Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology

Summary Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) technology. This powerful tool allows substantial improvement in plant traits in addition to those provided by classical breeding. Here, we dem...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant pathology Vol. 17; no. 7; pp. 1140 - 1153
Main Authors Chandrasekaran, Jeyabharathy, Brumin, Marina, Wolf, Dalia, Leibman, Diana, Klap, Chen, Pearlsman, Mali, Sherman, Amir, Arazi, Tzahi, Gal-On, Amit
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.09.2016
John Wiley & Sons, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) technology. This powerful tool allows substantial improvement in plant traits in addition to those provided by classical breeding. Here, we demonstrate the development of virus resistance in cucumber (Cucumis sativus L.) using Cas9/subgenomic RNA (sgRNA) technology to disrupt the function of the recessive eIF4E (eukaryotic translation initiation factor 4E) gene. Cas9/sgRNA constructs were targeted to the N′ and C′ termini of the eIF4E gene. Small deletions and single nucleotide polymorphisms (SNPs) were observed in the eIF4E gene targeted sites of transformed T1 generation cucumber plants, but not in putative off‐target sites. Non‐transgenic heterozygous eif4e mutant plants were selected for the production of non‐transgenic homozygous T3 generation plants. Homozygous T3 progeny following Cas9/sgRNA that had been targeted to both eif4e sites exhibited immunity to Cucumber vein yellowing virus (Ipomovirus) infection and resistance to the potyviruses Zucchini yellow mosaic virus and Papaya ring spot mosaic virus‐W. In contrast, heterozygous mutant and non‐mutant plants were highly susceptible to these viruses. For the first time, virus resistance has been developed in cucumber, non‐transgenically, not visibly affecting plant development and without long‐term backcrossing, via a new technology that can be expected to be applicable to a wide range of crop plants.
AbstractList Summary Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) technology. This powerful tool allows substantial improvement in plant traits in addition to those provided by classical breeding. Here, we demonstrate the development of virus resistance in cucumber (Cucumis sativus L.) using Cas9/subgenomic RNA (sgRNA) technology to disrupt the function of the recessive eIF4E (eukaryotic translation initiation factor 4E) gene. Cas9/sgRNA constructs were targeted to the N' and C' termini of the eIF4E gene. Small deletions and single nucleotide polymorphisms (SNPs) were observed in the eIF4E gene targeted sites of transformed T1 generation cucumber plants, but not in putative off-target sites. Non-transgenic heterozygous eif4e mutant plants were selected for the production of non-transgenic homozygous T3 generation plants. Homozygous T3 progeny following Cas9/sgRNA that had been targeted to both eif4e sites exhibited immunity to Cucumber vein yellowing virus (Ipomovirus) infection and resistance to the potyviruses Zucchini yellow mosaic virus and Papaya ring spot mosaic virus-W. In contrast, heterozygous mutant and non-mutant plants were highly susceptible to these viruses. For the first time, virus resistance has been developed in cucumber, non-transgenically, not visibly affecting plant development and without long-term backcrossing, via a new technology that can be expected to be applicable to a wide range of crop plants.
Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) technology. This powerful tool allows substantial improvement in plant traits in addition to those provided by classical breeding. Here, we demonstrate the development of virus resistance in cucumber ( Cucumis sativus L.) using Cas9/subgenomic RNA (sgRNA) technology to disrupt the function of the recessive eIF4E ( eukaryotic translation initiation factor 4E ) gene. Cas9/sgRNA constructs were targeted to the N′ and C′ termini of the eIF4E gene. Small deletions and single nucleotide polymorphisms (SNPs) were observed in the eIF4E gene targeted sites of transformed T1 generation cucumber plants, but not in putative off‐target sites. Non‐transgenic heterozygous eif4e mutant plants were selected for the production of non‐transgenic homozygous T3 generation plants. Homozygous T3 progeny following Cas9/sgRNA that had been targeted to both eif4e sites exhibited immunity to Cucumber vein yellowing virus ( Ipomovirus ) infection and resistance to the potyviruses Zucchini yellow mosaic virus and Papaya ring spot mosaic virus‐W . In contrast, heterozygous mutant and non‐mutant plants were highly susceptible to these viruses. For the first time, virus resistance has been developed in cucumber, non‐transgenically, not visibly affecting plant development and without long‐term backcrossing, via a new technology that can be expected to be applicable to a wide range of crop plants.
Summary Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) technology. This powerful tool allows substantial improvement in plant traits in addition to those provided by classical breeding. Here, we demonstrate the development of virus resistance in cucumber (Cucumis sativus L.) using Cas9/subgenomic RNA (sgRNA) technology to disrupt the function of the recessive eIF4E (eukaryotic translation initiation factor 4E) gene. Cas9/sgRNA constructs were targeted to the N′ and C′ termini of the eIF4E gene. Small deletions and single nucleotide polymorphisms (SNPs) were observed in the eIF4E gene targeted sites of transformed T1 generation cucumber plants, but not in putative off‐target sites. Non‐transgenic heterozygous eif4e mutant plants were selected for the production of non‐transgenic homozygous T3 generation plants. Homozygous T3 progeny following Cas9/sgRNA that had been targeted to both eif4e sites exhibited immunity to Cucumber vein yellowing virus (Ipomovirus) infection and resistance to the potyviruses Zucchini yellow mosaic virus and Papaya ring spot mosaic virus‐W. In contrast, heterozygous mutant and non‐mutant plants were highly susceptible to these viruses. For the first time, virus resistance has been developed in cucumber, non‐transgenically, not visibly affecting plant development and without long‐term backcrossing, via a new technology that can be expected to be applicable to a wide range of crop plants.
Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) technology. This powerful tool allows substantial improvement in plant traits in addition to those provided by classical breeding. Here, we demonstrate the development of virus resistance in cucumber (Cucumis sativus L.) using Cas9/subgenomic RNA (sgRNA) technology to disrupt the function of the recessive eIF4E (eukaryotic translation initiation factor 4E) gene. Cas9/sgRNA constructs were targeted to the N′ and C′ termini of the eIF4E gene. Small deletions and single nucleotide polymorphisms (SNPs) were observed in the eIF4E gene targeted sites of transformed T1 generation cucumber plants, but not in putative off‐target sites. Non‐transgenic heterozygous eif4e mutant plants were selected for the production of non‐transgenic homozygous T3 generation plants. Homozygous T3 progeny following Cas9/sgRNA that had been targeted to both eif4e sites exhibited immunity to Cucumber vein yellowing virus (Ipomovirus) infection and resistance to the potyviruses Zucchini yellow mosaic virus and Papaya ring spot mosaic virus‐W. In contrast, heterozygous mutant and non‐mutant plants were highly susceptible to these viruses. For the first time, virus resistance has been developed in cucumber, non‐transgenically, not visibly affecting plant development and without long‐term backcrossing, via a new technology that can be expected to be applicable to a wide range of crop plants.
Author Chandrasekaran, Jeyabharathy
Leibman, Diana
Wolf, Dalia
Brumin, Marina
Gal-On, Amit
Klap, Chen
Pearlsman, Mali
Arazi, Tzahi
Sherman, Amir
AuthorAffiliation 1 Department of Plant Pathology and Weed Research ARO, Volcani Center Bet‐Dagan 50250 Israel
4 Department of Ornamental Plants and Agricultural Biotechnology ARO, Volcani Center Bet‐Dagan 50250 Israel
3 Department of Fruit Tree Sciences ARO, Volcani Center Bet‐Dagan 50250 Israel
2 Department of Vegetable Research ARO, Volcani Center Bet‐Dagan 50250 Israel
AuthorAffiliation_xml – name: 3 Department of Fruit Tree Sciences ARO, Volcani Center Bet‐Dagan 50250 Israel
– name: 1 Department of Plant Pathology and Weed Research ARO, Volcani Center Bet‐Dagan 50250 Israel
– name: 2 Department of Vegetable Research ARO, Volcani Center Bet‐Dagan 50250 Israel
– name: 4 Department of Ornamental Plants and Agricultural Biotechnology ARO, Volcani Center Bet‐Dagan 50250 Israel
Author_xml – sequence: 1
  givenname: Jeyabharathy
  surname: Chandrasekaran
  fullname: Chandrasekaran, Jeyabharathy
  organization: Department of Plant Pathology and Weed Research, ARO, Volcani Center, 50250, Bet-Dagan, Israel
– sequence: 2
  givenname: Marina
  surname: Brumin
  fullname: Brumin, Marina
  organization: Department of Plant Pathology and Weed Research, ARO, Volcani Center, 50250, Bet-Dagan, Israel
– sequence: 3
  givenname: Dalia
  surname: Wolf
  fullname: Wolf, Dalia
  organization: Department of Vegetable Research, ARO, Volcani Center, 50250, Bet-Dagan, Israel
– sequence: 4
  givenname: Diana
  surname: Leibman
  fullname: Leibman, Diana
  organization: Department of Plant Pathology and Weed Research, ARO, Volcani Center, 50250, Bet-Dagan, Israel
– sequence: 5
  givenname: Chen
  surname: Klap
  fullname: Klap, Chen
  organization: Department of Plant Pathology and Weed Research, ARO, Volcani Center, 50250, Bet-Dagan, Israel
– sequence: 6
  givenname: Mali
  surname: Pearlsman
  fullname: Pearlsman, Mali
  organization: Department of Plant Pathology and Weed Research, ARO, Volcani Center, 50250, Bet-Dagan, Israel
– sequence: 7
  givenname: Amir
  surname: Sherman
  fullname: Sherman, Amir
  organization: Department of Fruit Tree Sciences, ARO, Volcani Center, 50250, Bet-Dagan, Israel
– sequence: 8
  givenname: Tzahi
  surname: Arazi
  fullname: Arazi, Tzahi
  organization: Department of Ornamental Plants and Agricultural Biotechnology, ARO, Volcani Center, 50250, Bet-Dagan, Israel
– sequence: 9
  givenname: Amit
  surname: Gal-On
  fullname: Gal-On, Amit
  email: amitg@volcani.agri.gov.il
  organization: Department of Plant Pathology and Weed Research, ARO, Volcani Center, 50250, Bet-Dagan, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26808139$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhgep2A-98A_IgDd6Md18bDKZG0FGrYVVl1pbECRkMifb1JlkTWZW99-bddtFC4q5SSDP-55zkvcw23PeQZY9xugYpzXpl8tjTGjJ7mUHmPJpQUtE99J5ms68JGQ_O4zxGiFcVoQ9yPYJF0hgWh1kX17BCjq_7MENuTd5E7xq85UNY8wDRBsH5TTk1uWpZjEE5eICnNW5HvXYNxDyMVq3yOuz04_zs0mtYpUPoK-c7_xi_TC7b1QX4dHNfpR9evP6vH5bzD6cnNYvZ4UWhLJCMCNwa8qqFW3L28aoVhgOmgjUNtMKKkOJYlqBgFJXCHNOSmWaShijGGWGHmUvtr7Lsemh1WmYoDq5DLZXYS29svLPG2ev5MKvJOdUUIaSwbMbg-C_jRAH2duooeuUAz9GicWUU8IYqv4DxYxXuMQioU_voNd-DC69xIZCqXXCN7Wf_N78ruvbT0rA8y2gg48xgNkhGMlNAGQKgPwVgMRO7rDaDmqwfjO37f6l-G47WP_dWr6bz28VxVaR0gE_dgoVvkpebsjL9ycSzWrx-eLyQp7Tnx6V0i4
CODEN MPPAFD
CitedBy_id crossref_primary_10_3389_fsufs_2021_685801
crossref_primary_10_1098_rstb_2018_0322
crossref_primary_10_3389_fgene_2022_880195
crossref_primary_10_1094_PHYTO_06_21_0263_R
crossref_primary_10_1094_PHYTO_07_19_0267_IA
crossref_primary_10_1080_14620316_2022_2038699
crossref_primary_10_3390_plants10091914
crossref_primary_10_1371_journal_pone_0181998
crossref_primary_10_3389_fmicb_2019_00017
crossref_primary_10_1002_smtd_201800473
crossref_primary_10_1016_j_jenvman_2023_117382
crossref_primary_10_7717_peerj_17402
crossref_primary_10_3389_fsufs_2021_683635
crossref_primary_10_3389_fgene_2021_735489
crossref_primary_10_1016_j_apsb_2017_01_002
crossref_primary_10_1093_hr_uhad078
crossref_primary_10_1371_journal_ppat_1011417
crossref_primary_10_3389_fpls_2020_01126
crossref_primary_10_3389_fmicb_2017_00047
crossref_primary_10_1080_21645698_2023_2219111
crossref_primary_10_21566_tarbitderg_323614
crossref_primary_10_1134_S0006297918120131
crossref_primary_10_3389_fgeed_2022_876697
crossref_primary_10_3390_plants9020219
crossref_primary_10_3389_fpls_2018_00985
crossref_primary_10_3390_ijms22073327
crossref_primary_10_3390_ijms20246347
crossref_primary_10_1007_s12033_024_01337_w
crossref_primary_10_1093_bfgp_ely016
crossref_primary_10_1016_j_pbi_2020_101987
crossref_primary_10_3390_ijms20112647
crossref_primary_10_3390_ijms20164045
crossref_primary_10_3390_agriculture14010090
crossref_primary_10_1093_g3journal_jkab028
crossref_primary_10_3389_fpls_2022_861637
crossref_primary_10_3389_fpls_2021_691576
crossref_primary_10_1007_s12355_023_01252_5
crossref_primary_10_1002_fes3_168
crossref_primary_10_1016_j_molp_2020_11_002
crossref_primary_10_1007_s00122_019_03500_3
crossref_primary_10_1094_PHYTO_03_17_0086_RVW
crossref_primary_10_1094_PHYTO_10_19_0404_FI
crossref_primary_10_3389_fmicb_2020_609784
crossref_primary_10_3390_genes12111781
crossref_primary_10_3390_biology13060421
crossref_primary_10_1007_s11033_020_05652_8
crossref_primary_10_1094_PHYTO_01_23_0002_V
crossref_primary_10_2222_jsv_70_61
crossref_primary_10_1007_s13562_022_00767_4
crossref_primary_10_1111_pbi_12896
crossref_primary_10_3390_plants9101360
crossref_primary_10_17660_ActaHortic_2020_1294_23
crossref_primary_10_1007_s12600_017_0636_4
crossref_primary_10_5423_RPD_2019_25_2_49
crossref_primary_10_1007_s11033_022_07704_7
crossref_primary_10_1007_s00299_016_2089_5
crossref_primary_10_1371_journal_ppat_1006287
crossref_primary_10_3390_ijms241713241
crossref_primary_10_1007_s10142_024_01325_y
crossref_primary_10_3390_ijms252111468
crossref_primary_10_1007_s10529_020_02950_w
crossref_primary_10_1111_pbi_12662
crossref_primary_10_7717_peerj_16110
crossref_primary_10_1007_s11248_021_00262_x
crossref_primary_10_3389_fgene_2023_1180083
crossref_primary_10_1111_tpj_14679
crossref_primary_10_3389_fpls_2016_01673
crossref_primary_10_3389_fgene_2022_876987
crossref_primary_10_1002_aps3_11314
crossref_primary_10_1007_s13237_024_00472_8
crossref_primary_10_1016_j_gene_2023_147334
crossref_primary_10_3389_fmicb_2020_564310
crossref_primary_10_1007_s12033_022_00456_6
crossref_primary_10_1016_j_scienta_2025_113957
crossref_primary_10_62300_HJVU4083
crossref_primary_10_1093_fqsafe_fyad045
crossref_primary_10_1007_s00299_016_1989_8
crossref_primary_10_1101_cshperspect_a034595
crossref_primary_10_1111_pbi_13885
crossref_primary_10_1038_s41588_019_0503_y
crossref_primary_10_1016_j_coviro_2017_07_024
crossref_primary_10_3389_frsus_2024_1378712
crossref_primary_10_3389_fbioe_2019_00387
crossref_primary_10_3389_fgeed_2024_1415244
crossref_primary_10_3389_fgeed_2022_937853
crossref_primary_10_1080_07388551_2021_2007842
crossref_primary_10_3389_fpls_2023_1260102
crossref_primary_10_1186_s13059_020_02204_y
crossref_primary_10_3390_ijms19102856
crossref_primary_10_1016_j_hpj_2022_04_007
crossref_primary_10_1080_21655979_2017_1297347
crossref_primary_10_3389_fgeed_2023_1094965
crossref_primary_10_3389_fbioe_2024_1483857
crossref_primary_10_3389_fbioe_2019_00031
crossref_primary_10_1016_j_jbiotec_2020_09_013
crossref_primary_10_1080_07352689_2020_1782568
crossref_primary_10_1111_jipb_13063
crossref_primary_10_1007_s11032_021_01215_2
crossref_primary_10_1016_j_plantsci_2021_111160
crossref_primary_10_3389_fpls_2023_1041868
crossref_primary_10_1080_21645698_2024_2411767
crossref_primary_10_1111_mpp_13252
crossref_primary_10_1021_acs_jafc_2c06749
crossref_primary_10_1111_tpj_15710
crossref_primary_10_1016_j_coviro_2017_07_005
crossref_primary_10_1134_S0003683819090047
crossref_primary_10_1016_j_coviro_2017_07_004
crossref_primary_10_3389_fpls_2020_01092
crossref_primary_10_1111_pbi_12736
crossref_primary_10_3389_fpls_2020_01098
crossref_primary_10_1007_s11032_017_0620_1
crossref_primary_10_1007_s10327_024_01189_x
crossref_primary_10_3389_fbioe_2018_00079
crossref_primary_10_3389_fpls_2017_00241
crossref_primary_10_3389_fpls_2018_01415
crossref_primary_10_1042_ETLS20170010
crossref_primary_10_1007_s13237_021_00353_4
crossref_primary_10_1007_s13205_024_04010_w
crossref_primary_10_1111_pbi_12987
crossref_primary_10_3390_ijms22158093
crossref_primary_10_1080_15427528_2018_1544954
crossref_primary_10_1007_s00438_019_01564_w
crossref_primary_10_3389_fpls_2019_00550
crossref_primary_10_3389_fpls_2022_1027828
crossref_primary_10_3390_agronomy10050662
crossref_primary_10_3389_fmicb_2022_899512
crossref_primary_10_3389_fpls_2023_1164461
crossref_primary_10_1016_j_ymeth_2017_04_024
crossref_primary_10_1007_s11248_023_00333_1
crossref_primary_10_1007_s43538_022_00100_6
crossref_primary_10_1038_s41438_019_0196_5
crossref_primary_10_1111_ppl_13686
crossref_primary_10_1111_pbi_12634
crossref_primary_10_1016_j_scienta_2022_111059
crossref_primary_10_1007_s11240_024_02807_4
crossref_primary_10_29328_journal_jpsp_1001028
crossref_primary_10_1007_s11240_019_01707_2
crossref_primary_10_3390_ijms21165665
crossref_primary_10_3389_fgeed_2021_784233
crossref_primary_10_1080_21655979_2022_2099599
crossref_primary_10_1007_s13205_017_0870_y
crossref_primary_10_3390_plants10102055
crossref_primary_10_1042_ETLS20170033
crossref_primary_10_1134_S0003683823060212
crossref_primary_10_3390_plants11141795
crossref_primary_10_3390_agronomy11010023
crossref_primary_10_3390_agriculture11080751
crossref_primary_10_3390_biology12071037
crossref_primary_10_1007_s13205_021_03041_x
crossref_primary_10_1016_j_sajb_2019_06_018
crossref_primary_10_17660_ActaHortic_2020_1294_17
crossref_primary_10_18699_VJGB_22_83
crossref_primary_10_1007_s00299_020_02516_0
crossref_primary_10_1186_s12896_019_0507_9
crossref_primary_10_1016_j_bbagen_2024_130685
crossref_primary_10_1007_s12033_022_00507_y
crossref_primary_10_3389_fpls_2021_688980
crossref_primary_10_4236_ajmb_2022_124017
crossref_primary_10_1007_s00705_022_05401_1
crossref_primary_10_1002_jcp_25970
crossref_primary_10_1111_jipb_13029
crossref_primary_10_3389_fgeed_2022_987817
crossref_primary_10_1007_s44297_023_00020_x
crossref_primary_10_1016_j_virusres_2016_08_001
crossref_primary_10_3390_agronomy10091441
crossref_primary_10_1016_j_molp_2017_09_005
crossref_primary_10_1007_s41348_022_00677_6
crossref_primary_10_1016_j_envexpbot_2022_104824
crossref_primary_10_1099_jgv_0_000609
crossref_primary_10_1007_s13562_021_00765_y
crossref_primary_10_1007_s11427_019_9722_2
crossref_primary_10_1016_j_coviro_2020_04_005
crossref_primary_10_1080_07352689_2021_1883826
crossref_primary_10_1080_21645698_2021_1938488
crossref_primary_10_1007_s11816_021_00734_w
crossref_primary_10_3390_agronomy10010036
crossref_primary_10_1111_odi_12487
crossref_primary_10_1111_nph_14954
crossref_primary_10_3389_fpls_2018_01323
crossref_primary_10_1155_2017_7315351
crossref_primary_10_1111_nph_14702
crossref_primary_10_1111_mpp_13031
crossref_primary_10_3389_fmicb_2016_01325
crossref_primary_10_3390_plants13233313
crossref_primary_10_3390_ijms20122888
crossref_primary_10_1590_s1678_3921_pab2021_v56_02109
crossref_primary_10_3389_fpls_2018_01245
crossref_primary_10_46653_jhst20030359
crossref_primary_10_1016_j_hpj_2020_03_001
crossref_primary_10_3389_fpls_2018_00268
crossref_primary_10_1007_s11627_021_10187_z
crossref_primary_10_3389_fpls_2019_00114
crossref_primary_10_3390_cells11233928
crossref_primary_10_1016_j_plantsci_2018_04_011
crossref_primary_10_1038_s43016_020_0072_3
crossref_primary_10_5511_plantbiotechnology_20_0525a
crossref_primary_10_1016_j_sajb_2024_06_011
crossref_primary_10_3390_biotech10030014
crossref_primary_10_1080_14620316_2021_1945956
crossref_primary_10_1111_mpp_13167
crossref_primary_10_1186_s43897_023_00049_0
crossref_primary_10_1007_s11676_016_0281_7
crossref_primary_10_3390_ijms222111423
crossref_primary_10_3390_v13010141
crossref_primary_10_3389_fmicb_2020_593700
crossref_primary_10_1016_j_biotechadv_2021_107729
crossref_primary_10_3389_fmicb_2016_01695
crossref_primary_10_31857_S0026898423030151
crossref_primary_10_3389_fpls_2018_01106
crossref_primary_10_1016_j_tplants_2019_09_006
crossref_primary_10_1007_s11105_021_01286_7
crossref_primary_10_1016_j_molp_2019_03_016
crossref_primary_10_1080_00288233_2023_2187425
crossref_primary_10_3389_fgene_2020_01001
crossref_primary_10_1007_s00299_020_02605_0
crossref_primary_10_1146_annurev_arplant_010720_022215
crossref_primary_10_3389_fpls_2020_00056
crossref_primary_10_1007_s12033_018_0144_x
crossref_primary_10_1016_j_virol_2023_02_008
crossref_primary_10_1016_j_biotechadv_2019_02_006
crossref_primary_10_1016_j_heliyon_2023_e14624
crossref_primary_10_1007_s11816_016_0417_4
crossref_primary_10_1042_ETLS20170085
crossref_primary_10_3389_fpls_2019_01219
crossref_primary_10_3390_ijms242316656
crossref_primary_10_1007_s11540_018_9387_y
crossref_primary_10_1111_mpp_13418
crossref_primary_10_12688_f1000research_20179_1
crossref_primary_10_3390_plants12193462
crossref_primary_10_5294_pebi_2021_25_2_9
crossref_primary_10_1016_j_jbiotec_2022_11_010
crossref_primary_10_1007_s11033_021_06926_5
crossref_primary_10_3389_fpls_2021_705249
crossref_primary_10_1038_nrg_2017_82
crossref_primary_10_1007_s00425_023_04259_0
crossref_primary_10_1016_j_plaphy_2019_12_022
crossref_primary_10_1007_s11816_017_0446_7
crossref_primary_10_1146_annurev_phyto_080417_050158
crossref_primary_10_1007_s10725_021_00742_4
crossref_primary_10_1080_21683565_2024_2429620
crossref_primary_10_1016_j_indcrop_2024_120430
crossref_primary_10_1080_07352689_2017_1402989
crossref_primary_10_3390_horticulturae10010057
crossref_primary_10_3390_agronomy13041000
crossref_primary_10_1016_j_geoforum_2018_07_017
crossref_primary_10_3389_fpls_2023_1143813
crossref_primary_10_1002_biot_202300298
crossref_primary_10_1080_07352689_2020_1810970
crossref_primary_10_1111_jipb_12793
crossref_primary_10_1186_s12896_020_00604_3
crossref_primary_10_1007_s11248_019_00181_y
crossref_primary_10_3389_fgene_2022_922019
crossref_primary_10_3389_fgene_2022_989199
crossref_primary_10_1038_s41438_021_00601_3
crossref_primary_10_1080_21645698_2020_1831729
crossref_primary_10_1186_s13750_019_0171_5
crossref_primary_10_1007_s13562_023_00853_1
crossref_primary_10_3389_fpls_2024_1524601
crossref_primary_10_3390_ijms22031292
crossref_primary_10_3390_plants13141884
crossref_primary_10_1016_j_stress_2021_100053
crossref_primary_10_1002_pep2_24290
crossref_primary_10_3389_fpls_2018_02008
crossref_primary_10_1016_j_ejbt_2019_06_001
crossref_primary_10_1360_SSV_2023_0117
crossref_primary_10_3390_agriculture10020037
crossref_primary_10_3390_pathogens12030422
crossref_primary_10_1080_07388551_2023_2270581
crossref_primary_10_3390_plants12112226
crossref_primary_10_5423_RPD_2018_24_1_9
crossref_primary_10_1007_s12250_020_00338_8
crossref_primary_10_31857_S0555109923060211
crossref_primary_10_3390_ijms20102582
crossref_primary_10_1080_03235408_2021_1895476
crossref_primary_10_2478_mjhr_2020_0002
crossref_primary_10_1111_pbi_12927
crossref_primary_10_3390_plants11121609
crossref_primary_10_1038_s41580_020_00288_9
crossref_primary_10_1007_s11540_020_09476_8
crossref_primary_10_3390_plants10071423
crossref_primary_10_1016_j_tibtech_2018_05_005
crossref_primary_10_1094_PHYTO_03_16_0145_FI
crossref_primary_10_1631_jzus_B2100009
crossref_primary_10_1002_ps_4575
crossref_primary_10_1016_j_micpath_2019_103551
crossref_primary_10_2174_1389202921999200712135131
crossref_primary_10_1007_s00425_021_03716_y
crossref_primary_10_1080_07060661_2023_2215212
crossref_primary_10_1111_tpj_16049
crossref_primary_10_15835_nbha49312459
crossref_primary_10_3390_agronomy10071033
crossref_primary_10_48130_tp_0024_0006
crossref_primary_10_1155_2021_9993784
crossref_primary_10_3390_agriculture14111999
crossref_primary_10_3389_fpls_2022_1055529
crossref_primary_10_1111_ppl_13359
crossref_primary_10_53471_bahce_1481956
crossref_primary_10_1093_hr_uhab023
crossref_primary_10_1094_PHYTO_05_22_0167_RVW
crossref_primary_10_1007_s10340_022_01520_5
crossref_primary_10_1007_s00299_024_03183_1
crossref_primary_10_3389_fsufs_2022_1021350
crossref_primary_10_1186_s42483_024_00302_4
crossref_primary_10_1080_03235408_2021_1910415
crossref_primary_10_1111_mpp_13229
crossref_primary_10_1007_s10142_023_01036_w
crossref_primary_10_1016_j_pmpp_2024_102402
crossref_primary_10_1186_s13059_018_1586_y
crossref_primary_10_1038_s41598_019_42400_w
crossref_primary_10_1007_s11427_017_9022_1
crossref_primary_10_1111_mpp_13227
crossref_primary_10_1079_planthealthcases_2023_0015
crossref_primary_10_1002_advs_202412223
crossref_primary_10_1007_s11240_022_02421_2
crossref_primary_10_3389_fgeed_2023_1171969
crossref_primary_10_3389_fpls_2017_01780
crossref_primary_10_3389_fpls_2022_843575
crossref_primary_10_3389_fpls_2023_1231013
crossref_primary_10_3390_horticulturae7070193
crossref_primary_10_3390_ijms232214370
crossref_primary_10_1590_s0102_053620180302
crossref_primary_10_7717_peerj_12664
crossref_primary_10_1080_07388551_2018_1554621
crossref_primary_10_31590_ejosat_765369
crossref_primary_10_1016_j_isci_2020_101478
crossref_primary_10_3389_fpls_2017_00539
crossref_primary_10_1007_s11033_022_07558_z
crossref_primary_10_1007_s11816_019_00562_z
crossref_primary_10_1007_s11248_023_00359_5
crossref_primary_10_1007_s12088_023_01154_w
crossref_primary_10_1016_j_jplph_2021_153411
crossref_primary_10_1007_s44279_024_00124_0
crossref_primary_10_1007_s11033_022_07741_2
crossref_primary_10_1007_s00122_019_03484_0
crossref_primary_10_1111_pbi_13096
crossref_primary_10_47262__BL_7_2_20210711
crossref_primary_10_1088_1755_1315_974_1_012082
crossref_primary_10_1094_PHYTO_06_22_0193_FI
crossref_primary_10_1007_s11816_018_0472_0
crossref_primary_10_1007_s13205_021_02680_4
crossref_primary_10_3389_fpls_2017_01635
crossref_primary_10_3390_agronomy10111641
crossref_primary_10_3390_cimb46100659
crossref_primary_10_1007_s10681_022_03081_1
crossref_primary_10_1111_pbr_13234
crossref_primary_10_3390_v13102100
crossref_primary_10_1016_j_indcrop_2025_120703
crossref_primary_10_1016_j_pmpp_2023_102202
crossref_primary_10_3390_horticulturae8030191
crossref_primary_10_1016_j_wpi_2019_101944
crossref_primary_10_3390_plants12122294
crossref_primary_10_5114_bta_2017_66619
crossref_primary_10_2144_btn_2022_0102
crossref_primary_10_1016_j_plaphy_2017_10_024
crossref_primary_10_1038_srep30910
crossref_primary_10_1016_j_jenvman_2024_120326
crossref_primary_10_1038_s41467_022_35675_7
crossref_primary_10_3390_plants10071481
crossref_primary_10_3389_fmicb_2022_873930
crossref_primary_10_3390_antibiotics8010018
crossref_primary_10_1016_j_rsci_2021_01_003
crossref_primary_10_3390_ijms24010360
crossref_primary_10_3389_fpls_2021_770062
crossref_primary_10_1093_hr_uhac159
crossref_primary_10_1016_j_cpb_2020_100171
crossref_primary_10_2174_1389202921999200716110853
crossref_primary_10_1111_pbi_13394
crossref_primary_10_1093_plphys_kiac103
crossref_primary_10_1016_j_jgg_2023_07_009
crossref_primary_10_1094_PHYTO_08_20_0322_IA
crossref_primary_10_1038_s41438_019_0159_x
crossref_primary_10_1146_annurev_phyto_020620_114550
crossref_primary_10_3390_cells8111386
crossref_primary_10_1007_s10681_017_2015_0
crossref_primary_10_1111_pbi_13278
crossref_primary_10_1111_pbi_14003
crossref_primary_10_3389_fpls_2021_742932
crossref_primary_10_3390_agronomy12030565
crossref_primary_10_1007_s11248_021_00240_3
crossref_primary_10_1093_bfgp_elz041
crossref_primary_10_3390_agronomy13030755
crossref_primary_10_3389_fpls_2025_1547157
crossref_primary_10_3389_fgeed_2024_1399051
crossref_primary_10_1080_15427528_2017_1333192
crossref_primary_10_1007_s10681_023_03196_z
crossref_primary_10_1007_s00344_022_10760_9
crossref_primary_10_1016_j_pmpp_2018_05_006
crossref_primary_10_1093_plphys_kiab003
crossref_primary_10_1016_j_biotechadv_2017_11_008
crossref_primary_10_1002_fes3_330
crossref_primary_10_1007_s13237_024_00498_y
crossref_primary_10_1007_s00018_020_03725_2
crossref_primary_10_3390_plants8120601
crossref_primary_10_1016_j_stress_2022_100056
crossref_primary_10_3390_plants10071264
crossref_primary_10_9787_KJBS_2019_51_3_161
crossref_primary_10_1016_j_plantsci_2022_111376
crossref_primary_10_1093_hr_uhab040
crossref_primary_10_3390_agriculture14020282
crossref_primary_10_1094_PHYTO_10_18_0395_R
crossref_primary_10_3389_fmicb_2020_609376
crossref_primary_10_1007_s11248_019_00135_4
crossref_primary_10_3389_fgene_2022_1037091
crossref_primary_10_3389_fpls_2022_860281
crossref_primary_10_1007_s00299_025_03440_x
crossref_primary_10_1093_plphys_kiab220
crossref_primary_10_1111_jipb_12734
crossref_primary_10_3390_plants12132454
crossref_primary_10_1016_j_micpath_2020_103996
crossref_primary_10_1016_j_scienta_2021_110476
crossref_primary_10_1016_j_bcab_2018_07_008
crossref_primary_10_1007_s13562_023_00845_1
crossref_primary_10_3390_ijms23042303
crossref_primary_10_1002_wrna_1597
crossref_primary_10_1021_acsagscitech_1c00279
crossref_primary_10_1016_j_copbio_2022_102850
crossref_primary_10_1134_S2079059717050124
crossref_primary_10_1002_bit_28344
crossref_primary_10_1016_j_pmpp_2017_10_003
crossref_primary_10_1016_j_pmpp_2023_102191
crossref_primary_10_1038_s41598_017_10783_3
crossref_primary_10_17221_192_2016_CJGPB
crossref_primary_10_3390_v16071007
crossref_primary_10_1007_s00299_016_1987_x
crossref_primary_10_1186_s13750_018_0130_6
crossref_primary_10_3390_ijms25021308
crossref_primary_10_1007_s12033_023_00788_x
crossref_primary_10_1007_s12600_022_00991_7
crossref_primary_10_1111_pce_14599
crossref_primary_10_1007_s11248_019_00138_1
crossref_primary_10_1111_pbi_14442
crossref_primary_10_3390_life13091875
crossref_primary_10_1007_s10142_023_01133_w
crossref_primary_10_1007_s12229_021_09250_6
crossref_primary_10_1007_s11756_022_01142_3
crossref_primary_10_1016_j_celrep_2017_04_037
crossref_primary_10_3389_fpls_2022_885128
crossref_primary_10_1007_s10142_025_01533_0
crossref_primary_10_1002_tpg2_20220
crossref_primary_10_1016_j_plaphy_2018_03_027
crossref_primary_10_1016_j_semcdb_2019_04_008
crossref_primary_10_1080_19315260_2020_1833125
crossref_primary_10_3389_fgene_2023_1085024
crossref_primary_10_1016_j_pmpp_2024_102482
crossref_primary_10_1146_annurev_arplant_050718_100049
crossref_primary_10_3390_agronomy13082038
crossref_primary_10_1079_PAVSNNR202015009
crossref_primary_10_1038_s41598_022_18923_0
crossref_primary_10_1007_s00299_016_1975_1
crossref_primary_10_1186_s43141_020_00036_8
crossref_primary_10_1111_mpp_12897
crossref_primary_10_3389_fpls_2017_01932
crossref_primary_10_1111_pbr_12526
crossref_primary_10_3390_ijms24065660
crossref_primary_10_1093_hr_uhac184
crossref_primary_10_1007_s11033_023_08440_2
crossref_primary_10_1093_hr_uhac064
crossref_primary_10_3390_microorganisms7080269
crossref_primary_10_1016_j_pbi_2020_05_003
crossref_primary_10_1016_j_bbrc_2016_10_130
crossref_primary_10_4236_as_2019_1010097
crossref_primary_10_3389_fgene_2022_1085332
crossref_primary_10_3389_fpls_2016_01813
crossref_primary_10_1111_pbi_14333
crossref_primary_10_3389_fnut_2021_751512
crossref_primary_10_1038_s41598_019_53710_4
crossref_primary_10_3390_plants10112339
crossref_primary_10_1007_s11676_017_0588_z
crossref_primary_10_1186_s42483_020_00060_z
crossref_primary_10_3390_app12147180
crossref_primary_10_1093_hr_uhab086
crossref_primary_10_2174_2210298102666220324112842
crossref_primary_10_3389_fpls_2022_904829
crossref_primary_10_1016_j_tibtech_2018_04_005
crossref_primary_10_1002_jcp_25367
crossref_primary_10_1007_s11816_017_0425_z
crossref_primary_10_1002_tpg2_20248
crossref_primary_10_1093_plphys_kiae302
crossref_primary_10_1016_j_jare_2020_10_003
crossref_primary_10_1134_S0026893323030135
crossref_primary_10_1186_s12870_024_05717_x
crossref_primary_10_1186_s42483_022_00132_2
crossref_primary_10_5010_JPB_2018_45_3_155
crossref_primary_10_1016_j_tplants_2017_01_008
crossref_primary_10_1080_07060661_2020_1794541
crossref_primary_10_1016_j_pmpp_2025_102640
crossref_primary_10_1093_jxb_erac148
crossref_primary_10_1007_s00425_023_04110_6
crossref_primary_10_1016_j_tplants_2017_01_004
crossref_primary_10_1007_s10709_021_00146_2
crossref_primary_10_3390_ijms22115423
crossref_primary_10_1016_j_jgg_2022_06_003
crossref_primary_10_1002_1873_3468_13073
crossref_primary_10_2174_1568026622666220310104645
crossref_primary_10_1111_aab_12562
Cites_doi 10.1006/viro.1997.8634
10.1038/nbt.2654
10.1093/mp/ssu009
10.1371/journal.pone.0011313
10.1186/s12896-015-0131-2
10.1094/PHYTO.2000.90.5.467
10.1038/nplants.2015.145
10.3390/v7072778
10.1094/MPMI.2004.17.3.322
10.1016/j.febslet.2004.12.086
10.1186/s13059-015-0799-6
10.1094/MPMI-19-0557
10.1007/s10658-009-9468-5
10.1099/vir.0.81817-0
10.1007/s10059-009-0042-y
10.1093/mp/ssu044
10.1038/cr.2013.114
10.1016/bs.aivir.2014.11.006
10.1007/s10658-004-2491-7
10.1016/B978-0-12-801246-8.00002-0
10.1111/j.1364-3703.2012.00791.x
10.1007/BF00633825
10.1104/pp.102.017855
10.1371/journal.pone.0029595
10.1046/j.1365-313X.2002.01481.x
10.1046/j.1365-313X.2002.01499.x
10.1099/0022-1317-73-9-2183
10.1038/nature13011
10.1111/pbi.12200
10.1104/pp.114.247577
10.1038/nbt.2655
10.1016/j.coviro.2011.09.010
10.1016/j.biotechadv.2014.12.006
10.1111/j.1364-3703.2012.00785.x
10.1016/j.copbio.2014.11.007
10.1038/nbt.2675
10.1038/NPLANTS.2014.11
10.1146/annurev.phyto.43.011205.141140
10.1128/JVI.77.18.9906-9911.2003
10.1073/pnas.0702739104
10.1104/pp.107.106104
10.1038/nbt.2623
10.1007/s00122-009-1169-0
10.1111/ppa.12260
10.1016/S0960-9822(02)00898-9
10.1099/vir.0.81659-0
10.1128/JVI.74.17.7730-7737.2000
10.1007/s11103-014-0188-7
10.1111/j.1364-3703.2004.00223.x
10.1111/j.1364-3703.2008.00513.x
10.1038/srep11491
10.1186/1746-4811-9-39
10.1007/s11248-004-3802-7
10.1038/nrm2838
10.1094/MPMI-11-09-0277
10.1111/j.1364-3703.2007.00386.x
10.1007/BF02712670
ContentType Journal Article
Copyright 2016 BSPP and John Wiley & Sons Ltd
2016 BSPP and John Wiley & Sons Ltd.
Copyright_xml – notice: 2016 BSPP and John Wiley & Sons Ltd
– notice: 2016 BSPP and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7T7
7U9
8FD
C1K
FR3
H94
M7N
P64
7S9
L.6
5PM
DOI 10.1111/mpp.12375
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Virology and AIDS Abstracts


AGRICOLA
MEDLINE
CrossRef
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Virus resistance in cucumber using CRISPR/Cas9
EISSN 1364-3703
EndPage 1153
ExternalDocumentID PMC6638350
4143681741
26808139
10_1111_mpp_12375
MPP12375
ark_67375_WNG_0LC8ZVWV_T
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29M
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
7X2
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABPVW
ACBWZ
ACCFJ
ACGFO
ACGFS
ACIWK
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADZMN
AEEZP
AEGXH
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFKRA
AFPWT
AFRAH
AFZJQ
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATCPS
ATUGU
AUFTA
AVUZU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FEDTE
FRP
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HVGLF
HYE
HZI
HZ~
IAO
IEP
IGS
IHE
ITC
IX1
J0M
K48
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
M0K
M7P
MK4
MRFUL
MRSTM
MSFUL
MSSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PIMPY
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
SV3
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WYISQ
XG1
~IA
~KM
~WT
AAMMB
AANHP
ACCMX
ACRPL
ACUHS
ACYXJ
ADNMO
AEFGJ
AEUYN
AGQPQ
AGXDD
AIDQK
AIDYY
PHGZM
PHGZT
PQGLB
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7T7
7U9
8FD
C1K
FR3
H94
M7N
P64
7S9
L.6
5PM
ID FETCH-LOGICAL-c8235-85f81df79d8dd6dbfad8f6ec280db49e9f32a5cae8e7c9016627afb98ffa535f3
IEDL.DBID DR2
ISSN 1464-6722
IngestDate Thu Aug 21 18:15:40 EDT 2025
Fri Jul 11 18:35:43 EDT 2025
Fri Jul 11 05:53:26 EDT 2025
Wed Aug 13 09:27:23 EDT 2025
Thu Jan 02 23:09:02 EST 2025
Thu Apr 24 23:06:18 EDT 2025
Tue Jul 01 01:14:56 EDT 2025
Wed Aug 20 07:27:22 EDT 2025
Wed Oct 30 09:53:50 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords genome editing
eIF4E
CRISPR/Cas9
cucumber
Potyviridae
virus resistance
Language English
License 2016 BSPP and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c8235-85f81df79d8dd6dbfad8f6ec280db49e9f32a5cae8e7c9016627afb98ffa535f3
Notes istex:022AA0A51D89F6C3F283B81BF7AC199E2B914558
ark:/67375/WNG-0LC8ZVWV-T
ArticleID:MPP12375
These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://bsppjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mpp.12375
PMID 26808139
PQID 1810535260
PQPubID 1006541
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6638350
proquest_miscellaneous_1846325509
proquest_miscellaneous_1815691718
proquest_journals_1810535260
pubmed_primary_26808139
crossref_primary_10_1111_mpp_12375
crossref_citationtrail_10_1111_mpp_12375
wiley_primary_10_1111_mpp_12375_MPP12375
istex_primary_ark_67375_WNG_0LC8ZVWV_T
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2016
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Molecular plant pathology
PublicationTitleAlternate Molecular Plant Pathology
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References Moury, B., Fabre, F. and Senoussi, R. (2007) Estimation of the number of virus particles transmitted by an insect vector. Proc. Natl. Acad. Sci. USA, 104, 17 891-17 896.
Dellaporta, S.L., Wood, J. and Hicks, J.B. (1983) A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1, 19-21.
Jackson, R.J., Hellen, C.U.T. and Pestova, T.V. (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113-127.
Rizzo, T.M. and Palukaitis, P. (1990) Construction of full-length cDNA clones of cucumber mosaic virus RNAs 1, 2 and 3: generation of infectious RNA transcripts. Mol. Gen. Genet. 222, 249-256.
Ruffel, S., Gallois, J.-L., Moury, B., Robaglia, C., Palloix, A. and Caranta, C. (2006) Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. J. Genet. Virol. 87, 2089-2098.
Xu, R.-F., Li, H., Qin, R.-Y., Li, J., Qiu, C.-H., Yang, Y.-C., Ma, H., Li, L., Wei, P.-C. and Yang, J.-B. (2015) Generation of inheritable and "transgene clean" targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci. Rep. 5, doi:10.1038/srep11491.
Gal-On, A., Antignus, Y., Rosner, A. and Raccah, B. (1992) A zucchini yellow mosaic virus coat protein gene mutation restores aphid transmissibility but has no effect on multiplication. J. Genet. Virol. 73, 2183-2187.
Xie, K., Zhang, J. and Yang, Y. (2014) Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol. Plant, 7, 923-926.
Mali, P., Aach, J., Stranges, P.B., Esvelt, K.M., Moosburner, M., Kosuri, S., Yang, L. and Church, G.M. (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833-838.
Piron, F., Nicolaï, M., Minoïa, S., Piednoir, E., Moretti, A., Salgues, A., Zamir, D., Caranta, C. and Bendahmane, A. (2010) An induced mutation in tomato eif4e leads to immunity to two Potyviruses. PLoS One, 5, e11313.
Lellis, A.D., Kasschau, K.D., Whitham, S.A. and Carrington, J.C. (2002) Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during Potyvirus infection. Curr. Biol. 12, 1046-1051.
Ruffel, S., Dussault, M.-H., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C. and Caranta, C. (2002) A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J. 32, 1067-1075.
Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., Mao, Y., Yang, L., Zhang, H., Xu, N. and Zhu, J.-K. (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 12, 797-807.
Nicaise, V., German-Retana, S., Sanjuán, R., Dubrana, M.-P., Mazier, M., Maisonneuve, B., Candresse, T., Caranta, C. and LeGall, O. (2003) The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the Potyvirus lettuce mosaic virus. Plant Physiol. 132, 1272-1282.
Wang, A. and Krishnaswamy, S. (2012) Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Mol. Plant Pathol. 13, 795-803.
Gal-On, A. (2000) A point mutation in the FRNK motif of the Potyvirus helper component-protease gene alters symptom expression in cucurbits and elicits protection against the severe homologous virus. Phytopathology, 90, 467-473.
Ling, K.-S., Harris, K.R., Meyer, J.D.F., Levi, A., Guner, N., Wehner, T.C., Bendahmane, A. and Havey, M.J. (2009) Nonsynonymous single nucleotide polymorphisms in the watermelon eIF4E gene are closely associated with resistance to Zucchini yellow mosaic virus. Theor. Appl. Genet. 120, 191-200.
Ayme, V., Souche, S., Caranta, C., Jacquemond, M., Chadœuf, J., Palloix, A. and Moury, B. (2006) Different mutations in the genome-linked protein VPg of potato virus Y confer virulence on the pvr23 resistance in pepper. Mol. Plant-Microbe Interact. 19, 557-563.
Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.-L., Wei, P., Cao, F., Zhu, S., Zhang, F., Mao, Y. and Zhu, J.-K. (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 23, 1229-1232.
Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J.D.G. and Kamoun, S. (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 691-693.
Gómez, P., Rodríguez-Hernández, A.M., Moury, B. and Aranda, M.A. (2009) Genetic resistance for the sustainable control of plant virus diseases: breeding, mechanisms and durability. Eur. J. Plant Pathol. 125, 1-22.
Jiang, J. and Laliberté, J.-F. (2011) The genome-linked protein VPg of plant viruses-a protein with many partners. Curr. Opin. Virol. 1, 347-354.
Léonard, S., Plante, D., Wittmann, S., Daigneault, N., Fortin, M.G. and Laliberté, J.-F. (2000) Complex formation between Potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J. Virol. 74, 7730-7737.
Martínez-García, B., Marco, C.F., Goytia, E., López-Abella, D., Serra, M.T., Aranda, M.A. and López-Moya, J.J. (2004) Development and use of detection methods specific for cucumber vein yellowing virus (CVYV). Eur. J. Plant Pathol. 110, 811-821.
Ali, Z., Abulfaraj, A., Idris, A., Ali, S., Tashkandi, M. and Mahfouz, M.M. (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 16, 238.
Moury, B., Morel, C., Johansen, E., Guilbaud, L., Souche, S., Ayme, V., Caranta, C., Palloix, A. and Jacquemond, M. (2004) Mutations in potato virus Y genome-linked protein determine virulence toward recessive resistances in Capsicum annuum and Lycopersicon hirsutum. Mol. Plant-Microbe Interact. 17, 322-329.
Nakahara, K.S., Shimada, R., Choi, S.-H., Yamamoto, H., Shao, J. and Uyeda, I. (2010) Involvement of the P1 cistron in overcoming eIF4E-mediated recessive resistance against clover yellow vein virus in pea. Mol. Plant-Microbe Interact. 23, 1460-1469.
Belhaj, K., Chaparro-Garcia, A., Kamoun, S. and Nekrasov, V. (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 9, 39.
Liu, L. and Fan, X.-D. (2014) CRISPR-Cas system: a powerful tool for genome engineering. Plant Mol. Biol. 85, 209-218.
Reingold, V., Lachman, O., Blaosov, E. and Dombrovsky, A. (2015) Seed disinfection treatments do not sufficiently eliminate the infectivity of Cucumber green mottle mosaic virus (CGMMV) on cucurbit seeds. Plant Pathol. 64, 245-255.
Duprat, A., Caranta, C., Revers, F., Menand, B., Browning, K.S. and Robaglia, C. (2002) The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J. 32, 927-934.
Abdul-Razzak, A., Guiraud, T., Peypelut, M., Walter, J., Houvenaghel, M.-C., Candresse, T., Le Gall, O. and German-Retana, S. (2009) Involvement of the cylindrical inclusion (CI) protein in the overcoming of an eIF4E-mediated resistance against Lettuce mosaic potyvirus. Mol. Plant Pathol. 10, 109-113.
Hébrard, E., Pinel-Galzi, A., Bersoult, A., Siré, C. and Fargette, D. (2006) Emergence of a resistance-breaking isolate of Rice yellow mottle virus during serial inoculations is due to a single substitution in the genome-linked viral protein VPg. J. Genet. Virol. 87, 1369-1373.
Rodríguez-Hernández, A.M., Gosalvez, B., Sempere, R.N., Burgos, L., Aranda, M.A. and Truniger, V. (2012) Melon RNA interference (RNAi) lines silenced for Cm-eIF4E show broad virus resistance. Mol. Plant Pathol. 13, 755-763.
Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Patron, N.J. and Nekrasov, V. (2015) Editing plant genomes with CRISPR/Cas9. Curr. Opin. Biotechnol. 32, 76-84.
Wittmann, S., Chatel, H., Fortin, M.G. and Laliberté, J.-F. (1997) Interaction of the viral protein genome linked of turnip mosaic Potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology, 234, 84-92.
Dafny-Yelin, M. and Tzfira, T. (2007) Delivery of multiple transgenes to plant cells. Plant Physiol. 145, 1118-1128.
Jones, H.D. (2015) Regulatory uncertainty over genome editing. Nat. Plants, 1, DOI: 10.1038/NPLANTS.2014.11.
Bortesi, L. and Fischer, R. (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Adv. 33, 41-52.
Baltes, N.J., Hummel, A.W., Konecna, E., Cegan, R., Bruns, A.N., Bisaro, D.M. and Voytas, D.F. (2015) Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat. Plants, 1, doi:10.1038/nplants.2015.145.
Li, J.-F., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G.M. and Sheen, J. (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31, 688-691.
Diaz-Pendon, J.A., Truniger, V., Nieto, C., Garcia-Mas, J., Bendahmane, A. and Aranda, M.A. (2004) Advances in understanding recessive resistance to plant viruses. Mol. Plant Pathol. 5, 223-233.
Mazier, M., Flamain, F., Nicolaï, M., Sarnette, V. and Caranta, C. (2011) Knock-down of both eIF4E1 and eIF4E2 genes confers broad-spectrum resistance against potyviruses in tomato. PLoS One, 6, e29595.
Sacristán, S., Malpica, J.M., Fraile, A. and García-Arenal, F. (2003) Estimation of population bottlenecks during systemic movement of tobacco mosaic virus in tobacco plants. J. Virol. 77, 9906-9911.
Maule, A.J., Caranta, C. and Boulton, M.I. (2007) Sources of natural resistance to plant viruses: status and prospects. Mol. Plant Pathol. 8, 223-231.
Sternberg, S.H., Redding, S., Jinek, M., Greene, E.C. and Doudna, J.A. (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 507, 62-67.
Sanfaçon, H. (2015) Plant translation factors and virus resistance. Viruses, 7, 3392-3419.
Lei, Y., Lu, L., Liu, H.-Y., Li, S., Xing, F. and Chen, L
1997; 234
2010; 11
2007; 104
2007; 145
1983; 1
2013; 23
2002; 12
2015; 33
2015; 32
2005; 579
2004; 5
2000; 90
1990; 222
2012; 13
2013; 9
2010; 23
2009; 10
2007; 8
2009; 120
2014; 166
2014; 7
2010; 5
2009; 125
2014; 12
2015; 1
2015; 15
2015; 16
2015; 5
2014; 90
2011; 1
2011
2002; 32
2009
2006; 19
2005; 43
2014; 85
2011; 6
2015; 7
2009; 27
2003; 132
1992; 73
2003; 77
2004; 110
2014; 507
2006; 87
2004; 17
2015; 64
2013; 31
2000; 74
2015
2005; 14
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
Truniger V. (e_1_2_7_55_1) 2009
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – reference: Diaz-Pendon, J.A., Truniger, V., Nieto, C., Garcia-Mas, J., Bendahmane, A. and Aranda, M.A. (2004) Advances in understanding recessive resistance to plant viruses. Mol. Plant Pathol. 5, 223-233.
– reference: Rizzo, T.M. and Palukaitis, P. (1990) Construction of full-length cDNA clones of cucumber mosaic virus RNAs 1, 2 and 3: generation of infectious RNA transcripts. Mol. Gen. Genet. 222, 249-256.
– reference: Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., Mao, Y., Yang, L., Zhang, H., Xu, N. and Zhu, J.-K. (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 12, 797-807.
– reference: Xie, K., Zhang, J. and Yang, Y. (2014) Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol. Plant, 7, 923-926.
– reference: Lellis, A.D., Kasschau, K.D., Whitham, S.A. and Carrington, J.C. (2002) Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during Potyvirus infection. Curr. Biol. 12, 1046-1051.
– reference: Martínez-García, B., Marco, C.F., Goytia, E., López-Abella, D., Serra, M.T., Aranda, M.A. and López-Moya, J.J. (2004) Development and use of detection methods specific for cucumber vein yellowing virus (CVYV). Eur. J. Plant Pathol. 110, 811-821.
– reference: Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.-L., Wei, P., Cao, F., Zhu, S., Zhang, F., Mao, Y. and Zhu, J.-K. (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 23, 1229-1232.
– reference: Cillo, F. and Palukaitis, P. (2014) Transgenic resistance. Adv. Virus Res. 90, 35-146.
– reference: Sato, M., Nakahara, K., Yoshii, M., Ishikawa, M. and Uyeda, I. (2005) Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett. 579, 1167-1171.
– reference: Ayme, V., Souche, S., Caranta, C., Jacquemond, M., Chadœuf, J., Palloix, A. and Moury, B. (2006) Different mutations in the genome-linked protein VPg of potato virus Y confer virulence on the pvr23 resistance in pepper. Mol. Plant-Microbe Interact. 19, 557-563.
– reference: Mazier, M., Flamain, F., Nicolaï, M., Sarnette, V. and Caranta, C. (2011) Knock-down of both eIF4E1 and eIF4E2 genes confers broad-spectrum resistance against potyviruses in tomato. PLoS One, 6, e29595.
– reference: Xu, R.-F., Li, H., Qin, R.-Y., Li, J., Qiu, C.-H., Yang, Y.-C., Ma, H., Li, L., Wei, P.-C. and Yang, J.-B. (2015) Generation of inheritable and "transgene clean" targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci. Rep. 5, doi:10.1038/srep11491.
– reference: Liu, L. and Fan, X.-D. (2014) CRISPR-Cas system: a powerful tool for genome engineering. Plant Mol. Biol. 85, 209-218.
– reference: Dellaporta, S.L., Wood, J. and Hicks, J.B. (1983) A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1, 19-21.
– reference: Ling, K.-S., Harris, K.R., Meyer, J.D.F., Levi, A., Guner, N., Wehner, T.C., Bendahmane, A. and Havey, M.J. (2009) Nonsynonymous single nucleotide polymorphisms in the watermelon eIF4E gene are closely associated with resistance to Zucchini yellow mosaic virus. Theor. Appl. Genet. 120, 191-200.
– reference: Bortesi, L. and Fischer, R. (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Adv. 33, 41-52.
– reference: Ruffel, S., Dussault, M.-H., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C. and Caranta, C. (2002) A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J. 32, 1067-1075.
– reference: Gal-On, A., Antignus, Y., Rosner, A. and Raccah, B. (1992) A zucchini yellow mosaic virus coat protein gene mutation restores aphid transmissibility but has no effect on multiplication. J. Genet. Virol. 73, 2183-2187.
– reference: Moury, B., Fabre, F. and Senoussi, R. (2007) Estimation of the number of virus particles transmitted by an insect vector. Proc. Natl. Acad. Sci. USA, 104, 17 891-17 896.
– reference: Gal-On, A. (2000) A point mutation in the FRNK motif of the Potyvirus helper component-protease gene alters symptom expression in cucurbits and elicits protection against the severe homologous virus. Phytopathology, 90, 467-473.
– reference: Jacobs, T.B., LaFayette, P.R., Schmitz, R.J. and Parrott, W.A. (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol. 15, 16-26.
– reference: Revers, F. and García, J.A. (2015) Chapter three-Molecular biology of Potyviruses. In: Advances in Virus Research (Maramorosch, K. and Mettenleiter, T.C., eds), pp. 101-199. New York: Academic Press. [WorldCat]
– reference: Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J.D.G. and Kamoun, S. (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 691-693.
– reference: Jackson, R.J., Hellen, C.U.T. and Pestova, T.V. (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113-127.
– reference: Gal-On, A., Wolf, D., Antignus, Y., Patlis, L., Ryu, K.H., Min, B.E., Pearlsman, M., Lachman, O., Gaba, V., Wang, Y., Shiboleth, Y.M., Yang, J. and Zelcer, A. (2005) Transgenic cucumbers harboring the 54-kDa putative gene of Cucumber fruit mottle mosaic tobamovirus are highly resistant to viral infection and protect nontransgenic scions from soil infection. Transgenic Res. 14, 81-93.
– reference: Jones, H.D. (2015) Regulatory uncertainty over genome editing. Nat. Plants, 1, DOI: 10.1038/NPLANTS.2014.11.
– reference: Li, J.-F., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G.M. and Sheen, J. (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31, 688-691.
– reference: Maule, A.J., Caranta, C. and Boulton, M.I. (2007) Sources of natural resistance to plant viruses: status and prospects. Mol. Plant Pathol. 8, 223-231.
– reference: Baltes, N.J., Hummel, A.W., Konecna, E., Cegan, R., Bruns, A.N., Bisaro, D.M. and Voytas, D.F. (2015) Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat. Plants, 1, doi:10.1038/nplants.2015.145.
– reference: Piron, F., Nicolaï, M., Minoïa, S., Piednoir, E., Moretti, A., Salgues, A., Zamir, D., Caranta, C. and Bendahmane, A. (2010) An induced mutation in tomato eif4e leads to immunity to two Potyviruses. PLoS One, 5, e11313.
– reference: Kang, B.-C., Yeam, I. and Jahn, M.M. (2005) Genetics of plant virus resistance. Annu. Rev. Phytopathol. 43, 581-621.
– reference: Gómez, P., Rodríguez-Hernández, A.M., Moury, B. and Aranda, M.A. (2009) Genetic resistance for the sustainable control of plant virus diseases: breeding, mechanisms and durability. Eur. J. Plant Pathol. 125, 1-22.
– reference: Lei, Y., Lu, L., Liu, H.-Y., Li, S., Xing, F. and Chen, L.-L. (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol. Plant, 7, 1494-1496.
– reference: Rodríguez-Hernández, A.M., Gosalvez, B., Sempere, R.N., Burgos, L., Aranda, M.A. and Truniger, V. (2012) Melon RNA interference (RNAi) lines silenced for Cm-eIF4E show broad virus resistance. Mol. Plant Pathol. 13, 755-763.
– reference: Ruffel, S., Gallois, J.-L., Moury, B., Robaglia, C., Palloix, A. and Caranta, C. (2006) Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. J. Genet. Virol. 87, 2089-2098.
– reference: Dafny-Yelin, M. and Tzfira, T. (2007) Delivery of multiple transgenes to plant cells. Plant Physiol. 145, 1118-1128.
– reference: Reingold, V., Lachman, O., Blaosov, E. and Dombrovsky, A. (2015) Seed disinfection treatments do not sufficiently eliminate the infectivity of Cucumber green mottle mosaic virus (CGMMV) on cucurbit seeds. Plant Pathol. 64, 245-255.
– reference: Mali, P., Aach, J., Stranges, P.B., Esvelt, K.M., Moosburner, M., Kosuri, S., Yang, L. and Church, G.M. (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833-838.
– reference: Nicaise, V., German-Retana, S., Sanjuán, R., Dubrana, M.-P., Mazier, M., Maisonneuve, B., Candresse, T., Caranta, C. and LeGall, O. (2003) The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the Potyvirus lettuce mosaic virus. Plant Physiol. 132, 1272-1282.
– reference: Fu, Y., Foden, J.A., Khayter, C., Maeder, M.L., Reyon, D., Joung, J.K. and Sander, J.D. (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822-826.
– reference: Sacristán, S., Malpica, J.M., Fraile, A. and García-Arenal, F. (2003) Estimation of population bottlenecks during systemic movement of tobacco mosaic virus in tobacco plants. J. Virol. 77, 9906-9911.
– reference: Hwang, J., Li, J., Liu, W.-Y., An, S.-J., Cho, H., Her, N.H., Yeam, I., Kim, D. and Kang, B.-C. (2009) Double mutations in eIF4E and eIFiso4E confer recessive resistance to Chilli veinal mottle virus in pepper. Mol. Cells, 27, 329-336.
– reference: Wang, A. and Krishnaswamy, S. (2012) Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Mol. Plant Pathol. 13, 795-803.
– reference: Jiang, J. and Laliberté, J.-F. (2011) The genome-linked protein VPg of plant viruses-a protein with many partners. Curr. Opin. Virol. 1, 347-354.
– reference: Duprat, A., Caranta, C., Revers, F., Menand, B., Browning, K.S. and Robaglia, C. (2002) The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J. 32, 927-934.
– reference: Nakahara, K.S., Shimada, R., Choi, S.-H., Yamamoto, H., Shao, J. and Uyeda, I. (2010) Involvement of the P1 cistron in overcoming eIF4E-mediated recessive resistance against clover yellow vein virus in pea. Mol. Plant-Microbe Interact. 23, 1460-1469.
– reference: Belhaj, K., Chaparro-Garcia, A., Kamoun, S. and Nekrasov, V. (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 9, 39.
– reference: Sanfaçon, H. (2015) Plant translation factors and virus resistance. Viruses, 7, 3392-3419.
– reference: Sternberg, S.H., Redding, S., Jinek, M., Greene, E.C. and Doudna, J.A. (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 507, 62-67.
– reference: Wittmann, S., Chatel, H., Fortin, M.G. and Laliberté, J.-F. (1997) Interaction of the viral protein genome linked of turnip mosaic Potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology, 234, 84-92.
– reference: Léonard, S., Plante, D., Wittmann, S., Daigneault, N., Fortin, M.G. and Laliberté, J.-F. (2000) Complex formation between Potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J. Virol. 74, 7730-7737.
– reference: Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Patron, N.J. and Nekrasov, V. (2015) Editing plant genomes with CRISPR/Cas9. Curr. Opin. Biotechnol. 32, 76-84.
– reference: Brooks, C., Nekrasov, V., Lippman, Z.B. and Eck, J.V. (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol. 166, 1292-1297.
– reference: Ali, Z., Abulfaraj, A., Idris, A., Ali, S., Tashkandi, M. and Mahfouz, M.M. (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 16, 238.
– reference: Moury, B., Morel, C., Johansen, E., Guilbaud, L., Souche, S., Ayme, V., Caranta, C., Palloix, A. and Jacquemond, M. (2004) Mutations in potato virus Y genome-linked protein determine virulence toward recessive resistances in Capsicum annuum and Lycopersicon hirsutum. Mol. Plant-Microbe Interact. 17, 322-329.
– reference: Hébrard, E., Pinel-Galzi, A., Bersoult, A., Siré, C. and Fargette, D. (2006) Emergence of a resistance-breaking isolate of Rice yellow mottle virus during serial inoculations is due to a single substitution in the genome-linked viral protein VPg. J. Genet. Virol. 87, 1369-1373.
– reference: Abdul-Razzak, A., Guiraud, T., Peypelut, M., Walter, J., Houvenaghel, M.-C., Candresse, T., Le Gall, O. and German-Retana, S. (2009) Involvement of the cylindrical inclusion (CI) protein in the overcoming of an eIF4E-mediated resistance against Lettuce mosaic potyvirus. Mol. Plant Pathol. 10, 109-113.
– volume: 1
  start-page: 347
  year: 2011
  end-page: 354
  article-title: The genome‐linked protein VPg of plant viruses—a protein with many partners
  publication-title: Curr. Opin. Virol.
– year: 2011
– volume: 74
  start-page: 7730
  year: 2000
  end-page: 7737
  article-title: Complex formation between Potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity
  publication-title: J. Virol.
– volume: 10
  start-page: 109
  year: 2009
  end-page: 113
  article-title: Involvement of the cylindrical inclusion (CI) protein in the overcoming of an eIF4E‐mediated resistance against
  publication-title: Mol. Plant Pathol.
– volume: 12
  start-page: 1046
  year: 2002
  end-page: 1051
  article-title: Loss‐of‐susceptibility mutants of reveal an essential role for eIF(iso)4E during Potyvirus infection
  publication-title: Curr. Biol.
– start-page: 119
  year: 2009
  end-page: 231
– volume: 27
  start-page: 329
  year: 2009
  end-page: 336
  article-title: Double mutations in eIF4E and eIFiso4E confer recessive resistance to Chilli veinal mottle virus in pepper
  publication-title: Mol. Cells
– volume: 17
  start-page: 322
  year: 2004
  end-page: 329
  article-title: Mutations in potato virus Y genome‐linked protein determine virulence toward recessive resistances in and
  publication-title: Mol. Plant–Microbe Interact.
– volume: 5
  year: 2015
  article-title: Generation of inheritable and “transgene clean” targeted genome‐modified rice in later generations using the CRISPR/Cas9 system
  publication-title: Sci. Rep.
– volume: 110
  start-page: 811
  year: 2004
  end-page: 821
  article-title: Development and use of detection methods specific for cucumber vein yellowing virus (CVYV)
  publication-title: Eur. J. Plant Pathol.
– volume: 1
  start-page: 19
  year: 1983
  end-page: 21
  article-title: A plant DNA minipreparation: Version II
  publication-title: Plant Mol. Biol. Rep.
– volume: 125
  start-page: 1
  year: 2009
  end-page: 22
  article-title: Genetic resistance for the sustainable control of plant virus diseases: breeding, mechanisms and durability
  publication-title: Eur. J. Plant Pathol.
– volume: 7
  start-page: 1494
  year: 2014
  end-page: 1496
  article-title: CRISPR‐P: a web tool for synthetic single‐guide RNA design of CRISPR‐system in plants
  publication-title: Mol. Plant
– volume: 87
  start-page: 1369
  year: 2006
  end-page: 1373
  article-title: Emergence of a resistance‐breaking isolate of Rice yellow mottle virus during serial inoculations is due to a single substitution in the genome‐linked viral protein VPg
  publication-title: J. Genet. Virol.
– volume: 222
  start-page: 249
  year: 1990
  end-page: 256
  article-title: Construction of full‐length cDNA clones of cucumber mosaic virus RNAs 1, 2 and 3: generation of infectious RNA transcripts
  publication-title: Mol. Gen. Genet.
– volume: 23
  start-page: 1460
  year: 2010
  end-page: 1469
  article-title: Involvement of the P1 cistron in overcoming eIF4E‐mediated recessive resistance against clover yellow vein virus in pea
  publication-title: Mol. Plant–Microbe Interact.
– volume: 31
  start-page: 688
  year: 2013
  end-page: 691
  article-title: Multiplex and homologous recombination‐mediated genome editing in Arabidopsis and using guide RNA and Cas9
  publication-title: Nat. Biotechnol.
– volume: 15
  start-page: 16
  year: 2015
  end-page: 26
  article-title: Targeted genome modifications in soybean with CRISPR/Cas9
  publication-title: BMC Biotechnol.
– volume: 64
  start-page: 245
  year: 2015
  end-page: 255
  article-title: Seed disinfection treatments do not sufficiently eliminate the infectivity of Cucumber green mottle mosaic virus (CGMMV) on cucurbit seeds
  publication-title: Plant Pathol.
– volume: 145
  start-page: 1118
  year: 2007
  end-page: 1128
  article-title: Delivery of multiple transgenes to plant cells
  publication-title: Plant Physiol.
– volume: 19
  start-page: 557
  year: 2006
  end-page: 563
  article-title: Different mutations in the genome‐linked protein VPg of potato virus Y confer virulence on the pvr23 resistance in pepper
  publication-title: Mol. Plant–Microbe Interact.
– volume: 16
  start-page: 238
  year: 2015
  article-title: CRISPR/Cas9‐mediated viral interference in plants
  publication-title: Genome Biol.
– volume: 90
  start-page: 35
  year: 2014
  end-page: 146
  article-title: Transgenic resistance
  publication-title: Adv. Virus Res.
– volume: 8
  start-page: 223
  year: 2007
  end-page: 231
  article-title: Sources of natural resistance to plant viruses: status and prospects
  publication-title: Mol. Plant Pathol.
– volume: 85
  start-page: 209
  year: 2014
  end-page: 218
  article-title: CRISPR–Cas system: a powerful tool for genome engineering
  publication-title: Plant Mol. Biol.
– volume: 234
  start-page: 84
  year: 1997
  end-page: 92
  article-title: Interaction of the viral protein genome linked of turnip mosaic Potyvirus with the translational eukaryotic initiation factor (iso) 4E of using the yeast two‐hybrid system
  publication-title: Virology
– volume: 23
  start-page: 1229
  year: 2013
  end-page: 1232
  article-title: Efficient genome editing in plants using a CRISPR/Cas system
  publication-title: Cell Res.
– volume: 77
  start-page: 9906
  year: 2003
  end-page: 9911
  article-title: Estimation of population bottlenecks during systemic movement of tobacco mosaic virus in tobacco plants
  publication-title: J. Virol.
– volume: 5
  start-page: 223
  year: 2004
  end-page: 233
  article-title: Advances in understanding recessive resistance to plant viruses
  publication-title: Mol. Plant Pathol.
– volume: 31
  start-page: 822
  year: 2013
  end-page: 826
  article-title: High‐frequency off‐target mutagenesis induced by CRISPR‐Cas nucleases in human cells
  publication-title: Nat. Biotechnol.
– volume: 87
  start-page: 2089
  year: 2006
  end-page: 2098
  article-title: Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper
  publication-title: J. Genet. Virol.
– volume: 13
  start-page: 795
  year: 2012
  end-page: 803
  article-title: Eukaryotic translation initiation factor 4E‐mediated recessive resistance to plant viruses and its utility in crop improvement
  publication-title: Mol. Plant Pathol.
– volume: 13
  start-page: 755
  year: 2012
  end-page: 763
  article-title: Melon RNA interference (RNAi) lines silenced for Cm‐eIF4E show broad virus resistance
  publication-title: Mol. Plant Pathol.
– volume: 132
  start-page: 1272
  year: 2003
  end-page: 1282
  article-title: The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the Potyvirus lettuce mosaic virus
  publication-title: Plant Physiol.
– volume: 32
  start-page: 76
  year: 2015
  end-page: 84
  article-title: Editing plant genomes with CRISPR/Cas9
  publication-title: Curr. Opin. Biotechnol.
– volume: 73
  start-page: 2183
  year: 1992
  end-page: 2187
  article-title: A zucchini yellow mosaic virus coat protein gene mutation restores aphid transmissibility but has no effect on multiplication
  publication-title: J. Genet. Virol.
– volume: 6
  start-page: e29595
  year: 2011
  article-title: Knock‐down of both eIF4E1 and eIF4E2 genes confers broad‐spectrum resistance against potyviruses in tomato
  publication-title: PLoS One
– volume: 32
  start-page: 1067
  year: 2002
  end-page: 1075
  article-title: A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E)
  publication-title: Plant J.
– volume: 33
  start-page: 41
  year: 2015
  end-page: 52
  article-title: The CRISPR/Cas9 system for plant genome editing and beyond
  publication-title: Biotechnol. Adv.
– volume: 12
  start-page: 797
  year: 2014
  end-page: 807
  article-title: The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation
  publication-title: Plant Biotechnol. J.
– volume: 7
  start-page: 3392
  year: 2015
  end-page: 3419
  article-title: Plant translation factors and virus resistance
  publication-title: Viruses
– start-page: 101
  year: 2015
  end-page: 199
– volume: 7
  start-page: 923
  year: 2014
  end-page: 926
  article-title: Genome‐wide prediction of highly specific guide RNA spacers for CRISPR–Cas9‐mediated genome editing in model plants and major crops
  publication-title: Mol. Plant
– volume: 31
  start-page: 833
  year: 2013
  end-page: 838
  article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
  publication-title: Nat. Biotechnol.
– volume: 11
  start-page: 113
  year: 2010
  end-page: 127
  article-title: The mechanism of eukaryotic translation initiation and principles of its regulation
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 43
  start-page: 581
  year: 2005
  end-page: 621
  article-title: Genetics of plant virus resistance
  publication-title: Annu. Rev. Phytopathol.
– volume: 32
  start-page: 927
  year: 2002
  end-page: 934
  article-title: The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses
  publication-title: Plant J.
– volume: 579
  start-page: 1167
  year: 2005
  end-page: 1171
  article-title: Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of by potyviruses
  publication-title: FEBS Lett.
– volume: 1
  year: 2015
  article-title: Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system
  publication-title: Nat. Plants
– volume: 104
  start-page: 17 891
  year: 2007
  end-page: 17 896
  article-title: Estimation of the number of virus particles transmitted by an insect vector
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 31
  start-page: 691
  year: 2013
  end-page: 693
  article-title: Targeted mutagenesis in the model plant using Cas9 RNA‐guided endonuclease
  publication-title: Nat. Biotechnol.
– volume: 1
  year: 2015
  article-title: Regulatory uncertainty over genome editing
  publication-title: Nat. Plants
– volume: 166
  start-page: 1292
  year: 2014
  end-page: 1297
  article-title: Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR‐associated9 system
  publication-title: Plant Physiol.
– volume: 507
  start-page: 62
  year: 2014
  end-page: 67
  article-title: DNA interrogation by the CRISPR RNA‐guided endonuclease Cas9
  publication-title: Nature
– volume: 120
  start-page: 191
  year: 2009
  end-page: 200
  article-title: Nonsynonymous single nucleotide polymorphisms in the watermelon eIF4E gene are closely associated with resistance to Zucchini yellow mosaic virus
  publication-title: Theor. Appl. Genet.
– volume: 14
  start-page: 81
  year: 2005
  end-page: 93
  article-title: Transgenic cucumbers harboring the 54‐kDa putative gene of Cucumber fruit mottle mosaic tobamovirus are highly resistant to viral infection and protect nontransgenic scions from soil infection
  publication-title: Transgenic Res.
– volume: 9
  start-page: 39
  year: 2013
  article-title: Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system
  publication-title: Plant Methods
– volume: 90
  start-page: 467
  year: 2000
  end-page: 473
  article-title: A point mutation in the FRNK motif of the Potyvirus helper component‐protease gene alters symptom expression in cucurbits and elicits protection against the severe homologous virus
  publication-title: Phytopathology
– volume: 5
  start-page: e11313
  year: 2010
  article-title: An induced mutation in tomato eif4e leads to immunity to two Potyviruses
  publication-title: PLoS One
– ident: e_1_2_7_57_1
  doi: 10.1006/viro.1997.8634
– ident: e_1_2_7_32_1
  doi: 10.1038/nbt.2654
– ident: e_1_2_7_58_1
  doi: 10.1093/mp/ssu009
– ident: e_1_2_7_44_1
  doi: 10.1371/journal.pone.0011313
– ident: e_1_2_7_24_1
  doi: 10.1186/s12896-015-0131-2
– ident: e_1_2_7_17_1
  doi: 10.1094/PHYTO.2000.90.5.467
– ident: e_1_2_7_5_1
  doi: 10.1038/nplants.2015.145
– ident: e_1_2_7_52_1
  doi: 10.3390/v7072778
– ident: e_1_2_7_39_1
  doi: 10.1094/MPMI.2004.17.3.322
– ident: e_1_2_7_53_1
  doi: 10.1016/j.febslet.2004.12.086
– ident: e_1_2_7_3_1
  doi: 10.1186/s13059-015-0799-6
– ident: e_1_2_7_4_1
  doi: 10.1094/MPMI-19-0557
– ident: e_1_2_7_20_1
  doi: 10.1007/s10658-009-9468-5
– ident: e_1_2_7_50_1
  doi: 10.1099/vir.0.81817-0
– ident: e_1_2_7_22_1
  doi: 10.1007/s10059-009-0042-y
– ident: e_1_2_7_29_1
  doi: 10.1093/mp/ssu044
– ident: e_1_2_7_15_1
  doi: 10.1038/cr.2013.114
– ident: e_1_2_7_46_1
  doi: 10.1016/bs.aivir.2014.11.006
– ident: e_1_2_7_36_1
  doi: 10.1007/s10658-004-2491-7
– ident: e_1_2_7_10_1
  doi: 10.1016/B978-0-12-801246-8.00002-0
– ident: e_1_2_7_56_1
  doi: 10.1111/j.1364-3703.2012.00791.x
– ident: e_1_2_7_47_1
  doi: 10.1007/BF00633825
– ident: e_1_2_7_43_1
  doi: 10.1104/pp.102.017855
– ident: e_1_2_7_38_1
  doi: 10.1371/journal.pone.0029595
– ident: e_1_2_7_14_1
  doi: 10.1046/j.1365-313X.2002.01481.x
– ident: e_1_2_7_49_1
  doi: 10.1046/j.1365-313X.2002.01499.x
– ident: e_1_2_7_18_1
  doi: 10.1099/0022-1317-73-9-2183
– ident: e_1_2_7_54_1
  doi: 10.1038/nature13011
– ident: e_1_2_7_60_1
  doi: 10.1111/pbi.12200
– ident: e_1_2_7_9_1
  doi: 10.1104/pp.114.247577
– ident: e_1_2_7_42_1
  doi: 10.1038/nbt.2655
– ident: e_1_2_7_25_1
  doi: 10.1016/j.coviro.2011.09.010
– ident: e_1_2_7_28_1
– ident: e_1_2_7_8_1
  doi: 10.1016/j.biotechadv.2014.12.006
– ident: e_1_2_7_48_1
  doi: 10.1111/j.1364-3703.2012.00785.x
– ident: e_1_2_7_7_1
  doi: 10.1016/j.copbio.2014.11.007
– ident: e_1_2_7_35_1
  doi: 10.1038/nbt.2675
– start-page: 119
  volume-title: Advances in Virus Research
  year: 2009
  ident: e_1_2_7_55_1
– ident: e_1_2_7_26_1
  doi: 10.1038/NPLANTS.2014.11
– ident: e_1_2_7_27_1
  doi: 10.1146/annurev.phyto.43.011205.141140
– ident: e_1_2_7_51_1
  doi: 10.1128/JVI.77.18.9906-9911.2003
– ident: e_1_2_7_40_1
  doi: 10.1073/pnas.0702739104
– ident: e_1_2_7_11_1
  doi: 10.1104/pp.107.106104
– ident: e_1_2_7_16_1
  doi: 10.1038/nbt.2623
– ident: e_1_2_7_33_1
  doi: 10.1007/s00122-009-1169-0
– ident: e_1_2_7_45_1
  doi: 10.1111/ppa.12260
– ident: e_1_2_7_30_1
  doi: 10.1016/S0960-9822(02)00898-9
– ident: e_1_2_7_21_1
  doi: 10.1099/vir.0.81659-0
– ident: e_1_2_7_31_1
  doi: 10.1128/JVI.74.17.7730-7737.2000
– ident: e_1_2_7_34_1
  doi: 10.1007/s11103-014-0188-7
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1364-3703.2004.00223.x
– ident: e_1_2_7_2_1
  doi: 10.1111/j.1364-3703.2008.00513.x
– ident: e_1_2_7_59_1
  doi: 10.1038/srep11491
– ident: e_1_2_7_6_1
  doi: 10.1186/1746-4811-9-39
– ident: e_1_2_7_19_1
  doi: 10.1007/s11248-004-3802-7
– ident: e_1_2_7_23_1
  doi: 10.1038/nrm2838
– ident: e_1_2_7_41_1
  doi: 10.1094/MPMI-11-09-0277
– ident: e_1_2_7_37_1
  doi: 10.1111/j.1364-3703.2007.00386.x
– ident: e_1_2_7_12_1
  doi: 10.1007/BF02712670
SSID ssj0017925
Score 2.6380672
Snippet Summary Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats)...
Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats)...
Summary Genome editing in plants has been boosted tremendously by the development of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats)...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1140
SubjectTerms backcrossing
Base Sequence
Chromosome Segregation - genetics
CRISPR-Cas Systems - genetics
CRISPR/Cas9
crops
cucumber
Cucumber vein yellowing virus
cucumbers
Cucumis sativus
Cucumis sativus - genetics
Cucumis sativus - virology
Disease Resistance - genetics
eIF4E
Eukaryotic Initiation Factor-4E - genetics
Gene Editing
Genes
Genome editing
Genotype
heterozygosity
homozygosity
Homozygote
immunity
mutants
Mutation - genetics
Original
Papaya mosaic virus
Papaya ringspot virus
plant development
Plant Diseases - virology
Plant Viruses - physiology
Plants, Genetically Modified
Potyviridae
progeny
RNA
single nucleotide polymorphism
technology
translation (genetics)
Vegetables
virus resistance
Viruses
Zucchini yellow mosaic virus
Title Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology
URI https://api.istex.fr/ark:/67375/WNG-0LC8ZVWV-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmpp.12375
https://www.ncbi.nlm.nih.gov/pubmed/26808139
https://www.proquest.com/docview/1810535260
https://www.proquest.com/docview/1815691718
https://www.proquest.com/docview/1846325509
https://pubmed.ncbi.nlm.nih.gov/PMC6638350
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKucCB9yNQKoMQ6iVLaufhiFO1ohTErqKlL6FKlu3YZVXIrrIJQpz4Cf2N_SWMnYd2oSDEJYrkiWSPZ-xvnPE3CD03SkpDNfNjpiFAMZr4KaPKJzIOFBWBSF05n9E43jsI3x1Hx2voVXcXpuGH6A_crGe49do6uJCLJSf_Mp8PYNlN7AVzm6tlAdGkp44CO3MFV2EhCP04IaRlFbJZPP2XK3vRVavWb5cBzd_zJZdxrNuIdm-ik24ITf7J2aCu5EB9_4Xd8T_HeAvdaAEq3mks6jZa08UddH3ntGxJOvRdxJcyjfDMYFnORI6_Tst6gSF6t4gUTAlPC1zMiosf55XdD8FQpwqrWrkSJNjm25_i4eTth2zycigWKa76Q_576GD39f5wz28LNfiKERr5LDIAe02S5swVqDIiZybWirAgl2GqU0OJiJTQTCcKAIglnRdGpswYEdHI0PtoHTqkHyIcaCVZoENBlAxDZalvtllAKVFhnhhGPbTVTRlXLYu5LabxmXfRDOiMO5156FkvOm-oOy4TeuHmvZcQ5ZnNdUsifjR-w4P3Q_bx8OiQ73toozMM3rr5ggM8aioMBB562jeDg9q_LqLQs9rJRDEExdvsbzJhTCG4C1IPPWhsre8QccVRKLQkK1bYC1iC8NWWYvrJEYUDmgSADX3bckb2Zy3wUZa5l0f_LvoYXQPwGDf5dhtovSpr_QQAWiU30RUSZpvOH-E5zkY_Aep7PKg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LctMwFNWUdgEseD8CBQQDTDcOruSHvGDRSSkJTTKZkD6GjZAVqWQKTsaOea34BD6EX-En-BKu5MckUBg2XbDzjO54ZOneq3Pt63MQeqhlHGuqmBMwBQWKVsSJGJUOiQNXUuGKyMr59PpBe897cegfrqBv1b8wBT9E_cLNRIbN1ybAzQvphSh_N5s1Ie-GVUvlrvr0AQq27GlnG3b3ESE7z0attlNqCjiSEeo7zNeA0HQYjZnVUtJizHSgJGHuOPYiFWlKhC-FYiqUcFYafnSh44hpLXzqawr3PYPWjIK4YerfHtZkVeDZVuIVUo_nBCEhJY-R6Ruqp7p0-q2Zjfx4ErT9vUNzETnbo2_nIvpeLVrR8XLczOdxU37-hU_yf1nVS-hCicHxVhE0l9GKSq6g81tHaclDoq4ivtBMhacax-lUjPH7SZpnOFWZAd0QLXiS4GSa_PjydW6OfIjFicQyl1ZlBZtfCo5wa9h5ORg-aYkswvP6O8Y1tHcqT3gdrcKE1E2EXSVj5ipPEBl7njTsPpvMpZRIbxxqRhtoo_IRLkuidqMX8pZXBRvsEbd71EAPatNZwU5yktFj62i1hUiPTTtf6POD_nPudlvs1f7BPh810HrlibzMZBkHBFiIKLgNdL8ehhxkPiyJRE1za-MHUPdvsr_ZeAGF-tWNGuhG4dz1hIjVf6EwEi65fW1gONCXR5LJG8uFDoAZagiY24b16j-vAu8NBvbi1r-b3kNn26Nel3c7_d3b6Bxg5aBoL1xHq_M0V3cAj87juzYNYPT6tCPkJ36ynH8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VREL0gHg3UMAgQL0sbO19eA8copTQ0DaKSpNWvRiv1y4RsIny4HHjJ_A_-Ff8EsbezSoRBXHpbSWPVqPxjOcb7-w3AE-MSlPDNPcirrFAMZp6CWfKo2nkKyZ9mbhxPgfdaLcfvDkJT9bg5-JfmIIforpws5Hhzmsb4OPMLAX5p_H4OR678aKjck9_-4L12vRlZwc39yml7VdHrV2vHCngKU5Z6PHQIEAzcZJxN0rJyIybSCvK_SwNEp0YRmWopOY6VpgqLT26NGnCjZEhCw3D916CeohZ0K9BvTnon_arjxZx4ma84tkTeFFMaUlkZBuHKmVX0l_d7uTX87Dtny2ay9DZ5b72NbhaglbSLLzsOqzp_AasN88mJXGHvgliqfuIjAxJJyOZkc_DyXxKsKK3KBXdiwxzko_yX99_zGyOROcdKqLmyo0lIbYH_4y0Djtve4cvWnKakFl18X8L-hdi6dtQQ4X0BhBfq5T7OpBUpUGgLB3ONvcZoyrIYsNZA7YWNhWqZDa3AzY-ikWFg-YXzvwNeFyJjgs6j_OEnrmNqSTk5IPtf4tDcdx9Lfz9Fj8dHA_EUQM2FzsnytCfCoRMxdQBvwGPqmUMWvslRuZ6NHcyYYSF8jb_l0wQMSz4_KQBdwpnqBSibmAKw5V4xU0qAUsavrqSD9878nBEmAi6Ubct51B_t4I46PXcw93_F30Il3s7bbHf6e7dgyuILaOiHW8TarPJXN9H_DZLH5RxQ-DdRYfqbwmeW2I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+broad+virus+resistance+in+non%E2%80%90transgenic+cucumber+using+CRISPR%2FCas9+technology&rft.jtitle=Molecular+plant+pathology&rft.au=Chandrasekaran%2C+Jeyabharathy&rft.au=Brumin%2C+Marina&rft.au=Wolf%2C+Dalia&rft.au=Leibman%2C+Diana&rft.date=2016-09-01&rft.issn=1464-6722&rft.volume=17&rft.issue=7+p.1140-1153&rft.spage=1140&rft.epage=1153&rft_id=info:doi/10.1111%2Fmpp.12375&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-6722&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-6722&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-6722&client=summon