10_1016_j_geoforum_2018_07_017 crossref_primary_10_3389_fpls_2023_1143813 crossref_primary_10_1002_biot_202300298 crossref_primary_10_1080_07352689_2020_1810970 crossref_primary_10_1111_jipb_12793 crossref_primary_10_1186_s12896_020_00604_3 crossref_primary_10_1007_s11248_019_00181_y crossref_primary_10_3389_fgene_2022_922019 crossref_primary_10_3389_fgene_2022_989199 crossref_primary_10_1038_s41438_021_00601_3 crossref_primary_10_1080_21645698_2020_1831729 crossref_primary_10_1186_s13750_019_0171_5 crossref_primary_10_1007_s13562_023_00853_1 crossref_primary_10_3389_fpls_2024_1524601 crossref_primary_10_3390_ijms22031292 crossref_primary_10_3390_plants13141884 crossref_primary_10_1016_j_stress_2021_100053 crossref_primary_10_1002_pep2_24290 crossref_primary_10_3389_fpls_2018_02008 crossref_primary_10_1016_j_ejbt_2019_06_001 crossref_primary_10_1360_SSV_2023_0117 crossref_primary_10_3390_agriculture10020037 crossref_primary_10_3390_pathogens12030422 crossref_primary_10_1080_07388551_2023_2270581 crossref_primary_10_3390_plants12112226 crossref_primary_10_5423_RPD_2018_24_1_9 crossref_primary_10_1007_s12250_020_00338_8 crossref_primary_10_31857_S0555109923060211 crossref_primary_10_3390_ijms20102582 crossref_primary_10_1080_03235408_2021_1895476 crossref_primary_10_2478_mjhr_2020_0002 crossref_primary_10_1111_pbi_12927 crossref_primary_10_3390_plants11121609 crossref_primary_10_1038_s41580_020_00288_9 crossref_primary_10_1007_s11540_020_09476_8 crossref_primary_10_3390_plants10071423 crossref_primary_10_1016_j_tibtech_2018_05_005 crossref_primary_10_1094_PHYTO_03_16_0145_FI crossref_primary_10_1631_jzus_B2100009 crossref_primary_10_1002_ps_4575 crossref_primary_10_1016_j_micpath_2019_103551 crossref_primary_10_2174_1389202921999200712135131 crossref_primary_10_1007_s00425_021_03716_y crossref_primary_10_1080_07060661_2023_2215212 crossref_primary_10_1111_tpj_16049 crossref_primary_10_15835_nbha49312459 crossref_primary_10_3390_agronomy10071033 crossref_primary_10_48130_tp_0024_0006 crossref_primary_10_1155_2021_9993784 crossref_primary_10_3390_agriculture14111999 crossref_primary_10_3389_fpls_2022_1055529 crossref_primary_10_1111_ppl_13359 crossref_primary_10_53471_bahce_1481956 crossref_primary_10_1093_hr_uhab023 crossref_primary_10_1094_PHYTO_05_22_0167_RVW crossref_primary_10_1007_s10340_022_01520_5 crossref_primary_10_1007_s00299_024_03183_1 crossref_primary_10_3389_fsufs_2022_1021350 crossref_primary_10_1186_s42483_024_00302_4 crossref_primary_10_1080_03235408_2021_1910415 crossref_primary_10_1111_mpp_13229 crossref_primary_10_1007_s10142_023_01036_w crossref_primary_10_1016_j_pmpp_2024_102402 crossref_primary_10_1186_s13059_018_1586_y crossref_primary_10_1038_s41598_019_42400_w crossref_primary_10_1007_s11427_017_9022_1 crossref_primary_10_1111_mpp_13227 crossref_primary_10_1079_planthealthcases_2023_0015 crossref_primary_10_1002_advs_202412223 crossref_primary_10_1007_s11240_022_02421_2 crossref_primary_10_3389_fgeed_2023_1171969 crossref_primary_10_3389_fpls_2017_01780 crossref_primary_10_3389_fpls_2022_843575 crossref_primary_10_3389_fpls_2023_1231013 crossref_primary_10_3390_horticulturae7070193 crossref_primary_10_3390_ijms232214370 crossref_primary_10_1590_s0102_053620180302 crossref_primary_10_7717_peerj_12664 crossref_primary_10_1080_07388551_2018_1554621 crossref_primary_10_31590_ejosat_765369 crossref_primary_10_1016_j_isci_2020_101478 crossref_primary_10_3389_fpls_2017_00539 crossref_primary_10_1007_s11033_022_07558_z crossref_primary_10_1007_s11816_019_00562_z crossref_primary_10_1007_s11248_023_00359_5 crossref_primary_10_1007_s12088_023_01154_w crossref_primary_10_1016_j_jplph_2021_153411 crossref_primary_10_1007_s44279_024_00124_0 crossref_primary_10_1007_s11033_022_07741_2 crossref_primary_10_1007_s00122_019_03484_0 crossref_primary_10_1111_pbi_13096 crossref_primary_10_47262__BL_7_2_20210711 crossref_primary_10_1088_1755_1315_974_1_012082 crossref_primary_10_1094_PHYTO_06_22_0193_FI crossref_primary_10_1007_s11816_018_0472_0 crossref_primary_10_1007_s13205_021_02680_4 crossref_primary_10_3389_fpls_2017_01635 crossref_primary_10_3390_agronomy10111641 crossref_primary_10_3390_cimb46100659 crossref_primary_10_1007_s10681_022_03081_1 crossref_primary_10_1111_pbr_13234 crossref_primary_10_3390_v13102100 crossref_primary_10_1016_j_indcrop_2025_120703 crossref_primary_10_1016_j_pmpp_2023_102202 crossref_primary_10_3390_horticulturae8030191 crossref_primary_10_1016_j_wpi_2019_101944 crossref_primary_10_3390_plants12122294 crossref_primary_10_5114_bta_2017_66619 crossref_primary_10_2144_btn_2022_0102 crossref_primary_10_1016_j_plaphy_2017_10_024 crossref_primary_10_1038_srep30910 crossref_primary_10_1016_j_jenvman_2024_120326 crossref_primary_10_1038_s41467_022_35675_7 crossref_primary_10_3390_plants10071481 crossref_primary_10_3389_fmicb_2022_873930 crossref_primary_10_3390_antibiotics8010018 crossref_primary_10_1016_j_rsci_2021_01_003 crossref_primary_10_3390_ijms24010360 crossref_primary_10_3389_fpls_2021_770062 crossref_primary_10_1093_hr_uhac159 crossref_primary_10_1016_j_cpb_2020_100171 crossref_primary_10_2174_1389202921999200716110853 crossref_primary_10_1111_pbi_13394 crossref_primary_10_1093_plphys_kiac103 crossref_primary_10_1016_j_jgg_2023_07_009 crossref_primary_10_1094_PHYTO_08_20_0322_IA crossref_primary_10_1038_s41438_019_0159_x crossref_primary_10_1146_annurev_phyto_020620_114550 crossref_primary_10_3390_cells8111386 crossref_primary_10_1007_s10681_017_2015_0 crossref_primary_10_1111_pbi_13278 crossref_primary_10_1111_pbi_14003 crossref_primary_10_3389_fpls_2021_742932 crossref_primary_10_3390_agronomy12030565 crossref_primary_10_1007_s11248_021_00240_3 crossref_primary_10_1093_bfgp_elz041 crossref_primary_10_3390_agronomy13030755 crossref_primary_10_3389_fpls_2025_1547157 crossref_primary_10_3389_fgeed_2024_1399051 crossref_primary_10_1080_15427528_2017_1333192 crossref_primary_10_1007_s10681_023_03196_z crossref_primary_10_1007_s00344_022_10760_9 crossref_primary_10_1016_j_pmpp_2018_05_006 crossref_primary_10_1093_plphys_kiab003 crossref_primary_10_1016_j_biotechadv_2017_11_008 crossref_primary_10_1002_fes3_330 crossref_primary_10_1007_s13237_024_00498_y crossref_primary_10_1007_s00018_020_03725_2 crossref_primary_10_3390_plants8120601 crossref_primary_10_1016_j_stress_2022_100056 crossref_primary_10_3390_plants10071264 crossref_primary_10_9787_KJBS_2019_51_3_161 crossref_primary_10_1016_j_plantsci_2022_111376 crossref_primary_10_1093_hr_uhab040 crossref_primary_10_3390_agriculture14020282 crossref_primary_10_1094_PHYTO_10_18_0395_R crossref_primary_10_3389_fmicb_2020_609376 crossref_primary_10_1007_s11248_019_00135_4 crossref_primary_10_3389_fgene_2022_1037091 crossref_primary_10_3389_fpls_2022_860281 crossref_primary_10_1007_s00299_025_03440_x crossref_primary_10_1093_plphys_kiab220 crossref_primary_10_1111_jipb_12734 crossref_primary_10_3390_plants12132454 crossref_primary_10_1016_j_micpath_2020_103996 crossref_primary_10_1016_j_scienta_2021_110476 crossref_primary_10_1016_j_bcab_2018_07_008 crossref_primary_10_1007_s13562_023_00845_1 crossref_primary_10_3390_ijms23042303 crossref_primary_10_1002_wrna_1597 crossref_primary_10_1021_acsagscitech_1c00279 crossref_primary_10_1016_j_copbio_2022_102850 crossref_primary_10_1134_S2079059717050124 crossref_primary_10_1002_bit_28344 crossref_primary_10_1016_j_pmpp_2017_10_003 crossref_primary_10_1016_j_pmpp_2023_102191 crossref_primary_10_1038_s41598_017_10783_3 crossref_primary_10_17221_192_2016_CJGPB crossref_primary_10_3390_v16071007 crossref_primary_10_1007_s00299_016_1987_x crossref_primary_10_1186_s13750_018_0130_6 crossref_primary_10_3390_ijms25021308 crossref_primary_10_1007_s12033_023_00788_x crossref_primary_10_1007_s12600_022_00991_7 crossref_primary_10_1111_pce_14599 crossref_primary_10_1007_s11248_019_00138_1 crossref_primary_10_1111_pbi_14442 crossref_primary_10_3390_life13091875 crossref_primary_10_1007_s10142_023_01133_w crossref_primary_10_1007_s12229_021_09250_6 crossref_primary_10_1007_s11756_022_01142_3 crossref_primary_10_1016_j_celrep_2017_04_037 crossref_primary_10_3389_fpls_2022_885128 crossref_primary_10_1007_s10142_025_01533_0 crossref_primary_10_1002_tpg2_20220 crossref_primary_10_1016_j_plaphy_2018_03_027 crossref_primary_10_1016_j_semcdb_2019_04_008 crossref_primary_10_1080_19315260_2020_1833125 crossref_primary_10_3389_fgene_2023_1085024 crossref_primary_10_1016_j_pmpp_2024_102482 crossref_primary_10_1146_annurev_arplant_050718_100049 crossref_primary_10_3390_agronomy13082038 crossref_primary_10_1079_PAVSNNR202015009 crossref_primary_10_1038_s41598_022_18923_0 crossref_primary_10_1007_s00299_016_1975_1 crossref_primary_10_1186_s43141_020_00036_8 crossref_primary_10_1111_mpp_12897 crossref_primary_10_3389_fpls_2017_01932 crossref_primary_10_1111_pbr_12526 crossref_primary_10_3390_ijms24065660 crossref_primary_10_1093_hr_uhac184 crossref_primary_10_1007_s11033_023_08440_2 crossref_primary_10_1093_hr_uhac064 crossref_primary_10_3390_microorganisms7080269 crossref_primary_10_1016_j_pbi_2020_05_003 crossref_primary_10_1016_j_bbrc_2016_10_130 crossref_primary_10_4236_as_2019_1010097 crossref_primary_10_3389_fgene_2022_1085332 crossref_primary_10_3389_fpls_2016_01813 crossref_primary_10_1111_pbi_14333 crossref_primary_10_3389_fnut_2021_751512 crossref_primary_10_1038_s41598_019_53710_4 crossref_primary_10_3390_plants10112339 crossref_primary_10_1007_s11676_017_0588_z crossref_primary_10_1186_s42483_020_00060_z crossref_primary_10_3390_app12147180 crossref_primary_10_1093_hr_uhab086 crossref_primary_10_2174_2210298102666220324112842 crossref_primary_10_3389_fpls_2022_904829 crossref_primary_10_1016_j_tibtech_2018_04_005 crossref_primary_10_1002_jcp_25367 crossref_primary_10_1007_s11816_017_0425_z crossref_primary_10_1002_tpg2_20248 crossref_primary_10_1093_plphys_kiae302 crossref_primary_10_1016_j_jare_2020_10_003 crossref_primary_10_1134_S0026893323030135 crossref_primary_10_1186_s12870_024_05717_x crossref_primary_10_1186_s42483_022_00132_2 crossref_primary_10_5010_JPB_2018_45_3_155 crossref_primary_10_1016_j_tplants_2017_01_008 crossref_primary_10_1080_07060661_2020_1794541 crossref_primary_10_1016_j_pmpp_2025_102640 crossref_primary_10_1093_jxb_erac148 crossref_primary_10_1007_s00425_023_04110_6 crossref_primary_10_1016_j_tplants_2017_01_004 crossref_primary_10_1007_s10709_021_00146_2 crossref_primary_10_3390_ijms22115423 crossref_primary_10_1016_j_jgg_2022_06_003 crossref_primary_10_1002_1873_3468_13073 crossref_primary_10_2174_1568026622666220310104645 crossref_primary_10_1111_aab_12562 |
Cites_doi | 10.1006/viro.1997.8634 10.1038/nbt.2654 10.1093/mp/ssu009 10.1371/journal.pone.0011313 10.1186/s12896-015-0131-2 10.1094/PHYTO.2000.90.5.467 10.1038/nplants.2015.145 10.3390/v7072778 10.1094/MPMI.2004.17.3.322 10.1016/j.febslet.2004.12.086 10.1186/s13059-015-0799-6 10.1094/MPMI-19-0557 10.1007/s10658-009-9468-5 10.1099/vir.0.81817-0 10.1007/s10059-009-0042-y 10.1093/mp/ssu044 10.1038/cr.2013.114 10.1016/bs.aivir.2014.11.006 10.1007/s10658-004-2491-7 10.1016/B978-0-12-801246-8.00002-0 10.1111/j.1364-3703.2012.00791.x 10.1007/BF00633825 10.1104/pp.102.017855 10.1371/journal.pone.0029595 10.1046/j.1365-313X.2002.01481.x 10.1046/j.1365-313X.2002.01499.x 10.1099/0022-1317-73-9-2183 10.1038/nature13011 10.1111/pbi.12200 10.1104/pp.114.247577 10.1038/nbt.2655 10.1016/j.coviro.2011.09.010 10.1016/j.biotechadv.2014.12.006 10.1111/j.1364-3703.2012.00785.x 10.1016/j.copbio.2014.11.007 10.1038/nbt.2675 10.1038/NPLANTS.2014.11 10.1146/annurev.phyto.43.011205.141140 10.1128/JVI.77.18.9906-9911.2003 10.1073/pnas.0702739104 10.1104/pp.107.106104 10.1038/nbt.2623 10.1007/s00122-009-1169-0 10.1111/ppa.12260 10.1016/S0960-9822(02)00898-9 10.1099/vir.0.81659-0 10.1128/JVI.74.17.7730-7737.2000 10.1007/s11103-014-0188-7 10.1111/j.1364-3703.2004.00223.x 10.1111/j.1364-3703.2008.00513.x 10.1038/srep11491 10.1186/1746-4811-9-39 10.1007/s11248-004-3802-7 10.1038/nrm2838 10.1094/MPMI-11-09-0277 10.1111/j.1364-3703.2007.00386.x 10.1007/BF02712670 |
ContentType | Journal Article |
Copyright | 2016 BSPP and John Wiley & Sons Ltd 2016 BSPP and John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2016 BSPP and John Wiley & Sons Ltd – notice: 2016 BSPP and John Wiley & Sons Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7T7 7U9 8FD C1K FR3 H94 M7N P64 7S9 L.6 5PM |
DOI | 10.1111/mpp.12375 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Virology and AIDS Abstracts AGRICOLA MEDLINE CrossRef AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | Virus resistance in cucumber using CRISPR/Cas9 |
EISSN | 1364-3703 |
EndPage | 1153 |
ExternalDocumentID | PMC6638350 4143681741 26808139 10_1111_mpp_12375 MPP12375 ark_67375_WNG_0LC8ZVWV_T |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29M 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 7X2 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAONW AAZKR ABCQN ABDBF ABEML ABPVW ACBWZ ACCFJ ACGFO ACGFS ACIWK ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADKYN ADZMN AEEZP AEGXH AEIMD AENEX AEQDE AEUQT AFBPY AFEBI AFKRA AFPWT AFRAH AFZJQ AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATCPS ATUGU AUFTA AVUZU AVWKF AZBYB AZFZN AZVAB BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BHBCM BHPHI BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DR2 DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EMOBN EST ESX F00 F01 F04 F5P FEDTE FRP G-S G.N GODZA GROUPED_DOAJ H.T H.X HCIFZ HF~ HVGLF HYE HZI HZ~ IAO IEP IGS IHE ITC IX1 J0M K48 LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 M0K M7P MK4 MRFUL MRSTM MSFUL MSSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PIMPY Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ SV3 TUS UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WYISQ XG1 ~IA ~KM ~WT AAMMB AANHP ACCMX ACRPL ACUHS ACYXJ ADNMO AEFGJ AEUYN AGQPQ AGXDD AIDQK AIDYY PHGZM PHGZT PQGLB AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7T7 7U9 8FD C1K FR3 H94 M7N P64 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c8235-85f81df79d8dd6dbfad8f6ec280db49e9f32a5cae8e7c9016627afb98ffa535f3 |
IEDL.DBID | DR2 |
ISSN | 1464-6722 |
IngestDate | Thu Aug 21 18:15:40 EDT 2025 Fri Jul 11 18:35:43 EDT 2025 Fri Jul 11 05:53:26 EDT 2025 Wed Aug 13 09:27:23 EDT 2025 Thu Jan 02 23:09:02 EST 2025 Thu Apr 24 23:06:18 EDT 2025 Tue Jul 01 01:14:56 EDT 2025 Wed Aug 20 07:27:22 EDT 2025 Wed Oct 30 09:53:50 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | genome editing eIF4E CRISPR/Cas9 cucumber Potyviridae virus resistance |
Language | English |
License | 2016 BSPP and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c8235-85f81df79d8dd6dbfad8f6ec280db49e9f32a5cae8e7c9016627afb98ffa535f3 |
Notes | istex:022AA0A51D89F6C3F283B81BF7AC199E2B914558 ark:/67375/WNG-0LC8ZVWV-T ArticleID:MPP12375 These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://bsppjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mpp.12375 |
PMID | 26808139 |
PQID | 1810535260 |
PQPubID | 1006541 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6638350 proquest_miscellaneous_1846325509 proquest_miscellaneous_1815691718 proquest_journals_1810535260 pubmed_primary_26808139 crossref_primary_10_1111_mpp_12375 crossref_citationtrail_10_1111_mpp_12375 wiley_primary_10_1111_mpp_12375_MPP12375 istex_primary_ark_67375_WNG_0LC8ZVWV_T |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2016 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | Molecular plant pathology |
PublicationTitleAlternate | Molecular Plant Pathology |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | Moury, B., Fabre, F. and Senoussi, R. (2007) Estimation of the number of virus particles transmitted by an insect vector. Proc. Natl. Acad. Sci. USA, 104, 17 891-17 896. Dellaporta, S.L., Wood, J. and Hicks, J.B. (1983) A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1, 19-21. Jackson, R.J., Hellen, C.U.T. and Pestova, T.V. (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113-127. Rizzo, T.M. and Palukaitis, P. (1990) Construction of full-length cDNA clones of cucumber mosaic virus RNAs 1, 2 and 3: generation of infectious RNA transcripts. Mol. Gen. Genet. 222, 249-256. Ruffel, S., Gallois, J.-L., Moury, B., Robaglia, C., Palloix, A. and Caranta, C. (2006) Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. J. Genet. Virol. 87, 2089-2098. Xu, R.-F., Li, H., Qin, R.-Y., Li, J., Qiu, C.-H., Yang, Y.-C., Ma, H., Li, L., Wei, P.-C. and Yang, J.-B. (2015) Generation of inheritable and "transgene clean" targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci. Rep. 5, doi:10.1038/srep11491. Gal-On, A., Antignus, Y., Rosner, A. and Raccah, B. (1992) A zucchini yellow mosaic virus coat protein gene mutation restores aphid transmissibility but has no effect on multiplication. J. Genet. Virol. 73, 2183-2187. Xie, K., Zhang, J. and Yang, Y. (2014) Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol. Plant, 7, 923-926. Mali, P., Aach, J., Stranges, P.B., Esvelt, K.M., Moosburner, M., Kosuri, S., Yang, L. and Church, G.M. (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833-838. Piron, F., Nicolaï, M., Minoïa, S., Piednoir, E., Moretti, A., Salgues, A., Zamir, D., Caranta, C. and Bendahmane, A. (2010) An induced mutation in tomato eif4e leads to immunity to two Potyviruses. PLoS One, 5, e11313. Lellis, A.D., Kasschau, K.D., Whitham, S.A. and Carrington, J.C. (2002) Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during Potyvirus infection. Curr. Biol. 12, 1046-1051. Ruffel, S., Dussault, M.-H., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C. and Caranta, C. (2002) A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J. 32, 1067-1075. Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., Mao, Y., Yang, L., Zhang, H., Xu, N. and Zhu, J.-K. (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 12, 797-807. Nicaise, V., German-Retana, S., Sanjuán, R., Dubrana, M.-P., Mazier, M., Maisonneuve, B., Candresse, T., Caranta, C. and LeGall, O. (2003) The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the Potyvirus lettuce mosaic virus. Plant Physiol. 132, 1272-1282. Wang, A. and Krishnaswamy, S. (2012) Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Mol. Plant Pathol. 13, 795-803. Gal-On, A. (2000) A point mutation in the FRNK motif of the Potyvirus helper component-protease gene alters symptom expression in cucurbits and elicits protection against the severe homologous virus. Phytopathology, 90, 467-473. Ling, K.-S., Harris, K.R., Meyer, J.D.F., Levi, A., Guner, N., Wehner, T.C., Bendahmane, A. and Havey, M.J. (2009) Nonsynonymous single nucleotide polymorphisms in the watermelon eIF4E gene are closely associated with resistance to Zucchini yellow mosaic virus. Theor. Appl. Genet. 120, 191-200. Ayme, V., Souche, S., Caranta, C., Jacquemond, M., Chadœuf, J., Palloix, A. and Moury, B. (2006) Different mutations in the genome-linked protein VPg of potato virus Y confer virulence on the pvr23 resistance in pepper. Mol. Plant-Microbe Interact. 19, 557-563. Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.-L., Wei, P., Cao, F., Zhu, S., Zhang, F., Mao, Y. and Zhu, J.-K. (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 23, 1229-1232. Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J.D.G. and Kamoun, S. (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 691-693. Gómez, P., Rodríguez-Hernández, A.M., Moury, B. and Aranda, M.A. (2009) Genetic resistance for the sustainable control of plant virus diseases: breeding, mechanisms and durability. Eur. J. Plant Pathol. 125, 1-22. Jiang, J. and Laliberté, J.-F. (2011) The genome-linked protein VPg of plant viruses-a protein with many partners. Curr. Opin. Virol. 1, 347-354. Léonard, S., Plante, D., Wittmann, S., Daigneault, N., Fortin, M.G. and Laliberté, J.-F. (2000) Complex formation between Potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J. Virol. 74, 7730-7737. Martínez-García, B., Marco, C.F., Goytia, E., López-Abella, D., Serra, M.T., Aranda, M.A. and López-Moya, J.J. (2004) Development and use of detection methods specific for cucumber vein yellowing virus (CVYV). Eur. J. Plant Pathol. 110, 811-821. Ali, Z., Abulfaraj, A., Idris, A., Ali, S., Tashkandi, M. and Mahfouz, M.M. (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 16, 238. Moury, B., Morel, C., Johansen, E., Guilbaud, L., Souche, S., Ayme, V., Caranta, C., Palloix, A. and Jacquemond, M. (2004) Mutations in potato virus Y genome-linked protein determine virulence toward recessive resistances in Capsicum annuum and Lycopersicon hirsutum. Mol. Plant-Microbe Interact. 17, 322-329. Nakahara, K.S., Shimada, R., Choi, S.-H., Yamamoto, H., Shao, J. and Uyeda, I. (2010) Involvement of the P1 cistron in overcoming eIF4E-mediated recessive resistance against clover yellow vein virus in pea. Mol. Plant-Microbe Interact. 23, 1460-1469. Belhaj, K., Chaparro-Garcia, A., Kamoun, S. and Nekrasov, V. (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 9, 39. Liu, L. and Fan, X.-D. (2014) CRISPR-Cas system: a powerful tool for genome engineering. Plant Mol. Biol. 85, 209-218. Reingold, V., Lachman, O., Blaosov, E. and Dombrovsky, A. (2015) Seed disinfection treatments do not sufficiently eliminate the infectivity of Cucumber green mottle mosaic virus (CGMMV) on cucurbit seeds. Plant Pathol. 64, 245-255. Duprat, A., Caranta, C., Revers, F., Menand, B., Browning, K.S. and Robaglia, C. (2002) The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J. 32, 927-934. Abdul-Razzak, A., Guiraud, T., Peypelut, M., Walter, J., Houvenaghel, M.-C., Candresse, T., Le Gall, O. and German-Retana, S. (2009) Involvement of the cylindrical inclusion (CI) protein in the overcoming of an eIF4E-mediated resistance against Lettuce mosaic potyvirus. Mol. Plant Pathol. 10, 109-113. Hébrard, E., Pinel-Galzi, A., Bersoult, A., Siré, C. and Fargette, D. (2006) Emergence of a resistance-breaking isolate of Rice yellow mottle virus during serial inoculations is due to a single substitution in the genome-linked viral protein VPg. J. Genet. Virol. 87, 1369-1373. Rodríguez-Hernández, A.M., Gosalvez, B., Sempere, R.N., Burgos, L., Aranda, M.A. and Truniger, V. (2012) Melon RNA interference (RNAi) lines silenced for Cm-eIF4E show broad virus resistance. Mol. Plant Pathol. 13, 755-763. Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Patron, N.J. and Nekrasov, V. (2015) Editing plant genomes with CRISPR/Cas9. Curr. Opin. Biotechnol. 32, 76-84. Wittmann, S., Chatel, H., Fortin, M.G. and Laliberté, J.-F. (1997) Interaction of the viral protein genome linked of turnip mosaic Potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology, 234, 84-92. Dafny-Yelin, M. and Tzfira, T. (2007) Delivery of multiple transgenes to plant cells. Plant Physiol. 145, 1118-1128. Jones, H.D. (2015) Regulatory uncertainty over genome editing. Nat. Plants, 1, DOI: 10.1038/NPLANTS.2014.11. Bortesi, L. and Fischer, R. (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Adv. 33, 41-52. Baltes, N.J., Hummel, A.W., Konecna, E., Cegan, R., Bruns, A.N., Bisaro, D.M. and Voytas, D.F. (2015) Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat. Plants, 1, doi:10.1038/nplants.2015.145. Li, J.-F., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G.M. and Sheen, J. (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31, 688-691. Diaz-Pendon, J.A., Truniger, V., Nieto, C., Garcia-Mas, J., Bendahmane, A. and Aranda, M.A. (2004) Advances in understanding recessive resistance to plant viruses. Mol. Plant Pathol. 5, 223-233. Mazier, M., Flamain, F., Nicolaï, M., Sarnette, V. and Caranta, C. (2011) Knock-down of both eIF4E1 and eIF4E2 genes confers broad-spectrum resistance against potyviruses in tomato. PLoS One, 6, e29595. Sacristán, S., Malpica, J.M., Fraile, A. and García-Arenal, F. (2003) Estimation of population bottlenecks during systemic movement of tobacco mosaic virus in tobacco plants. J. Virol. 77, 9906-9911. Maule, A.J., Caranta, C. and Boulton, M.I. (2007) Sources of natural resistance to plant viruses: status and prospects. Mol. Plant Pathol. 8, 223-231. Sternberg, S.H., Redding, S., Jinek, M., Greene, E.C. and Doudna, J.A. (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 507, 62-67. Sanfaçon, H. (2015) Plant translation factors and virus resistance. Viruses, 7, 3392-3419. Lei, Y., Lu, L., Liu, H.-Y., Li, S., Xing, F. and Chen, L 1997; 234 2010; 11 2007; 104 2007; 145 1983; 1 2013; 23 2002; 12 2015; 33 2015; 32 2005; 579 2004; 5 2000; 90 1990; 222 2012; 13 2013; 9 2010; 23 2009; 10 2007; 8 2009; 120 2014; 166 2014; 7 2010; 5 2009; 125 2014; 12 2015; 1 2015; 15 2015; 16 2015; 5 2014; 90 2011; 1 2011 2002; 32 2009 2006; 19 2005; 43 2014; 85 2011; 6 2015; 7 2009; 27 2003; 132 1992; 73 2003; 77 2004; 110 2014; 507 2006; 87 2004; 17 2015; 64 2013; 31 2000; 74 2015 2005; 14 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 Truniger V. (e_1_2_7_55_1) 2009 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – reference: Diaz-Pendon, J.A., Truniger, V., Nieto, C., Garcia-Mas, J., Bendahmane, A. and Aranda, M.A. (2004) Advances in understanding recessive resistance to plant viruses. Mol. Plant Pathol. 5, 223-233. – reference: Rizzo, T.M. and Palukaitis, P. (1990) Construction of full-length cDNA clones of cucumber mosaic virus RNAs 1, 2 and 3: generation of infectious RNA transcripts. Mol. Gen. Genet. 222, 249-256. – reference: Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., Mao, Y., Yang, L., Zhang, H., Xu, N. and Zhu, J.-K. (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 12, 797-807. – reference: Xie, K., Zhang, J. and Yang, Y. (2014) Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol. Plant, 7, 923-926. – reference: Lellis, A.D., Kasschau, K.D., Whitham, S.A. and Carrington, J.C. (2002) Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during Potyvirus infection. Curr. Biol. 12, 1046-1051. – reference: Martínez-García, B., Marco, C.F., Goytia, E., López-Abella, D., Serra, M.T., Aranda, M.A. and López-Moya, J.J. (2004) Development and use of detection methods specific for cucumber vein yellowing virus (CVYV). Eur. J. Plant Pathol. 110, 811-821. – reference: Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.-L., Wei, P., Cao, F., Zhu, S., Zhang, F., Mao, Y. and Zhu, J.-K. (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 23, 1229-1232. – reference: Cillo, F. and Palukaitis, P. (2014) Transgenic resistance. Adv. Virus Res. 90, 35-146. – reference: Sato, M., Nakahara, K., Yoshii, M., Ishikawa, M. and Uyeda, I. (2005) Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett. 579, 1167-1171. – reference: Ayme, V., Souche, S., Caranta, C., Jacquemond, M., Chadœuf, J., Palloix, A. and Moury, B. (2006) Different mutations in the genome-linked protein VPg of potato virus Y confer virulence on the pvr23 resistance in pepper. Mol. Plant-Microbe Interact. 19, 557-563. – reference: Mazier, M., Flamain, F., Nicolaï, M., Sarnette, V. and Caranta, C. (2011) Knock-down of both eIF4E1 and eIF4E2 genes confers broad-spectrum resistance against potyviruses in tomato. PLoS One, 6, e29595. – reference: Xu, R.-F., Li, H., Qin, R.-Y., Li, J., Qiu, C.-H., Yang, Y.-C., Ma, H., Li, L., Wei, P.-C. and Yang, J.-B. (2015) Generation of inheritable and "transgene clean" targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci. Rep. 5, doi:10.1038/srep11491. – reference: Liu, L. and Fan, X.-D. (2014) CRISPR-Cas system: a powerful tool for genome engineering. Plant Mol. Biol. 85, 209-218. – reference: Dellaporta, S.L., Wood, J. and Hicks, J.B. (1983) A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1, 19-21. – reference: Ling, K.-S., Harris, K.R., Meyer, J.D.F., Levi, A., Guner, N., Wehner, T.C., Bendahmane, A. and Havey, M.J. (2009) Nonsynonymous single nucleotide polymorphisms in the watermelon eIF4E gene are closely associated with resistance to Zucchini yellow mosaic virus. Theor. Appl. Genet. 120, 191-200. – reference: Bortesi, L. and Fischer, R. (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Adv. 33, 41-52. – reference: Ruffel, S., Dussault, M.-H., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C. and Caranta, C. (2002) A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J. 32, 1067-1075. – reference: Gal-On, A., Antignus, Y., Rosner, A. and Raccah, B. (1992) A zucchini yellow mosaic virus coat protein gene mutation restores aphid transmissibility but has no effect on multiplication. J. Genet. Virol. 73, 2183-2187. – reference: Moury, B., Fabre, F. and Senoussi, R. (2007) Estimation of the number of virus particles transmitted by an insect vector. Proc. Natl. Acad. Sci. USA, 104, 17 891-17 896. – reference: Gal-On, A. (2000) A point mutation in the FRNK motif of the Potyvirus helper component-protease gene alters symptom expression in cucurbits and elicits protection against the severe homologous virus. Phytopathology, 90, 467-473. – reference: Jacobs, T.B., LaFayette, P.R., Schmitz, R.J. and Parrott, W.A. (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol. 15, 16-26. – reference: Revers, F. and García, J.A. (2015) Chapter three-Molecular biology of Potyviruses. In: Advances in Virus Research (Maramorosch, K. and Mettenleiter, T.C., eds), pp. 101-199. New York: Academic Press. [WorldCat] – reference: Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J.D.G. and Kamoun, S. (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 691-693. – reference: Jackson, R.J., Hellen, C.U.T. and Pestova, T.V. (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113-127. – reference: Gal-On, A., Wolf, D., Antignus, Y., Patlis, L., Ryu, K.H., Min, B.E., Pearlsman, M., Lachman, O., Gaba, V., Wang, Y., Shiboleth, Y.M., Yang, J. and Zelcer, A. (2005) Transgenic cucumbers harboring the 54-kDa putative gene of Cucumber fruit mottle mosaic tobamovirus are highly resistant to viral infection and protect nontransgenic scions from soil infection. Transgenic Res. 14, 81-93. – reference: Jones, H.D. (2015) Regulatory uncertainty over genome editing. Nat. Plants, 1, DOI: 10.1038/NPLANTS.2014.11. – reference: Li, J.-F., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G.M. and Sheen, J. (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31, 688-691. – reference: Maule, A.J., Caranta, C. and Boulton, M.I. (2007) Sources of natural resistance to plant viruses: status and prospects. Mol. Plant Pathol. 8, 223-231. – reference: Baltes, N.J., Hummel, A.W., Konecna, E., Cegan, R., Bruns, A.N., Bisaro, D.M. and Voytas, D.F. (2015) Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat. Plants, 1, doi:10.1038/nplants.2015.145. – reference: Piron, F., Nicolaï, M., Minoïa, S., Piednoir, E., Moretti, A., Salgues, A., Zamir, D., Caranta, C. and Bendahmane, A. (2010) An induced mutation in tomato eif4e leads to immunity to two Potyviruses. PLoS One, 5, e11313. – reference: Kang, B.-C., Yeam, I. and Jahn, M.M. (2005) Genetics of plant virus resistance. Annu. Rev. Phytopathol. 43, 581-621. – reference: Gómez, P., Rodríguez-Hernández, A.M., Moury, B. and Aranda, M.A. (2009) Genetic resistance for the sustainable control of plant virus diseases: breeding, mechanisms and durability. Eur. J. Plant Pathol. 125, 1-22. – reference: Lei, Y., Lu, L., Liu, H.-Y., Li, S., Xing, F. and Chen, L.-L. (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol. Plant, 7, 1494-1496. – reference: Rodríguez-Hernández, A.M., Gosalvez, B., Sempere, R.N., Burgos, L., Aranda, M.A. and Truniger, V. (2012) Melon RNA interference (RNAi) lines silenced for Cm-eIF4E show broad virus resistance. Mol. Plant Pathol. 13, 755-763. – reference: Ruffel, S., Gallois, J.-L., Moury, B., Robaglia, C., Palloix, A. and Caranta, C. (2006) Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. J. Genet. Virol. 87, 2089-2098. – reference: Dafny-Yelin, M. and Tzfira, T. (2007) Delivery of multiple transgenes to plant cells. Plant Physiol. 145, 1118-1128. – reference: Reingold, V., Lachman, O., Blaosov, E. and Dombrovsky, A. (2015) Seed disinfection treatments do not sufficiently eliminate the infectivity of Cucumber green mottle mosaic virus (CGMMV) on cucurbit seeds. Plant Pathol. 64, 245-255. – reference: Mali, P., Aach, J., Stranges, P.B., Esvelt, K.M., Moosburner, M., Kosuri, S., Yang, L. and Church, G.M. (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833-838. – reference: Nicaise, V., German-Retana, S., Sanjuán, R., Dubrana, M.-P., Mazier, M., Maisonneuve, B., Candresse, T., Caranta, C. and LeGall, O. (2003) The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the Potyvirus lettuce mosaic virus. Plant Physiol. 132, 1272-1282. – reference: Fu, Y., Foden, J.A., Khayter, C., Maeder, M.L., Reyon, D., Joung, J.K. and Sander, J.D. (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822-826. – reference: Sacristán, S., Malpica, J.M., Fraile, A. and García-Arenal, F. (2003) Estimation of population bottlenecks during systemic movement of tobacco mosaic virus in tobacco plants. J. Virol. 77, 9906-9911. – reference: Hwang, J., Li, J., Liu, W.-Y., An, S.-J., Cho, H., Her, N.H., Yeam, I., Kim, D. and Kang, B.-C. (2009) Double mutations in eIF4E and eIFiso4E confer recessive resistance to Chilli veinal mottle virus in pepper. Mol. Cells, 27, 329-336. – reference: Wang, A. and Krishnaswamy, S. (2012) Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Mol. Plant Pathol. 13, 795-803. – reference: Jiang, J. and Laliberté, J.-F. (2011) The genome-linked protein VPg of plant viruses-a protein with many partners. Curr. Opin. Virol. 1, 347-354. – reference: Duprat, A., Caranta, C., Revers, F., Menand, B., Browning, K.S. and Robaglia, C. (2002) The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J. 32, 927-934. – reference: Nakahara, K.S., Shimada, R., Choi, S.-H., Yamamoto, H., Shao, J. and Uyeda, I. (2010) Involvement of the P1 cistron in overcoming eIF4E-mediated recessive resistance against clover yellow vein virus in pea. Mol. Plant-Microbe Interact. 23, 1460-1469. – reference: Belhaj, K., Chaparro-Garcia, A., Kamoun, S. and Nekrasov, V. (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 9, 39. – reference: Sanfaçon, H. (2015) Plant translation factors and virus resistance. Viruses, 7, 3392-3419. – reference: Sternberg, S.H., Redding, S., Jinek, M., Greene, E.C. and Doudna, J.A. (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 507, 62-67. – reference: Wittmann, S., Chatel, H., Fortin, M.G. and Laliberté, J.-F. (1997) Interaction of the viral protein genome linked of turnip mosaic Potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology, 234, 84-92. – reference: Léonard, S., Plante, D., Wittmann, S., Daigneault, N., Fortin, M.G. and Laliberté, J.-F. (2000) Complex formation between Potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J. Virol. 74, 7730-7737. – reference: Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Patron, N.J. and Nekrasov, V. (2015) Editing plant genomes with CRISPR/Cas9. Curr. Opin. Biotechnol. 32, 76-84. – reference: Brooks, C., Nekrasov, V., Lippman, Z.B. and Eck, J.V. (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol. 166, 1292-1297. – reference: Ali, Z., Abulfaraj, A., Idris, A., Ali, S., Tashkandi, M. and Mahfouz, M.M. (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 16, 238. – reference: Moury, B., Morel, C., Johansen, E., Guilbaud, L., Souche, S., Ayme, V., Caranta, C., Palloix, A. and Jacquemond, M. (2004) Mutations in potato virus Y genome-linked protein determine virulence toward recessive resistances in Capsicum annuum and Lycopersicon hirsutum. Mol. Plant-Microbe Interact. 17, 322-329. – reference: Hébrard, E., Pinel-Galzi, A., Bersoult, A., Siré, C. and Fargette, D. (2006) Emergence of a resistance-breaking isolate of Rice yellow mottle virus during serial inoculations is due to a single substitution in the genome-linked viral protein VPg. J. Genet. Virol. 87, 1369-1373. – reference: Abdul-Razzak, A., Guiraud, T., Peypelut, M., Walter, J., Houvenaghel, M.-C., Candresse, T., Le Gall, O. and German-Retana, S. (2009) Involvement of the cylindrical inclusion (CI) protein in the overcoming of an eIF4E-mediated resistance against Lettuce mosaic potyvirus. Mol. Plant Pathol. 10, 109-113. – volume: 1 start-page: 347 year: 2011 end-page: 354 article-title: The genome‐linked protein VPg of plant viruses—a protein with many partners publication-title: Curr. Opin. Virol. – year: 2011 – volume: 74 start-page: 7730 year: 2000 end-page: 7737 article-title: Complex formation between Potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity publication-title: J. Virol. – volume: 10 start-page: 109 year: 2009 end-page: 113 article-title: Involvement of the cylindrical inclusion (CI) protein in the overcoming of an eIF4E‐mediated resistance against publication-title: Mol. Plant Pathol. – volume: 12 start-page: 1046 year: 2002 end-page: 1051 article-title: Loss‐of‐susceptibility mutants of reveal an essential role for eIF(iso)4E during Potyvirus infection publication-title: Curr. Biol. – start-page: 119 year: 2009 end-page: 231 – volume: 27 start-page: 329 year: 2009 end-page: 336 article-title: Double mutations in eIF4E and eIFiso4E confer recessive resistance to Chilli veinal mottle virus in pepper publication-title: Mol. Cells – volume: 17 start-page: 322 year: 2004 end-page: 329 article-title: Mutations in potato virus Y genome‐linked protein determine virulence toward recessive resistances in and publication-title: Mol. Plant–Microbe Interact. – volume: 5 year: 2015 article-title: Generation of inheritable and “transgene clean” targeted genome‐modified rice in later generations using the CRISPR/Cas9 system publication-title: Sci. Rep. – volume: 110 start-page: 811 year: 2004 end-page: 821 article-title: Development and use of detection methods specific for cucumber vein yellowing virus (CVYV) publication-title: Eur. J. Plant Pathol. – volume: 1 start-page: 19 year: 1983 end-page: 21 article-title: A plant DNA minipreparation: Version II publication-title: Plant Mol. Biol. Rep. – volume: 125 start-page: 1 year: 2009 end-page: 22 article-title: Genetic resistance for the sustainable control of plant virus diseases: breeding, mechanisms and durability publication-title: Eur. J. Plant Pathol. – volume: 7 start-page: 1494 year: 2014 end-page: 1496 article-title: CRISPR‐P: a web tool for synthetic single‐guide RNA design of CRISPR‐system in plants publication-title: Mol. Plant – volume: 87 start-page: 1369 year: 2006 end-page: 1373 article-title: Emergence of a resistance‐breaking isolate of Rice yellow mottle virus during serial inoculations is due to a single substitution in the genome‐linked viral protein VPg publication-title: J. Genet. Virol. – volume: 222 start-page: 249 year: 1990 end-page: 256 article-title: Construction of full‐length cDNA clones of cucumber mosaic virus RNAs 1, 2 and 3: generation of infectious RNA transcripts publication-title: Mol. Gen. Genet. – volume: 23 start-page: 1460 year: 2010 end-page: 1469 article-title: Involvement of the P1 cistron in overcoming eIF4E‐mediated recessive resistance against clover yellow vein virus in pea publication-title: Mol. Plant–Microbe Interact. – volume: 31 start-page: 688 year: 2013 end-page: 691 article-title: Multiplex and homologous recombination‐mediated genome editing in Arabidopsis and using guide RNA and Cas9 publication-title: Nat. Biotechnol. – volume: 15 start-page: 16 year: 2015 end-page: 26 article-title: Targeted genome modifications in soybean with CRISPR/Cas9 publication-title: BMC Biotechnol. – volume: 64 start-page: 245 year: 2015 end-page: 255 article-title: Seed disinfection treatments do not sufficiently eliminate the infectivity of Cucumber green mottle mosaic virus (CGMMV) on cucurbit seeds publication-title: Plant Pathol. – volume: 145 start-page: 1118 year: 2007 end-page: 1128 article-title: Delivery of multiple transgenes to plant cells publication-title: Plant Physiol. – volume: 19 start-page: 557 year: 2006 end-page: 563 article-title: Different mutations in the genome‐linked protein VPg of potato virus Y confer virulence on the pvr23 resistance in pepper publication-title: Mol. Plant–Microbe Interact. – volume: 16 start-page: 238 year: 2015 article-title: CRISPR/Cas9‐mediated viral interference in plants publication-title: Genome Biol. – volume: 90 start-page: 35 year: 2014 end-page: 146 article-title: Transgenic resistance publication-title: Adv. Virus Res. – volume: 8 start-page: 223 year: 2007 end-page: 231 article-title: Sources of natural resistance to plant viruses: status and prospects publication-title: Mol. Plant Pathol. – volume: 85 start-page: 209 year: 2014 end-page: 218 article-title: CRISPR–Cas system: a powerful tool for genome engineering publication-title: Plant Mol. Biol. – volume: 234 start-page: 84 year: 1997 end-page: 92 article-title: Interaction of the viral protein genome linked of turnip mosaic Potyvirus with the translational eukaryotic initiation factor (iso) 4E of using the yeast two‐hybrid system publication-title: Virology – volume: 23 start-page: 1229 year: 2013 end-page: 1232 article-title: Efficient genome editing in plants using a CRISPR/Cas system publication-title: Cell Res. – volume: 77 start-page: 9906 year: 2003 end-page: 9911 article-title: Estimation of population bottlenecks during systemic movement of tobacco mosaic virus in tobacco plants publication-title: J. Virol. – volume: 5 start-page: 223 year: 2004 end-page: 233 article-title: Advances in understanding recessive resistance to plant viruses publication-title: Mol. Plant Pathol. – volume: 31 start-page: 822 year: 2013 end-page: 826 article-title: High‐frequency off‐target mutagenesis induced by CRISPR‐Cas nucleases in human cells publication-title: Nat. Biotechnol. – volume: 87 start-page: 2089 year: 2006 end-page: 2098 article-title: Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper publication-title: J. Genet. Virol. – volume: 13 start-page: 795 year: 2012 end-page: 803 article-title: Eukaryotic translation initiation factor 4E‐mediated recessive resistance to plant viruses and its utility in crop improvement publication-title: Mol. Plant Pathol. – volume: 13 start-page: 755 year: 2012 end-page: 763 article-title: Melon RNA interference (RNAi) lines silenced for Cm‐eIF4E show broad virus resistance publication-title: Mol. Plant Pathol. – volume: 132 start-page: 1272 year: 2003 end-page: 1282 article-title: The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the Potyvirus lettuce mosaic virus publication-title: Plant Physiol. – volume: 32 start-page: 76 year: 2015 end-page: 84 article-title: Editing plant genomes with CRISPR/Cas9 publication-title: Curr. Opin. Biotechnol. – volume: 73 start-page: 2183 year: 1992 end-page: 2187 article-title: A zucchini yellow mosaic virus coat protein gene mutation restores aphid transmissibility but has no effect on multiplication publication-title: J. Genet. Virol. – volume: 6 start-page: e29595 year: 2011 article-title: Knock‐down of both eIF4E1 and eIF4E2 genes confers broad‐spectrum resistance against potyviruses in tomato publication-title: PLoS One – volume: 32 start-page: 1067 year: 2002 end-page: 1075 article-title: A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E) publication-title: Plant J. – volume: 33 start-page: 41 year: 2015 end-page: 52 article-title: The CRISPR/Cas9 system for plant genome editing and beyond publication-title: Biotechnol. Adv. – volume: 12 start-page: 797 year: 2014 end-page: 807 article-title: The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation publication-title: Plant Biotechnol. J. – volume: 7 start-page: 3392 year: 2015 end-page: 3419 article-title: Plant translation factors and virus resistance publication-title: Viruses – start-page: 101 year: 2015 end-page: 199 – volume: 7 start-page: 923 year: 2014 end-page: 926 article-title: Genome‐wide prediction of highly specific guide RNA spacers for CRISPR–Cas9‐mediated genome editing in model plants and major crops publication-title: Mol. Plant – volume: 31 start-page: 833 year: 2013 end-page: 838 article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering publication-title: Nat. Biotechnol. – volume: 11 start-page: 113 year: 2010 end-page: 127 article-title: The mechanism of eukaryotic translation initiation and principles of its regulation publication-title: Nat. Rev. Mol. Cell Biol. – volume: 43 start-page: 581 year: 2005 end-page: 621 article-title: Genetics of plant virus resistance publication-title: Annu. Rev. Phytopathol. – volume: 32 start-page: 927 year: 2002 end-page: 934 article-title: The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses publication-title: Plant J. – volume: 579 start-page: 1167 year: 2005 end-page: 1171 article-title: Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of by potyviruses publication-title: FEBS Lett. – volume: 1 year: 2015 article-title: Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system publication-title: Nat. Plants – volume: 104 start-page: 17 891 year: 2007 end-page: 17 896 article-title: Estimation of the number of virus particles transmitted by an insect vector publication-title: Proc. Natl. Acad. Sci. USA – volume: 31 start-page: 691 year: 2013 end-page: 693 article-title: Targeted mutagenesis in the model plant using Cas9 RNA‐guided endonuclease publication-title: Nat. Biotechnol. – volume: 1 year: 2015 article-title: Regulatory uncertainty over genome editing publication-title: Nat. Plants – volume: 166 start-page: 1292 year: 2014 end-page: 1297 article-title: Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR‐associated9 system publication-title: Plant Physiol. – volume: 507 start-page: 62 year: 2014 end-page: 67 article-title: DNA interrogation by the CRISPR RNA‐guided endonuclease Cas9 publication-title: Nature – volume: 120 start-page: 191 year: 2009 end-page: 200 article-title: Nonsynonymous single nucleotide polymorphisms in the watermelon eIF4E gene are closely associated with resistance to Zucchini yellow mosaic virus publication-title: Theor. Appl. Genet. – volume: 14 start-page: 81 year: 2005 end-page: 93 article-title: Transgenic cucumbers harboring the 54‐kDa putative gene of Cucumber fruit mottle mosaic tobamovirus are highly resistant to viral infection and protect nontransgenic scions from soil infection publication-title: Transgenic Res. – volume: 9 start-page: 39 year: 2013 article-title: Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system publication-title: Plant Methods – volume: 90 start-page: 467 year: 2000 end-page: 473 article-title: A point mutation in the FRNK motif of the Potyvirus helper component‐protease gene alters symptom expression in cucurbits and elicits protection against the severe homologous virus publication-title: Phytopathology – volume: 5 start-page: e11313 year: 2010 article-title: An induced mutation in tomato eif4e leads to immunity to two Potyviruses publication-title: PLoS One – ident: e_1_2_7_57_1 doi: 10.1006/viro.1997.8634 – ident: e_1_2_7_32_1 doi: 10.1038/nbt.2654 – ident: e_1_2_7_58_1 doi: 10.1093/mp/ssu009 – ident: e_1_2_7_44_1 doi: 10.1371/journal.pone.0011313 – ident: e_1_2_7_24_1 doi: 10.1186/s12896-015-0131-2 – ident: e_1_2_7_17_1 doi: 10.1094/PHYTO.2000.90.5.467 – ident: e_1_2_7_5_1 doi: 10.1038/nplants.2015.145 – ident: e_1_2_7_52_1 doi: 10.3390/v7072778 – ident: e_1_2_7_39_1 doi: 10.1094/MPMI.2004.17.3.322 – ident: e_1_2_7_53_1 doi: 10.1016/j.febslet.2004.12.086 – ident: e_1_2_7_3_1 doi: 10.1186/s13059-015-0799-6 – ident: e_1_2_7_4_1 doi: 10.1094/MPMI-19-0557 – ident: e_1_2_7_20_1 doi: 10.1007/s10658-009-9468-5 – ident: e_1_2_7_50_1 doi: 10.1099/vir.0.81817-0 – ident: e_1_2_7_22_1 doi: 10.1007/s10059-009-0042-y – ident: e_1_2_7_29_1 doi: 10.1093/mp/ssu044 – ident: e_1_2_7_15_1 doi: 10.1038/cr.2013.114 – ident: e_1_2_7_46_1 doi: 10.1016/bs.aivir.2014.11.006 – ident: e_1_2_7_36_1 doi: 10.1007/s10658-004-2491-7 – ident: e_1_2_7_10_1 doi: 10.1016/B978-0-12-801246-8.00002-0 – ident: e_1_2_7_56_1 doi: 10.1111/j.1364-3703.2012.00791.x – ident: e_1_2_7_47_1 doi: 10.1007/BF00633825 – ident: e_1_2_7_43_1 doi: 10.1104/pp.102.017855 – ident: e_1_2_7_38_1 doi: 10.1371/journal.pone.0029595 – ident: e_1_2_7_14_1 doi: 10.1046/j.1365-313X.2002.01481.x – ident: e_1_2_7_49_1 doi: 10.1046/j.1365-313X.2002.01499.x – ident: e_1_2_7_18_1 doi: 10.1099/0022-1317-73-9-2183 – ident: e_1_2_7_54_1 doi: 10.1038/nature13011 – ident: e_1_2_7_60_1 doi: 10.1111/pbi.12200 – ident: e_1_2_7_9_1 doi: 10.1104/pp.114.247577 – ident: e_1_2_7_42_1 doi: 10.1038/nbt.2655 – ident: e_1_2_7_25_1 doi: 10.1016/j.coviro.2011.09.010 – ident: e_1_2_7_28_1 – ident: e_1_2_7_8_1 doi: 10.1016/j.biotechadv.2014.12.006 – ident: e_1_2_7_48_1 doi: 10.1111/j.1364-3703.2012.00785.x – ident: e_1_2_7_7_1 doi: 10.1016/j.copbio.2014.11.007 – ident: e_1_2_7_35_1 doi: 10.1038/nbt.2675 – start-page: 119 volume-title: Advances in Virus Research year: 2009 ident: e_1_2_7_55_1 – ident: e_1_2_7_26_1 doi: 10.1038/NPLANTS.2014.11 – ident: e_1_2_7_27_1 doi: 10.1146/annurev.phyto.43.011205.141140 – ident: e_1_2_7_51_1 doi: 10.1128/JVI.77.18.9906-9911.2003 – ident: e_1_2_7_40_1 doi: 10.1073/pnas.0702739104 – ident: e_1_2_7_11_1 doi: 10.1104/pp.107.106104 – ident: e_1_2_7_16_1 doi: 10.1038/nbt.2623 – ident: e_1_2_7_33_1 doi: 10.1007/s00122-009-1169-0 – ident: e_1_2_7_45_1 doi: 10.1111/ppa.12260 – ident: e_1_2_7_30_1 doi: 10.1016/S0960-9822(02)00898-9 – ident: e_1_2_7_21_1 doi: 10.1099/vir.0.81659-0 – ident: e_1_2_7_31_1 doi: 10.1128/JVI.74.17.7730-7737.2000 – ident: e_1_2_7_34_1 doi: 10.1007/s11103-014-0188-7 – ident: e_1_2_7_13_1 doi: 10.1111/j.1364-3703.2004.00223.x – ident: e_1_2_7_2_1 doi: 10.1111/j.1364-3703.2008.00513.x – ident: e_1_2_7_59_1 doi: 10.1038/srep11491 – ident: e_1_2_7_6_1 doi: 10.1186/1746-4811-9-39 – ident: e_1_2_7_19_1 doi: 10.1007/s11248-004-3802-7 – ident: e_1_2_7_23_1 doi: 10.1038/nrm2838 – ident: e_1_2_7_41_1 doi: 10.1094/MPMI-11-09-0277 – ident: e_1_2_7_37_1 doi: 10.1111/j.1364-3703.2007.00386.x – ident: e_1_2_7_12_1 doi: 10.1007/BF02712670 |
SSID | ssj0017925 |
Score | 2.6380672 |
Snippet | Summary
Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats)... Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats)... Summary Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats)... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1140 |
SubjectTerms | backcrossing Base Sequence Chromosome Segregation - genetics CRISPR-Cas Systems - genetics CRISPR/Cas9 crops cucumber Cucumber vein yellowing virus cucumbers Cucumis sativus Cucumis sativus - genetics Cucumis sativus - virology Disease Resistance - genetics eIF4E Eukaryotic Initiation Factor-4E - genetics Gene Editing Genes Genome editing Genotype heterozygosity homozygosity Homozygote immunity mutants Mutation - genetics Original Papaya mosaic virus Papaya ringspot virus plant development Plant Diseases - virology Plant Viruses - physiology Plants, Genetically Modified Potyviridae progeny RNA single nucleotide polymorphism technology translation (genetics) Vegetables virus resistance Viruses Zucchini yellow mosaic virus |
Title | Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology |
URI | https://api.istex.fr/ark:/67375/WNG-0LC8ZVWV-T/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmpp.12375 https://www.ncbi.nlm.nih.gov/pubmed/26808139 https://www.proquest.com/docview/1810535260 https://www.proquest.com/docview/1815691718 https://www.proquest.com/docview/1846325509 https://pubmed.ncbi.nlm.nih.gov/PMC6638350 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKucCB9yNQKoMQ6iVLaufhiFO1ohTErqKlL6FKlu3YZVXIrrIJQpz4Cf2N_SWMnYd2oSDEJYrkiWSPZ-xvnPE3CD03SkpDNfNjpiFAMZr4KaPKJzIOFBWBSF05n9E43jsI3x1Hx2voVXcXpuGH6A_crGe49do6uJCLJSf_Mp8PYNlN7AVzm6tlAdGkp44CO3MFV2EhCP04IaRlFbJZPP2XK3vRVavWb5cBzd_zJZdxrNuIdm-ik24ITf7J2aCu5EB9_4Xd8T_HeAvdaAEq3mks6jZa08UddH3ntGxJOvRdxJcyjfDMYFnORI6_Tst6gSF6t4gUTAlPC1zMiosf55XdD8FQpwqrWrkSJNjm25_i4eTth2zycigWKa76Q_576GD39f5wz28LNfiKERr5LDIAe02S5swVqDIiZybWirAgl2GqU0OJiJTQTCcKAIglnRdGpswYEdHI0PtoHTqkHyIcaCVZoENBlAxDZalvtllAKVFhnhhGPbTVTRlXLYu5LabxmXfRDOiMO5156FkvOm-oOy4TeuHmvZcQ5ZnNdUsifjR-w4P3Q_bx8OiQ73toozMM3rr5ggM8aioMBB562jeDg9q_LqLQs9rJRDEExdvsbzJhTCG4C1IPPWhsre8QccVRKLQkK1bYC1iC8NWWYvrJEYUDmgSADX3bckb2Zy3wUZa5l0f_LvoYXQPwGDf5dhtovSpr_QQAWiU30RUSZpvOH-E5zkY_Aep7PKg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LctMwFNWUdgEseD8CBQQDTDcOruSHvGDRSSkJTTKZkD6GjZAVqWQKTsaOea34BD6EX-En-BKu5MckUBg2XbDzjO54ZOneq3Pt63MQeqhlHGuqmBMwBQWKVsSJGJUOiQNXUuGKyMr59PpBe897cegfrqBv1b8wBT9E_cLNRIbN1ybAzQvphSh_N5s1Ie-GVUvlrvr0AQq27GlnG3b3ESE7z0attlNqCjiSEeo7zNeA0HQYjZnVUtJizHSgJGHuOPYiFWlKhC-FYiqUcFYafnSh44hpLXzqawr3PYPWjIK4YerfHtZkVeDZVuIVUo_nBCEhJY-R6Ruqp7p0-q2Zjfx4ErT9vUNzETnbo2_nIvpeLVrR8XLczOdxU37-hU_yf1nVS-hCicHxVhE0l9GKSq6g81tHaclDoq4ivtBMhacax-lUjPH7SZpnOFWZAd0QLXiS4GSa_PjydW6OfIjFicQyl1ZlBZtfCo5wa9h5ORg-aYkswvP6O8Y1tHcqT3gdrcKE1E2EXSVj5ipPEBl7njTsPpvMpZRIbxxqRhtoo_IRLkuidqMX8pZXBRvsEbd71EAPatNZwU5yktFj62i1hUiPTTtf6POD_nPudlvs1f7BPh810HrlibzMZBkHBFiIKLgNdL8ehhxkPiyJRE1za-MHUPdvsr_ZeAGF-tWNGuhG4dz1hIjVf6EwEi65fW1gONCXR5LJG8uFDoAZagiY24b16j-vAu8NBvbi1r-b3kNn26Nel3c7_d3b6Bxg5aBoL1xHq_M0V3cAj87juzYNYPT6tCPkJ36ynH8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VREL0gHg3UMAgQL0sbO19eA8copTQ0DaKSpNWvRiv1y4RsIny4HHjJ_A_-Ff8EsbezSoRBXHpbSWPVqPxjOcb7-w3AE-MSlPDNPcirrFAMZp6CWfKo2nkKyZ9mbhxPgfdaLcfvDkJT9bg5-JfmIIforpws5Hhzmsb4OPMLAX5p_H4OR678aKjck9_-4L12vRlZwc39yml7VdHrV2vHCngKU5Z6PHQIEAzcZJxN0rJyIybSCvK_SwNEp0YRmWopOY6VpgqLT26NGnCjZEhCw3D916CeohZ0K9BvTnon_arjxZx4ma84tkTeFFMaUlkZBuHKmVX0l_d7uTX87Dtny2ay9DZ5b72NbhaglbSLLzsOqzp_AasN88mJXGHvgliqfuIjAxJJyOZkc_DyXxKsKK3KBXdiwxzko_yX99_zGyOROcdKqLmyo0lIbYH_4y0Djtve4cvWnKakFl18X8L-hdi6dtQQ4X0BhBfq5T7OpBUpUGgLB3ONvcZoyrIYsNZA7YWNhWqZDa3AzY-ikWFg-YXzvwNeFyJjgs6j_OEnrmNqSTk5IPtf4tDcdx9Lfz9Fj8dHA_EUQM2FzsnytCfCoRMxdQBvwGPqmUMWvslRuZ6NHcyYYSF8jb_l0wQMSz4_KQBdwpnqBSibmAKw5V4xU0qAUsavrqSD9878nBEmAi6Ubct51B_t4I46PXcw93_F30Il3s7bbHf6e7dgyuILaOiHW8TarPJXN9H_DZLH5RxQ-DdRYfqbwmeW2I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+broad+virus+resistance+in+non%E2%80%90transgenic+cucumber+using+CRISPR%2FCas9+technology&rft.jtitle=Molecular+plant+pathology&rft.au=Chandrasekaran%2C+Jeyabharathy&rft.au=Brumin%2C+Marina&rft.au=Wolf%2C+Dalia&rft.au=Leibman%2C+Diana&rft.date=2016-09-01&rft.issn=1464-6722&rft.volume=17&rft.issue=7+p.1140-1153&rft.spage=1140&rft.epage=1153&rft_id=info:doi/10.1111%2Fmpp.12375&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-6722&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-6722&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-6722&client=summon |