Propagating observation errors to enable scalable and rigorous enumeration of plant population abundance with aerial imagery
Abstract Estimating and monitoring plant population size is fundamental for ecological research, as well as conservation and restoration programs. High‐resolution imagery has potential to facilitate such estimation and monitoring. However, remotely sensed estimates typically have higher uncertainty...
Saved in:
Published in | Methods in ecology and evolution |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
13.10.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract Estimating and monitoring plant population size is fundamental for ecological research, as well as conservation and restoration programs. High‐resolution imagery has potential to facilitate such estimation and monitoring. However, remotely sensed estimates typically have higher uncertainty than field measurements, risking biased inference on population status. We present a model that accounts for false negative (missed plants) and false positive (misclassified or double‐counted plants) error in counts from high‐resolution imagery via integration with ground data. We apply it to estimate the abundance of a foundational shrub species in post‐wildfire landscapes in the western United States. In these landscapes, plant recruitment is crucial for ecological recovery but locally patchy, motivating the use of spatially extensive measurements from unoccupied aerial systems (UAS). Integrating >16 ha of UAS imagery with >700 georeferenced field plots, we fit our model to generate insights into the prevalence and drivers of observation errors associated with classification algorithms used to distinguish individual plants, relationships between abundance and landscape context, and to generate spatially explicit maps of shrub abundance. Raw counts of plant abundance in high‐resolution imagery resulted in substantial false negative and false positive observation errors. The probability of detecting ( p ) adult plants (0.25 m tall) varied between sites within 0.52 < < 0.82, whereas the detection of smaller plants (<0.25 m) was lower, 0.03 < < 0.3. On average, we estimate that 19% of all detected plants were false positive errors, which varied spatially in relation to topographic predictors. Abundance declined toward the interior of previous wildfires and was positively associated with terrain roughness. Our study demonstrates that integrated models accounting for imperfect detection improve estimates of plant population abundance derived from inherently imperfect UAS imagery. We believe such models will further improve inference on plant population dynamics—relevant to restoration, wildlife habitat and related objectives—and echo previous calls for remote sensing applications to better differentiate between ecological and observational processes. |
---|---|
AbstractList | Abstract Estimating and monitoring plant population size is fundamental for ecological research, as well as conservation and restoration programs. High‐resolution imagery has potential to facilitate such estimation and monitoring. However, remotely sensed estimates typically have higher uncertainty than field measurements, risking biased inference on population status. We present a model that accounts for false negative (missed plants) and false positive (misclassified or double‐counted plants) error in counts from high‐resolution imagery via integration with ground data. We apply it to estimate the abundance of a foundational shrub species in post‐wildfire landscapes in the western United States. In these landscapes, plant recruitment is crucial for ecological recovery but locally patchy, motivating the use of spatially extensive measurements from unoccupied aerial systems (UAS). Integrating >16 ha of UAS imagery with >700 georeferenced field plots, we fit our model to generate insights into the prevalence and drivers of observation errors associated with classification algorithms used to distinguish individual plants, relationships between abundance and landscape context, and to generate spatially explicit maps of shrub abundance. Raw counts of plant abundance in high‐resolution imagery resulted in substantial false negative and false positive observation errors. The probability of detecting ( p ) adult plants (0.25 m tall) varied between sites within 0.52 < < 0.82, whereas the detection of smaller plants (<0.25 m) was lower, 0.03 < < 0.3. On average, we estimate that 19% of all detected plants were false positive errors, which varied spatially in relation to topographic predictors. Abundance declined toward the interior of previous wildfires and was positively associated with terrain roughness. Our study demonstrates that integrated models accounting for imperfect detection improve estimates of plant population abundance derived from inherently imperfect UAS imagery. We believe such models will further improve inference on plant population dynamics—relevant to restoration, wildlife habitat and related objectives—and echo previous calls for remote sensing applications to better differentiate between ecological and observational processes. |
Author | Pilliod, David S. Cruz, Jennyffer Rachman, Richard Maliha, Maisha Zaiats, Andrii Liu, Rongsong Delparte, Donna Clare, John D. J. Caughlin, T. Trevor Cattau, Megan E. |
Author_xml | – sequence: 1 givenname: Andrii orcidid: 0000-0001-8978-4152 surname: Zaiats fullname: Zaiats, Andrii organization: Department of Biological Sciences Boise State University Boise Idaho USA – sequence: 2 givenname: T. Trevor orcidid: 0000-0001-6752-2055 surname: Caughlin fullname: Caughlin, T. Trevor organization: Department of Biological Sciences Boise State University Boise Idaho USA – sequence: 3 givenname: Jennyffer orcidid: 0000-0002-5321-8017 surname: Cruz fullname: Cruz, Jennyffer organization: Department of Biological Sciences Boise State University Boise Idaho USA – sequence: 4 givenname: David S. orcidid: 0000-0003-4207-3518 surname: Pilliod fullname: Pilliod, David S. organization: U.S. Geological Survey Forest and Rangeland Ecosystem Science Center Boise Idaho USA – sequence: 5 givenname: Megan E. orcidid: 0000-0003-2164-3809 surname: Cattau fullname: Cattau, Megan E. organization: Human‐Environment Systems Boise State University Boise Idaho USA – sequence: 6 givenname: Rongsong surname: Liu fullname: Liu, Rongsong organization: Department of Mathematics and Statistics University of Wyoming Laramie Wyoming USA – sequence: 7 givenname: Richard orcidid: 0009-0009-8463-0483 surname: Rachman fullname: Rachman, Richard organization: Department of Biological Sciences Boise State University Boise Idaho USA – sequence: 8 givenname: Maisha orcidid: 0009-0004-9635-1389 surname: Maliha fullname: Maliha, Maisha organization: Department of Computer Science Boise State University Boise Idaho USA – sequence: 9 givenname: Donna orcidid: 0000-0002-9107-5117 surname: Delparte fullname: Delparte, Donna organization: Department of Geosciences Idaho State University Pocatello Idaho USA – sequence: 10 givenname: John D. J. orcidid: 0000-0003-2583-8742 surname: Clare fullname: Clare, John D. J. organization: Department of Biological Sciences Boise State University Boise Idaho USA, Department of Forest and Wildlife Ecology University of Wisconsin–Madison Madison Wisconsin USA |
BookMark | eNpNkE1OwzAQhS1UJErpmq0vkNaTOK27RBV_UiVYdMEuGtuTEJTakZ2AuuAunIWTkbYI8Tbz9KQZzfsu2ch5R4xdg5jBoHkqJCQpiJcZSJnCGRv_JaN__oJNY3wTgzK1Eqkcs8_n4FussKtdxb2OFN4H7x2nEHyIvPOcHOqGeDTYHA06y0Nd-eD7-P1Frt9ROO34krcNuo63vu2bU4a6dxadIf5Rd68cKdTY8HqHFYX9FTsvsYk0_Z0Ttr273a4fks3T_eP6ZpMYBZCAyIGksGpZkgZrtcKF1EOnhbIgNYgUAZVaGqNyzCTlVlulcyVSMKssh2zC5qezJvgYA5VFG4YPwr4AURz4FQdCxYFQceSX_QC4Jmg5 |
Cites_doi | 10.2111/REM‐D‐13‐00079.1 10.1007/s10980-018-0662-8 10.21105/joss.00640 10.1111/rec.14106 10.1093/aobpla/plac045 10.1111/2041‐210X.13110 10.1111/2041‐210X.13315 10.1111/2041‐210X.13858 10.1890/10‐1396.1 10.1016/j.rala.2021.07.003 10.1002/ecy.3241 10.1002/ece3.4878 10.1007/s11258‐010‐9848‐0 10.1111/1365‐2745.12021 10.1002/ecy.2455 10.1080/07038992.2016.1196582 10.1111/j.1365‐2664.2009.01736.x 10.1016/j.sste.2019.100301 10.1111/1365‐2745.14110 10.1111/j.0006-341X.2004.00142.x 10.1007/s10980-012-9746-z 10.1111/2041‐210X.13895 10.1111/2041‐210X.12127 10.1073/pnas.1800353115 10.1080/10618600.2016.1172487 10.3390/rs11060719 10.1111/2041-210X.13472 10.1890/13‐1131.1 10.1890/14‐1487.1 10.1080/10618600.1998.10474787 10.1088/1748‐9326/ab79e4 10.1111/2041-210X.13860 10.1111/2041-210X.13578 10.1002/eap.2585 10.1086/689560 10.1111/j.1541‐0420.2010.01465.x 10.1111/ele.13291 10.1111/2041‐210X.13905 10.1002/eap.1850 10.1111/j.1541-0420.2008.01038.x 10.1038/s41586‐020‐2824‐5 10.21105/joss.01686 10.1126/sciadv.adh4097 10.1016/j.rse.2020.112061 10.1016/j.rama.2015.09.002 10.1002/ece3.8733 10.1098/rspb.2022.1494 10.1073/pnas.2000247117 10.1002/ece3.2170 10.3398/064.069.0208 10.1002/ecs2.4195 10.1890/14‐1507.1 10.32614/RJ-2018-009 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1111/2041-210X.14421 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 2041-210X |
ExternalDocumentID | 10_1111_2041_210X_14421 |
GroupedDBID | 05W 0R~ 1OC 24P 33P 4P2 50Y 5DZ 8-1 A00 AAESR AAFWJ AAHBH AAHHS AAYXX AAZKR ABCUV ABLJU ACCFJ ACCZN ACGFO ACGFS ACPOU ACPRK ACXQS ADBBV ADKYN ADXAS ADZMN AEEZP AENEX AEQDE AFBPY AFKRA AFPKN AFRAH AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ATCPS AVUZU AZVAB BBNVY BENPR BHPHI BMXJE BRXPI CCPQU CITATION DCZOG DPXWK EBD EBS EDH F1Z G-S GROUPED_DOAJ HCIFZ HZ~ LATKE LEEKS LITHE LOXES LUTES LW6 LYRES M7P MY. MY~ M~E O9- P2P P2W P4E PATMY PYCSY R.K ROL RX1 V8K WBKPD WOHZO WYJ ZZTAW ~S- |
ID | FETCH-LOGICAL-c811-1051e40d87feb1ddb8a64b04168d14b102a1a887cc85a34e5dbd8b58021c93513 |
ISSN | 2041-210X |
IngestDate | Wed Oct 16 15:30:28 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c811-1051e40d87feb1ddb8a64b04168d14b102a1a887cc85a34e5dbd8b58021c93513 |
ORCID | 0009-0009-8463-0483 0000-0003-4207-3518 0009-0004-9635-1389 0000-0002-9107-5117 0000-0001-8978-4152 0000-0001-6752-2055 0000-0002-5321-8017 0000-0003-2164-3809 0000-0003-2583-8742 |
OpenAccessLink | https://doi.org/10.1111/2041-210x.14421 |
ParticipantIDs | crossref_primary_10_1111_2041_210X_14421 |
PublicationCentury | 2000 |
PublicationDate | 2024-10-13 |
PublicationDateYYYYMMDD | 2024-10-13 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-13 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | Methods in ecology and evolution |
PublicationYear | 2024 |
References | e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_33_1 Veran S. (e_1_2_9_54_1) 2012; 27 Weinstein B. G. (e_1_2_9_55_1) 2020; 11 Hijmans R. J. (e_1_2_9_24_1) 2022 Youngflesh C. (e_1_2_9_59_1) 2018; 3 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_45_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 Kéry M. (e_1_2_9_29_1) 2015 e_1_2_9_26_1 e_1_2_9_28_1 e_1_2_9_47_1 Germino M. J. (e_1_2_9_22_1) 2018; 33 Royle J. A. (e_1_2_9_48_1) 2004; 60 Augustine B. C. (e_1_2_9_4_1) 2020; 117 e_1_2_9_53_1 Kéry M. (e_1_2_9_30_1) 2020 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_32_1 Clare J. D. J. (e_1_2_9_12_1) 2016; 6 R Core Team (e_1_2_9_43_1) 2021 Pebesma E. J. (e_1_2_9_41_1) 2018; 10 Doser J. W. (e_1_2_9_20_1) 2021; 12 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 Clare J. D. J. (e_1_2_9_13_1) 2021; 102 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 Royle J. A. (e_1_2_9_49_1) 2009; 65 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Young D. J. N. (e_1_2_9_58_1) 2022; 13 Wickham H. (e_1_2_9_56_1) 2019; 4 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 |
References_xml | – volume-title: Applied hierarchical modeling in ecology: Analysis of distribution, abundance and species richness in R and BUGS: Volume 2: Dynamic and advanced models year: 2020 ident: e_1_2_9_30_1 contributor: fullname: Kéry M. – ident: e_1_2_9_50_1 doi: 10.2111/REM‐D‐13‐00079.1 – volume: 33 start-page: 1177 issue: 7 year: 2018 ident: e_1_2_9_22_1 article-title: Thresholds and hotspots for shrub restoration following a heterogeneous megafire publication-title: Landscape Ecology doi: 10.1007/s10980-018-0662-8 contributor: fullname: Germino M. J. – volume: 3 start-page: 640 issue: 24 year: 2018 ident: e_1_2_9_59_1 article-title: MCMCvis: Tools to visualize, manipulate, and summarize MCMC output publication-title: Journal of Open Source Software doi: 10.21105/joss.00640 contributor: fullname: Youngflesh C. – ident: e_1_2_9_39_1 doi: 10.1111/rec.14106 – ident: e_1_2_9_2_1 doi: 10.1093/aobpla/plac045 – ident: e_1_2_9_36_1 doi: 10.1111/2041‐210X.13110 – ident: e_1_2_9_57_1 doi: 10.1111/2041‐210X.13315 – volume-title: R: A language and environment for statistical computing year: 2021 ident: e_1_2_9_43_1 contributor: fullname: R Core Team – ident: e_1_2_9_53_1 doi: 10.1111/2041‐210X.13858 – ident: e_1_2_9_35_1 doi: 10.1890/10‐1396.1 – ident: e_1_2_9_34_1 doi: 10.1016/j.rala.2021.07.003 – volume: 102 issue: 2 year: 2021 ident: e_1_2_9_13_1 article-title: Generalized model‐based solutions to false‐positive error from species detection/nondetection data publication-title: Ecology doi: 10.1002/ecy.3241 contributor: fullname: Clare J. D. J. – ident: e_1_2_9_25_1 doi: 10.1002/ece3.4878 – ident: e_1_2_9_44_1 doi: 10.1007/s11258‐010‐9848‐0 – ident: e_1_2_9_10_1 doi: 10.1111/1365‐2745.12021 – ident: e_1_2_9_32_1 doi: 10.1002/ecy.2455 – ident: e_1_2_9_52_1 doi: 10.1080/07038992.2016.1196582 – ident: e_1_2_9_27_1 doi: 10.1111/j.1365‐2664.2009.01736.x – ident: e_1_2_9_37_1 doi: 10.1016/j.sste.2019.100301 – ident: e_1_2_9_42_1 doi: 10.1111/1365‐2745.14110 – volume: 60 start-page: 108 issue: 1 year: 2004 ident: e_1_2_9_48_1 article-title: N‐mixture models for estimating population size from spatially replicated counts publication-title: Biometrics doi: 10.1111/j.0006-341X.2004.00142.x contributor: fullname: Royle J. A. – volume: 27 start-page: 943 year: 2012 ident: e_1_2_9_54_1 article-title: Modeling habitat dynamics accounting for possible misclassification publication-title: Landscape Ecology doi: 10.1007/s10980-012-9746-z contributor: fullname: Veran S. – ident: e_1_2_9_14_1 doi: 10.1111/2041‐210X.13895 – ident: e_1_2_9_16_1 doi: 10.1111/2041‐210X.12127 – ident: e_1_2_9_28_1 doi: 10.1073/pnas.1800353115 – ident: e_1_2_9_19_1 doi: 10.1080/10618600.2016.1172487 – ident: e_1_2_9_33_1 – ident: e_1_2_9_46_1 doi: 10.3390/rs11060719 – volume: 11 start-page: 1743 issue: 12 year: 2020 ident: e_1_2_9_55_1 article-title: DeepForest: A python package for RGB deep learning tree crown delineation publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.13472 contributor: fullname: Weinstein B. G. – ident: e_1_2_9_61_1 doi: 10.1890/13‐1131.1 – ident: e_1_2_9_11_1 – ident: e_1_2_9_26_1 doi: 10.1890/14‐1487.1 – ident: e_1_2_9_7_1 doi: 10.1080/10618600.1998.10474787 – volume-title: Package ‘terra’ year: 2022 ident: e_1_2_9_24_1 contributor: fullname: Hijmans R. J. – volume-title: Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS: Volume 1 year: 2015 ident: e_1_2_9_29_1 contributor: fullname: Kéry M. – ident: e_1_2_9_38_1 doi: 10.1088/1748‐9326/ab79e4 – volume: 13 start-page: 1447 issue: 7 year: 2022 ident: e_1_2_9_58_1 article-title: Optimizing aerial imagery collection and processing parameters for drone‐ based individual tree mapping in structurally complex conifer forests publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.13860 contributor: fullname: Young D. J. N. – volume: 12 start-page: 1040 issue: 6 year: 2021 ident: e_1_2_9_20_1 article-title: Integrating automated acoustic vocalization data and point count surveys for estimation of bird abundance publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.13578 contributor: fullname: Doser J. W. – ident: e_1_2_9_5_1 doi: 10.1002/eap.2585 – ident: e_1_2_9_23_1 doi: 10.1086/689560 – ident: e_1_2_9_17_1 doi: 10.1111/j.1541‐0420.2010.01465.x – ident: e_1_2_9_51_1 doi: 10.1111/ele.13291 – ident: e_1_2_9_45_1 doi: 10.1111/2041‐210X.13905 – ident: e_1_2_9_21_1 – ident: e_1_2_9_8_1 doi: 10.1002/eap.1850 – volume: 65 start-page: 267 issue: 1 year: 2009 ident: e_1_2_9_49_1 article-title: Analysis of capture‐recapture models with individual covariates using data augmentation publication-title: Biometrics doi: 10.1111/j.1541-0420.2008.01038.x contributor: fullname: Royle J. A. – ident: e_1_2_9_6_1 doi: 10.1038/s41586‐020‐2824‐5 – volume: 4 start-page: 1686 issue: 43 year: 2019 ident: e_1_2_9_56_1 article-title: Welcome to the Tidyverse publication-title: Journal of Open Source Software doi: 10.21105/joss.01686 contributor: fullname: Wickham H. – ident: e_1_2_9_31_1 doi: 10.1126/sciadv.adh4097 – ident: e_1_2_9_47_1 doi: 10.1016/j.rse.2020.112061 – ident: e_1_2_9_15_1 doi: 10.1016/j.rama.2015.09.002 – ident: e_1_2_9_18_1 doi: 10.1002/ece3.8733 – ident: e_1_2_9_40_1 doi: 10.1098/rspb.2022.1494 – volume: 117 start-page: 17903 issue: 30 year: 2020 ident: e_1_2_9_4_1 article-title: Spatial proximity moderates genotype uncertainty in genetic tagging studies publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.2000247117 contributor: fullname: Augustine B. C. – volume: 6 start-page: 3884 issue: 12 year: 2016 ident: e_1_2_9_12_1 article-title: Do the antipredator strategies of shared prey mediate intraguild predation and mesocarnivore suppression? publication-title: Ecology and Evolution doi: 10.1002/ece3.2170 contributor: fullname: Clare J. D. J. – ident: e_1_2_9_60_1 doi: 10.3398/064.069.0208 – ident: e_1_2_9_3_1 doi: 10.1002/ecs2.4195 – ident: e_1_2_9_9_1 doi: 10.1890/14‐1507.1 – volume: 10 start-page: 439 issue: 1 year: 2018 ident: e_1_2_9_41_1 article-title: Simple features for R: Standardized support for spatial vector data publication-title: The R Journal doi: 10.32614/RJ-2018-009 contributor: fullname: Pebesma E. J. |
SSID | ssj0000389024 |
Score | 2.4304926 |
Snippet | Abstract Estimating and monitoring plant population size is fundamental for ecological research, as well as conservation and restoration programs.... |
SourceID | crossref |
SourceType | Aggregation Database |
Title | Propagating observation errors to enable scalable and rigorous enumeration of plant population abundance with aerial imagery |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dStxAFB5WpeBN8adia5W5UCiELPmZyU4uZVFEaBFMYe-WTGaigm6W7G5BwSfwJfosfbKek0kmca2gvQlhyM5m53x7fma-cw4hh3GQY-YBd7kAFchyT7lxEIWukJrFOpdYAR3ZFj-is5_sfMRHvd5Th7W0mMt-9vDPvJL_kSqMgVwxS_YdkrWTwgDcg3zhChKG65tkfFFCyIslMpC5LO3-qqPLEnvogFupTWrUDCRR3Rg2-VVRQsB_NAyOjj2kwuvSOo7TW1hqZ2rbejmpxFwR_PubNDht2nzcpcvZ1N-rXtQVvVZnbWUn_ateArtFnQIaZg2Z8uamPQVZXF3X7eOTvpOU8EnLHB6Wi4eGjHOPLV2sSsf9oqKl5zuX_e5GRsDQApg8VKPvABa-CxHoyJiml2OvaHv7DB5Um3Tr53W1l-ydZSE28Q9OMMYJxtUEK2QtAK0lOvF5ZdZDPJJFloL9wrpUFDLDll6i4-V03JVkg3ys4wx6bECzSXp6skU-nBjBbJPHDnRoBzrUQIfOC2qgQxvoUBAmbaDz53cHNrTIaQUb2sKGWthQhA01sKE1bD6R5PQkGZ65dScONxMV5ZH7mnlKDHIw7UpJkUZMwi-OhPKZBB819VOwVlkmeBoyzZVUQnIB_mMWh9wPd8jqpJjoXUJ5mnkyH3hR7knwhVUM8azS-UBh3UMWDj6Tb83Cjaem3sr4FTl9efuje2S9RdxXsjovF3ofnMm5PKiE_Bedc3aV |
link.rule.ids | 315,783,787,867,27938,27939 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Propagating+observation+errors+to+enable+scalable+and+rigorous%C2%A0enumeration+of+plant+population+abundance+with+aerial+imagery&rft.jtitle=Methods+in+ecology+and+evolution&rft.au=Zaiats%2C+Andrii&rft.au=Caughlin%2C+T.+Trevor&rft.au=Cruz%2C+Jennyffer&rft.au=Pilliod%2C+David+S.&rft.date=2024-10-13&rft.issn=2041-210X&rft.eissn=2041-210X&rft_id=info:doi/10.1111%2F2041-210X.14421&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_2041_210X_14421 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-210X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-210X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-210X&client=summon |