Propagating observation errors to enable scalable and rigorous enumeration of plant population abundance with aerial imagery

Abstract Estimating and monitoring plant population size is fundamental for ecological research, as well as conservation and restoration programs. High‐resolution imagery has potential to facilitate such estimation and monitoring. However, remotely sensed estimates typically have higher uncertainty...

Full description

Saved in:
Bibliographic Details
Published inMethods in ecology and evolution
Main Authors Zaiats, Andrii, Caughlin, T. Trevor, Cruz, Jennyffer, Pilliod, David S., Cattau, Megan E., Liu, Rongsong, Rachman, Richard, Maliha, Maisha, Delparte, Donna, Clare, John D. J.
Format Journal Article
LanguageEnglish
Published 13.10.2024
Online AccessGet full text

Cover

Loading…
Abstract Abstract Estimating and monitoring plant population size is fundamental for ecological research, as well as conservation and restoration programs. High‐resolution imagery has potential to facilitate such estimation and monitoring. However, remotely sensed estimates typically have higher uncertainty than field measurements, risking biased inference on population status. We present a model that accounts for false negative (missed plants) and false positive (misclassified or double‐counted plants) error in counts from high‐resolution imagery via integration with ground data. We apply it to estimate the abundance of a foundational shrub species in post‐wildfire landscapes in the western United States. In these landscapes, plant recruitment is crucial for ecological recovery but locally patchy, motivating the use of spatially extensive measurements from unoccupied aerial systems (UAS). Integrating >16 ha of UAS imagery with >700 georeferenced field plots, we fit our model to generate insights into the prevalence and drivers of observation errors associated with classification algorithms used to distinguish individual plants, relationships between abundance and landscape context, and to generate spatially explicit maps of shrub abundance. Raw counts of plant abundance in high‐resolution imagery resulted in substantial false negative and false positive observation errors. The probability of detecting ( p ) adult plants (0.25 m tall) varied between sites within 0.52 < < 0.82, whereas the detection of smaller plants (<0.25 m) was lower, 0.03 < < 0.3. On average, we estimate that 19% of all detected plants were false positive errors, which varied spatially in relation to topographic predictors. Abundance declined toward the interior of previous wildfires and was positively associated with terrain roughness. Our study demonstrates that integrated models accounting for imperfect detection improve estimates of plant population abundance derived from inherently imperfect UAS imagery. We believe such models will further improve inference on plant population dynamics—relevant to restoration, wildlife habitat and related objectives—and echo previous calls for remote sensing applications to better differentiate between ecological and observational processes.
AbstractList Abstract Estimating and monitoring plant population size is fundamental for ecological research, as well as conservation and restoration programs. High‐resolution imagery has potential to facilitate such estimation and monitoring. However, remotely sensed estimates typically have higher uncertainty than field measurements, risking biased inference on population status. We present a model that accounts for false negative (missed plants) and false positive (misclassified or double‐counted plants) error in counts from high‐resolution imagery via integration with ground data. We apply it to estimate the abundance of a foundational shrub species in post‐wildfire landscapes in the western United States. In these landscapes, plant recruitment is crucial for ecological recovery but locally patchy, motivating the use of spatially extensive measurements from unoccupied aerial systems (UAS). Integrating >16 ha of UAS imagery with >700 georeferenced field plots, we fit our model to generate insights into the prevalence and drivers of observation errors associated with classification algorithms used to distinguish individual plants, relationships between abundance and landscape context, and to generate spatially explicit maps of shrub abundance. Raw counts of plant abundance in high‐resolution imagery resulted in substantial false negative and false positive observation errors. The probability of detecting ( p ) adult plants (0.25 m tall) varied between sites within 0.52 < < 0.82, whereas the detection of smaller plants (<0.25 m) was lower, 0.03 < < 0.3. On average, we estimate that 19% of all detected plants were false positive errors, which varied spatially in relation to topographic predictors. Abundance declined toward the interior of previous wildfires and was positively associated with terrain roughness. Our study demonstrates that integrated models accounting for imperfect detection improve estimates of plant population abundance derived from inherently imperfect UAS imagery. We believe such models will further improve inference on plant population dynamics—relevant to restoration, wildlife habitat and related objectives—and echo previous calls for remote sensing applications to better differentiate between ecological and observational processes.
Author Pilliod, David S.
Cruz, Jennyffer
Rachman, Richard
Maliha, Maisha
Zaiats, Andrii
Liu, Rongsong
Delparte, Donna
Clare, John D. J.
Caughlin, T. Trevor
Cattau, Megan E.
Author_xml – sequence: 1
  givenname: Andrii
  orcidid: 0000-0001-8978-4152
  surname: Zaiats
  fullname: Zaiats, Andrii
  organization: Department of Biological Sciences Boise State University Boise Idaho USA
– sequence: 2
  givenname: T. Trevor
  orcidid: 0000-0001-6752-2055
  surname: Caughlin
  fullname: Caughlin, T. Trevor
  organization: Department of Biological Sciences Boise State University Boise Idaho USA
– sequence: 3
  givenname: Jennyffer
  orcidid: 0000-0002-5321-8017
  surname: Cruz
  fullname: Cruz, Jennyffer
  organization: Department of Biological Sciences Boise State University Boise Idaho USA
– sequence: 4
  givenname: David S.
  orcidid: 0000-0003-4207-3518
  surname: Pilliod
  fullname: Pilliod, David S.
  organization: U.S. Geological Survey Forest and Rangeland Ecosystem Science Center Boise Idaho USA
– sequence: 5
  givenname: Megan E.
  orcidid: 0000-0003-2164-3809
  surname: Cattau
  fullname: Cattau, Megan E.
  organization: Human‐Environment Systems Boise State University Boise Idaho USA
– sequence: 6
  givenname: Rongsong
  surname: Liu
  fullname: Liu, Rongsong
  organization: Department of Mathematics and Statistics University of Wyoming Laramie Wyoming USA
– sequence: 7
  givenname: Richard
  orcidid: 0009-0009-8463-0483
  surname: Rachman
  fullname: Rachman, Richard
  organization: Department of Biological Sciences Boise State University Boise Idaho USA
– sequence: 8
  givenname: Maisha
  orcidid: 0009-0004-9635-1389
  surname: Maliha
  fullname: Maliha, Maisha
  organization: Department of Computer Science Boise State University Boise Idaho USA
– sequence: 9
  givenname: Donna
  orcidid: 0000-0002-9107-5117
  surname: Delparte
  fullname: Delparte, Donna
  organization: Department of Geosciences Idaho State University Pocatello Idaho USA
– sequence: 10
  givenname: John D. J.
  orcidid: 0000-0003-2583-8742
  surname: Clare
  fullname: Clare, John D. J.
  organization: Department of Biological Sciences Boise State University Boise Idaho USA, Department of Forest and Wildlife Ecology University of Wisconsin–Madison Madison Wisconsin USA
BookMark eNpNkE1OwzAQhS1UJErpmq0vkNaTOK27RBV_UiVYdMEuGtuTEJTakZ2AuuAunIWTkbYI8Tbz9KQZzfsu2ch5R4xdg5jBoHkqJCQpiJcZSJnCGRv_JaN__oJNY3wTgzK1Eqkcs8_n4FussKtdxb2OFN4H7x2nEHyIvPOcHOqGeDTYHA06y0Nd-eD7-P1Frt9ROO34krcNuo63vu2bU4a6dxadIf5Rd68cKdTY8HqHFYX9FTsvsYk0_Z0Ttr273a4fks3T_eP6ZpMYBZCAyIGksGpZkgZrtcKF1EOnhbIgNYgUAZVaGqNyzCTlVlulcyVSMKssh2zC5qezJvgYA5VFG4YPwr4AURz4FQdCxYFQceSX_QC4Jmg5
Cites_doi 10.2111/REM‐D‐13‐00079.1
10.1007/s10980-018-0662-8
10.21105/joss.00640
10.1111/rec.14106
10.1093/aobpla/plac045
10.1111/2041‐210X.13110
10.1111/2041‐210X.13315
10.1111/2041‐210X.13858
10.1890/10‐1396.1
10.1016/j.rala.2021.07.003
10.1002/ecy.3241
10.1002/ece3.4878
10.1007/s11258‐010‐9848‐0
10.1111/1365‐2745.12021
10.1002/ecy.2455
10.1080/07038992.2016.1196582
10.1111/j.1365‐2664.2009.01736.x
10.1016/j.sste.2019.100301
10.1111/1365‐2745.14110
10.1111/j.0006-341X.2004.00142.x
10.1007/s10980-012-9746-z
10.1111/2041‐210X.13895
10.1111/2041‐210X.12127
10.1073/pnas.1800353115
10.1080/10618600.2016.1172487
10.3390/rs11060719
10.1111/2041-210X.13472
10.1890/13‐1131.1
10.1890/14‐1487.1
10.1080/10618600.1998.10474787
10.1088/1748‐9326/ab79e4
10.1111/2041-210X.13860
10.1111/2041-210X.13578
10.1002/eap.2585
10.1086/689560
10.1111/j.1541‐0420.2010.01465.x
10.1111/ele.13291
10.1111/2041‐210X.13905
10.1002/eap.1850
10.1111/j.1541-0420.2008.01038.x
10.1038/s41586‐020‐2824‐5
10.21105/joss.01686
10.1126/sciadv.adh4097
10.1016/j.rse.2020.112061
10.1016/j.rama.2015.09.002
10.1002/ece3.8733
10.1098/rspb.2022.1494
10.1073/pnas.2000247117
10.1002/ece3.2170
10.3398/064.069.0208
10.1002/ecs2.4195
10.1890/14‐1507.1
10.32614/RJ-2018-009
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1111/2041-210X.14421
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 2041-210X
ExternalDocumentID 10_1111_2041_210X_14421
GroupedDBID 05W
0R~
1OC
24P
33P
4P2
50Y
5DZ
8-1
A00
AAESR
AAFWJ
AAHBH
AAHHS
AAYXX
AAZKR
ABCUV
ABLJU
ACCFJ
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
AEEZP
AENEX
AEQDE
AFBPY
AFKRA
AFPKN
AFRAH
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ATCPS
AVUZU
AZVAB
BBNVY
BENPR
BHPHI
BMXJE
BRXPI
CCPQU
CITATION
DCZOG
DPXWK
EBD
EBS
EDH
F1Z
G-S
GROUPED_DOAJ
HCIFZ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LW6
LYRES
M7P
MY.
MY~
M~E
O9-
P2P
P2W
P4E
PATMY
PYCSY
R.K
ROL
RX1
V8K
WBKPD
WOHZO
WYJ
ZZTAW
~S-
ID FETCH-LOGICAL-c811-1051e40d87feb1ddb8a64b04168d14b102a1a887cc85a34e5dbd8b58021c93513
ISSN 2041-210X
IngestDate Wed Oct 16 15:30:28 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c811-1051e40d87feb1ddb8a64b04168d14b102a1a887cc85a34e5dbd8b58021c93513
ORCID 0009-0009-8463-0483
0000-0003-4207-3518
0009-0004-9635-1389
0000-0002-9107-5117
0000-0001-8978-4152
0000-0001-6752-2055
0000-0002-5321-8017
0000-0003-2164-3809
0000-0003-2583-8742
OpenAccessLink https://doi.org/10.1111/2041-210x.14421
ParticipantIDs crossref_primary_10_1111_2041_210X_14421
PublicationCentury 2000
PublicationDate 2024-10-13
PublicationDateYYYYMMDD 2024-10-13
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-13
  day: 13
PublicationDecade 2020
PublicationTitle Methods in ecology and evolution
PublicationYear 2024
References e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_33_1
Veran S. (e_1_2_9_54_1) 2012; 27
Weinstein B. G. (e_1_2_9_55_1) 2020; 11
Hijmans R. J. (e_1_2_9_24_1) 2022
Youngflesh C. (e_1_2_9_59_1) 2018; 3
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_45_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
Kéry M. (e_1_2_9_29_1) 2015
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_47_1
Germino M. J. (e_1_2_9_22_1) 2018; 33
Royle J. A. (e_1_2_9_48_1) 2004; 60
Augustine B. C. (e_1_2_9_4_1) 2020; 117
e_1_2_9_53_1
Kéry M. (e_1_2_9_30_1) 2020
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_32_1
Clare J. D. J. (e_1_2_9_12_1) 2016; 6
R Core Team (e_1_2_9_43_1) 2021
Pebesma E. J. (e_1_2_9_41_1) 2018; 10
Doser J. W. (e_1_2_9_20_1) 2021; 12
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
Clare J. D. J. (e_1_2_9_13_1) 2021; 102
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
Royle J. A. (e_1_2_9_49_1) 2009; 65
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Young D. J. N. (e_1_2_9_58_1) 2022; 13
Wickham H. (e_1_2_9_56_1) 2019; 4
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
References_xml – volume-title: Applied hierarchical modeling in ecology: Analysis of distribution, abundance and species richness in R and BUGS: Volume 2: Dynamic and advanced models
  year: 2020
  ident: e_1_2_9_30_1
  contributor:
    fullname: Kéry M.
– ident: e_1_2_9_50_1
  doi: 10.2111/REM‐D‐13‐00079.1
– volume: 33
  start-page: 1177
  issue: 7
  year: 2018
  ident: e_1_2_9_22_1
  article-title: Thresholds and hotspots for shrub restoration following a heterogeneous megafire
  publication-title: Landscape Ecology
  doi: 10.1007/s10980-018-0662-8
  contributor:
    fullname: Germino M. J.
– volume: 3
  start-page: 640
  issue: 24
  year: 2018
  ident: e_1_2_9_59_1
  article-title: MCMCvis: Tools to visualize, manipulate, and summarize MCMC output
  publication-title: Journal of Open Source Software
  doi: 10.21105/joss.00640
  contributor:
    fullname: Youngflesh C.
– ident: e_1_2_9_39_1
  doi: 10.1111/rec.14106
– ident: e_1_2_9_2_1
  doi: 10.1093/aobpla/plac045
– ident: e_1_2_9_36_1
  doi: 10.1111/2041‐210X.13110
– ident: e_1_2_9_57_1
  doi: 10.1111/2041‐210X.13315
– volume-title: R: A language and environment for statistical computing
  year: 2021
  ident: e_1_2_9_43_1
  contributor:
    fullname: R Core Team
– ident: e_1_2_9_53_1
  doi: 10.1111/2041‐210X.13858
– ident: e_1_2_9_35_1
  doi: 10.1890/10‐1396.1
– ident: e_1_2_9_34_1
  doi: 10.1016/j.rala.2021.07.003
– volume: 102
  issue: 2
  year: 2021
  ident: e_1_2_9_13_1
  article-title: Generalized model‐based solutions to false‐positive error from species detection/nondetection data
  publication-title: Ecology
  doi: 10.1002/ecy.3241
  contributor:
    fullname: Clare J. D. J.
– ident: e_1_2_9_25_1
  doi: 10.1002/ece3.4878
– ident: e_1_2_9_44_1
  doi: 10.1007/s11258‐010‐9848‐0
– ident: e_1_2_9_10_1
  doi: 10.1111/1365‐2745.12021
– ident: e_1_2_9_32_1
  doi: 10.1002/ecy.2455
– ident: e_1_2_9_52_1
  doi: 10.1080/07038992.2016.1196582
– ident: e_1_2_9_27_1
  doi: 10.1111/j.1365‐2664.2009.01736.x
– ident: e_1_2_9_37_1
  doi: 10.1016/j.sste.2019.100301
– ident: e_1_2_9_42_1
  doi: 10.1111/1365‐2745.14110
– volume: 60
  start-page: 108
  issue: 1
  year: 2004
  ident: e_1_2_9_48_1
  article-title: N‐mixture models for estimating population size from spatially replicated counts
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2004.00142.x
  contributor:
    fullname: Royle J. A.
– volume: 27
  start-page: 943
  year: 2012
  ident: e_1_2_9_54_1
  article-title: Modeling habitat dynamics accounting for possible misclassification
  publication-title: Landscape Ecology
  doi: 10.1007/s10980-012-9746-z
  contributor:
    fullname: Veran S.
– ident: e_1_2_9_14_1
  doi: 10.1111/2041‐210X.13895
– ident: e_1_2_9_16_1
  doi: 10.1111/2041‐210X.12127
– ident: e_1_2_9_28_1
  doi: 10.1073/pnas.1800353115
– ident: e_1_2_9_19_1
  doi: 10.1080/10618600.2016.1172487
– ident: e_1_2_9_33_1
– ident: e_1_2_9_46_1
  doi: 10.3390/rs11060719
– volume: 11
  start-page: 1743
  issue: 12
  year: 2020
  ident: e_1_2_9_55_1
  article-title: DeepForest: A python package for RGB deep learning tree crown delineation
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.13472
  contributor:
    fullname: Weinstein B. G.
– ident: e_1_2_9_61_1
  doi: 10.1890/13‐1131.1
– ident: e_1_2_9_11_1
– ident: e_1_2_9_26_1
  doi: 10.1890/14‐1487.1
– ident: e_1_2_9_7_1
  doi: 10.1080/10618600.1998.10474787
– volume-title: Package ‘terra’
  year: 2022
  ident: e_1_2_9_24_1
  contributor:
    fullname: Hijmans R. J.
– volume-title: Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS: Volume 1
  year: 2015
  ident: e_1_2_9_29_1
  contributor:
    fullname: Kéry M.
– ident: e_1_2_9_38_1
  doi: 10.1088/1748‐9326/ab79e4
– volume: 13
  start-page: 1447
  issue: 7
  year: 2022
  ident: e_1_2_9_58_1
  article-title: Optimizing aerial imagery collection and processing parameters for drone‐ based individual tree mapping in structurally complex conifer forests
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.13860
  contributor:
    fullname: Young D. J. N.
– volume: 12
  start-page: 1040
  issue: 6
  year: 2021
  ident: e_1_2_9_20_1
  article-title: Integrating automated acoustic vocalization data and point count surveys for estimation of bird abundance
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.13578
  contributor:
    fullname: Doser J. W.
– ident: e_1_2_9_5_1
  doi: 10.1002/eap.2585
– ident: e_1_2_9_23_1
  doi: 10.1086/689560
– ident: e_1_2_9_17_1
  doi: 10.1111/j.1541‐0420.2010.01465.x
– ident: e_1_2_9_51_1
  doi: 10.1111/ele.13291
– ident: e_1_2_9_45_1
  doi: 10.1111/2041‐210X.13905
– ident: e_1_2_9_21_1
– ident: e_1_2_9_8_1
  doi: 10.1002/eap.1850
– volume: 65
  start-page: 267
  issue: 1
  year: 2009
  ident: e_1_2_9_49_1
  article-title: Analysis of capture‐recapture models with individual covariates using data augmentation
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2008.01038.x
  contributor:
    fullname: Royle J. A.
– ident: e_1_2_9_6_1
  doi: 10.1038/s41586‐020‐2824‐5
– volume: 4
  start-page: 1686
  issue: 43
  year: 2019
  ident: e_1_2_9_56_1
  article-title: Welcome to the Tidyverse
  publication-title: Journal of Open Source Software
  doi: 10.21105/joss.01686
  contributor:
    fullname: Wickham H.
– ident: e_1_2_9_31_1
  doi: 10.1126/sciadv.adh4097
– ident: e_1_2_9_47_1
  doi: 10.1016/j.rse.2020.112061
– ident: e_1_2_9_15_1
  doi: 10.1016/j.rama.2015.09.002
– ident: e_1_2_9_18_1
  doi: 10.1002/ece3.8733
– ident: e_1_2_9_40_1
  doi: 10.1098/rspb.2022.1494
– volume: 117
  start-page: 17903
  issue: 30
  year: 2020
  ident: e_1_2_9_4_1
  article-title: Spatial proximity moderates genotype uncertainty in genetic tagging studies
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.2000247117
  contributor:
    fullname: Augustine B. C.
– volume: 6
  start-page: 3884
  issue: 12
  year: 2016
  ident: e_1_2_9_12_1
  article-title: Do the antipredator strategies of shared prey mediate intraguild predation and mesocarnivore suppression?
  publication-title: Ecology and Evolution
  doi: 10.1002/ece3.2170
  contributor:
    fullname: Clare J. D. J.
– ident: e_1_2_9_60_1
  doi: 10.3398/064.069.0208
– ident: e_1_2_9_3_1
  doi: 10.1002/ecs2.4195
– ident: e_1_2_9_9_1
  doi: 10.1890/14‐1507.1
– volume: 10
  start-page: 439
  issue: 1
  year: 2018
  ident: e_1_2_9_41_1
  article-title: Simple features for R: Standardized support for spatial vector data
  publication-title: The R Journal
  doi: 10.32614/RJ-2018-009
  contributor:
    fullname: Pebesma E. J.
SSID ssj0000389024
Score 2.4304926
Snippet Abstract Estimating and monitoring plant population size is fundamental for ecological research, as well as conservation and restoration programs....
SourceID crossref
SourceType Aggregation Database
Title Propagating observation errors to enable scalable and rigorous enumeration of plant population abundance with aerial imagery
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dStxAFB5WpeBN8adia5W5UCiELPmZyU4uZVFEaBFMYe-WTGaigm6W7G5BwSfwJfosfbKek0kmca2gvQlhyM5m53x7fma-cw4hh3GQY-YBd7kAFchyT7lxEIWukJrFOpdYAR3ZFj-is5_sfMRHvd5Th7W0mMt-9vDPvJL_kSqMgVwxS_YdkrWTwgDcg3zhChKG65tkfFFCyIslMpC5LO3-qqPLEnvogFupTWrUDCRR3Rg2-VVRQsB_NAyOjj2kwuvSOo7TW1hqZ2rbejmpxFwR_PubNDht2nzcpcvZ1N-rXtQVvVZnbWUn_ateArtFnQIaZg2Z8uamPQVZXF3X7eOTvpOU8EnLHB6Wi4eGjHOPLV2sSsf9oqKl5zuX_e5GRsDQApg8VKPvABa-CxHoyJiml2OvaHv7DB5Um3Tr53W1l-ydZSE28Q9OMMYJxtUEK2QtAK0lOvF5ZdZDPJJFloL9wrpUFDLDll6i4-V03JVkg3ys4wx6bECzSXp6skU-nBjBbJPHDnRoBzrUQIfOC2qgQxvoUBAmbaDz53cHNrTIaQUb2sKGWthQhA01sKE1bD6R5PQkGZ65dScONxMV5ZH7mnlKDHIw7UpJkUZMwi-OhPKZBB819VOwVlkmeBoyzZVUQnIB_mMWh9wPd8jqpJjoXUJ5mnkyH3hR7knwhVUM8azS-UBh3UMWDj6Tb83Cjaem3sr4FTl9efuje2S9RdxXsjovF3ofnMm5PKiE_Bedc3aV
link.rule.ids 315,783,787,867,27938,27939
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Propagating+observation+errors+to+enable+scalable+and+rigorous%C2%A0enumeration+of+plant+population+abundance+with+aerial+imagery&rft.jtitle=Methods+in+ecology+and+evolution&rft.au=Zaiats%2C+Andrii&rft.au=Caughlin%2C+T.+Trevor&rft.au=Cruz%2C+Jennyffer&rft.au=Pilliod%2C+David+S.&rft.date=2024-10-13&rft.issn=2041-210X&rft.eissn=2041-210X&rft_id=info:doi/10.1111%2F2041-210X.14421&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_2041_210X_14421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-210X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-210X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-210X&client=summon