Enhancing flood forecasting accuracy through improved SVM and ANFIS techniques
Extreme rainfall in upstream watersheds often results in the rise of river water levels, leading to severe flood disasters in the downstream catchment. Therefore, monitoring river water levels and flow is crucial for flood forecasting in early warning systems and disaster risk reduction. However, fo...
Saved in:
Published in | Mathematical Modeling and Computing Vol. 12; no. 2; pp. 447 - 460 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | Extreme rainfall in upstream watersheds often results in the rise of river water levels, leading to severe flood disasters in the downstream catchment. Therefore, monitoring river water levels and flow is crucial for flood forecasting in early warning systems and disaster risk reduction. However, forecasting river water levels remains a challenging task that cannot be easily captured with classical time-series approaches. This paper explores the potential of improving flood forecasting accuracy by combining two forecasting techniques: Support Vector Machine (SVM) and Adaptive Neuro-Fuzzy Inference System (ANFIS) by simple averaging and weighted averaging methods and optimizing their contributions. To tune different individuals' weights the genetic algorithm and K-nearest neighbors' algorithm (K-NN) were used to find the optimal weight combination. The committee machine model was employed to forecast the river water level in different lead times from 1 hour to 6 hours applied to the Selangor River. Model performance was evaluated and analyzed using various performance metrics, including mean percentage error (MPE), root mean square error (RMSE), mean absolute error (MAE), and correlation coefficient (R). The results show that the proposed Intelligent Committee Machine Learning (ICML) outperformed SVM and ANFIS for most performance indicators. This method aims to develop a robust and accurate time series forecasting model by combining multiple forecasting techniques and optimizing their contributions, ultimately leading to improved prediction performance. |
---|---|
AbstractList | Extreme rainfall in upstream watersheds often results in the rise of river water levels, leading to severe flood disasters in the downstream catchment. Therefore, monitoring river water levels and flow is crucial for flood forecasting in early warning systems and disaster risk reduction. However, forecasting river water levels remains a challenging task that cannot be easily captured with classical time-series approaches. This paper explores the potential of improving flood forecasting accuracy by combining two forecasting techniques: Support Vector Machine (SVM) and Adaptive Neuro-Fuzzy Inference System (ANFIS) by simple averaging and weighted averaging methods and optimizing their contributions. To tune different individuals' weights the genetic algorithm and K-nearest neighbors' algorithm (K-NN) were used to find the optimal weight combination. The committee machine model was employed to forecast the river water level in different lead times from 1 hour to 6 hours applied to the Selangor River. Model performance was evaluated and analyzed using various performance metrics, including mean percentage error (MPE), root mean square error (RMSE), mean absolute error (MAE), and correlation coefficient (R). The results show that the proposed Intelligent Committee Machine Learning (ICML) outperformed SVM and ANFIS for most performance indicators. This method aims to develop a robust and accurate time series forecasting model by combining multiple forecasting techniques and optimizing their contributions, ultimately leading to improved prediction performance. |
Author | Kasihmuddin, M. Abdualkarim, S. Marsani, M. |
Author_xml | – sequence: 1 givenname: S. surname: Abdualkarim fullname: Abdualkarim, S. – sequence: 2 givenname: M. surname: Kasihmuddin fullname: Kasihmuddin, M. – sequence: 3 givenname: M. surname: Marsani fullname: Marsani, M. |
BookMark | eNot0DFvwjAUBGCrolIpZe7qPxDws504GRGCFonSAdQ1cp5tEonY1IZK_PtSynSnG274nsnAB28JeQU24aIS1bTvkTOeTxifSKkeyJBLyDOhynJw7QJ4VqlKPpFxSl3DZFFwVcpiSDYL32qPnd9TdwjBUBeiRZ1Of4tGPEeNF3pqYzjvW9r1xxh-rKHbrw-qvaGzzXK1pSeLre--zza9kEenD8mO7zkiu-ViN3_P1p9vq_lsnWEJKrPMCN0g17lCySBHZFVjLXMcAK1pRCGgsE4YB2AapyqlFS9BO2WgYEaJEZn-32IMKUXr6mPseh0vNbD6BlLfQWrG6yuI-AXe41a8 |
Cites_doi | 10.1007/s12205-014-0060-y 10.2166/hydro.2007.027 10.1088/1742-6596/1501/1/012012 10.1007/s11356-022-23899-5 10.1109/21.256541 10.1016/j.matcom.2006.09.003 10.1002/met.1717 10.3390/geosciences10040127 10.3390/w10111626 10.1109/LGRS.2015.2439575 10.1007/s00477-016-1272-0 10.22219/kinetik.v6i1.1156 10.1007/s00477-016-1267-x 10.1016/j.agwat.2021.107201 10.1016/j.jhydrol.2019.06.065 10.1061/(ASCE)HE.1943-5584.0001243 10.1007/s00521-013-1443-6 10.1007/s11356-018-3613-7 10.3389/fenvs.2023.1218954 10.1080/09715010.2017.1422192 10.2166/nh.2024.191 10.1080/02626667.2018.1432056 10.1088/1755-1315/1091/1/012041 10.1007/s11269-020-02589-2 10.1016/j.mex.2023.102060 10.1007/s10661-021-09495-z 10.1061/(ASCE)HE.1943-5584.0001185 10.1016/j.oceaneng.2015.10.053 10.1016/j.jhydrol.2021.126258 10.1016/j.jhydrol.2020.125423 |
ContentType | Journal Article |
CorporateAuthor | School of Mathematical Sciences, Universiti Sains Malaysia |
CorporateAuthor_xml | – name: School of Mathematical Sciences, Universiti Sains Malaysia |
DBID | AAYXX CITATION |
DOI | 10.23939/mmc2025.02.447 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2415-3788 |
EndPage | 460 |
ExternalDocumentID | 10_23939_mmc2025_02_447 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION OK1 |
ID | FETCH-LOGICAL-c817-e0d3abc2a57c4015cc09bee0f211cedb36316ef3df11dbf797a7281af7d160d73 |
ISSN | 2312-9794 |
IngestDate | Sun Jul 06 05:06:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c817-e0d3abc2a57c4015cc09bee0f211cedb36316ef3df11dbf797a7281af7d160d73 |
OpenAccessLink | https://science.lpnu.ua/sites/default/files/journal-paper/2025/may/39017/2025122447460.pdf |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_23939_mmc2025_02_447 |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationTitle | Mathematical Modeling and Computing |
PublicationYear | 2025 |
References | ref13 Seifi (ref19) 2019; 26 ref15 ref14 Najafzadeh (ref10) 2016; 111 ref31 J.-S. R. ANFIS (ref5) 1993; 23 Liu (ref30) 2017; 31 ref2 J.-S. R. ANFIS (ref12) 1993; 23 ref17 Dehghani (ref24) 2019; 576 ref16 ref18 Faruq (ref1) 2021; 6 Aziz (ref7) 2017; 31 ref23 ref26 ref25 ref20 ref22 ref21 Allahbakhshian-Farsani (ref11) 2020; 34 ref28 ref27 ref29 ref8 ref9 ref4 ref3 ref6 N. (ref0) 2024; 55 |
References_xml | – ident: ref9 doi: 10.1007/s12205-014-0060-y – ident: ref16 doi: 10.2166/hydro.2007.027 – ident: ref31 doi: 10.1088/1742-6596/1501/1/012012 – ident: ref21 doi: 10.1007/s11356-022-23899-5 – volume: 23 start-page: 665 issue: 3 year: 1993 ident: ref12 article-title: adaptive-network-based fuzzy inference system publication-title: IEEE Transactions on Systems Man and Cybernetics doi: 10.1109/21.256541 – ident: ref20 – ident: ref17 doi: 10.1016/j.matcom.2006.09.003 – ident: ref29 doi: 10.1002/met.1717 – ident: ref8 doi: 10.3390/geosciences10040127 – volume: 23 start-page: 665 issue: 3 year: 1993 ident: ref5 article-title: Adaptive-Network-Based Fuzzy Inference System publication-title: IEEE Transactions on Systems Man and Cybernetics doi: 10.1109/21.256541 – ident: ref2 doi: 10.3390/w10111626 – ident: ref23 doi: 10.1109/LGRS.2015.2439575 – volume: 31 start-page: 1499 year: 2017 ident: ref7 article-title: Flood Estimation in Ungauged Catchments: Application of Artificial Intelligence Based Methods for Eastern Australia publication-title: Stochastic Environmental Research and Risk Assessment doi: 10.1007/s00477-016-1272-0 – volume: 6 start-page: 1 issue: 1 year: 2021 ident: ref1 article-title: application of ANFIS for river water level forecasting publication-title: Kinetik doi: 10.22219/kinetik.v6i1.1156 – volume: 31 start-page: 1471 year: 2017 ident: ref30 article-title: Comparison of three updating models for real time forecasting: A case study of flood forecasting at the middle reaches of the Huai River in East China publication-title: Stochastic Environmental Research and Risk Assessment doi: 10.1007/s00477-016-1267-x – ident: ref18 doi: 10.1016/j.agwat.2021.107201 – volume: 576 start-page: 698 year: 2019 ident: ref24 article-title: Novel forecasting models for immediate-short-term to long-term influent flow prediction by combining ANFIS and grey wolf optimization publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2019.06.065 – ident: ref13 doi: 10.1061/(ASCE)HE.1943-5584.0001243 – ident: ref4 doi: 10.1007/s00521-013-1443-6 – volume: 26 start-page: 867 year: 2019 ident: ref19 article-title: Improving one-dimensional pollution dispersion modeling in rivers using ANFIS and ANN-based GA optimized models publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-018-3613-7 – ident: ref27 doi: 10.3389/fenvs.2023.1218954 – ident: ref3 doi: 10.1080/09715010.2017.1422192 – volume: 55 start-page: 560 issue: 5 year: 2024 ident: ref0 article-title: a case study publication-title: Hydrology Research doi: 10.2166/nh.2024.191 – ident: ref14 doi: 10.1080/02626667.2018.1432056 – ident: ref26 doi: 10.1088/1755-1315/1091/1/012041 – volume: 34 start-page: 2887 year: 2020 ident: ref11 article-title: Hertig E. Regional Flood Frequency Analysis Through Some Machine Learning Models in Semi-arid Regions publication-title: Water Resources Management doi: 10.1007/s11269-020-02589-2 – ident: ref15 doi: 10.1016/j.mex.2023.102060 – ident: ref25 doi: 10.1007/s10661-021-09495-z – ident: ref6 doi: 10.1061/(ASCE)HE.1943-5584.0001185 – volume: 111 start-page: 128 year: 2016 ident: ref10 article-title: Scour Prediction in Long Contractions using ANFIS and SVM publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2015.10.053 – ident: ref22 doi: 10.1016/j.jhydrol.2021.126258 – ident: ref28 doi: 10.1016/j.jhydrol.2020.125423 |
SSID | ssib046627846 ssib044752581 |
Score | 1.8970957 |
Snippet | Extreme rainfall in upstream watersheds often results in the rise of river water levels, leading to severe flood disasters in the downstream catchment.... |
SourceID | crossref |
SourceType | Index Database |
StartPage | 447 |
Title | Enhancing flood forecasting accuracy through improved SVM and ANFIS techniques |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYKvfSCqFpEecmHHipVWRzHGydHhHZFK2UvbBG3yBk7AqFd0D4uPfS3M2Mn2YCKBFyirJOd3WQ-jWfsmW8Y-y5yA5WyOqpNmkQqURAZW6tIGKUUpMLFnmKjmKQXf9Tv6-H1ZkfXV5esqgH8_W9dyXu0imOoV6qSfYNmO6E4gOeoXzyihvH4Kh2P5jdEl0G5kJR_TimDDszSZzIbgPWCerm3nXhu_fIB-ZdXhd8yOJuMf13-7Ehcl30_tejYXKl2l7rltMWMoQ1EO-H5jSMq57rDmNtD63LQ2XCzvL2Zra0NNAVFd6HAYDq0kmoHm2WHUJwc7BJ6hDLKdehNPHBhDP2AiKjpnxhW2QOQ7FlJFUg2mwlXhYYCz205cbMRF-psBvT7xKzafa_Pmv1sNutyDDG68SLKRkApZIkCtthHiREF2fDi36g1PUR7KHtMcIp48TMVWhM2jxuIobzM06d_qufT9JyT6S7baaIKfhYg8pl9cPMvbNLBg3t48B48eAsP3sCDt_DgCA-OiuYeHnwDj69sOh5Nzy-ipn1GBBm6Hk7YxFQgzVADBtFDAJFXzokaQ35wtkrSJE5dndg6jm1V61wbLbPY1NrGqbA62WPb8_u522fcWFEr0DlkDlRi80zmcigp2M4d-of2G_vRPn_5EEhSyhde_8Hrbz1kn-hTWO86Yturxdodowe4qk687h4BvwFaaQ |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+flood+forecasting+accuracy+through+improved+SVM+and+ANFIS+techniques&rft.jtitle=Mathematical+Modeling+and+Computing&rft.au=Abdualkarim%2C+S.&rft.au=Kasihmuddin%2C+M.&rft.au=Marsani%2C+M.&rft.date=2025&rft.issn=2312-9794&rft.eissn=2415-3788&rft.volume=12&rft.issue=2&rft.spage=447&rft.epage=460&rft_id=info:doi/10.23939%2Fmmc2025.02.447&rft.externalDBID=n%2Fa&rft.externalDocID=10_23939_mmc2025_02_447 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2312-9794&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2312-9794&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2312-9794&client=summon |