Defects of mitochondrial RNA turnover lead to the accumulation of double-stranded RNA in vivo

The RNA helicase SUV3 and the polynucleotide phosphorylase PNPase are involved in the degradation of mitochondrial mRNAs but their roles in vivo are not fully understood. Additionally, upstream processes, such as transcript maturation, have been linked to some of these factors, suggesting either dua...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 15; no. 7; p. e1008240
Main Authors Pajak, Aleksandra, Laine, Isabelle, Clemente, Paula, El-Fissi, Najla, Schober, Florian A., Maffezzini, Camilla, Calvo-Garrido, Javier, Wibom, Rolf, Filograna, Roberta, Dhir, Ashish, Wedell, Anna, Freyer, Christoph, Wredenberg, Anna
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.07.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7404
1553-7390
1553-7404
DOI10.1371/journal.pgen.1008240

Cover

Loading…
Abstract The RNA helicase SUV3 and the polynucleotide phosphorylase PNPase are involved in the degradation of mitochondrial mRNAs but their roles in vivo are not fully understood. Additionally, upstream processes, such as transcript maturation, have been linked to some of these factors, suggesting either dual roles or tightly interconnected mechanisms of mitochondrial RNA metabolism. To get a better understanding of the turn-over of mitochondrial RNAs in vivo, we manipulated the mitochondrial mRNA degrading complex in Drosophila melanogaster models and studied the molecular consequences. Additionally, we investigated if and how these factors interact with the mitochondrial poly(A) polymerase, MTPAP, as well as with the mitochondrial mRNA stabilising factor, LRPPRC. Our results demonstrate a tight interdependency of mitochondrial mRNA stability, polyadenylation and the removal of antisense RNA. Furthermore, disruption of degradation, as well as polyadenylation, leads to the accumulation of double-stranded RNAs, and their escape out into the cytoplasm is associated with an altered immune-response in flies. Together our results suggest a highly organised and inter-dependable regulation of mitochondrial RNA metabolism with far reaching consequences on cellular physiology.
AbstractList The RNA helicase SUV3 and the polynucleotide phosphorylase PNPase are involved in the degradation of mitochondrial mRNAs but their roles in vivo are not fully understood. Additionally, upstream processes, such as transcript maturation, have been linked to some of these factors, suggesting either dual roles or tightly interconnected mechanisms of mitochondrial RNA metabolism. To get a better understanding of the turn-over of mitochondrial RNAs in vivo, we manipulated the mitochondrial mRNA degrading complex in Drosophila melanogaster models and studied the molecular consequences. Additionally, we investigated if and how these factors interact with the mitochondrial poly(A) polymerase, MTPAP, as well as with the mitochondrial mRNA stabilising factor, LRPPRC. Our results demonstrate a tight interdependency of mitochondrial mRNA stability, polyadenylation and the removal of antisense RNA. Furthermore, disruption of degradation, as well as polyadenylation, leads to the accumulation of double-stranded RNAs, and their escape out into the cytoplasm is associated with an altered immune-response in flies. Together our results suggest a highly organised and inter-dependable regulation of mitochondrial RNA metabolism with far reaching consequences on cellular physiology.
The RNA helicase SUV3 and the polynucleotide phosphorylase PNPase are involved in the degradation of mitochondrial mRNAs but their roles in vivo are not fully understood. Additionally, upstream processes, such as transcript maturation, have been linked to some of these factors, suggesting either dual roles or tightly interconnected mechanisms of mitochondrial RNA metabolism. To get a better understanding of the turn-over of mitochondrial RNAs in vivo , we manipulated the mitochondrial mRNA degrading complex in Drosophila melanogaster models and studied the molecular consequences. Additionally, we investigated if and how these factors interact with the mitochondrial poly(A) polymerase, MTPAP, as well as with the mitochondrial mRNA stabilising factor, LRPPRC. Our results demonstrate a tight interdependency of mitochondrial mRNA stability, polyadenylation and the removal of antisense RNA. Furthermore, disruption of degradation, as well as polyadenylation, leads to the accumulation of double-stranded RNAs, and their escape out into the cytoplasm is associated with an altered immune-response in flies. Together our results suggest a highly organised and inter-dependable regulation of mitochondrial RNA metabolism with far reaching consequences on cellular physiology. Although a number of factors have been implemented in the turnover of mitochondrial (mt) DNA-derived transcripts, their exact functions and interplay with one another is not entirely clear. Several of these factors have been proposed to co-ordinately regulate both transcript maturation, as well as degradation, but the order of events during mitochondrial RNA turnover is less well understood. Using a range of different genetically modified D rosophila melanogaster models, we studied the involvement of the RNA helicase SUV3, the polynucleotide phosphorylase PNPase, the leucine-rich pentatricopeptide repeat motif-containing protein LRPPRC, and the mitochondrial RNA poly(A) polymerase MTPAP, in stabilisation, polyadenylation, and degradation of mitochondrial transcripts. Our results show a tight collaborative activity of these factors in vivo and reveal a clear hierarchical order of events leading to mitochondrial mRNA maturation. Furthermore, we demonstrate that the loss of SUV3, PNPase, or MTPAP leads to the accumulation of mitochondrial-derived antisense RNA in the cytoplasm of cells, which is associated with an altered immune-response in flies.
The RNA helicase SUV3 and the polynucleotide phosphorylase PNPase are involved in the degradation of mitochondrial mRNAs but their roles in vivo are not fully understood. Additionally, upstream processes, such as transcript maturation, have been linked to some of these factors, suggesting either dual roles or tightly interconnected mechanisms of mitochondrial RNA metabolism. To get a better understanding of the turn-over of mitochondrial RNAs in vivo, we manipulated the mitochondrial mRNA degrading complex in Drosophila melanogaster models and studied the molecular consequences. Additionally, we investigated if and how these factors interact with the mitochondrial poly(A) polymerase, MTPAP, as well as with the mitochondrial mRNA stabilising factor, LRPPRC. Our results demonstrate a tight interdependency of mitochondrial mRNA stability, polyadenylation and the removal of antisense RNA. Furthermore, disruption of degradation, as well as polyadenylation, leads to the accumulation of double-stranded RNAs, and their escape out into the cytoplasm is associated with an altered immune-response in flies. Together our results suggest a highly organised and inter-dependable regulation of mitochondrial RNA metabolism with far reaching consequences on cellular physiology.The RNA helicase SUV3 and the polynucleotide phosphorylase PNPase are involved in the degradation of mitochondrial mRNAs but their roles in vivo are not fully understood. Additionally, upstream processes, such as transcript maturation, have been linked to some of these factors, suggesting either dual roles or tightly interconnected mechanisms of mitochondrial RNA metabolism. To get a better understanding of the turn-over of mitochondrial RNAs in vivo, we manipulated the mitochondrial mRNA degrading complex in Drosophila melanogaster models and studied the molecular consequences. Additionally, we investigated if and how these factors interact with the mitochondrial poly(A) polymerase, MTPAP, as well as with the mitochondrial mRNA stabilising factor, LRPPRC. Our results demonstrate a tight interdependency of mitochondrial mRNA stability, polyadenylation and the removal of antisense RNA. Furthermore, disruption of degradation, as well as polyadenylation, leads to the accumulation of double-stranded RNAs, and their escape out into the cytoplasm is associated with an altered immune-response in flies. Together our results suggest a highly organised and inter-dependable regulation of mitochondrial RNA metabolism with far reaching consequences on cellular physiology.
Audience Academic
Author Wredenberg, Anna
El-Fissi, Najla
Wedell, Anna
Pajak, Aleksandra
Calvo-Garrido, Javier
Filograna, Roberta
Maffezzini, Camilla
Wibom, Rolf
Clemente, Paula
Laine, Isabelle
Freyer, Christoph
Dhir, Ashish
Schober, Florian A.
AuthorAffiliation 1 Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
3 Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
2 Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
University of Cologne, GERMANY
4 Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
5 Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
AuthorAffiliation_xml – name: 4 Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
– name: 5 Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
– name: 1 Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
– name: University of Cologne, GERMANY
– name: 2 Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
– name: 3 Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
Author_xml – sequence: 1
  givenname: Aleksandra
  orcidid: 0000-0001-8294-9620
  surname: Pajak
  fullname: Pajak, Aleksandra
– sequence: 2
  givenname: Isabelle
  surname: Laine
  fullname: Laine, Isabelle
– sequence: 3
  givenname: Paula
  orcidid: 0000-0002-6885-3750
  surname: Clemente
  fullname: Clemente, Paula
– sequence: 4
  givenname: Najla
  surname: El-Fissi
  fullname: El-Fissi, Najla
– sequence: 5
  givenname: Florian A.
  orcidid: 0000-0003-4604-6170
  surname: Schober
  fullname: Schober, Florian A.
– sequence: 6
  givenname: Camilla
  orcidid: 0000-0002-0397-1609
  surname: Maffezzini
  fullname: Maffezzini, Camilla
– sequence: 7
  givenname: Javier
  surname: Calvo-Garrido
  fullname: Calvo-Garrido, Javier
– sequence: 8
  givenname: Rolf
  orcidid: 0000-0001-6721-4642
  surname: Wibom
  fullname: Wibom, Rolf
– sequence: 9
  givenname: Roberta
  surname: Filograna
  fullname: Filograna, Roberta
– sequence: 10
  givenname: Ashish
  surname: Dhir
  fullname: Dhir, Ashish
– sequence: 11
  givenname: Anna
  surname: Wedell
  fullname: Wedell, Anna
– sequence: 12
  givenname: Christoph
  orcidid: 0000-0003-0418-1673
  surname: Freyer
  fullname: Freyer, Christoph
– sequence: 13
  givenname: Anna
  orcidid: 0000-0002-2500-6121
  surname: Wredenberg
  fullname: Wredenberg, Anna
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31365523$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:141583679$$DView record from Swedish Publication Index
BookMark eNqVk12L1DAYhYusuB_6D0QLgujFjEmTJq0XwrB-LSy7sH7cSUiTtzNZM83YpKP-e9OZ7jpdlkVpoeHNc07Sk7yHyV7jGkiSxxhNMeH41aXr2kba6WoOzRQjVGQU3UsOcJ6TCaeI7u2M95ND7y8RInlR8gfJPsGE5XlGDpJvb6EGFXzq6nRpglML1-jWSJtenM3SEJdwa2hTC1KnwaVhAalUqlt2Vgbjml6mXVdZmPjQykaD3ghNk67N2j1M7tfSeng0fI-SL-_ffT7-ODk9_3ByPDudqAKzMAGkaFlzViJW1rkCnfECc42YUhjVEinIM11LWdYEypJohRiqGM6BKFBxhhwlT7e-K-u8GJLxIss4QzkhlN5BUJrFN4vEyZbQTl6KVWuWsv0tnDRiU3DtXMg2GGVBgOQKMMGcM6Alx1JzWmpe00xVVZFX0Wuy9fI_YdVVI7eh9D2OQFBeINzv7s2wu65aglbQxDDtSDaeacxCzN1aMMYKXqJo8GIwaN2PDnwQS-MVWCsbcF3_n4zzEiOWR_TZDfT2vO6i_mY2UHMZYzFN7eLuVL-0mOVlTjjDpKemt1Dx0bA0Kt7q2sT6SPByJIhMgF9hLjvvxcmni_9gz_6dPf86Zp_vsAuQNiy8s11_6_0YfLJ7dteHdtVjEaBbQLXO-xbqawQj0bfyVbSib2UxtHKUvb4hUyZsmi6mZ-zd4j8HGkwR
CitedBy_id crossref_primary_10_1016_j_braindev_2020_10_005
crossref_primary_10_1093_nar_gkab896
crossref_primary_10_3390_genes15060694
crossref_primary_10_3390_ijms22168523
crossref_primary_10_1002_pro_4312
crossref_primary_10_3390_ijms22179502
crossref_primary_10_1016_j_peptides_2024_171164
crossref_primary_10_1002_wrna_1622
crossref_primary_10_3390_ijms25147738
crossref_primary_10_1038_s41467_022_33368_9
crossref_primary_10_3389_fcell_2023_1270341
crossref_primary_10_3389_fcell_2022_796066
crossref_primary_10_1016_j_molmed_2020_09_001
crossref_primary_10_1089_ars_2023_0367
crossref_primary_10_1093_nar_gkab228
crossref_primary_10_1016_j_jbc_2023_105073
crossref_primary_10_1007_s00296_021_04906_3
crossref_primary_10_1038_s12276_023_01121_x
crossref_primary_10_1073_pnas_2215966119
crossref_primary_10_1371_journal_pbio_3000996
crossref_primary_10_26508_lsa_202201695
crossref_primary_10_3390_cells9010017
crossref_primary_10_3390_ijms23116141
crossref_primary_10_1089_ars_2021_0073
crossref_primary_10_1042_BSR20211693
crossref_primary_10_7554_eLife_95407
crossref_primary_10_1016_j_mcpro_2021_100065
crossref_primary_10_3390_ijms232315288
crossref_primary_10_1016_j_molcel_2024_06_023
crossref_primary_10_26508_lsa_202402764
crossref_primary_10_1016_j_immuni_2020_06_014
crossref_primary_10_3390_ijms24119233
crossref_primary_10_1016_j_celrep_2022_110976
crossref_primary_10_3390_ncrna7010015
crossref_primary_10_1016_j_tibs_2024_08_001
crossref_primary_10_1038_s41419_023_05988_6
crossref_primary_10_1016_j_bbrc_2024_150725
crossref_primary_10_3389_fimmu_2022_917998
crossref_primary_10_3390_jcm8112020
crossref_primary_10_1093_nar_gkae662
crossref_primary_10_26508_lsa_202302396
crossref_primary_10_1002_wrna_1690
crossref_primary_10_1016_j_tig_2022_08_004
Cites_doi 10.15252/embr.201745241
10.1093/nar/gkr1281
10.1007/s00018-017-2453-9
10.1016/j.bbagrm.2011.10.007
10.1016/S0065-3527(08)00406-5
10.1016/S0006-291X(75)80357-3
10.1016/j.ajhg.2012.09.002
10.1534/genetics.105.046243
10.1016/j.celrep.2016.07.031
10.1038/nprot.2006.273
10.1146/annurev-biochem-060815-014402
10.1038/s41467-017-01221-z
10.1093/nar/gkx104
10.1074/jbc.M113.536540
10.4161/rna.29781
10.1093/bioinformatics/btp352
10.1093/nar/gkl181
10.1134/S1607672916060065
10.18388/abp.1999_4193
10.1093/nar/gkw575
10.1038/290470a0
10.1093/nar/gkx902
10.1111/j.1365-313X.2009.03853.x
10.1093/nar/gkv692
10.1016/j.cell.2017.04.004
10.1101/gad.1482006
10.1038/ni1335
10.1128/MCB.23.14.4972-4982.2003
10.1074/jbc.M109.098400
10.1038/nbt.1754
10.1534/genetics.113.160713
10.1016/j.cell.2014.11.036
10.1016/j.cell.2010.06.035
10.1016/j.mito.2012.06.010
10.4161/cc.10.17.17060
10.1371/journal.pgen.1003800
10.1038/ncomms9808
10.1111/j.1365-2583.1995.tb00032.x
10.1093/nar/gks506
10.1042/BJ20110985
10.1038/emboj.2011.392
10.1073/pnas.1405500111
10.1093/nar/gks1130
10.1093/hmg/ddu352
10.1016/j.ajhg.2012.09.001
10.1093/hmg/ddx221
10.1093/hmg/ddg238
10.1093/nar/gkp903
10.1371/journal.pgen.1002324
10.1016/j.bbagrm.2011.11.003
10.1038/nri.2017.21
10.1080/15216540500215572
10.1038/s41586-018-0363-0
10.1038/nmeth.4197
10.1093/nar/gkh182
10.1371/journal.pgen.1006028
10.1074/jbc.M109.009605
10.1038/nature14156
10.1074/jbc.M500804200
10.1038/nmeth.1923
10.1016/j.cmet.2014.03.013
10.1016/j.cell.2014.11.037
10.1016/S0003-2697(02)00424-4
10.1016/j.cell.2009.01.019
10.1038/s41467-018-05007-9
10.1016/j.metabol.2017.11.010
10.1016/j.bbrc.2010.07.019
10.1073/pnas.68.8.1757
10.1126/science.1125694
10.4161/rna.24770
ContentType Journal Article
Copyright COPYRIGHT 2019 Public Library of Science
2019 Pajak et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 Pajak et al 2019 Pajak et al
Copyright_xml – notice: COPYRIGHT 2019 Public Library of Science
– notice: 2019 Pajak et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 Pajak et al 2019 Pajak et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
3V.
7QP
7QR
7SS
7TK
7TM
7TO
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
DOA
DOI 10.1371/journal.pgen.1008240
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



Publicly Available Content Database
Publicly Available Content Database


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Medicine
DocumentTitleAlternate Defects in mitochondrial RNA metabolism results in ds RNA formation
EISSN 1553-7404
ExternalDocumentID 2276053344
2274424422
oai_doaj_org_article_ea7ce131776e4971ad749d7f42cbb85b
oai_swepub_ki_se_478014
PMC6668790
A595376132
31365523
10_1371_journal_pgen_1008240
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Sweden
GeographicLocations_xml – name: Sweden
GrantInformation_xml – fundername: ;
  grantid: VR2016-02179
– fundername: ;
  grantid: M77/13
– fundername: ;
  grantid: 715009
– fundername: ;
  grantid: 2013.0026
– fundername: ;
  grantid: VR2016-01082
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
ADRAZ
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M~E
NPM
RIG
WOQ
PMFND
7QP
7QR
7SS
7TK
7TM
7TO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
ADTPV
AOWAS
D8T
PUEGO
ZZAVC
-
AAPBV
ABPTK
ADACO
BBAFP
ID FETCH-LOGICAL-c816t-e0c49f769069f5ced27817d06cc10fa0ce52dfaa9f3e993dc060b615e3cec2df3
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Fri Nov 26 17:12:44 EST 2021
Wed Aug 27 01:00:17 EDT 2025
Mon Sep 01 03:22:36 EDT 2025
Thu Aug 21 13:51:18 EDT 2025
Fri Jul 11 15:16:55 EDT 2025
Fri Jul 25 12:10:13 EDT 2025
Fri Jul 25 12:12:22 EDT 2025
Tue Jun 17 21:40:05 EDT 2025
Tue Jun 10 20:30:35 EDT 2025
Fri Jun 27 03:40:53 EDT 2025
Fri Jun 27 04:31:18 EDT 2025
Fri Jun 27 03:34:03 EDT 2025
Thu May 22 21:22:13 EDT 2025
Wed Feb 19 02:30:18 EST 2025
Thu Apr 24 22:59:41 EDT 2025
Tue Jul 01 00:24:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c816t-e0c49f769069f5ced27817d06cc10fa0ce52dfaa9f3e993dc060b615e3cec2df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0002-0397-1609
0000-0003-0418-1673
0000-0001-8294-9620
0000-0002-6885-3750
0000-0003-4604-6170
0000-0001-6721-4642
0000-0002-2500-6121
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1008240
PMID 31365523
PQID 2274424422
PQPubID 1436339
ParticipantIDs plos_journals_2276053344
plos_journals_2274424422
doaj_primary_oai_doaj_org_article_ea7ce131776e4971ad749d7f42cbb85b
swepub_primary_oai_swepub_ki_se_478014
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6668790
proquest_miscellaneous_2267791065
proquest_journals_2276053344
proquest_journals_2274424422
gale_infotracmisc_A595376132
gale_infotracacademiconefile_A595376132
gale_incontextgauss_ISR_A595376132
gale_incontextgauss_ISN_A595376132
gale_incontextgauss_IOV_A595376132
gale_healthsolutions_A595376132
pubmed_primary_31365523
crossref_primary_10_1371_journal_pgen_1008240
crossref_citationtrail_10_1371_journal_pgen_1008240
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2019
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References DD-H Wang (ref21) 2009; 284
S Ameln von (ref45) 2012; 91
X Xie (ref17) 2015; 247
H Spåhr (ref29) 2016; 44
A Bratic (ref47) 2016; 12
H Li (ref75) 2009; 25
LS Borowski (ref22) 2012; 41
T Chujo (ref60) 2012; 40
V Vedrenne (ref44) 2012; 91
B Ruzzenente (ref31) 2011; 31
CL Lin (ref42) 2012; 40
RJ Temperley (ref71) 2003; 12
G Wang (ref43) 2010; 142
S Matilainen (ref46) 2017; 26
A Dhir (ref53) 2018; 560
FH Sterky (ref33) 2010; 398
I Kuznetsova (ref26) 2017; 45
M Saoji (ref7) 2018
EB Dubrovsky (ref16) 2004; 32
SM Kapnick (ref66) 2018; 81
B Langmead (ref73) 2012; 9
S Saito (ref10) 2005; 171
B Cox (ref69) 2006; 1
A Sen (ref19) 2017
R Wibom (ref70) 2002; 311
A Rongvaux (ref62) 2014; 159
P Jõers (ref15) 2013; 9
SL Zimmer (ref38) 2009; 59
T Huszar (ref55) 2008; 72
RP van Rij (ref58) 2006; 20
A Dmochowska (ref35) 1999; 46
RJ Szczesny (ref23) 2010; 38
OV Andreenkov (ref18) 2017; 471
A Bratic (ref11) 2015; 6
R Patro (ref72) 2017; 14
F Bruni (ref14) 2012; 12
M Roberti (ref13) 2006; 34
Y Aloni (ref20) 1971; 68
T Nagaike (ref36) 2005; 280
F Xu (ref30) 2012; 441
PG Young (ref52) 1975; 65
X-H Wang (ref59) 2006; 312
MJ White (ref63) 2014; 159
C Freyer (ref8) 2018
DF Bogenhagen (ref24) 2014; 19
L Reinhard (ref6) 2017; 45
MIG Lopez Sanchez (ref4) 2014; 10
OL Lewis (ref9) 1995; 4
R Garesse (ref12) 2005; 57
P Clemente (ref41) 2015; 43
JT Robinson (ref74) 2011; 29
CM Gustafsson (ref2) 2016; 85
W Rossmanith (ref5) 2012; 1819
VM Gohil (ref28) 2010; 285
RN Lightowlers (ref49) 2014; 10
O Rackham (ref25) 2016; 16
A Mussabekova (ref56) 2017; 74
F Port (ref67) 2014; 111
O Rackham (ref48) 2012; 1819
SJ Gratz (ref68) 2014; 196
A Bratic (ref32) 2011; 7
SJ Siira (ref51) 2017; 8
AP West (ref61) 2015; 520
D Galiana-Arnoux (ref57) 2006; 7
AP West (ref64) 2017; 17
MD Buck (ref65) 2017; 169
G Schuster (ref37) 2009
J Houseley (ref1) 2009; 136
DD-H Wang (ref40) 2014; 289
WC Wilson (ref50) 2014; 23
Z Pietras (ref34) 2018; 9
N Fissi El (ref54) 2018; 19
B Stoll (ref39) 2014; 11
S Mili (ref27) 2003; 23
D Ojala (ref3) 1981; 290
References_xml – volume: 19
  year: 2018
  ident: ref54
  article-title: Mitofusin gain and loss of function drive pathogenesis in Drosophila models of CMT2A neuropathy
  publication-title: EMBO Rep
  doi: 10.15252/embr.201745241
– start-page: 393
  year: 2009
  ident: ref37
  article-title: Molecular Biology of RNA Processing and Decay in Prokaryotes
– volume: 40
  start-page: 4146
  year: 2012
  ident: ref42
  article-title: Crystal structure of human polynucleotide phosphorylase: insights into its domain function in RNA binding and degradation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr1281
– volume: 74
  start-page: 2039
  year: 2017
  ident: ref56
  article-title: Innate and intrinsic antiviral immunity in Drosophila
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-017-2453-9
– volume: 1819
  start-page: 1008
  year: 2012
  ident: ref48
  article-title: The role of mammalian PPR domain proteins in the regulation of mitochondrial gene expression
  publication-title: Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms
  doi: 10.1016/j.bbagrm.2011.10.007
– volume: 72
  start-page: 227
  year: 2008
  ident: ref55
  article-title: Drosophila viruses and the study of antiviral host-defense
  publication-title: Adv Virus Res. Elsevier
  doi: 10.1016/S0065-3527(08)00406-5
– volume: 65
  start-page: 1201
  year: 1975
  ident: ref52
  article-title: Characterization of double-stranded RNA from HeLa cell mitochondria
  publication-title: Biochemical and Biophysical Research Communications
  doi: 10.1016/S0006-291X(75)80357-3
– volume: 91
  start-page: 919
  year: 2012
  ident: ref45
  article-title: A Mutation in PNPT1, Encoding Mitochondrial-RNA-Import Protein PNPase, Causes Hereditary Hearing Loss
  publication-title: The American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2012.09.002
– volume: 171
  start-page: 1695
  year: 2005
  ident: ref10
  article-title: Replication Origin of Mitochondrial DNA in Insects
  publication-title: Genetics
  doi: 10.1534/genetics.105.046243
– volume: 16
  start-page: 1874
  year: 2016
  ident: ref25
  article-title: Hierarchical RNA Processing Is Required for Mitochondrial Ribosome Assembly
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.07.031
– volume: 1
  start-page: 1872
  year: 2006
  ident: ref69
  article-title: Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2006.273
– volume: 85
  start-page: 133
  year: 2016
  ident: ref2
  article-title: Maintenance and Expression of Mammalian Mitochondrial DNA
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev-biochem-060815-014402
– volume: 8
  start-page: 675
  year: 2017
  ident: ref51
  article-title: LRPPRC-mediated folding of the mitochondrial transcriptome
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01221-z
– volume: 45
  start-page: 5487
  year: 2017
  ident: ref26
  article-title: Simultaneous processing and degradation of mitochondrial RNAs revealed by circularized RNA sequencing
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx104
– volume: 289
  start-page: 16727
  year: 2014
  ident: ref40
  article-title: Helicase SUV3, Polynucleotide Phosphorylase, and Mitochondrial Polyadenylation Polymerase Form a Transient Complex to Modulate Mitochondrial mRNA Polyadenylated Tail Lengths in Response to Energetic Changes
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M113.536540
– volume: 11
  start-page: 968
  year: 2014
  ident: ref39
  article-title: RNA Processing Factor 7 and Polynucleotide Phosphorylase Are Necessary for Processing and Stability of nad2 mRNA in Arabidopsis Mitochondria
  publication-title: RNA Biology
  doi: 10.4161/rna.29781
– volume: 25
  start-page: 2078
  year: 2009
  ident: ref75
  article-title: The Sequence Alignment/Map format and SAMtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 34
  start-page: 2109
  year: 2006
  ident: ref13
  article-title: The Drosophila termination factor DmTTF regulates in vivo mitochondrial transcription
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl181
– volume: 471
  start-page: 399
  year: 2017
  ident: ref18
  article-title: Targeted mutagenesis of Drosophila RNaseZ gene by homologous recombination
  publication-title: Dokl Biochem Biophys
  doi: 10.1134/S1607672916060065
– volume: 46
  start-page: 155
  year: 1999
  ident: ref35
  article-title: A human putative Suv3-like RNA helicase is conserved between Rhodobacter and all eukaryotes
  publication-title: Acta Biochim Pol
  doi: 10.18388/abp.1999_4193
– volume: 44
  start-page: 6868
  year: 2016
  ident: ref29
  article-title: SLIRP stabilizes LRPPRC via an RRM–PPR protein interface
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw575
– volume: 290
  start-page: 470
  year: 1981
  ident: ref3
  article-title: tRNA punctuation model of RNA processing in human mitochondria
  publication-title: Nature
  doi: 10.1038/290470a0
– volume: 45
  start-page: 12469
  year: 2017
  ident: ref6
  article-title: The MRPP1/MRPP2 complex is a tRNA-maturation platform in human mitochondria
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx902
– volume: 59
  start-page: 88
  year: 2009
  ident: ref38
  article-title: Polyadenylation in Arabidopsis and Chlamydomonasorganelles: the input of nucleotidyltransferases, poly(A) polymerases and polynucleotide phosphorylase
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2009.03853.x
– volume: 43
  start-page: 7398
  year: 2015
  ident: ref41
  article-title: SUV3 helicase is required for correct processing of mitochondrial transcripts
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv692
– volume: 247
  year: 2015
  ident: ref17
  article-title: Knockout of DrosophilaRNase Z Limpairs mitochondrial transcript processing, respiration and cell cycle progression
  publication-title: Nucleic Acids Res
– volume: 169
  start-page: 570
  year: 2017
  ident: ref65
  article-title: Metabolic Instruction of Immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.004
– volume: 20
  start-page: 2985
  year: 2006
  ident: ref58
  article-title: The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster
  publication-title: Genes & Development
  doi: 10.1101/gad.1482006
– start-page: 1
  year: 2017
  ident: ref19
  article-title: Fly Models of Human Diseases
– volume: 7
  start-page: 590
  year: 2006
  ident: ref57
  article-title: Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila
  publication-title: Nat Immunol
  doi: 10.1038/ni1335
– volume: 23
  start-page: 4972
  year: 2003
  ident: ref27
  article-title: LRP130, a Pentatricopeptide Motif Protein with a Noncanonical RNA-Binding Domain, Is Bound In Vivo to Mitochondrial and Nuclear RNAs
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.23.14.4972-4982.2003
– volume: 285
  start-page: 13742
  year: 2010
  ident: ref28
  article-title: Mitochondrial and Nuclear Genomic Responses to Loss of LRPPRCExpression
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.098400
– volume: 29
  start-page: 24
  year: 2011
  ident: ref74
  article-title: Integrative genomics viewer
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1754
– volume: 196
  start-page: 961
  year: 2014
  ident: ref68
  article-title: Highly Specific and Efficient CRISPR/Cas9-Catalyzed Homology-Directed Repair in Drosophila
  publication-title: Genetics
  doi: 10.1534/genetics.113.160713
– volume: 159
  start-page: 1549
  year: 2014
  ident: ref63
  article-title: Apoptotic Caspases Suppress mtDNA-Induced STING-Mediated Type I IFN Production
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.036
– volume: 142
  start-page: 456
  year: 2010
  ident: ref43
  article-title: PNPASE Regulates RNA Import into Mitochondria
  publication-title: Cell
  doi: 10.1016/j.cell.2010.06.035
– volume: 12
  start-page: 492
  year: 2012
  ident: ref14
  article-title: D-MTERF5 is a novel factor modulating transcription in Drosophila mitochondria
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2012.06.010
– volume: 10
  start-page: 2904
  year: 2014
  ident: ref4
  article-title: RNA processing in human mitochondria
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.17.17060
– volume: 9
  start-page: e1003800
  year: 2013
  ident: ref15
  article-title: Mitochondrial transcription terminator family members mTTF and mTerf5 have opposing roles in coordination of mtDNA synthesis
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003800
– volume: 6
  start-page: 457
  year: 2015
  ident: ref11
  article-title: Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies
  publication-title: Nat Commun
  doi: 10.1038/ncomms9808
– volume: 4
  start-page: 263
  year: 1995
  ident: ref9
  article-title: Drosophila melanogaster mitochondrial DNA: completion of the nucleotide sequence and evolutionary comparisons
  publication-title: Insect Mol Biol
  doi: 10.1111/j.1365-2583.1995.tb00032.x
– volume: 40
  start-page: 8033
  year: 2012
  ident: ref60
  article-title: LRPPRC/SLIRP suppresses PNPase-mediated mRNA decay and promotes polyadenylation in human mitochondria
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks506
– volume: 441
  start-page: 275
  year: 2012
  ident: ref30
  article-title: LRPPRC mutation suppresses cytochrome oxidase activity by altering mitochondrial RNA transcript stability in a mouse model
  publication-title: Biochem J
  doi: 10.1042/BJ20110985
– volume: 31
  start-page: 443
  year: 2011
  ident: ref31
  article-title: LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs
  publication-title: EMBO J
  doi: 10.1038/emboj.2011.392
– volume: 111
  start-page: E2967
  year: 2014
  ident: ref67
  article-title: Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1405500111
– volume: 41
  start-page: 1223
  year: 2012
  ident: ref22
  article-title: Human mitochondrial RNA decay mediated by PNPase–hSuv3 complex takes place in distinct foci
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1130
– volume: 23
  start-page: 6345
  year: 2014
  ident: ref50
  article-title: A human mitochondrial poly(A) polymerase mutation reveals the complexities of post-transcriptional mitochondrial gene expression
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddu352
– volume: 91
  start-page: 912
  year: 2012
  ident: ref44
  article-title: Mutation in PNPT1, which Encodes a Polyribonucleotide Nucleotidyltransferase, Impairs RNA Import into Mitochondria and Causes Respiratory-Chain Deficiency
  publication-title: The American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2012.09.001
– volume: 26
  start-page: 3352
  year: 2017
  ident: ref46
  article-title: Defective mitochondrial RNA processing due to PNPT1 variants causes Leigh syndrome
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddx221
– volume: 12
  start-page: 2341
  year: 2003
  ident: ref71
  article-title: Investigation of a pathogenic mtDNA microdeletion reveals a translation-dependent deadenylation decay pathway in human mitochondria
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddg238
– volume: 38
  start-page: 279
  year: 2010
  ident: ref23
  article-title: Human mitochondrial RNA turnover caught in flagranti: involvement of hSuv3p helicase in RNA surveillance
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp903
– volume: 7
  start-page: e1002324
  year: 2011
  ident: ref32
  article-title: The bicoid stability factor controls polyadenylation and expression of specific mitochondrial mRNAs in Drosophila melanogaster
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002324
– volume: 1819
  start-page: 1017
  year: 2012
  ident: ref5
  article-title: Of P and Z: Mitochondrial tRNA processing enzymes
  publication-title: Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms
  doi: 10.1016/j.bbagrm.2011.11.003
– volume: 17
  start-page: 363
  year: 2017
  ident: ref64
  article-title: Mitochondrial DNA in innate immune responses and inflammatory pathology
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2017.21
– volume: 57
  start-page: 555
  year: 2005
  ident: ref12
  article-title: A Drosophila Model of Mitochondrial DNA Replication: Proteins, Genes and Regulation
  publication-title: IUBMB Life (International Union of Biochemistry and Molecular Biology: Life)
  doi: 10.1080/15216540500215572
– volume: 560
  start-page: 238
  year: 2018
  ident: ref53
  article-title: Mitochondrial double-stranded RNA triggers antiviral signalling in humans
  publication-title: Nature
  doi: 10.1038/s41586-018-0363-0
– volume: 14
  start-page: 417
  year: 2017
  ident: ref72
  article-title: Salmon provides fast and bias-aware quantification of transcript expression
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4197
– volume: 32
  start-page: 255
  year: 2004
  ident: ref16
  article-title: Drosophila RNase Z processes mitochondrial and nuclear pre-tRNA 3' ends in vivo
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh182
– volume: 12
  start-page: e1006028
  year: 2016
  ident: ref47
  article-title: Mitochondrial Polyadenylation Is a One-Step Process Required for mRNA Integrity and tRNA Maturation
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1006028
– volume: 284
  start-page: 20812
  year: 2009
  ident: ref21
  article-title: Human Mitochondrial SUV3 and Polynucleotide Phosphorylase Form a 330-kDa Heteropentamer to Cooperatively Degrade Double-stranded RNA with a 3′-to-5′ Directionality
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.009605
– volume: 520
  start-page: 553
  year: 2015
  ident: ref61
  article-title: Mitochondrial DNA stress primes the antiviral innate immune response
  publication-title: Nature
  doi: 10.1038/nature14156
– start-page: 47
  year: 2018
  ident: ref7
  article-title: RNA Metabolism in Mitochondria
– volume: 280
  start-page: 19721
  year: 2005
  ident: ref36
  article-title: Human Mitochondrial mRNAs Are Stabilized with Polyadenylation Regulated by Mitochondria-specific Poly(A) Polymerase and Polynucleotide Phosphorylase
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M500804200
– volume: 9
  start-page: 357
  year: 2012
  ident: ref73
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1923
– volume: 19
  start-page: 618
  year: 2014
  ident: ref24
  article-title: Initial Steps in RNA Processing and Ribosome Assembly Occur at Mitochondrial DNA Nucleoids
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2014.03.013
– volume: 159
  start-page: 1563
  year: 2014
  ident: ref62
  article-title: Apoptotic Caspases Prevent the Induction of Type I Interferons by Mitochondrial DNA
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.037
– volume: 311
  start-page: 139
  year: 2002
  ident: ref70
  article-title: Measurement of ATP production and respiratory chain enzyme activities in mitochondria isolated from small muscle biopsy samples
  publication-title: Anal Biochem
  doi: 10.1016/S0003-2697(02)00424-4
– volume: 136
  start-page: 763
  year: 2009
  ident: ref1
  article-title: The Many Pathways of RNA Degradation
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.019
– volume: 9
  start-page: 2558
  year: 2018
  ident: ref34
  article-title: Dedicated surveillance mechanism controls G-quadruplex forming non-coding RNAs in human mitochondria
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05007-9
– start-page: 17
  year: 2018
  ident: ref8
  article-title: RNA Metabolism in Mitochondria
– volume: 81
  start-page: 97
  year: 2018
  ident: ref66
  article-title: The emerging role of immune dysfunction in mitochondrial diseases as a paradigm for understanding immunometabolism
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2017.11.010
– volume: 398
  start-page: 759
  year: 2010
  ident: ref33
  article-title: LRPPRC is a mitochondrial matrix protein that is conserved in metazoans
  publication-title: Biochemical and Biophysical Research Communications
  doi: 10.1016/j.bbrc.2010.07.019
– volume: 68
  start-page: 1757
  year: 1971
  ident: ref20
  article-title: Symmetrical In Vivo Transcription of Mitochondrial DNA in HeLa Cells
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.68.8.1757
– volume: 312
  start-page: 452
  year: 2006
  ident: ref59
  article-title: RNA interference directs innate immunity against viruses in adult Drosophila
  publication-title: Science
  doi: 10.1126/science.1125694
– volume: 10
  start-page: 1433
  year: 2014
  ident: ref49
  article-title: Human pentatricopeptide proteins
  publication-title: RNA Biology
  doi: 10.4161/rna.24770
SSID ssj0035897
Score 2.476736
Snippet The RNA helicase SUV3 and the polynucleotide phosphorylase PNPase are involved in the degradation of mitochondrial mRNAs but their roles in vivo are not fully...
The RNA helicase SUV3 and the polynucleotide phosphorylase PNPase are involved in the degradation of mitochondrial mRNAs but their roles in vivo are not fully...
SourceID plos
doaj
swepub
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1008240
SubjectTerms Aging
Animals
Antisense RNA
Biochemistry
Biology
Biology and Life Sciences
Biophysics
CRISPR
Cytoplasm
DEAD-box RNA Helicases - genetics
DEAD-box RNA Helicases - metabolism
Deoxyribonucleic acid
DNA
DNA helicase
DNA-Directed RNA Polymerases - genetics
DNA-Directed RNA Polymerases - metabolism
Double-stranded RNA
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Female
Gene expression
Genetic research
Genomes
Helicases
Hospitals
Insects
Laboratories
Male
Mammals
Medicine
Metabolic disorders
Mitochondria
Mitochondrial DNA
Molecular modelling
Molecular structure
mRNA stability
Neoplasm Proteins - genetics
Neoplasm Proteins - metabolism
Phosphorylase
Phosphorylases
Physiology
Poly(A)
Polyadenylation
Polynucleotide adenylyltransferase
Polynucleotide phosphorylase
Polyribonucleotide Nucleotidyltransferase - genetics
Polyribonucleotide Nucleotidyltransferase - metabolism
Research and analysis methods
RNA helicase
RNA interference
RNA Stability
RNA, Antisense - chemistry
RNA, Antisense - metabolism
RNA, Double-Stranded - chemistry
RNA, Double-Stranded - metabolism
RNA, Mitochondrial - chemistry
RNA, Mitochondrial - metabolism
Structure
Supervision
Surgery
Transcription
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yIPgifl_11CiiT_XaJE2ax_XjOAVXOD25FwltmuriXru4uwf-984k2XLFhbsH30pnprQzk8kknfyGkBeZhCSIc5U2AlY6QjY81Zq1qXJcMWaZsv5H-6eZPDoRH0-L0wutvrAmLMADB8UduEpZl8Msp6QTWuVVo4RuVCuYreuyqDH6wpy3XUyFGMyLMrRVKQqeKljWx0NzXOUH0Uavl2AgrBEoGW58XJiUPHb_EKEny0W_2pV-_ltFOcIa9fPT4S1yMyaWdBo-6Da55ro75HpoNfnnLvn-zvnCDdq39AxGMUS9rkHno8ezKYV5p8NaTroAk9N1TyEtpJW1m7PY3QvFmn5TL1yKeyO4be4F5x09n5_398jJ4fuvb4_S2FohtWUu16nLrNCtQpRi3RbWNUyVuWoyaW2etVVmXcGatqp0yx1kMI3NZFZD8uO4dRYo_D6ZdH3n9gjNNB6-VZw5lwkOj81FC2lDnTuLsJBZQvhWt8ZG3HFsf7Ew_meagvVH0JBBi5hokYSkg9Qy4G5cwv8GzTbwImq2vwG-ZKIvmct8KSFP0egmHEEdxr6ZFhpRb-BrEvLccyByRoelOT-qzWplPnz-dgWmL7OrMB2PmF5FprYHndkqnpkAzSNs14hzf8QJQcKOyHvox1vVrQxDZEhI7dhOkvQntAU8dOv2uyV3kwfpZwMZXwer-TrXb5BHKgV5qiwS8iAMosFwHOsuC8YTokbDa2TZMaWb__S46LASL5UGV3gZBuJIJN76BVfOCIWgSQ__h888Ijcgh9ahgnufTNa_N-4x5Knr-okPSX8BxzyNIw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegCMQLgvGxwACDEDyFJbYTx0-ofEwDaUUaDO0FWYntjIouKWs7if-eO8cNRFSwtyp3FzU-3_nOPv-OkGdJDkEQ5zK2AjIdkVseK8XqWDouGTNMGn_QfjDJ94_Eh-PsOGy4LUJZ5donekdtW4N75LsMoexgLWLs1fxHjF2j8HQ1tNC4TK4gdBkmX_K4T7h4VnTNVbKMxxKS-3B1jst0N2jq5RzUhJUCBcPtjz-WJo_g3_vp0XzWLjYFoX_XUg4QR_0qtXeT3AjhJR138-EWueSaLXK1azj5c4tcOwhH6bfJ17fOV3LQtqanYNbgBhuLs5EeTsYUFqIGizvpDOYAXbYU4kRaGrM6De2-UMy2q2rmYtwswX10Lzht6Pn0vL1DjvbefX6zH4deC7Ep0nwZu8QIVUuELVZ1ZpxlskilTXJj0qQuE-MyZuuyVDV3ENJYk-RJBdGQ48YZoPC7ZNS0jdsmNFF4G1dy5lwiOLw2FTXEEVXqDOJEJhHh62HWJgCRYz-MmfanaxISkm6wNCpHB-VEJO6l5h0Qx3_4X6MGe16E0fYP2rMTHaxSu1Ial0IIJXMnlExLK4WyshbMVFWRVRF5jPrX3Z3U3hnocaYQBge-JiJPPQdCaTRYq3NSrhYL_f7jlwswfZpchOlwwPQiMNUtjJkpwyUKGHnE8Rpw7gw4wWuYAXkbp_R66Bb6t31tIuX-yraAl64tYLPkZnIv_aQn49_B8r7GtSvkyaWEwDXPInKvs6decRwLMTPGIyIHljbQ7JDSTL95oHRIzQupYCo872xyIBIefYdfTguJKEr3__15D8h1CJdVV6y9Q0bLs5V7CCHpsnrk_c4vbm6HPA
  priority: 102
  providerName: ProQuest
Title Defects of mitochondrial RNA turnover lead to the accumulation of double-stranded RNA in vivo
URI https://www.ncbi.nlm.nih.gov/pubmed/31365523
https://www.proquest.com/docview/2274424422
https://www.proquest.com/docview/2276053344
https://www.proquest.com/docview/2267791065
https://pubmed.ncbi.nlm.nih.gov/PMC6668790
http://kipublications.ki.se/Default.aspx?queryparsed=id:141583679
https://doaj.org/article/ea7ce131776e4971ad749d7f42cbb85b
http://dx.doi.org/10.1371/journal.pgen.1008240
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2Tki8THwvMEpACJ4yObGTix8Q6mDTQFpBhaK-oChxnFHRJaUfE_vvuXPSSBFF7K3K3UXpfdhn-_w7xl7yCJMgIcDLJa50ZJQLT6mg8MAICAIdgLYH7efD6GwsP07CyQ7b9GxtFLjcurSjflLjxezo96_rtxjwb2zXBvA3QkdzVDmd-sc4S-2yPZybgJo5nMv2XEGEcd1uJQyFB5LL5jLdv97Smawspn87cvfms2q5LS39u7qyg0Fq563TO2y_STjdQe0hd9mOKe-xW3ULyuv77Pt7Yws63KpwLzG6USFlTk7pjoYDF-ejkmo83Rm6gruqXEwX3VTr9WXT9YvE8mqdzYxHeya0nW4Fp6V7Nb2qHrDx6cnXd2de03LB07EfrTzDtVQFEHqxKkJt8gBiH3Ieae3zIuXahEFepKkqhMHMJtc84hkmRUZoo5EiHrJeWZXmgLlc0aVcEIExXAp8rS8LTCcy32iCi-QOExvdJrrBI6e2GLPEHrIBrktqDSVkkaSxiMO8Vmpe43H8h_-YzNbyEpq2fVAtLpImOBOTgjY-ZlIQGanAT3OQKodCBjrL4jBz2DMyelJfTW3HhGQQKkLDwX_jsBeWgxA1SirZuUjXy2Xy4dO3GzB9Gd6EadRhet0wFRXqTKfNXQrUPMF5dTgPO5w4eOgO-YD8eKO6ZRIQYiSmfMFWUmRvbkt86cbtt0tuJ7fSz1syfQ5V-ZWmWhNPBID5axQ67FEdRK3hBNVjhoFwGHTCq2PZLqWc_rB46bhCj0GhK7yqA7Ej0jz6ib9MIoHAlB7f4AOfsNuYOqu6cPuQ9VaLtXmK6ekq67NdmECf7R2fDD-P-naTp29HoT-v2o9T
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJz5eEIyPBQYLiI-nsMRO7PgBoY5tatla0NjQXlBIHGdUdElZ26H9U_yN3CVOIKKCveytiu-ixne-O9t3vyPkmcshCGJMOKkPOx2fp8yRkmaO0ExQqqhQ5UX7YMh7h_67o-Boifysa2EwrbK2iaWhTguFZ-QbFKHswBdR-mby3cGuUXi7WrfQqNRiV5__gC3b9HV_C-T7nNKd7YO3Pcd0FXBU6PGZo13ly0wgQK_MAqVTKkJPpC5XynOz2FU6oGkWxzJjGpx3qlzuJuD3NVNawQiD914hyz6DUKFDlje3hx_2a9vPgrBq5xIEzBFMuqZYjwlvw-jGqwkoBuYmhBQPXP5whmXPgMYzdCbjYroo7P07e7OFcVr6xZ1b5KYJaO1upYG3yZLOV8jVqsXl-Qq5NjCX93fI5y1d5o7YRWafgCEBw5unqP_2_rBrg-vLMZ3UHoPW2bPChsjUjpWan5gGY8iWFvNkrB08nsGT-5JxlNtno7PiLjm8FDncI528yPUqsV2J9b-CUa1dn8FrPT-DyCXxtEJkStcirJ7mSBnoc-zAMY7K-zwBW6BqsiIUTmSEYxGn4ZpU0B__od9ECTa0CNxdPihOjyNjByIdC6U9CNoE174UXpwKX6Yi86lKkjBILLKO8o-qKtjG_ETdQCLwDnyNRZ6WFAjekWN20HE8n06j_vtPFyD6OLwI0X6L6KUhygqYMxWbsg2YeUQOa1GutSjBTqnW8CqqdD110-j3il40xMsicR9eWq-AxZyLhxvuJ80w_h1MKMx1MUcaLgSEyjywyP1qPTWCY5j6GVBmEdFaaS3Jtkfy0dcSmp1zHgoJqvCiWpMtFvPoG_zSkS8Qt-nBvz9vnVzvHQz2or3-cPchuQHBuqxSxddIZ3Y6148gIJ4lj40VssmXyzZ8vwB1Fccv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpFTLwgGB8LDBYQH0-hiZ3Y8QNChVKtjBU0NtQXFBLHGRVdUtZ2aH-NX8dd4gQiKtjL3qrcXdT4Pm3fByGPXQ5BEGPCSX3Y6fg8ZY6UNHOEZoJSRYUqL9r3Rnzn0H87DsZr5GddC4NplbVNLA11Wig8I-9SbGUHvojSbmbSIj70By9n3x2cIIU3rfU4jUpEdvXZD9i-zV8M-8DrJ5QO3hy83nHMhAFHhR5fONpVvswENuuVWaB0SkXoidTlSnluFrtKBzTN4lhmTIMjT5XL3QRiAM2UVgBh8N5L5LJg4DZBl8S42eyxIKwGuwQBcwSTrinbY8LrGil5PgMRwSyFkOLRyx9usZwe0PiIzmxazFcFwH_ncba6nZYecnCdXDOhrd2rZPEGWdP5BrlSDbs82yDre-Ya_yb53NdlFoldZPYxmBQwwXmKmmDvj3o2OMEcE0vtKcifvShsiFHtWKnlsRk1hmRpsUym2sGDGjzDLwknuX06OS1ukcML4cJt0smLXG8S25VYCSwY1dr1GbzW8zOIYRJPK-xR6VqE1cscKdMEHWdxTKPyZk_AZqharAiZExnmWMRpqGZVE5D_4L9CDja42MK7fFCcHEXGIkQ6Fkp7EL4Jrn0pvDgVvkxF5lOVJGGQWGQb-R9V9bCNIYp6gcQWPPA1FnlUYmAbjxwV4ihezufR8P2ncyB9HJ0Hab-F9MwgZQWsmYpNAQesPPYQa2FutTDBYqkWeBNFul66efRbt1eBeFku7sNLaw1YTbka3FA_bMD4dzC1MNfFEnG4EBA088Aidyp9ahjHMAk0oMwioqVpLc62Ifnka9mknXMeCgmi8LTSyRaJefQNfunIF9jB6e6_P2-brIO5i94NR7v3yFWI2mWVM75FOouTpb4PkfEieVCaIJt8uWib9wtmQsn_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defects+of+mitochondrial+RNA+turnover+lead+to+the+accumulation+of+double-stranded+RNA+in+vivo&rft.jtitle=PLoS+genetics&rft.au=Pajak%2C+Aleksandra&rft.au=Laine%2C+Isabelle&rft.au=Clemente%2C+Paula&rft.au=El-Fissi%2C+Najla&rft.date=2019-07-01&rft.issn=1553-7404&rft.eissn=1553-7404&rft.volume=15&rft.issue=7&rft.spage=e1008240&rft_id=info:doi/10.1371%2Fjournal.pgen.1008240&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon