Enhancing flood forecasting accuracy through improved SVM and ANFIS techniques

Extreme rainfall in upstream watersheds often results in the rise of river water levels, leading to severe flood disasters in the downstream catchment. Therefore, monitoring river water levels and flow is crucial for flood forecasting in early warning systems and disaster risk reduction. However, fo...

Full description

Saved in:
Bibliographic Details
Published inMathematical Modeling and Computing Vol. 12; no. 2; pp. 447 - 460
Main Authors Abdualkarim, S., Kasihmuddin, M., Marsani, M.
Format Journal Article
LanguageEnglish
Published 2025
Online AccessGet full text

Cover

Loading…
Abstract Extreme rainfall in upstream watersheds often results in the rise of river water levels, leading to severe flood disasters in the downstream catchment. Therefore, monitoring river water levels and flow is crucial for flood forecasting in early warning systems and disaster risk reduction. However, forecasting river water levels remains a challenging task that cannot be easily captured with classical time-series approaches. This paper explores the potential of improving flood forecasting accuracy by combining two forecasting techniques: Support Vector Machine (SVM) and Adaptive Neuro-Fuzzy Inference System (ANFIS) by simple averaging and weighted averaging methods and optimizing their contributions. To tune different individuals' weights the genetic algorithm and K-nearest neighbors' algorithm (K-NN) were used to find the optimal weight combination. The committee machine model was employed to forecast the river water level in different lead times from 1 hour to 6 hours applied to the Selangor River. Model performance was evaluated and analyzed using various performance metrics, including mean percentage error (MPE), root mean square error (RMSE), mean absolute error (MAE), and correlation coefficient (R). The results show that the proposed Intelligent Committee Machine Learning (ICML) outperformed SVM and ANFIS for most performance indicators. This method aims to develop a robust and accurate time series forecasting model by combining multiple forecasting techniques and optimizing their contributions, ultimately leading to improved prediction performance.
AbstractList Extreme rainfall in upstream watersheds often results in the rise of river water levels, leading to severe flood disasters in the downstream catchment. Therefore, monitoring river water levels and flow is crucial for flood forecasting in early warning systems and disaster risk reduction. However, forecasting river water levels remains a challenging task that cannot be easily captured with classical time-series approaches. This paper explores the potential of improving flood forecasting accuracy by combining two forecasting techniques: Support Vector Machine (SVM) and Adaptive Neuro-Fuzzy Inference System (ANFIS) by simple averaging and weighted averaging methods and optimizing their contributions. To tune different individuals' weights the genetic algorithm and K-nearest neighbors' algorithm (K-NN) were used to find the optimal weight combination. The committee machine model was employed to forecast the river water level in different lead times from 1 hour to 6 hours applied to the Selangor River. Model performance was evaluated and analyzed using various performance metrics, including mean percentage error (MPE), root mean square error (RMSE), mean absolute error (MAE), and correlation coefficient (R). The results show that the proposed Intelligent Committee Machine Learning (ICML) outperformed SVM and ANFIS for most performance indicators. This method aims to develop a robust and accurate time series forecasting model by combining multiple forecasting techniques and optimizing their contributions, ultimately leading to improved prediction performance.
Author Kasihmuddin, M.
Abdualkarim, S.
Marsani, M.
Author_xml – sequence: 1
  givenname: S.
  surname: Abdualkarim
  fullname: Abdualkarim, S.
– sequence: 2
  givenname: M.
  surname: Kasihmuddin
  fullname: Kasihmuddin, M.
– sequence: 3
  givenname: M.
  surname: Marsani
  fullname: Marsani, M.
BookMark eNot0DFvwjAUBGCrolIpZe7qPxDws504GRGCFonSAdQ1cp5tEonY1IZK_PtSynSnG274nsnAB28JeQU24aIS1bTvkTOeTxifSKkeyJBLyDOhynJw7QJ4VqlKPpFxSl3DZFFwVcpiSDYL32qPnd9TdwjBUBeiRZ1Of4tGPEeNF3pqYzjvW9r1xxh-rKHbrw-qvaGzzXK1pSeLre--zza9kEenD8mO7zkiu-ViN3_P1p9vq_lsnWEJKrPMCN0g17lCySBHZFVjLXMcAK1pRCGgsE4YB2AapyqlFS9BO2WgYEaJEZn-32IMKUXr6mPseh0vNbD6BlLfQWrG6yuI-AXe41a8
Cites_doi 10.1007/s12205-014-0060-y
10.2166/hydro.2007.027
10.1088/1742-6596/1501/1/012012
10.1007/s11356-022-23899-5
10.1109/21.256541
10.1016/j.matcom.2006.09.003
10.1002/met.1717
10.3390/geosciences10040127
10.3390/w10111626
10.1109/LGRS.2015.2439575
10.1007/s00477-016-1272-0
10.22219/kinetik.v6i1.1156
10.1007/s00477-016-1267-x
10.1016/j.agwat.2021.107201
10.1016/j.jhydrol.2019.06.065
10.1061/(ASCE)HE.1943-5584.0001243
10.1007/s00521-013-1443-6
10.1007/s11356-018-3613-7
10.3389/fenvs.2023.1218954
10.1080/09715010.2017.1422192
10.2166/nh.2024.191
10.1080/02626667.2018.1432056
10.1088/1755-1315/1091/1/012041
10.1007/s11269-020-02589-2
10.1016/j.mex.2023.102060
10.1007/s10661-021-09495-z
10.1061/(ASCE)HE.1943-5584.0001185
10.1016/j.oceaneng.2015.10.053
10.1016/j.jhydrol.2021.126258
10.1016/j.jhydrol.2020.125423
ContentType Journal Article
CorporateAuthor School of Mathematical Sciences, Universiti Sains Malaysia
CorporateAuthor_xml – name: School of Mathematical Sciences, Universiti Sains Malaysia
DBID AAYXX
CITATION
DOI 10.23939/mmc2025.02.447
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2415-3788
EndPage 460
ExternalDocumentID 10_23939_mmc2025_02_447
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
OK1
ID FETCH-LOGICAL-c817-e0d3abc2a57c4015cc09bee0f211cedb36316ef3df11dbf797a7281af7d160d73
ISSN 2312-9794
IngestDate Sun Jul 06 05:06:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c817-e0d3abc2a57c4015cc09bee0f211cedb36316ef3df11dbf797a7281af7d160d73
OpenAccessLink https://science.lpnu.ua/sites/default/files/journal-paper/2025/may/39017/2025122447460.pdf
PageCount 14
ParticipantIDs crossref_primary_10_23939_mmc2025_02_447
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle Mathematical Modeling and Computing
PublicationYear 2025
References ref13
Seifi (ref19) 2019; 26
ref15
ref14
Najafzadeh (ref10) 2016; 111
ref31
J.-S. R. ANFIS (ref5) 1993; 23
Liu (ref30) 2017; 31
ref2
J.-S. R. ANFIS (ref12) 1993; 23
ref17
Dehghani (ref24) 2019; 576
ref16
ref18
Faruq (ref1) 2021; 6
Aziz (ref7) 2017; 31
ref23
ref26
ref25
ref20
ref22
ref21
Allahbakhshian-Farsani (ref11) 2020; 34
ref28
ref27
ref29
ref8
ref9
ref4
ref3
ref6
N. (ref0) 2024; 55
References_xml – ident: ref9
  doi: 10.1007/s12205-014-0060-y
– ident: ref16
  doi: 10.2166/hydro.2007.027
– ident: ref31
  doi: 10.1088/1742-6596/1501/1/012012
– ident: ref21
  doi: 10.1007/s11356-022-23899-5
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  ident: ref12
  article-title: adaptive-network-based fuzzy inference system
  publication-title: IEEE Transactions on Systems Man and Cybernetics
  doi: 10.1109/21.256541
– ident: ref20
– ident: ref17
  doi: 10.1016/j.matcom.2006.09.003
– ident: ref29
  doi: 10.1002/met.1717
– ident: ref8
  doi: 10.3390/geosciences10040127
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  ident: ref5
  article-title: Adaptive-Network-Based Fuzzy Inference System
  publication-title: IEEE Transactions on Systems Man and Cybernetics
  doi: 10.1109/21.256541
– ident: ref2
  doi: 10.3390/w10111626
– ident: ref23
  doi: 10.1109/LGRS.2015.2439575
– volume: 31
  start-page: 1499
  year: 2017
  ident: ref7
  article-title: Flood Estimation in Ungauged Catchments: Application of Artificial Intelligence Based Methods for Eastern Australia
  publication-title: Stochastic Environmental Research and Risk Assessment
  doi: 10.1007/s00477-016-1272-0
– volume: 6
  start-page: 1
  issue: 1
  year: 2021
  ident: ref1
  article-title: application of ANFIS for river water level forecasting
  publication-title: Kinetik
  doi: 10.22219/kinetik.v6i1.1156
– volume: 31
  start-page: 1471
  year: 2017
  ident: ref30
  article-title: Comparison of three updating models for real time forecasting: A case study of flood forecasting at the middle reaches of the Huai River in East China
  publication-title: Stochastic Environmental Research and Risk Assessment
  doi: 10.1007/s00477-016-1267-x
– ident: ref18
  doi: 10.1016/j.agwat.2021.107201
– volume: 576
  start-page: 698
  year: 2019
  ident: ref24
  article-title: Novel forecasting models for immediate-short-term to long-term influent flow prediction by combining ANFIS and grey wolf optimization
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2019.06.065
– ident: ref13
  doi: 10.1061/(ASCE)HE.1943-5584.0001243
– ident: ref4
  doi: 10.1007/s00521-013-1443-6
– volume: 26
  start-page: 867
  year: 2019
  ident: ref19
  article-title: Improving one-dimensional pollution dispersion modeling in rivers using ANFIS and ANN-based GA optimized models
  publication-title: Environmental Science and Pollution Research
  doi: 10.1007/s11356-018-3613-7
– ident: ref27
  doi: 10.3389/fenvs.2023.1218954
– ident: ref3
  doi: 10.1080/09715010.2017.1422192
– volume: 55
  start-page: 560
  issue: 5
  year: 2024
  ident: ref0
  article-title: a case study
  publication-title: Hydrology Research
  doi: 10.2166/nh.2024.191
– ident: ref14
  doi: 10.1080/02626667.2018.1432056
– ident: ref26
  doi: 10.1088/1755-1315/1091/1/012041
– volume: 34
  start-page: 2887
  year: 2020
  ident: ref11
  article-title: Hertig E. Regional Flood Frequency Analysis Through Some Machine Learning Models in Semi-arid Regions
  publication-title: Water Resources Management
  doi: 10.1007/s11269-020-02589-2
– ident: ref15
  doi: 10.1016/j.mex.2023.102060
– ident: ref25
  doi: 10.1007/s10661-021-09495-z
– ident: ref6
  doi: 10.1061/(ASCE)HE.1943-5584.0001185
– volume: 111
  start-page: 128
  year: 2016
  ident: ref10
  article-title: Scour Prediction in Long Contractions using ANFIS and SVM
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2015.10.053
– ident: ref22
  doi: 10.1016/j.jhydrol.2021.126258
– ident: ref28
  doi: 10.1016/j.jhydrol.2020.125423
SSID ssib046627846
ssib044752581
Score 1.8970957
Snippet Extreme rainfall in upstream watersheds often results in the rise of river water levels, leading to severe flood disasters in the downstream catchment....
SourceID crossref
SourceType Index Database
StartPage 447
Title Enhancing flood forecasting accuracy through improved SVM and ANFIS techniques
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYKvfSCqFpEecmHHipVWRzHGydHhHZFK2UvbBG3yBk7AqFd0D4uPfS3M2Mn2YCKBFyirJOd3WQ-jWfsmW8Y-y5yA5WyOqpNmkQqURAZW6tIGKUUpMLFnmKjmKQXf9Tv6-H1ZkfXV5esqgH8_W9dyXu0imOoV6qSfYNmO6E4gOeoXzyihvH4Kh2P5jdEl0G5kJR_TimDDszSZzIbgPWCerm3nXhu_fIB-ZdXhd8yOJuMf13-7Ehcl30_tejYXKl2l7rltMWMoQ1EO-H5jSMq57rDmNtD63LQ2XCzvL2Zra0NNAVFd6HAYDq0kmoHm2WHUJwc7BJ6hDLKdehNPHBhDP2AiKjpnxhW2QOQ7FlJFUg2mwlXhYYCz205cbMRF-psBvT7xKzafa_Pmv1sNutyDDG68SLKRkApZIkCtthHiREF2fDi36g1PUR7KHtMcIp48TMVWhM2jxuIobzM06d_qufT9JyT6S7baaIKfhYg8pl9cPMvbNLBg3t48B48eAsP3sCDt_DgCA-OiuYeHnwDj69sOh5Nzy-ipn1GBBm6Hk7YxFQgzVADBtFDAJFXzokaQ35wtkrSJE5dndg6jm1V61wbLbPY1NrGqbA62WPb8_u522fcWFEr0DlkDlRi80zmcigp2M4d-of2G_vRPn_5EEhSyhde_8Hrbz1kn-hTWO86Yturxdodowe4qk687h4BvwFaaQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+flood+forecasting+accuracy+through+improved+SVM+and+ANFIS+techniques&rft.jtitle=Mathematical+Modeling+and+Computing&rft.au=Abdualkarim%2C+S.&rft.au=Kasihmuddin%2C+M.&rft.au=Marsani%2C+M.&rft.date=2025&rft.issn=2312-9794&rft.eissn=2415-3788&rft.volume=12&rft.issue=2&rft.spage=447&rft.epage=460&rft_id=info:doi/10.23939%2Fmmc2025.02.447&rft.externalDBID=n%2Fa&rft.externalDocID=10_23939_mmc2025_02_447
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2312-9794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2312-9794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2312-9794&client=summon