Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates

The neuron-specific transcription factor Myt1l represses many somatic lineage programs, but not the neuronal lineage program, to both induce and maintain neuronal identity. Myt1L represses non-neuronal fates Lineage reprogramming by expression of transcription factors that modulate target cell fate...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 544; no. 7649; pp. 245 - 249
Main Authors Mall, Moritz, Kareta, Michael S., Chanda, Soham, Ahlenius, Henrik, Perotti, Nicholas, Zhou, Bo, Grieder, Sarah D., Ge, Xuecai, Drake, Sienna, Euong Ang, Cheen, Walker, Brandon M., Vierbuchen, Thomas, Fuentes, Daniel R., Brennecke, Philip, Nitta, Kazuhiro R., Jolma, Arttu, Steinmetz, Lars M., Taipale, Jussi, Südhof, Thomas C., Wernig, Marius
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.04.2017
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/nature21722

Cover

Loading…
Abstract The neuron-specific transcription factor Myt1l represses many somatic lineage programs, but not the neuronal lineage program, to both induce and maintain neuronal identity. Myt1L represses non-neuronal fates Lineage reprogramming by expression of transcription factors that modulate target cell fate program requires gene expression of the donor cell to be silenced. Given our current knowledge, we would expect that each reprogramming cocktail would need to differ for distinct cells of origin, but intriguingly this has not been the case experimentally so far. Marius Wernig and colleagues have found that the neuronal reprogramming factor Myt1l, which is expressed in all neurons, promotes neuronal fate in mice by repressing all other lineages during reprogramming from other cell types as well as during neurogenesis and in primary neurons. Their data suggests that changing epigenetic marks would not be sufficient to maintain a particular cell fate, and alternative lineages are actively repressed to confer neuronal identity. Normal differentiation and induced reprogramming require the activation of target cell programs and silencing of donor cell programs 1 , 2 . In reprogramming, the same factors are often used to reprogram many different donor cell types 3 . As most developmental repressors, such as RE1-silencing transcription factor (REST) and Groucho (also known as TLE), are considered lineage-specific repressors 4 , 5 , it remains unclear how identical combinations of transcription factors can silence so many different donor programs. Distinct lineage repressors would have to be induced in different donor cell types. Here, by studying the reprogramming of mouse fibroblasts to neurons, we found that the pan neuron-specific transcription factor Myt1-like (Myt1l) 6 exerts its pro-neuronal function by direct repression of many different somatic lineage programs except the neuronal program. The repressive function of Myt1l is mediated via recruitment of a complex containing Sin3b by binding to a previously uncharacterized N-terminal domain. In agreement with its repressive function, the genomic binding sites of Myt1l are similar in neurons and fibroblasts and are preferentially in an open chromatin configuration. The Notch signalling pathway is repressed by Myt1l through silencing of several members, including Hes1. Acute knockdown of Myt1l in the developing mouse brain mimicked a Notch gain-of-function phenotype, suggesting that Myt1l allows newborn neurons to escape Notch activation during normal development. Depletion of Myt1l in primary postmitotic neurons de-repressed non-neuronal programs and impaired neuronal gene expression and function, indicating that many somatic lineage programs are actively and persistently repressed by Myt1l to maintain neuronal identity. It is now tempting to speculate that similar ‘many-but-one’ lineage repressors exist for other cell fates; such repressors, in combination with lineage-specific activators, would be prime candidates for use in reprogramming additional cell types.
AbstractList Normal differentiation and induced reprogramming require the activation of target cell programs and silencing of donor cell programs. In reprogramming, the same factors are often used to reprogram many different donor cell types. As most developmental repressors, such as RE1-silencing transcription factor (REST) and Groucho (also known as TLE), are considered lineage-specific repressors, it remains unclear how identical combinations of transcription factors can silence so many different donor programs. Distinct lineage repressors would have to be induced in different donor cell types. Here, by studying the reprogramming of mouse fibroblasts to neurons, we found that the pan neuron-specific transcription factor Myt1-like (Myt1l) exerts its pro-neuronal function by direct repression of many different somatic lineage programs except the neuronal program. The repressive function of Myt1l is mediated via recruitment of a complex containing Sin3b by binding to a previously uncharacterized N-terminal domain. In agreement with its repressive function, the genomic binding sites of Myt1l are similar in neurons and fibroblasts and are preferentially in an open chromatin configuration. The Notch signalling pathway is repressed by Myt1l through silencing of several members, including Hes1. Acute knockdown of Myt1l in the developing mouse brain mimicked a Notch gain-of-function phenotype, suggesting that Myt1l allows newborn neurons to escape Notch activation during normal development. Depletion of Myt1l in primary postmitotic neurons de-repressed non-neuronal programs and impaired neuronal gene expression and function, indicating that many somatic lineage programs are actively and persistently repressed by Myt1l to maintain neuronal identity. It is now tempting to speculate that similar 'many-but-one' lineage repressors exist for other cell fates; such repressors, in combination with lineage-specific activators, would be prime candidates for use in reprogramming additional cell types.
The neuron-specific transcription factor Myt1l represses many somatic lineage programs, but not the neuronal lineage program, to both induce and maintain neuronal identity. Myt1L represses non-neuronal fates Lineage reprogramming by expression of transcription factors that modulate target cell fate program requires gene expression of the donor cell to be silenced. Given our current knowledge, we would expect that each reprogramming cocktail would need to differ for distinct cells of origin, but intriguingly this has not been the case experimentally so far. Marius Wernig and colleagues have found that the neuronal reprogramming factor Myt1l, which is expressed in all neurons, promotes neuronal fate in mice by repressing all other lineages during reprogramming from other cell types as well as during neurogenesis and in primary neurons. Their data suggests that changing epigenetic marks would not be sufficient to maintain a particular cell fate, and alternative lineages are actively repressed to confer neuronal identity. Normal differentiation and induced reprogramming require the activation of target cell programs and silencing of donor cell programs 1 , 2 . In reprogramming, the same factors are often used to reprogram many different donor cell types 3 . As most developmental repressors, such as RE1-silencing transcription factor (REST) and Groucho (also known as TLE), are considered lineage-specific repressors 4 , 5 , it remains unclear how identical combinations of transcription factors can silence so many different donor programs. Distinct lineage repressors would have to be induced in different donor cell types. Here, by studying the reprogramming of mouse fibroblasts to neurons, we found that the pan neuron-specific transcription factor Myt1-like (Myt1l) 6 exerts its pro-neuronal function by direct repression of many different somatic lineage programs except the neuronal program. The repressive function of Myt1l is mediated via recruitment of a complex containing Sin3b by binding to a previously uncharacterized N-terminal domain. In agreement with its repressive function, the genomic binding sites of Myt1l are similar in neurons and fibroblasts and are preferentially in an open chromatin configuration. The Notch signalling pathway is repressed by Myt1l through silencing of several members, including Hes1. Acute knockdown of Myt1l in the developing mouse brain mimicked a Notch gain-of-function phenotype, suggesting that Myt1l allows newborn neurons to escape Notch activation during normal development. Depletion of Myt1l in primary postmitotic neurons de-repressed non-neuronal programs and impaired neuronal gene expression and function, indicating that many somatic lineage programs are actively and persistently repressed by Myt1l to maintain neuronal identity. It is now tempting to speculate that similar ‘many-but-one’ lineage repressors exist for other cell fates; such repressors, in combination with lineage-specific activators, would be prime candidates for use in reprogramming additional cell types.
Normal differentiation and induced reprogramming require the activation of target cell programs and silencing of donor cell programs. In reprogramming, the same factors are often used to reprogram many different donor cell types. As most developmental repressors, such as RE1-silencing transcription factor (REST) and Groucho (also known as TLE), are considered lineage-specific repressors, it remains unclear how identical combinations of transcription factors can silence so many different donor programs. Distinct lineage repressors would have to be induced in different donor cell types. Here, by studying the reprogramming of mouse fibroblasts to neurons, we found that the pan neuron-specific transcription factor Myt1-like (Myt1l) exerts its pro-neuronal function by direct repression of many different somatic lineage programs except the neuronal program. The repressive function of Myt1l is mediated via recruitment of a complex containing Sin3b by binding to a previously uncharacterized N-terminal domain. In agreement with its repressive function, the genomic binding sites of Myt1l are similar in neurons and fibroblasts and are preferentially in an open chromatin configuration. The Notch signalling pathway is repressed by Myt1l through silencing of several members, including Hes1. Acute knockdown of Myt1l in the developing mouse brain mimicked a Notch gain-of-function phenotype, suggesting that Myt1l allows newborn neurons to escape Notch activation during normal development. Depletion of Myt1l in primary postmitotic neurons de-repressed non-neuronal programs and impaired neuronal gene expression and function, indicating that many somatic lineage programs are actively and persistently repressed by Myt1l to maintain neuronal identity. It is now tempting to speculate that similar 'many-but-one' lineage repressors exist for other cell fates; such repressors, in combination with lineage-specific activators, would be prime candidates for use in reprogramming additional cell types.Normal differentiation and induced reprogramming require the activation of target cell programs and silencing of donor cell programs. In reprogramming, the same factors are often used to reprogram many different donor cell types. As most developmental repressors, such as RE1-silencing transcription factor (REST) and Groucho (also known as TLE), are considered lineage-specific repressors, it remains unclear how identical combinations of transcription factors can silence so many different donor programs. Distinct lineage repressors would have to be induced in different donor cell types. Here, by studying the reprogramming of mouse fibroblasts to neurons, we found that the pan neuron-specific transcription factor Myt1-like (Myt1l) exerts its pro-neuronal function by direct repression of many different somatic lineage programs except the neuronal program. The repressive function of Myt1l is mediated via recruitment of a complex containing Sin3b by binding to a previously uncharacterized N-terminal domain. In agreement with its repressive function, the genomic binding sites of Myt1l are similar in neurons and fibroblasts and are preferentially in an open chromatin configuration. The Notch signalling pathway is repressed by Myt1l through silencing of several members, including Hes1. Acute knockdown of Myt1l in the developing mouse brain mimicked a Notch gain-of-function phenotype, suggesting that Myt1l allows newborn neurons to escape Notch activation during normal development. Depletion of Myt1l in primary postmitotic neurons de-repressed non-neuronal programs and impaired neuronal gene expression and function, indicating that many somatic lineage programs are actively and persistently repressed by Myt1l to maintain neuronal identity. It is now tempting to speculate that similar 'many-but-one' lineage repressors exist for other cell fates; such repressors, in combination with lineage-specific activators, would be prime candidates for use in reprogramming additional cell types.
Normal differentiation and induced reprogramming require the activation of target cell programs and silencing of donor cell programs 1 , 2 . In reprogramming, the same factors are often used to reprogram many different donor cell types 3 . As most developmental repressors, such as RE1-silencing transcription factor (REST) and Groucho (also known as TLE), are considered lineage-specific repressors 4 , 5 , it remains unclear how identical combinations of transcription factors can silence so many different donor programs. Distinct lineage repressors would have to be induced in different donor cell types. Here, by studying the reprogramming of mouse fibroblasts to neurons, we found that the pan neuron-specific transcription factor Myt1-like (Myt1l) 6 exerts its pro-neuronal function by direct repression of many different somatic lineage programs except the neuronal program. The repressive function of Myt1l is mediated via recruitment of a complex containing Sin3b by binding to a previously uncharacterized N-terminal domain. In agreement with its repressive function, the genomic binding sites of Myt1l are similar in neurons and fibroblasts and are preferentially in an open chromatin configuration. The Notch signalling pathway is repressed by Myt1l through silencing of several members, including Hes1. Acute knockdown of Myt1l in the developing mouse brain mimicked a Notch gain-of-function phenotype, suggesting that Myt1l allows newborn neurons to escape Notch activation during normal development. Depletion of Myt1l in primary postmitotic neurons de-repressed non-neuronal programs and impaired neuronal gene expression and function, indicating that many somatic lineage programs are actively and persistently repressed by Myt1l to maintain neuronal identity. It is now tempting to speculate that similar ‘many-but-one’ lineage repressors exist for other cell fates; such repressors, in combination with lineage-specific activators, would be prime candidates for use in reprogramming additional cell types.
Audience Academic
Author Wernig, Marius
Drake, Sienna
Mall, Moritz
Walker, Brandon M.
Ahlenius, Henrik
Vierbuchen, Thomas
Brennecke, Philip
Fuentes, Daniel R.
Kareta, Michael S.
Steinmetz, Lars M.
Taipale, Jussi
Zhou, Bo
Südhof, Thomas C.
Ge, Xuecai
Euong Ang, Cheen
Chanda, Soham
Grieder, Sarah D.
Perotti, Nicholas
Nitta, Kazuhiro R.
Jolma, Arttu
AuthorAffiliation 2. Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute
8. Genome Scale Biology Program, University of Helsinki, 00014 Helsinki, Finland
12. Current Address: Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
1. Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
10. Current Address: Molecular and Cellular Biology, University of California Merced, Merced, CA 95343, USA
3. Department of Genetics
4. Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
5. Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
9. Current Address: Children’s Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
7. Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
11. Current Address: Leibniz-Institute for Molecular Pharmacology, 13125 Berlin, Germany
6. Division of Functional Genomics and Systems Biology, Departm
AuthorAffiliation_xml – name: 7. Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
– name: 5. Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
– name: 4. Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
– name: 10. Current Address: Molecular and Cellular Biology, University of California Merced, Merced, CA 95343, USA
– name: 2. Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute
– name: 11. Current Address: Leibniz-Institute for Molecular Pharmacology, 13125 Berlin, Germany
– name: 3. Department of Genetics
– name: 9. Current Address: Children’s Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
– name: 1. Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine
– name: 8. Genome Scale Biology Program, University of Helsinki, 00014 Helsinki, Finland
– name: 6. Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
– name: 12. Current Address: Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
Author_xml – sequence: 1
  givenname: Moritz
  surname: Mall
  fullname: Mall, Moritz
  organization: Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University
– sequence: 2
  givenname: Michael S.
  surname: Kareta
  fullname: Kareta, Michael S.
  organization: Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, †Present addresses: Genetics and Genomics Group, Sanford Research, Sioux Falls, SD 57104, USA (M.S.K.); Molecular and Cellular Biology, University of California Merced, Merced, CA 95343, USA (X.G.); Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA (T.V.); Leibniz-Institute for Molecular Pharmacology, 13125 Berlin, Germany (P.B.); Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan (K.R.N.)
– sequence: 3
  givenname: Soham
  surname: Chanda
  fullname: Chanda, Soham
  organization: Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University
– sequence: 4
  givenname: Henrik
  surname: Ahlenius
  fullname: Ahlenius, Henrik
  organization: Department of Clinical Sciences, Division of Neurology and Lund Stem Cell Center, Lund University
– sequence: 5
  givenname: Nicholas
  surname: Perotti
  fullname: Perotti, Nicholas
  organization: Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University
– sequence: 6
  givenname: Bo
  surname: Zhou
  fullname: Zhou, Bo
  organization: Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University
– sequence: 7
  givenname: Sarah D.
  surname: Grieder
  fullname: Grieder, Sarah D.
  organization: Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University
– sequence: 8
  givenname: Xuecai
  surname: Ge
  fullname: Ge, Xuecai
  organization: Department of Developmental Biology, Stanford University, †Present addresses: Genetics and Genomics Group, Sanford Research, Sioux Falls, SD 57104, USA (M.S.K.); Molecular and Cellular Biology, University of California Merced, Merced, CA 95343, USA (X.G.); Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA (T.V.); Leibniz-Institute for Molecular Pharmacology, 13125 Berlin, Germany (P.B.); Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan (K.R.N.)
– sequence: 9
  givenname: Sienna
  surname: Drake
  fullname: Drake, Sienna
  organization: Department of Clinical Sciences, Division of Neurology and Lund Stem Cell Center, Lund University
– sequence: 10
  givenname: Cheen
  surname: Euong Ang
  fullname: Euong Ang, Cheen
  organization: Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University
– sequence: 11
  givenname: Brandon M.
  surname: Walker
  fullname: Walker, Brandon M.
  organization: Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University
– sequence: 12
  givenname: Thomas
  surname: Vierbuchen
  fullname: Vierbuchen, Thomas
  organization: Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, †Present addresses: Genetics and Genomics Group, Sanford Research, Sioux Falls, SD 57104, USA (M.S.K.); Molecular and Cellular Biology, University of California Merced, Merced, CA 95343, USA (X.G.); Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA (T.V.); Leibniz-Institute for Molecular Pharmacology, 13125 Berlin, Germany (P.B.); Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan (K.R.N.)
– sequence: 13
  givenname: Daniel R.
  surname: Fuentes
  fullname: Fuentes, Daniel R.
  organization: Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University
– sequence: 14
  givenname: Philip
  surname: Brennecke
  fullname: Brennecke, Philip
  organization: Department of Genetics, Stanford University, †Present addresses: Genetics and Genomics Group, Sanford Research, Sioux Falls, SD 57104, USA (M.S.K.); Molecular and Cellular Biology, University of California Merced, Merced, CA 95343, USA (X.G.); Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA (T.V.); Leibniz-Institute for Molecular Pharmacology, 13125 Berlin, Germany (P.B.); Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan (K.R.N.)
– sequence: 15
  givenname: Kazuhiro R.
  surname: Nitta
  fullname: Nitta, Kazuhiro R.
  organization: Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, †Present addresses: Genetics and Genomics Group, Sanford Research, Sioux Falls, SD 57104, USA (M.S.K.); Molecular and Cellular Biology, University of California Merced, Merced, CA 95343, USA (X.G.); Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA (T.V.); Leibniz-Institute for Molecular Pharmacology, 13125 Berlin, Germany (P.B.); Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan (K.R.N.)
– sequence: 16
  givenname: Arttu
  surname: Jolma
  fullname: Jolma, Arttu
  organization: Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet
– sequence: 17
  givenname: Lars M.
  surname: Steinmetz
  fullname: Steinmetz, Lars M.
  organization: Department of Genetics, Stanford University, Genome Biology Unit, European Molecular Biology Laboratory (EMBL)
– sequence: 18
  givenname: Jussi
  surname: Taipale
  fullname: Taipale, Jussi
  organization: Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Genome Scale Biology Program, University of Helsinki
– sequence: 19
  givenname: Thomas C.
  surname: Südhof
  fullname: Südhof, Thomas C.
  organization: Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University
– sequence: 20
  givenname: Marius
  surname: Wernig
  fullname: Wernig, Marius
  email: wernig@stanford.edu
  organization: Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28379941$$D View this record in MEDLINE/PubMed
https://lup.lub.lu.se/record/c7e00628-3000-42d3-8057-c17f4ed1f86a$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/c7e00628-3000-42d3-8057-c17f4ed1f86a$$DView record from Swedish Publication Index
http://kipublications.ki.se/Default.aspx?queryparsed=id:135588363$$DView record from Swedish Publication Index
BookMark eNqNk8tv1DAQhyNURLeFE3cUwQUEKbbjJM4JVRWPSosQr7PlOOPUJetsbaew_z3T7rZsqq2EIiuW_c1vxvM4SPbc4CBJnlJyREku3joVRw-MVow9SGaUV2XGS1HtJTNCmMiIyMv95CCEc0JIQSv-KNlnIq_qmtNZ8vXzKtI-DcpANyrfhtTB6Aen-tS24KKNq7RZpUpHewn9KvWw9BCCdV26UG6VYizZrYVREcLj5KFRfYAnm_9h8vPD-x8nn7L5l4-nJ8fzTAtKYkYr2uSUaEYaWue84AaoqPLSEAYlKRgrtDFac6MBL0Xb8laLyhDBOOdQN_lhkq11w29Yjo1certQfiUHZeXm6BfuQPK6EqREXt3LLwcfVS_xZaC8PpP9eGWIVG-1inZwQeoKCCmZkDmmUXLW5lKQopKaVoZDS40oFfqY3-ujH5e4mo32f8q9W8uh1gJajfXwGOYk8smNs2eyGy4lpTkXguSo8HKj4IeLEUKUCxs09L1yMIxBUiEQ5LwoEH1xBz0fRo9lvabqvOSk3qI61YO0zgzoWF-JyuOCcI5dVbJ_tZlQHTjAKLF7jcXjCf98B6-X9kJuQ0c7IPxaWFi9U_XVxACZCH9ip8YQ5On3b1P22Xaqb3N8MykI0DWg_RCCByO1jde9gVHYXlIir6ZRbk0j2ry-Y3Mju5t-s2kepFwHfqsAO_C_DBdDkw
CODEN NATUAS
CitedBy_id crossref_primary_10_1016_j_celrep_2018_09_067
crossref_primary_10_1016_j_gde_2018_05_011
crossref_primary_10_3389_fcell_2022_1016367
crossref_primary_10_1016_j_gde_2018_05_013
crossref_primary_10_1534_genetics_119_302333
crossref_primary_10_1038_s41556_022_00946_4
crossref_primary_10_1186_s13293_025_00690_y
crossref_primary_10_1016_j_coisb_2018_07_004
crossref_primary_10_1016_j_neuron_2021_11_023
crossref_primary_10_1038_s41594_024_01431_2
crossref_primary_10_7554_eLife_49635
crossref_primary_10_1007_s00441_017_2690_0
crossref_primary_10_1038_s44320_024_00014_z
crossref_primary_10_1007_s12264_018_0207_9
crossref_primary_10_1038_s41593_024_01677_5
crossref_primary_10_2217_epi_2020_0173
crossref_primary_10_7554_eLife_42675
crossref_primary_10_1101_gr_277413_122
crossref_primary_10_7554_eLife_74557
crossref_primary_10_1038_s41467_022_30192_z
crossref_primary_10_1242_dev_163501
crossref_primary_10_3389_fcell_2021_681087
crossref_primary_10_1016_j_semcdb_2021_11_011
crossref_primary_10_1038_s41598_017_14930_8
crossref_primary_10_1038_nrn_2017_54
crossref_primary_10_1038_s41388_020_1268_6
crossref_primary_10_1186_s12859_021_04017_7
crossref_primary_10_1073_pnas_2308401121
crossref_primary_10_1038_s41398_022_02058_x
crossref_primary_10_7554_eLife_92091
crossref_primary_10_1016_j_celrep_2019_04_077
crossref_primary_10_15252_embj_2020106818
crossref_primary_10_1242_dmm_040105
crossref_primary_10_1016_j_semcdb_2022_05_013
crossref_primary_10_1038_s41593_019_0399_y
crossref_primary_10_1016_j_stemcr_2025_102421
crossref_primary_10_1007_s00439_021_02383_z
crossref_primary_10_1126_sciadv_aba5933
crossref_primary_10_1038_s41556_020_0490_3
crossref_primary_10_1016_j_celrep_2020_01_034
crossref_primary_10_1089_cell_2021_29044_ha
crossref_primary_10_1002_ajmg_a_40370
crossref_primary_10_1016_j_jare_2023_06_013
crossref_primary_10_1002_ajmg_b_32781
crossref_primary_10_1038_s41467_018_08133_6
crossref_primary_10_3390_ijms22094616
crossref_primary_10_3390_ijms23073720
crossref_primary_10_1002_1873_3468_13811
crossref_primary_10_1073_pnas_2008013117
crossref_primary_10_1016_j_celrep_2022_110381
crossref_primary_10_1146_annurev_cellbio_100818_125127
crossref_primary_10_3389_fnins_2019_00283
crossref_primary_10_1016_j_gde_2021_06_015
crossref_primary_10_15252_embr_202050000
crossref_primary_10_1016_j_nbd_2020_105174
crossref_primary_10_3390_cells12040618
crossref_primary_10_1126_sciadv_ade2441
crossref_primary_10_1002_alz_12553
crossref_primary_10_1002_cbin_11560
crossref_primary_10_1126_science_abb8598
crossref_primary_10_1038_s41593_018_0168_3
crossref_primary_10_7554_eLife_40197
crossref_primary_10_1016_j_cels_2025_101205
crossref_primary_10_1146_annurev_genet_071719_023616
crossref_primary_10_1039_D4SC00643G
crossref_primary_10_1016_j_celrep_2017_09_011
crossref_primary_10_1038_s41467_024_54371_2
crossref_primary_10_1073_pnas_2104841118
crossref_primary_10_3390_genes14122122
crossref_primary_10_7554_eLife_92091_3
crossref_primary_10_1002_dneu_22882
crossref_primary_10_1016_j_stemcr_2018_01_036
crossref_primary_10_1089_cell_2022_0110
crossref_primary_10_1016_j_tcb_2023_07_013
crossref_primary_10_1083_jcb_201807044
crossref_primary_10_1016_j_conb_2020_12_006
crossref_primary_10_1186_s13036_019_0144_9
crossref_primary_10_1016_j_neuron_2021_09_009
crossref_primary_10_1038_s41588_025_02081_w
crossref_primary_10_3389_fgeed_2020_00007
crossref_primary_10_7554_eLife_32341
crossref_primary_10_1002_dvdy_24655
crossref_primary_10_1007_s12035_021_02345_6
crossref_primary_10_1016_j_neubiorev_2025_106059
crossref_primary_10_1002_1873_3468_13678
crossref_primary_10_1016_j_molcel_2022_11_002
crossref_primary_10_1016_j_neuron_2019_06_027
crossref_primary_10_1007_s12015_019_09915_1
crossref_primary_10_2174_0113894501279977231210170231
crossref_primary_10_1016_j_stem_2020_08_015
crossref_primary_10_1016_j_neuron_2018_12_010
crossref_primary_10_1080_23262133_2017_1329683
crossref_primary_10_1089_cell_2024_36789_mor
crossref_primary_10_1038_s41431_023_01379_9
crossref_primary_10_1093_stmcls_sxae079
crossref_primary_10_1016_j_cell_2024_02_031
crossref_primary_10_1242_dev_150466
crossref_primary_10_3233_THC_218042
crossref_primary_10_1111_cns_12821
crossref_primary_10_1186_s12864_022_08495_8
crossref_primary_10_1016_j_reth_2023_06_002
crossref_primary_10_12688_f1000research_18926_1
crossref_primary_10_3390_ijms24065665
crossref_primary_10_1038_s41467_023_40803_y
crossref_primary_10_1080_15384101_2020_1717044
crossref_primary_10_1186_s40001_024_01989_z
crossref_primary_10_1016_j_cels_2021_07_003
crossref_primary_10_1016_j_devcel_2020_04_003
crossref_primary_10_3389_fncel_2020_00121
crossref_primary_10_3390_cancers13225792
crossref_primary_10_3389_fcell_2019_00082
crossref_primary_10_1111_cpr_13775
crossref_primary_10_1038_s41392_022_00934_y
crossref_primary_10_1016_j_isci_2020_101227
crossref_primary_10_1016_j_cell_2023_08_042
crossref_primary_10_1186_s13229_022_00497_3
crossref_primary_10_1007_s12035_021_02561_0
crossref_primary_10_1523_JNEUROSCI_0313_24_2025
crossref_primary_10_1128_MCB_00526_20
crossref_primary_10_1039_D4QI02098G
crossref_primary_10_1016_j_brainres_2017_10_034
crossref_primary_10_1016_j_pneurobio_2018_04_003
crossref_primary_10_3389_fnmol_2021_662774
crossref_primary_10_1038_s41467_022_35518_5
crossref_primary_10_1016_j_celrep_2022_111398
crossref_primary_10_1038_s41598_021_88827_y
crossref_primary_10_1016_j_jbc_2024_107881
crossref_primary_10_1016_j_stemcr_2021_01_006
crossref_primary_10_1038_s41588_025_02082_9
crossref_primary_10_1016_j_isci_2024_109768
crossref_primary_10_1016_j_pbb_2024_173912
crossref_primary_10_1016_j_gde_2023_102128
crossref_primary_10_1038_s41467_019_11054_7
crossref_primary_10_7554_eLife_46703
crossref_primary_10_1101_gad_333906_119
crossref_primary_10_1177_2633105520928068
crossref_primary_10_1371_journal_pgen_1010342
crossref_primary_10_1016_j_devcel_2018_03_013
crossref_primary_10_1093_bioinformatics_btae143
crossref_primary_10_1016_j_bbagrm_2018_10_005
crossref_primary_10_3390_biom11111713
crossref_primary_10_1002_dvdy_100
crossref_primary_10_1016_j_stem_2017_06_011
crossref_primary_10_1242_dev_151381
crossref_primary_10_1016_j_biocel_2020_105717
crossref_primary_10_1158_1078_0432_CCR_19_0775
crossref_primary_10_1016_j_brainresbull_2023_110661
crossref_primary_10_3389_fnins_2020_546484
crossref_primary_10_1016_j_brainresbull_2021_11_016
crossref_primary_10_1007_s00109_017_1550_4
crossref_primary_10_1101_gr_275623_121
crossref_primary_10_1073_pnas_2312330121
crossref_primary_10_1021_acs_jproteome_3c00786
crossref_primary_10_1134_S0026893321040087
crossref_primary_10_7554_eLife_41770
crossref_primary_10_1002_jcb_26636
crossref_primary_10_3390_ijms22179150
crossref_primary_10_4239_wjd_v15_i5_958
crossref_primary_10_1038_s41380_023_01959_7
Cites_doi 10.1093/bioinformatics/bth349
10.1038/nature13772
10.1093/bioinformatics/btp352
10.1523/JNEUROSCI.1860-14.2014
10.1038/nmeth.1923
10.1186/s13059-015-0840-9
10.1038/nprot.2013.092
10.1074/jbc.271.18.10723
10.1074/jbc.273.9.5366
10.1002/dvdy.24091
10.1038/nature08797
10.1016/j.cell.2012.12.009
10.1242/jcs.02945
10.1093/bioinformatics/bth078
10.1016/j.molcel.2010.05.004
10.1002/dvdy.22217
10.1038/nmeth.1491
10.1371/journal.pone.0132798
10.1016/j.jneumeth.2006.10.009
10.1111/j.1471-4159.2005.03131.x
10.1016/j.stem.2015.01.013
10.1016/j.bbagrm.2009.05.007
10.1016/j.cell.2013.09.028
10.1038/344454a0
10.1128/JVI.72.11.8463-8471.1998
10.1038/81944
10.1038/nbt.2450
10.1016/j.celrep.2016.09.024
10.7554/eLife.04837
10.1186/gb-2009-10-3-r25
10.1016/S0092-8674(00)81815-2
10.1186/gb-2008-9-9-r137
10.1097/YPG.0b013e328353ae3d
10.1038/nbt.1508
10.1021/ic4003516
10.1038/ng1180
10.1186/gb-2013-14-4-r36
10.1038/nature10730
10.1126/science.7871435
10.1038/nsmb.2419
10.1093/bioinformatics/btq033
10.1111/j.1601-183X.2011.00734.x
10.1038/nn.2208
10.1038/nbt.1621
10.1038/gim.2014.124
10.1073/pnas.0506580102
10.1093/nar/30.9.e36
10.1126/scisignal.3145pe38
10.1242/dev.092163
10.1016/j.stemcr.2014.05.020
ContentType Journal Article
Copyright Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2016
COPYRIGHT 2017 Nature Publishing Group
Copyright Nature Publishing Group Apr 13, 2017
Copyright_xml – notice: Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2016
– notice: COPYRIGHT 2017 Nature Publishing Group
– notice: Copyright Nature Publishing Group Apr 13, 2017
CorporateAuthor Stem Cells, Aging and Neurodegeneration
Institutionen för kliniska vetenskaper, Lund
Profile areas and other strong research environments
Lunds universitet
Institutionen för experimentell medicinsk vetenskap
Lund University
StemTherapy: National Initiative on Stem Cells for Regenerative Therapy
Stamceller, åldrande och neurodegeneration
Department of Clinical Sciences, Lund
Neurology, Lund
Strategiska forskningsområden (SFO)
Department of Experimental Medical Science
Faculty of Medicine
Strategic research areas (SRA)
Section IV
Medicinska fakulteten
Sektion IV
Profilområden och andra starka forskningsmiljöer
Neurologi, Lund
CorporateAuthor_xml – name: Faculty of Medicine
– name: Medicinska fakulteten
– name: Strategiska forskningsområden (SFO)
– name: Department of Experimental Medical Science
– name: StemTherapy: National Initiative on Stem Cells for Regenerative Therapy
– name: Institutionen för kliniska vetenskaper, Lund
– name: Strategic research areas (SRA)
– name: Lunds universitet
– name: Neurology, Lund
– name: Stamceller, åldrande och neurodegeneration
– name: Department of Clinical Sciences, Lund
– name: Profilområden och andra starka forskningsmiljöer
– name: Sektion IV
– name: Lund University
– name: Section IV
– name: Neurologi, Lund
– name: Stem Cells, Aging and Neurodegeneration
– name: Institutionen för experimentell medicinsk vetenskap
– name: Profile areas and other strong research environments
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
ADTPV
AOWAS
D95
D8T
ZZAVC
DOI 10.1038/nature21722
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Psychology Database (ProQuest)
Research Library (ProQuest)
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (ProQuest)
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Lunds universitet
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database

MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 249
ExternalDocumentID oai_swepub_ki_se_497806
oai_portal_research_lu_se_publications_c7e00628_3000_42d3_8057_c17f4ed1f86a
oai_lup_lub_lu_se_c7e00628_3000_42d3_8057_c17f4ed1f86a
PMC11348803
4321808649
A504499462
28379941
10_1038_nature21722
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: T32 CA009151
– fundername: NIMH NIH HHS
  grantid: R01 MH092931
– fundername: Howard Hughes Medical Institute
– fundername: NINDS NIH HHS
  grantid: RC4 NS073015
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EJD
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
5PM
TUS
ADTPV
AOWAS
D95
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
ABAWZ
ABDBF
ABDPE
ABEFU
ABNNU
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADYSU
ADZCM
AEZWR
AFBBN
AFFDN
AFHIU
AFHKK
AFKWF
AGCDD
AGGDT
AGQPQ
AHWEU
AIXLP
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
D8T
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
FA8
FAC
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NFIDA
NXXTH
ODYON
OHT
P-O
PEA
PM3
PUEGO
PV9
QS-
R4F
RHI
SKT
TH9
TUD
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZGI
ZHY
ZKB
ZY4
ZZAVC
~8M
~G0
ID FETCH-LOGICAL-c810t-171b310c20b193454fe18736f02e605225cffcc4fce4548dd4dc87f082444e9b3
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Mon Sep 01 03:24:06 EDT 2025
Fri Aug 22 03:13:41 EDT 2025
Thu Jul 03 05:16:03 EDT 2025
Thu Aug 21 18:32:16 EDT 2025
Fri Jul 11 03:43:29 EDT 2025
Fri Jul 25 09:15:08 EDT 2025
Tue Jun 17 21:10:03 EDT 2025
Thu Jun 12 23:49:32 EDT 2025
Tue Jun 10 15:35:45 EDT 2025
Tue Jun 10 20:31:54 EDT 2025
Fri Jun 27 04:07:41 EDT 2025
Mon Jul 21 06:07:25 EDT 2025
Tue Jul 01 00:56:54 EDT 2025
Thu Apr 24 23:13:30 EDT 2025
Fri Feb 21 02:38:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7649
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c810t-171b310c20b193454fe18736f02e605225cffcc4fce4548dd4dc87f082444e9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
M.M. was responsible for research design, execution, data analysis, and manuscript preparation. M.S.K. performed and designed the bioinformatics analysis and aided in manuscript preparation. S.C. and B.Z. performed the electrophysiological analysis. H.A. performed the NSC experiments and advised on research design and manuscript preparation. X.G., C.E.A. and S.D. performed in utero electroporations. N.P. aided in the biochemical interaction studies. S.G. performed the FACS analysis. T.V., B.M.W. and D.R.F. generated constructs. P.B. and L.S. performed the sequencing. K.R.N., A.J., and J.T. performed the SELEX. T.C.S. supported the research. M.W. was responsible for supervision and design of research, data interpretation, and manuscript preparation.
Author Contributions
OpenAccessLink http://kipublications.ki.se/Default.aspx?queryparsed=id:135588363
PMID 28379941
PQID 1889364095
PQPubID 40569
PageCount 5
ParticipantIDs swepub_primary_oai_swepub_ki_se_497806
swepub_primary_oai_portal_research_lu_se_publications_c7e00628_3000_42d3_8057_c17f4ed1f86a
swepub_primary_oai_lup_lub_lu_se_c7e00628_3000_42d3_8057_c17f4ed1f86a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11348803
proquest_miscellaneous_1884884455
proquest_journals_1889364095
gale_infotracmisc_A504499462
gale_infotracgeneralonefile_A504499462
gale_infotraccpiq_504499462
gale_infotracacademiconefile_A504499462
gale_incontextgauss_ISR_A504499462
pubmed_primary_28379941
crossref_citationtrail_10_1038_nature21722
crossref_primary_10_1038_nature21722
springer_journals_10_1038_nature21722
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-13
PublicationDateYYYYMMDD 2017-04-13
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-13
  day: 13
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Schäfer, Blakely, Darlington, Blau (CR1) 1990; 344
Xu, Du, Deng (CR3) 2015; 16
Maximov, Pang, Tervo, Südhof (CR26) 2007; 161
De Rocker (CR21) 2015; 17
Besold, Oluyadi, Michel (CR13) 2013; 52
Chanda (CR10) 2014; 3
Jolma (CR52) 2013; 152
Dull (CR28) 1998; 72
Langmead, Trapnell, Pop, Salzberg (CR37) 2009; 10
Subramanian (CR45) 2005; 102
Li (CR34) 2009; 25
Grzenda, Lomberk, Zhang, Urrutia (CR16) 2009; 1789
Matsushita, Kameyama, Kadokawa, Marunouchi (CR6) 2014; 243
Schoenherr, Anderson (CR5) 1995; 267
Kharchenko, Tolstorukov, Park (CR31) 2008; 26
Axelrod (CR20) 2010; 3
Vasconcelos (CR17) 2016; 17
Trapnell (CR46) 2010; 28
Vierbuchen (CR9) 2010; 463
Jiang (CR11) 1996; 271
Ross-Innes (CR36) 2012; 481
Kageyama, Ohtsuka, Shimojo, Imayoshi (CR19) 2008; 11
Springer, Rando, Blau (CR27) 2002; 13
CR42
Trapnell (CR40) 2013; 31
Saldanha (CR43) 2004; 20
Masserdotti, Gascón, Götz (CR7) 2016; 143
De Rubeis (CR22) 2014; 515
Kim (CR39) 2013; 14
Quinlan, Hall (CR35) 2010; 26
Nitta (CR53) 2015; 4
Bellefroid (CR18) 1996; 87
Langmead, Salzberg (CR29) 2012; 9
Zhang (CR30) 2008; 9
Teif (CR25) 2012; 19
CR50
Yee, Yu (CR12) 1998; 273
Zhang (CR49) 2014; 34
Terranova, Pereira, Du Roure, Merkenschlager, Fisher (CR2) 2006; 119
Wapinski (CR8) 2013; 155
Heinz (CR32) 2010; 38
Levin (CR38) 2010; 7
Pfaffl, Horgan, Dempfle (CR51) 2002; 30
de Hoon, Imoto, Nolan, Miyano (CR41) 2004; 20
Santisteban, Recacha, Metzger, Zaret (CR4) 2010; 239
Li (CR24) 2012; 11
Huang (CR48) 2015; 10
Mi, Muruganujan, Casagrande, Thomas (CR33) 2013; 8
Bao (CR47) 2015; 16
Spronk (CR15) 2000; 7
Romm, Nielsen, Kim, Hudson (CR14) 2005; 93
Lee (CR23) 2012; 22
Mootha (CR44) 2003; 34
AR Quinlan (BFnature21722_CR35) 2010; 26
AJ Saldanha (BFnature21722_CR43) 2004; 20
H Li (BFnature21722_CR34) 2009; 25
CS Ross-Innes (BFnature21722_CR36) 2012; 481
Y Zhang (BFnature21722_CR30) 2008; 9
MJL de Hoon (BFnature21722_CR41) 2004; 20
BFnature21722_CR42
X Bao (BFnature21722_CR47) 2015; 16
A Maximov (BFnature21722_CR26) 2007; 161
C Trapnell (BFnature21722_CR40) 2013; 31
PV Kharchenko (BFnature21722_CR31) 2008; 26
P Santisteban (BFnature21722_CR4) 2010; 239
KR Nitta (BFnature21722_CR53) 2015; 4
MW Pfaffl (BFnature21722_CR51) 2002; 30
R Kageyama (BFnature21722_CR19) 2008; 11
C Trapnell (BFnature21722_CR46) 2010; 28
T Vierbuchen (BFnature21722_CR9) 2010; 463
W Li (BFnature21722_CR24) 2012; 11
BFnature21722_CR50
F Matsushita (BFnature21722_CR6) 2014; 243
AN Besold (BFnature21722_CR13) 2013; 52
D Kim (BFnature21722_CR39) 2013; 14
Y Lee (BFnature21722_CR23) 2012; 22
A Jolma (BFnature21722_CR52) 2013; 152
G Masserdotti (BFnature21722_CR7) 2016; 143
ML Springer (BFnature21722_CR27) 2002; 13
Y Jiang (BFnature21722_CR11) 1996; 271
FF Vasconcelos (BFnature21722_CR17) 2016; 17
A Subramanian (BFnature21722_CR45) 2005; 102
S Heinz (BFnature21722_CR32) 2010; 38
EJ Bellefroid (BFnature21722_CR18) 1996; 87
L Huang (BFnature21722_CR48) 2015; 10
CA Spronk (BFnature21722_CR15) 2000; 7
H Mi (BFnature21722_CR33) 2013; 8
N De Rocker (BFnature21722_CR21) 2015; 17
S De Rubeis (BFnature21722_CR22) 2014; 515
Y Zhang (BFnature21722_CR49) 2014; 34
J Xu (BFnature21722_CR3) 2015; 16
T Dull (BFnature21722_CR28) 1998; 72
B Langmead (BFnature21722_CR29) 2012; 9
VB Teif (BFnature21722_CR25) 2012; 19
E Romm (BFnature21722_CR14) 2005; 93
A Grzenda (BFnature21722_CR16) 2009; 1789
JZ Levin (BFnature21722_CR38) 2010; 7
B Langmead (BFnature21722_CR37) 2009; 10
OL Wapinski (BFnature21722_CR8) 2013; 155
BW Schäfer (BFnature21722_CR1) 1990; 344
R Terranova (BFnature21722_CR2) 2006; 119
S Chanda (BFnature21722_CR10) 2014; 3
JD Axelrod (BFnature21722_CR20) 2010; 3
KS Yee (BFnature21722_CR12) 1998; 273
VK Mootha (BFnature21722_CR44) 2003; 34
CJ Schoenherr (BFnature21722_CR5) 1995; 267
38834754 - Nature. 2024 Jun;630(8017):E11. doi: 10.1038/s41586-024-07594-8
28446787 - Nat Rev Neurosci. 2017 Jun;18(6):323. doi: 10.1038/nrn.2017.54
References_xml – volume: 239
  start-page: 980
  year: 2010
  end-page: 986
  ident: CR4
  article-title: Dynamic expression of Groucho-related genes Grg1 and Grg3 in foregut endoderm and antagonism of differentiation
  publication-title: Dev. Dyn.
– volume: 4
  start-page: e04837
  year: 2015
  ident: CR53
  article-title: Conservation of transcription factor binding specificities across 600 million years of bilateria evolution.
  publication-title: eLife
– volume: 87
  start-page: 1191
  year: 1996
  end-page: 1202
  ident: CR18
  article-title: X-MyT1, a C2HC-type zinc finger protein with a regulatory function in neuronal differentiation
  publication-title: Cell
– volume: 9
  start-page: R137
  year: 2008
  ident: CR30
  article-title: Model-based analysis of ChIP-Seq (MACS)
  publication-title: Genome Biol.
– volume: 143
  start-page: 2494
  year: 2016
  end-page: 2510
  ident: CR7
  article-title: Direct neuronal reprogramming: learning from and for development
  publication-title: Development
– volume: 152
  start-page: 327
  year: 2013
  end-page: 339
  ident: CR52
  article-title: DNA-binding specificities of human transcription factors
  publication-title: Cell
– volume: 344
  start-page: 454
  year: 1990
  end-page: 458
  ident: CR1
  article-title: Effect of cell history on response to helix-loop-helix family of myogenic regulators
  publication-title: Nature
– volume: 11
  start-page: 87
  year: 2012
  end-page: 93
  ident: CR24
  article-title: Association study of myelin transcription factor 1-like polymorphisms with schizophrenia in Han Chinese population
  publication-title: Genes Brain Behav
– volume: 20
  start-page: 1453
  year: 2004
  end-page: 1454
  ident: CR41
  article-title: Open source clustering software
  publication-title: Bioinformatics
– volume: 3
  start-page: 282
  year: 2014
  end-page: 296
  ident: CR10
  article-title: Generation of induced neuronal cells by the single reprogramming factor ASCL1
  publication-title: Stem Cell Rep.
– volume: 19
  start-page: 1185
  year: 2012
  end-page: 1192
  ident: CR25
  article-title: Genome-wide nucleosome positioning during embryonic stem cell development
  publication-title: Nat. Struct. Mol. Biol.
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  ident: CR34
  article-title: The Sequence Alignment/Map format and SAMtools
  publication-title: Bioinformatics
– volume: 31
  start-page: 46
  year: 2013
  end-page: 53
  ident: CR40
  article-title: Differential analysis of gene regulation at transcript resolution with RNA-seq
  publication-title: Nat. Biotechnol.
– volume: 17
  start-page: 469
  year: 2016
  end-page: 483
  ident: CR17
  article-title: MyT1 counteracts the neural progenitor program to promote vertebrate neurogenesis
  publication-title: Cell Rep.
– volume: 14
  start-page: R36
  year: 2013
  ident: CR39
  article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
  publication-title: Genome Biol.
– volume: 9
  start-page: 357
  year: 2012
  end-page: 359
  ident: CR29
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
– volume: 38
  start-page: 576
  year: 2010
  end-page: 589
  ident: CR32
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol. Cell
– ident: CR42
– volume: 271
  start-page: 10723
  year: 1996
  end-page: 10730
  ident: CR11
  article-title: A novel family of Cys-Cys, His-Cys zinc finger transcription factors expressed in developing nervous system and pituitary gland
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 1247
  year: 2008
  end-page: 1251
  ident: CR19
  article-title: Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition
  publication-title: Nat. Neurosci.
– volume: 16
  start-page: 119
  year: 2015
  end-page: 134
  ident: CR3
  article-title: Direct lineage reprogramming: strategies, mechanisms, and applications
  publication-title: Cell Stem Cell
– volume: 72
  start-page: 8463
  year: 1998
  end-page: 8471
  ident: CR28
  article-title: A third-generation lentivirus vector with a conditional packaging system
  publication-title: J. Virol.
– volume: 22
  start-page: 206
  year: 2012
  end-page: 209
  ident: CR23
  article-title: Microduplications disrupting the gene (2p25.3) are associated with schizophrenia
  publication-title: Psychiatr. Genet.
– volume: 10
  start-page: R25
  year: 2009
  ident: CR37
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol.
– volume: 7
  start-page: 709
  year: 2010
  end-page: 715
  ident: CR38
  article-title: Comprehensive comparative analysis of strand-specific RNA sequencing methods
  publication-title: Nat. Methods
– volume: 3
  start-page: pe38
  year: 2010
  ident: CR20
  article-title: Delivering the lateral inhibition punchline: it’s all about the timing
  publication-title: Sci. Signal
– ident: CR50
– volume: 17
  start-page: 460
  year: 2015
  end-page: 466
  ident: CR21
  article-title: Refinement of the critical 2p25.3 deletion region: the role of MYT1L in intellectual disability and obesity
  publication-title: Genet. Med.
– volume: 34
  start-page: 11929
  year: 2014
  end-page: 11947
  ident: CR49
  article-title: An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex
  publication-title: J. Neurosci.
– volume: 161
  start-page: 75
  year: 2007
  end-page: 87
  ident: CR26
  article-title: Monitoring synaptic transmission in primary neuronal cultures using local extracellular stimulation
  publication-title: J. Neurosci. Methods
– volume: 26
  start-page: 1351
  year: 2008
  end-page: 1359
  ident: CR31
  article-title: Design and analysis of ChIP-seq experiments for DNA-binding proteins
  publication-title: Nat. Biotechnol.
– volume: 52
  start-page: 4721
  year: 2013
  end-page: 4728
  ident: CR13
  article-title: Switching metal ion coordination and DNA recognition in a tandem CCHHC-type zinc finger peptide
  publication-title: Inorg. Chem.
– volume: 13
  start-page: 13.4
  year: 2002
  ident: CR27
  article-title: Gene delivery to muscle
  publication-title: Curr. Protoc. Hum. Genet
– volume: 7
  start-page: 1100
  year: 2000
  end-page: 1104
  ident: CR15
  article-title: The Mad1–Sin3B interaction involves a novel helical fold
  publication-title: Nat. Struct. Biol.
– volume: 28
  start-page: 511
  year: 2010
  end-page: 515
  ident: CR46
  article-title: Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation
  publication-title: Nat. Biotechnol.
– volume: 93
  start-page: 1444
  year: 2005
  end-page: 1453
  ident: CR14
  article-title: Myt1 family recruits histone deacetylase to regulate neural transcription
  publication-title: J. Neurochem
– volume: 243
  start-page: 588
  year: 2014
  end-page: 600
  ident: CR6
  article-title: Spatiotemporal expression pattern of Myt/NZF family zinc finger transcription factors during mouse nervous system development
  publication-title: Dev. Dyn.
– volume: 20
  start-page: 3246
  year: 2004
  end-page: 3248
  ident: CR43
  article-title: Java Treeview–extensible visualization of microarray data
  publication-title: Bioinformatics
– volume: 119
  start-page: 2065
  year: 2006
  end-page: 2072
  ident: CR2
  article-title: Acquisition and extinction of gene expression programs are separable events in heterokaryon reprogramming
  publication-title: J. Cell Sci.
– volume: 16
  start-page: 284
  year: 2015
  ident: CR47
  article-title: A novel ATAC-seq approach reveals lineage-specific reinforcement of the open chromatin landscape via cooperation between BAF and p63
  publication-title: Genome Biol.
– volume: 30
  start-page: e36
  year: 2002
  ident: CR51
  article-title: Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR
  publication-title: Nucleic Acids Res
– volume: 273
  start-page: 5366
  year: 1998
  end-page: 5374
  ident: CR12
  article-title: Isolation and characterization of a novel member of the neural zinc finger factor/myelin transcription factor family with transcriptional repression activity
  publication-title: J. Biol. Chem
– volume: 1789
  start-page: 443
  year: 2009
  end-page: 450
  ident: CR16
  article-title: Sin3: master scaffold and transcriptional corepressor
  publication-title: Biochim. Biophys. Acta
– volume: 267
  start-page: 1360
  year: 1995
  end-page: 1363
  ident: CR5
  article-title: The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes
  publication-title: Science
– volume: 34
  start-page: 267
  year: 2003
  end-page: 273
  ident: CR44
  article-title: PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
  publication-title: Nat. Genet.
– volume: 515
  start-page: 209
  year: 2014
  end-page: 215
  ident: CR22
  article-title: Synaptic, transcriptional and chromatin genes disrupted in autism
  publication-title: Nature
– volume: 102
  start-page: 15545
  year: 2005
  end-page: 15550
  ident: CR45
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 8
  start-page: 1551
  year: 2013
  end-page: 1566
  ident: CR33
  article-title: Large-scale gene function analysis with the PANTHER classification system
  publication-title: Nat. Protocols
– volume: 481
  start-page: 389
  year: 2012
  end-page: 393
  ident: CR36
  article-title: Differential oestrogen receptor binding is associated with clinical outcome in breast cancer
  publication-title: Nature
– volume: 155
  start-page: 621
  year: 2013
  end-page: 635
  ident: CR8
  article-title: Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons
  publication-title: Cell
– volume: 10
  start-page: e0132798
  year: 2015
  ident: CR48
  article-title: Partial hepatectomy induced long noncoding RNA inhibits hepatocyte proliferation during liver regeneration
  publication-title: PLoS One
– volume: 463
  start-page: 1035
  year: 2010
  end-page: 1041
  ident: CR9
  article-title: Direct conversion of fibroblasts to functional neurons by defined factors
  publication-title: Nature
– volume: 26
  start-page: 841
  year: 2010
  end-page: 842
  ident: CR35
  article-title: BEDTools: a flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
– ident: BFnature21722_CR50
– volume: 13
  start-page: 13.4
  year: 2002
  ident: BFnature21722_CR27
  publication-title: Curr. Protoc. Hum. Genet
– volume: 20
  start-page: 3246
  year: 2004
  ident: BFnature21722_CR43
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth349
– volume: 515
  start-page: 209
  year: 2014
  ident: BFnature21722_CR22
  publication-title: Nature
  doi: 10.1038/nature13772
– volume: 25
  start-page: 2078
  year: 2009
  ident: BFnature21722_CR34
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 34
  start-page: 11929
  year: 2014
  ident: BFnature21722_CR49
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1860-14.2014
– volume: 9
  start-page: 357
  year: 2012
  ident: BFnature21722_CR29
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1923
– volume: 16
  start-page: 284
  year: 2015
  ident: BFnature21722_CR47
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0840-9
– volume: 8
  start-page: 1551
  year: 2013
  ident: BFnature21722_CR33
  publication-title: Nat. Protocols
  doi: 10.1038/nprot.2013.092
– volume: 271
  start-page: 10723
  year: 1996
  ident: BFnature21722_CR11
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.18.10723
– volume: 273
  start-page: 5366
  year: 1998
  ident: BFnature21722_CR12
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.273.9.5366
– volume: 243
  start-page: 588
  year: 2014
  ident: BFnature21722_CR6
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.24091
– volume: 463
  start-page: 1035
  year: 2010
  ident: BFnature21722_CR9
  publication-title: Nature
  doi: 10.1038/nature08797
– volume: 152
  start-page: 327
  year: 2013
  ident: BFnature21722_CR52
  publication-title: Cell
  doi: 10.1016/j.cell.2012.12.009
– volume: 119
  start-page: 2065
  year: 2006
  ident: BFnature21722_CR2
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.02945
– volume: 20
  start-page: 1453
  year: 2004
  ident: BFnature21722_CR41
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth078
– volume: 38
  start-page: 576
  year: 2010
  ident: BFnature21722_CR32
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 239
  start-page: 980
  year: 2010
  ident: BFnature21722_CR4
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.22217
– volume: 7
  start-page: 709
  year: 2010
  ident: BFnature21722_CR38
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1491
– volume: 10
  start-page: e0132798
  year: 2015
  ident: BFnature21722_CR48
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0132798
– volume: 161
  start-page: 75
  year: 2007
  ident: BFnature21722_CR26
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2006.10.009
– volume: 93
  start-page: 1444
  year: 2005
  ident: BFnature21722_CR14
  publication-title: J. Neurochem
  doi: 10.1111/j.1471-4159.2005.03131.x
– volume: 16
  start-page: 119
  year: 2015
  ident: BFnature21722_CR3
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.01.013
– volume: 1789
  start-page: 443
  year: 2009
  ident: BFnature21722_CR16
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2009.05.007
– volume: 155
  start-page: 621
  year: 2013
  ident: BFnature21722_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2013.09.028
– volume: 344
  start-page: 454
  year: 1990
  ident: BFnature21722_CR1
  publication-title: Nature
  doi: 10.1038/344454a0
– volume: 72
  start-page: 8463
  year: 1998
  ident: BFnature21722_CR28
  publication-title: J. Virol.
  doi: 10.1128/JVI.72.11.8463-8471.1998
– volume: 7
  start-page: 1100
  year: 2000
  ident: BFnature21722_CR15
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/81944
– ident: BFnature21722_CR42
– volume: 31
  start-page: 46
  year: 2013
  ident: BFnature21722_CR40
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2450
– volume: 17
  start-page: 469
  year: 2016
  ident: BFnature21722_CR17
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.09.024
– volume: 4
  start-page: e04837
  year: 2015
  ident: BFnature21722_CR53
  publication-title: eLife
  doi: 10.7554/eLife.04837
– volume: 10
  start-page: R25
  year: 2009
  ident: BFnature21722_CR37
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-3-r25
– volume: 87
  start-page: 1191
  year: 1996
  ident: BFnature21722_CR18
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81815-2
– volume: 9
  start-page: R137
  year: 2008
  ident: BFnature21722_CR30
  publication-title: Genome Biol.
  doi: 10.1186/gb-2008-9-9-r137
– volume: 22
  start-page: 206
  year: 2012
  ident: BFnature21722_CR23
  publication-title: Psychiatr. Genet.
  doi: 10.1097/YPG.0b013e328353ae3d
– volume: 26
  start-page: 1351
  year: 2008
  ident: BFnature21722_CR31
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1508
– volume: 52
  start-page: 4721
  year: 2013
  ident: BFnature21722_CR13
  publication-title: Inorg. Chem.
  doi: 10.1021/ic4003516
– volume: 34
  start-page: 267
  year: 2003
  ident: BFnature21722_CR44
  publication-title: Nat. Genet.
  doi: 10.1038/ng1180
– volume: 14
  start-page: R36
  year: 2013
  ident: BFnature21722_CR39
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-4-r36
– volume: 481
  start-page: 389
  year: 2012
  ident: BFnature21722_CR36
  publication-title: Nature
  doi: 10.1038/nature10730
– volume: 267
  start-page: 1360
  year: 1995
  ident: BFnature21722_CR5
  publication-title: Science
  doi: 10.1126/science.7871435
– volume: 19
  start-page: 1185
  year: 2012
  ident: BFnature21722_CR25
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2419
– volume: 26
  start-page: 841
  year: 2010
  ident: BFnature21722_CR35
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq033
– volume: 11
  start-page: 87
  year: 2012
  ident: BFnature21722_CR24
  publication-title: Genes Brain Behav
  doi: 10.1111/j.1601-183X.2011.00734.x
– volume: 11
  start-page: 1247
  year: 2008
  ident: BFnature21722_CR19
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2208
– volume: 28
  start-page: 511
  year: 2010
  ident: BFnature21722_CR46
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1621
– volume: 17
  start-page: 460
  year: 2015
  ident: BFnature21722_CR21
  publication-title: Genet. Med.
  doi: 10.1038/gim.2014.124
– volume: 102
  start-page: 15545
  year: 2005
  ident: BFnature21722_CR45
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0506580102
– volume: 30
  start-page: e36
  year: 2002
  ident: BFnature21722_CR51
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.9.e36
– volume: 3
  start-page: pe38
  year: 2010
  ident: BFnature21722_CR20
  publication-title: Sci. Signal
  doi: 10.1126/scisignal.3145pe38
– volume: 143
  start-page: 2494
  year: 2016
  ident: BFnature21722_CR7
  publication-title: Development
  doi: 10.1242/dev.092163
– volume: 3
  start-page: 282
  year: 2014
  ident: BFnature21722_CR10
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2014.05.020
– reference: 28446787 - Nat Rev Neurosci. 2017 Jun;18(6):323. doi: 10.1038/nrn.2017.54
– reference: 38834754 - Nature. 2024 Jun;630(8017):E11. doi: 10.1038/s41586-024-07594-8
SSID ssj0005174
Score 2.5872664
Snippet The neuron-specific transcription factor Myt1l represses many somatic lineage programs, but not the neuronal lineage program, to both induce and maintain...
Normal differentiation and induced reprogramming require the activation of target cell programs and silencing of donor cell programs. In reprogramming, the...
Normal differentiation and induced reprogramming require the activation of target cell programs and silencing of donor cell programs 1 , 2 . In reprogramming,...
SourceID swepub
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 245
SubjectTerms 13/106
38/1
38/22
38/23
38/39
45/90
631/136/2435
631/378/340
9/74
Animals
Animals, Newborn
Basic Medicine
Binding sites
Brain - cytology
Brain - embryology
Brain - metabolism
Cell Lineage - genetics
Cells, Cultured
Cellular Reprogramming - genetics
Chromatin - genetics
Chromatin - metabolism
Deoxyribonucleic acid
DNA
Fibroblasts
Fibroblasts - cytology
Fibroblasts - metabolism
Gene expression
Gene Silencing
Growth factors
Humanities and Social Sciences
Humans
letter
Medical and Health Sciences
Medicin och hälsovetenskap
Medicinska och farmaceutiska grundvetenskaper
Mice
multidisciplinary
Mutation
Myelin proteins
Nerve Tissue Proteins - deficiency
Nerve Tissue Proteins - metabolism
Neurogenesis - genetics
Neurons
Neurons - cytology
Neurons - metabolism
Neurosciences
Neurovetenskaper
Ontology
Organ Specificity - genetics
Physiology
Protein Domains
Protein research
Proteins
Receptors, Notch - deficiency
Repressor Proteins - chemistry
Repressor Proteins - deficiency
Repressor Proteins - metabolism
Science
Signal Transduction
Studies
Transcription (Genetics)
Transcription Factor HES-1 - deficiency
Transcription factors
Transcription Factors - deficiency
Transcription Factors - metabolism
Title Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates
URI https://link.springer.com/article/10.1038/nature21722
https://www.ncbi.nlm.nih.gov/pubmed/28379941
https://www.proquest.com/docview/1889364095
https://www.proquest.com/docview/1884884455
https://pubmed.ncbi.nlm.nih.gov/PMC11348803
https://lup.lub.lu.se/record/c7e00628-3000-42d3-8057-c17f4ed1f86a
oai:portal.research.lu.se:publications/c7e00628-3000-42d3-8057-c17f4ed1f86a
http://kipublications.ki.se/Default.aspx?queryparsed=id:135588363
Volume 544
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgExIviI2vsDEFBONDihYnTuI-oTG1DKRNMJhU8WL5s6soabe0D_3vuUvcrqkqxEPykLtcIvt8vrPPvyPktUZUME1lxCgzEcuUjVShOlEs047VSllZL-acneenl-xrP-v7BbfKp1UubGJtqM1Y4xr5EeUws-YQjWQfJ9cRVo3C3VVfQuMu2UboMkzpKvrFbYrHGgqzP58Xp_yogc3E6kxJa0Zat8srE9N60uRy53QNZbSemXoPyQPvUobHjQ7skDu23CX36tROXe2SHT98q_Cdx5h-_4h8P5tP6SispLMDVJIqrIEtUc6wObo7D9U8lLU1HM3DG58wWw7CP2A-wnJcRss3HPqrj8llr_vz5DTy1RUizWk8jWhBFfh2OokVOHEsY85SXqS5ixMLMQ6Mc-2c1sxpC0RuDDOaFw5cBsaY7aj0CdmCj9lnJFTGGQjMtEyyBLpbyjQpMmMK3jHUKsUC8mHRwkJ76HGsgDES9RZ4ysVKdwSgQAvmSYO4sZntFXaVQAyLEpNkBnJWVeLLjwtxnMUMAjmWA9Nbz-TG8EEt_ZkD-G2EvWpx7rU49WR4LVaohy3qoOmuTWL2W4wwVnWbvFAs4W1FJW41OyAvl2R8E_PfSjue1TxgaRnLgOdpo4fLxkH8IpBOA8JbGrpkQATxNqUcXtVI4pSmaMDTgLxZKPPKf21q9G6j6S3Zo9kELgWXqKzQha0P5ooURqBgiUkFh6BAaFo4Zg11PJcB-bVBThNwCo9ydeXlTVaWr_9T-OEG4f7R7yHKxLKKcf78372xR-4n6MMhsGe6T7amNzP7AjzQqTqozQzc-QnFe-_zAdn-1D3_dvEXSVyL1w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgQXRMvLtIBBtDwkq157_cgBoQpaJbSpBLRSxGXxvtKI4KR1IpQ_xW9kxl6ncRQhLj344hmPrd3xPHZnvyHklURUMEkzj1GmPBYJ7YlEtDw_C1taCqGzcjGnexK3z9jnXtRbI3_qszBYVlnbxNJQq5HENfI9moJnjSEbiT6MLzzsGoW7q3ULjUotjvTsN6RsxfvOJ5jfnSA4PDj92PZsVwFPptSfeDShAmIaGfgCghcWMaNpmoSx8QMNsT3otzRGSmakBmKqFFMyTQy4SsaYbokQ5N4gN8Hx-vhHJb3kqqRkCfXZngf0w3SvgunEblBBwwMu-4EFR7hcpDnfqV1CNS094eE9cteGsO5-pXMbZE3nm-RWWUoqi02yYc1F4b6xmNZv75Mv3dmEDt0iM7qPSlm4JZAmyhlUR4Vnrpi5WWl9hzP30hbo5n33F5grNx_l3vwJg_HxA3J2LeP-kKzDy_Rj4gplFCSCMguiANQry8IgiZRK0paiWgjmkHf1CHNpoc6x48aQl1vuYcoXpsMBha2ZxxXCx2q2lzhVHDEzcizK6WfTouCdb1_5fuQzSBxZDEyvLZMZwQtlZs84wGcjzFaDc6vBKceDC75A3W1Q-9V0rRKz3WAE2yCb5FqxuLVNBb_6kxzyYk7GJ7HeLtejackDlp2xCHgeVXo4HxzESwLp1CFpQ0PnDIhY3qTkg_MSuZzSEB1G6JCdWpkXvmvVoB9Umt6QPZyO4RJw8UJzmejyIDAP4Q_kLFAhTyEJ4ZImhmlFTRpnDvm-Qk6V4HKLqnVu5Y0Xlsv_U_juCuH21s8BysQ2jn785N-z8Zzcbp92j_lx5-Roi9wJMH5EUNFwm6xPLqf6KUS_E_GsNDku-XHdNu4vz_XEVw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIgXxMZX2ICA2PiQosax89EHhCa2amVs4mtSxYuJHburKGm3tEL91_jruEucrqkqxMse8pK7XCL7ch_2-XeEvFCICqZo6nHKM4-HUnsylm3PT1lbKyl1Wi7mHJ9Eh6f8Qy_srZE_9VkYLKusbWJpqLORwjXyFk3As0aQjYQtY8siPu133o3PPewghTutdTuNSkWO9Ow3pG_F2-4-zPVOEHQOvr0_9GyHAU8l1J94NKYS4hsV-BICGR5yo2kSs8j4gYY4H3RdGaMUN0oDMckynqkkNuA2Oee6LRnIvUauxyyk-I_FvfiyvGQJAdqeDfRZ0qogO7EzVNDwhss-YcEpLhdszndtlxBOS6_YuUNu23DW3av0b4Os6XyT3CjLSlWxSTas6SjcVxbf-vVd8vl4NqFDt0iN7qOCFm4JqolyBtWx4ZkrZ25aWuLhzL2wxbp53_0FpsvNR7k3f8JgrHyPnF7JuN8n6_Ay_ZC4MjMZJIUqDcIAVC1NWRCHWRYn7YxqKblD3tQjLJSFPcfuG0NRbr-zRCxMhwPKWzOPK7SP1WzPcaoE4mfkqIn9dFoUovv1i9gLfQ5JJI-A6aVlMiN4oUrteQf4bITcanBuNTjVeHAuFqi7DWq_mq5VYrYbjGAnVJNcK5awdqoQl3-VQ57Nyfgk1t7lejQtecDKcx4Cz4NKD-eDg9hJIJ06JGlo6JwB0cublHxwVqKYU8rQeTCH7NTKvPBdqwb9oNL0huzhdAyXhEsUWqhYl4eCBYM_UPAgYyKBhEQoGhuuM2qSKHXI9xVyqmRXWIStMytvvLB0_p_Cd1cIt7d-DlAmtnT0o0f_no2n5CZYN_Gxe3K0RW4FGEoivijbJuuTi6l-DIHwRD4pLY5Lfly1ifsLG7bIjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Myt1l+safeguards+neuronal+identity+by+actively+repressing+many+non-neuronal+fates&rft.jtitle=Nature+%28London%29&rft.au=Mall%2C+Moritz&rft.au=Kareta%2C+Michael+S&rft.au=Chanda%2C+Soham&rft.au=Ahlenius%2C+Henrik&rft.date=2017-04-13&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=544&rft.issue=7649&rft.spage=245&rft_id=info:doi/10.1038%2Fnature21722&rft.externalDocID=A504499462
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon