Covariance-regularized regression and classification for high dimensional problems
We propose covariance-regularized regression, a family of methods for prediction in high dimensional settings that uses a shrunken estimate of the inverse covariance matrix of the features to achieve superior prediction. An estimate of the inverse covariance matrix is obtained by maximizing the log-...
Saved in:
Published in | Journal of the Royal Statistical Society. Series B, Statistical methodology Vol. 71; no. 3; pp. 615 - 636 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.06.2009
Blackwell Publishing Ltd Blackwell Publishing Blackwell Royal Statistical Society Oxford University Press |
Series | Journal of the Royal Statistical Society Series B |
Subjects | |
Online Access | Get full text |
ISSN | 1369-7412 1467-9868 |
DOI | 10.1111/j.1467-9868.2009.00699.x |
Cover
Loading…
Abstract | We propose covariance-regularized regression, a family of methods for prediction in high dimensional settings that uses a shrunken estimate of the inverse covariance matrix of the features to achieve superior prediction. An estimate of the inverse covariance matrix is obtained by maximizing the log-likelihood of the data, under a multivariate normal model, subject to a penalty; it is then used to estimate coefficients for the regression of the response onto the features. We show that ridge regression, the lasso and the elastic net are special cases of covariance-regularized regression, and we demonstrate that certain previously unexplored forms of covariance-regularized regression can outperform existing methods in a range of situations. The covariance-regularized regression framework is extended to generalized linear models and linear discriminant analysis, and is used to analyse gene expression data sets with multiple class and survival outcomes. |
---|---|
AbstractList | We propose covariance-regularized regression, a family of methods for prediction in high dimensional settings that uses a shrunken estimate of the inverse covariance matrix of the features to achieve superior prediction. An estimate of the inverse covariance matrix is obtained by maximizing the log-likelihood of the data, under a multivariate normal model, subject to a penalty; it is then used to estimate coefficients for the regression of the response onto the features. We show that ridge regression, the lasso and the elastic net are special cases of covariance-regularized regression, and we demonstrate that certain previously unexplored forms of covariance-regularized regression can outperform existing methods in a range of situations. The covariance-regularized regression framework is extended to generalized linear models and linear discriminant analysis, and is used to analyse gene expression data sets with multiple class and survival outcomes. Copyright (c) 2009 Royal Statistical Society. We propose covariance-regularized regression, a family of methods for prediction in high dimensional settings that uses a shrunken estimate of the inverse covariance matrix of the features to achieve superior prediction. An estimate of the inverse covariance matrix is obtained by maximizing the log-likelihood of the data, under a multivariate normal model, subject to a penalty; it is then used to estimate coefficients for the regression of the response onto the features. We show that ridge regression, the lasso and the elastic net are special cases of covariance-regularized regression, and we demonstrate that certain previously unexplored forms of covariance-regularized regression can outperform existing methods in a range of situations. The covariance-regularized regression framework is extended to generalized linear models and linear discriminant analysis, and is used to analyse gene expression data sets with multiple class and survival outcomes. Reprinted by permission of Blackwell Publishers We propose covariance-regularized regression, a family of methods for prediction in high dimensional settings that uses a shrunken estimate of the inverse covariance matrix of the features to achieve superior prediction. An estimate of the inverse covariance matrix is obtained by maximizing the log-likelihood of the data, under a multivariate normal model, subject to a penalty; it is then used to estimate coefficients for the regression of the response onto the features. We show that ridge regression, the lasso and the elastic net are special cases of covariance-regularized regression, and we demonstrate that certain previously unexplored forms of covariance-regularized regression can outperform existing methods in a range of situations. The covariance-regularized regression framework is extended to generalized linear models and linear discriminant analysis, and is used to analyse gene expression data sets with multiple class and survival outcomes. We propose covariance-regularized regression, a family of methods for prediction in high dimensional settings that uses a shrunken estimate of the inverse covariance matrix of the features to achieve superior prediction. An estimate of the inverse covariance matrix is obtained by maximizing the log-likelihood of the data, under a multivariate normal model, subject to a penalty; it is then used to estimate coefficients for the regression of the response onto the features. We show that ridge regression, the lasso and the elastic net are special cases of covariance-regularized regression, and we demonstrate that certain previously unexplored forms of covariance-regularized regression can outperform existing methods in a range of situations. The covariance-regularized regression framework is extended to generalized linear models and linear discriminant analysis, and is used to analyse gene expression data sets with multiple class and survival outcomes. [PUBLICATION ABSTRACT] In recent years, many methods have been developed for regression in high-dimensional settings. We propose covariance-regularized regression, a family of methods that use a shrunken estimate of the inverse covariance matrix of the features in order to achieve superior prediction. An estimate of the inverse covariance matrix is obtained by maximizing its log likelihood, under a multivariate normal model, subject to a constraint on its elements; this estimate is then used to estimate coefficients for the regression of the response onto the features. We show that ridge regression, the lasso, and the elastic net are special cases of covariance-regularized regression, and we demonstrate that certain previously unexplored forms of covariance-regularized regression can outperform existing methods in a range of situations. The covariance-regularized regression framework is extended to generalized linear models and linear discriminant analysis, and is used to analyze gene expression data sets with multiple class and survival outcomes.In recent years, many methods have been developed for regression in high-dimensional settings. We propose covariance-regularized regression, a family of methods that use a shrunken estimate of the inverse covariance matrix of the features in order to achieve superior prediction. An estimate of the inverse covariance matrix is obtained by maximizing its log likelihood, under a multivariate normal model, subject to a constraint on its elements; this estimate is then used to estimate coefficients for the regression of the response onto the features. We show that ridge regression, the lasso, and the elastic net are special cases of covariance-regularized regression, and we demonstrate that certain previously unexplored forms of covariance-regularized regression can outperform existing methods in a range of situations. The covariance-regularized regression framework is extended to generalized linear models and linear discriminant analysis, and is used to analyze gene expression data sets with multiple class and survival outcomes. In recent years, many methods have been developed for regression in high-dimensional settings. We propose covariance-regularized regression, a family of methods that use a shrunken estimate of the inverse covariance matrix of the features in order to achieve superior prediction. An estimate of the inverse covariance matrix is obtained by maximizing its log likelihood, under a multivariate normal model, subject to a constraint on its elements; this estimate is then used to estimate coefficients for the regression of the response onto the features. We show that ridge regression, the lasso, and the elastic net are special cases of covariance-regularized regression, and we demonstrate that certain previously unexplored forms of covariance-regularized regression can outperform existing methods in a range of situations. The covariance-regularized regression framework is extended to generalized linear models and linear discriminant analysis, and is used to analyze gene expression data sets with multiple class and survival outcomes. |
Author | Tibshirani, Robert Witten, Daniela M. |
Author_xml | – sequence: 1 givenname: Daniela M. surname: Witten fullname: Witten, Daniela M. – sequence: 2 givenname: Robert surname: Tibshirani fullname: Tibshirani, Robert |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21516506$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20084176$$D View this record in MEDLINE/PubMed http://econpapers.repec.org/article/blajorssb/v_3a71_3ay_3a2009_3ai_3a3_3ap_3a615-636.htm$$DView record in RePEc |
BookMark | eNqNU11v0zAUjdAQ-4CfAERIIF5S7Nix4weQ2IDxMcG0MvF45bhO65LGxU5Ly6_nZt062APM0o2vc885sa9P9pOd1rc2SVJKBhTHi-mAciEzVYpykBOiBoQIpQarO8netrCDORMqk5zmu8l-jFOCQ0h2L9lFTsmpFHvJ2ZFf6uB0a2wW7HjR4OKXHaWYBxuj822q21FqGo2L2hnd9a9qH9KJG0_SkZvZtkfpJp0HXzV2Fu8nd2vdRPvgcj5Izt-9_Xr0Pjv5cvzh6PVJZkpKVFaSgla5rakqLJeskrnNi7oWxlIlJS2VsEoUPNeVqSpmTa4sz8u6qozmqhKKHSSvNrrzRTWzI2PbLugG5sHNdFiD1w7-rrRuAmO_hLwkQhCGAs8uBYL_sbCxg5mLxjaNbq1fROCCEYLg_wKZpELIUiDw-T-BtGQFl1TieQ-SJzegU78I2McI_e2IAiUR9HEDCnZuzfZoVaOnPsRYwRKYlhQfa4zeCTg5DIYxxxC0AMEETLoZij36s19btSszIODpJUBHo5s6oCtcvMZR3FNBxHXjTfAxBluDcd2FMbDNrgFKoHcpTKE3I_RmhIu9XbgUVihQ3hC4-sYtqC831J-usetb8-BsODzEDPkPN_xp7HzY8jnJuSwUxXq2qbvY2dW2rsN3wF9HFvDt8zGcHZ6-GQ4_HcIp4h9v8LX2oMcB-3U-zAllhApWFpyz3wGbIP8 |
CitedBy_id | crossref_primary_10_1016_j_baae_2012_08_001 crossref_primary_10_1155_2017_4518429 crossref_primary_10_1002_gepi_22377 crossref_primary_10_1080_10618600_2022_2076687 crossref_primary_10_1145_3374919 crossref_primary_10_1214_13_AOAS638 crossref_primary_10_1109_TSMC_2017_2724761 crossref_primary_10_1198_jcgs_2010_09188 crossref_primary_10_1186_s12859_014_0443_6 crossref_primary_10_1080_10618600_2014_900500 crossref_primary_10_1371_journal_pone_0162947 crossref_primary_10_5183_jjscs_1412001_219 crossref_primary_10_1002_hbm_23092 crossref_primary_10_1111_j_1467_9868_2011_00771_x crossref_primary_10_1080_10618600_2016_1209117 crossref_primary_10_1016_j_csda_2015_10_006 crossref_primary_10_1080_03610926_2013_878359 crossref_primary_10_1038_s41598_024_61334_6 crossref_primary_10_3390_nu10060674 crossref_primary_10_3390_nu10060795 crossref_primary_10_1007_s10994_021_06025_3 crossref_primary_10_1111_rssb_12326 crossref_primary_10_1016_j_artint_2022_103823 crossref_primary_10_1214_11_AOS962 crossref_primary_10_1093_biomet_asu049 crossref_primary_10_1214_17_EJS1288 crossref_primary_10_1214_20_EJS1764 crossref_primary_10_1093_sysbio_syaa010 crossref_primary_10_1017_S0022109019000899 crossref_primary_10_1111_j_1467_9868_2011_00783_x crossref_primary_10_1515_ijb_2017_0013 crossref_primary_10_1214_11_STS358 crossref_primary_10_1186_1297_9686_43_39 crossref_primary_10_1007_s10618_016_0471_0 crossref_primary_10_1007_s11081_021_09611_5 crossref_primary_10_1038_s41598_023_31609_5 crossref_primary_10_1016_j_compbiolchem_2012_06_001 crossref_primary_10_1109_ACCESS_2016_2596379 crossref_primary_10_1109_TSP_2017_2652358 crossref_primary_10_3390_jpm8030026 crossref_primary_10_1016_j_addr_2013_04_008 crossref_primary_10_1371_journal_pone_0060536 crossref_primary_10_1109_ACCESS_2019_2936402 crossref_primary_10_3390_jpm8010010 crossref_primary_10_1080_10618600_2013_852554 crossref_primary_10_2139_ssrn_4631353 crossref_primary_10_1016_j_jspi_2013_09_005 crossref_primary_10_1198_jasa_2011_tm11199 crossref_primary_10_1111_sjos_12632 crossref_primary_10_1080_01621459_2013_858630 crossref_primary_10_1214_14_EJS973 crossref_primary_10_1007_s13571_013_0065_4 crossref_primary_10_1093_bioinformatics_btz667 crossref_primary_10_1214_22_AOAS1677 crossref_primary_10_1080_10705511_2022_2069114 crossref_primary_10_1016_j_schres_2013_10_004 crossref_primary_10_1111_sjos_12353 crossref_primary_10_1093_biomet_asy023 crossref_primary_10_2139_ssrn_2466289 crossref_primary_10_1111_j_1365_2745_2011_01852_x crossref_primary_10_1214_09_AOAS277 crossref_primary_10_1214_22_EJS2066 crossref_primary_10_1002_wics_1551 crossref_primary_10_1214_09_AOAS314 crossref_primary_10_1111_rssb_12033 crossref_primary_10_1007_s10115_021_01587_z crossref_primary_10_1016_j_jmva_2014_04_026 crossref_primary_10_1109_TBDATA_2019_2937785 crossref_primary_10_3390_rs15071723 crossref_primary_10_1002_biot_201100305 crossref_primary_10_1016_j_csda_2016_05_012 crossref_primary_10_1198_jcgs_2011_10102 crossref_primary_10_1137_15M102469X crossref_primary_10_2217_fon_2022_0333 crossref_primary_10_1109_TCYB_2019_2952711 crossref_primary_10_1111_j_1461_0248_2010_01460_x crossref_primary_10_1016_j_jbi_2013_07_002 crossref_primary_10_1093_sysbio_syy045 crossref_primary_10_1162_netn_a_00363 crossref_primary_10_1186_1471_2105_10_384 crossref_primary_10_18632_oncotarget_25520 crossref_primary_10_1093_biomet_asw034 crossref_primary_10_1080_07350015_2020_1730859 crossref_primary_10_1109_TSP_2025_3544376 crossref_primary_10_1111_boj_12135 crossref_primary_10_2139_ssrn_1746315 crossref_primary_10_1007_s10489_020_01810_4 crossref_primary_10_1080_03610926_2015_1060344 crossref_primary_10_1016_j_csda_2020_107031 crossref_primary_10_1534_genetics_115_186114 crossref_primary_10_1371_journal_pcbi_1004182 crossref_primary_10_1111_j_1467_9868_2011_01023_x crossref_primary_10_1007_s11222_010_9219_7 crossref_primary_10_1109_TMM_2022_3140892 crossref_primary_10_1214_23_AOAS1830 crossref_primary_10_1111_j_1755_148X_2012_01010_x crossref_primary_10_1080_01621459_2015_1034319 crossref_primary_10_1109_TSP_2014_2360826 crossref_primary_10_1109_TIT_2014_2381241 crossref_primary_10_1155_2013_604548 crossref_primary_10_1007_s11306_018_1365_5 crossref_primary_10_1177_0962280209105024 crossref_primary_10_1007_s00429_021_02319_3 crossref_primary_10_1080_10618600_2023_2210174 crossref_primary_10_1016_j_patcog_2021_107981 crossref_primary_10_1016_j_neuroimage_2013_09_069 crossref_primary_10_1016_j_jmva_2020_104641 crossref_primary_10_1109_TNNLS_2018_2846783 crossref_primary_10_1016_j_coi_2011_04_005 crossref_primary_10_1017_S0022109015000526 crossref_primary_10_1007_s10489_021_02563_4 crossref_primary_10_1007_s11265_019_01478_1 crossref_primary_10_1109_TIT_2013_2296784 crossref_primary_10_1007_s10614_025_10864_w crossref_primary_10_1002_cjs_11267 crossref_primary_10_1371_journal_pcbi_1010758 crossref_primary_10_1214_13_AOAS668 crossref_primary_10_1016_j_jspi_2020_04_003 crossref_primary_10_1088_1751_8121_aa812f crossref_primary_10_1007_s10278_024_01172_0 crossref_primary_10_1214_13_EJS872 crossref_primary_10_1007_s11634_018_0335_0 crossref_primary_10_1093_mnras_stw1042 crossref_primary_10_1155_2020_6527462 crossref_primary_10_1038_s41467_021_23102_2 crossref_primary_10_1080_10618600_2014_920709 crossref_primary_10_1016_j_virusres_2013_02_011 crossref_primary_10_1007_s11222_013_9430_4 |
Cites_doi | 10.1162/neco.2006.18.7.1527 10.1080/01621459.1978.10480106 10.1214/ss/1056397488 10.1214/aos/1176344845 10.1056/NEJMoa055351 10.1038/nm0102-68 10.1093/biostatistics/kxm045 10.1080/01621459.1989.10478752 10.1214/aos/1176349756 10.1056/NEJMoa012914 10.1080/00401706.1970.10488634 10.1073/pnas.211566398 10.1080/00401706.1993.10485033 10.1214/009053606000000281 10.1093/biostatistics/kxg046 10.1093/biostatistics/kxj035 10.1214/088342307000000032 10.1073/pnas.091062498 10.1371/journal.pbio.0020108 10.1002/0471725293 10.1182/blood-2004-07-2947 10.1111/j.1467-9868.2005.00503.x 10.1023/A:1010933404324 10.1073/pnas.082099299 10.1214/08-AOS600 10.1111/j.1467-9868.2007.00607.x |
ContentType | Journal Article |
Copyright | Copyright 2009 The Royal Statistical Society and Blackwell Publishing Ltd. 2009 Royal Statistical Society 2009 INIST-CNRS 2009 The Royal Statistical Society and Blackwell Publishing Ltd |
Copyright_xml | – notice: Copyright 2009 The Royal Statistical Society and Blackwell Publishing Ltd. – notice: 2009 Royal Statistical Society – notice: 2009 INIST-CNRS – notice: 2009 The Royal Statistical Society and Blackwell Publishing Ltd |
DBID | FBQ BSCLL AAYXX CITATION IQODW NPM DKI X2L 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D 7X8 7S9 L.6 5PM |
DOI | 10.1111/j.1467-9868.2009.00699.x |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis PubMed RePEc IDEAS RePEc Computer and Information Systems Abstracts International Bibliography of the Social Sciences (IBSS) Technology Research Database International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) AGRICOLA International Bibliography of the Social Sciences (IBSS) MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1467-9868 |
EndPage | 636 |
ExternalDocumentID | PMC2806603 1738494201 blajorssb_v_3a71_3ay_3a2009_3ai_3a3_3ap_3a615_636_htm 20084176 21516506 10_1111_j_1467_9868_2009_00699_x RSSB699 40247591 ark_67375_WNG_RBPDSSKB_P US201301638544 |
Genre | article Journal Article Feature |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: N01 HV028183 – fundername: NIBIB NIH HHS grantid: R01 EB001988 |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OC 29L 2AX 3-9 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAONW AAPXW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABEHJ ABEML ABFAN ABHUG ABIVO ABLJU ABPFR ABPTD ABPVW ABWST ABYAD ABYWD ABZEH ACAHQ ACBWZ ACCFJ ACCZN ACFRR ACGFS ACIWK ACMTB ACNCT ACPOU ACSCC ACTMH ACTWD ACUBG ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIPN ADIYS ADIZJ ADKYN ADMGS ADODI ADOZA ADQBN ADRDM ADULT ADVEK AEEZP AEGXH AEIMD AELPN AEMOZ AEQDE AEUPB AEUQT AFBPY AFEBI AFGKR AFPWT AFVGU AFVYC AFXHP AFXKK AFZJQ AGJLS AIHXQ AIURR AIWBW AJAOE AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ANFBD ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CJ0 CO8 COF CS3 D-E DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC EBA EBO EBR EBS EBU ECEWR EDO EFSUC EJD EMK F00 F5P FBQ FEDTE FVMVE G-S G.N GODZA H.T H.X HF~ HGD HQ6 HVGLF HZI HZ~ H~9 IHE IX1 J0M JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NHB O66 O9- OJZSN OWPYF P2W P2X P4D PQQKQ Q.N Q11 QB0 QWB R.K RJQFR RNS ROL ROX RX1 SA0 SUPJJ TH9 TN5 TUS UB1 UPT W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ XBAML XG1 YQT ZGI ZL0 ZZTAW ~02 ~IA ~KM ~WT AAHBH AARHZ AAUAY ABPQH ABXSQ ADACV ADZMN ALUQN ATGXG BCRHZ BSCLL H13 IPSME OIG AANHP AAWIL ABAWQ ABDFA ABPQP ACHJO ACRPL ACYXJ ADNMO AGLNM AGQPQ AHQJS AIHAF AJNCP ALRMG AMVHM NU- AAYXX CITATION IQODW NPM 02 08R 0R 31 3N 4S 8RP AS DKI GA HZ IA IPNFZ KM MEWTI NF P4A PQEST RIG WRC WT X X2L XHC Y3 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c8109-8051b2ef195e473b72e25ff6ce19771896e96542abcbb3ec29e428fbbca49b693 |
IEDL.DBID | DR2 |
ISSN | 1369-7412 |
IngestDate | Thu Aug 21 18:07:53 EDT 2025 Thu Jul 10 22:52:36 EDT 2025 Fri Jul 11 11:46:34 EDT 2025 Fri Jul 11 01:40:16 EDT 2025 Sat Aug 16 21:44:11 EDT 2025 Wed Aug 18 03:51:57 EDT 2021 Mon Jul 21 05:48:51 EDT 2025 Mon Jul 21 09:12:45 EDT 2025 Tue Jul 01 03:43:02 EDT 2025 Thu Apr 24 23:09:08 EDT 2025 Wed Jan 22 16:35:00 EST 2025 Thu Jul 03 21:13:47 EDT 2025 Wed Oct 30 09:48:54 EDT 2024 Wed Dec 27 19:00:41 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Ridge regression Rank statistic Generalized linear model Covariance regularization Prediction theory Multivariate analysis Stochastic process Linear model Penalty method Parametric method Covariance Survival function Inverse matrix n « p Log likelihood Classification Ill posed problem Variable selection Censored data Discriminant analysis Numerical linear algebra Prediction Regression Statistical estimation Covariance matrix Survival Regularization method Statistical method Statistical regression Regression coefficient Selection problem Numerical analysis Filtering theory Regularization |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c8109-8051b2ef195e473b72e25ff6ce19771896e96542abcbb3ec29e428fbbca49b693 |
Notes | http://dx.doi.org/10.1111/j.1467-9868.2009.00699.x istex:BA67D2CCA1D732F74C4DEDF9213B82072B3A8F1D ark:/67375/WNG-RBPDSSKB-P ArticleID:RSSB699 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
OpenAccessLink | https://academic.oup.com/jrsssb/article-pdf/71/3/615/49686350/jrsssb_71_3_615.pdf |
PMID | 20084176 |
PQID | 200865166 |
PQPubID | 39359 |
PageCount | 22 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2806603 proquest_miscellaneous_46300280 proquest_miscellaneous_37166786 proquest_miscellaneous_1835471747 proquest_journals_200865166 repec_primary_blajorssb_v_3a71_3ay_3a2009_3ai_3a3_3ap_3a615_636_htm pubmed_primary_20084176 pascalfrancis_primary_21516506 crossref_citationtrail_10_1111_j_1467_9868_2009_00699_x crossref_primary_10_1111_j_1467_9868_2009_00699_x wiley_primary_10_1111_j_1467_9868_2009_00699_x_RSSB699 jstor_primary_40247591 istex_primary_ark_67375_WNG_RBPDSSKB_P fao_agris_US201301638544 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2009 |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: June 2009 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationSeriesTitle | Journal of the Royal Statistical Society Series B |
PublicationTitle | Journal of the Royal Statistical Society. Series B, Statistical methodology |
PublicationTitleAlternate | J R Stat Soc Series B Stat Methodol |
PublicationYear | 2009 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell Publishing Blackwell Royal Statistical Society Oxford University Press |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell Publishing – name: Blackwell – name: Royal Statistical Society – name: Oxford University Press |
References | Frank, I. and Friedman, J. (1993) A statistical view of some chemometrics regression tools (with discussion). Technometrics, 35, 109-148. Rothman, A., Levina, E. and Zhu, J. (2008) Sparse permutation invariant covariance estimation. Electr. J. Statist., 2, 494-515. Zhu, J. and Hastie, T. (2004) Classification of gene microarrays by penalized logistic regression. Biostatistics, 5, 427-443. Kalbfleisch, J. and Prentice, R. (1980) The Statistical Analysis of Failure Time Data. New York: Wiley. Liang, F., Mukherjee, S. and West, M. (2007) The use of unlabeled data in predictive modeling. Statist. Sci., 22, 189-205. Zhao, P. and Yu, B. (2006) On model selection consistency of lasso. J. Mach. Learn. Res., 7, 2541-2563. Shipp, M. A., Ross, K. N., Tamayo, P., Weng, A. P., Kutok, J. L., Aguiar, R. C., Gaasenbeek, M., Angelo, M., Reich, M., Pinkus, G. S., Ray, T. S., Koval, M. A., Last, K. W., Norton, A., Lister, T. A., Mesirov, J., Neuberg, D. S., Lander, E. S., Aster, J. C. and Golub, T. R. (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med., 8, 68-74. Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267-288. Green, P. J. (1984) Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives. J. R. Statist. Soc. B, 46, 149-192. Meinshausen, N. and Bühlmann, P. (2006) High dimensional graphs and variable selection with the lasso. Ann. Statist., 34, 1436-1462. Friedman, J. (1989) Regularized discriminant analysis. J. Am. Statist. Ass., 84, 165-175. Friedman, J., Hastie, T. and Tibshirani, R. (2007) Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432-441. Hummel, M., Bentink, S., Berger, H., Klappwe, W., Wessendorf, S., Barth, F. T. E., Bernd, H.-W., Cogliatti, S. B., Dierlamm, J., Feller, A. C., Hansmann, M. L., Haralambieva, E., Harder, L., Hasenclever, D., Kuhn, M., Lenze, D., Lichter, P., Martin-Subero, J. I., Moller, P., Muller-Hermelink, H.-K., Ott, G., Parwaresch, R. M., Pott, C., Rosenwald, A., Rosolowski, M., Schwaenen, C., Sturzenhofecker, B., Szczepanowski, M., Trautmann, H., Wacker, H.-H., Spang, R., Loefler, M., Trumper, L., Stein, H. and Siebert, R. (2006) A biological definition of Burkitt's lymphoma from transcriptional and genomic profiling. New Engl. J. Med., 354, 2419-2430. Mardia, K., Kent, J. and Bibby, J. (1979) Multivariate Analysis. London: Academic Press. Banerjee, O., El Ghaoui, L. E. and D'Aspremont, A. (2008) Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. J. Mach. Learn. Res., 9, 485-516. Bair, E. and Tibshirani, R. (2004) Semi-supervised methods to predict patient survival from gene expression data. PLOS Biol., 2, 511-522. Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natn. Acad. Sci. USA, 99, 6567-6572. Hoerl, A. E. and Kennard, R. (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 12, 55-67. O'Neill, T. (1978) Normal discrimination with unclassified observations. J. Am. Statist. Ass., 73, 821-826. Hinton, G., Osindero, S. and Teh, Y. (2006) A fast learning algorithm for deep belief nets. Neur. Computn, 18, 1527-1553. Bickel, P. and Levina, E. (2008) Covariance regularization by thresholding. Ann. Statist., to be published. Zou, H. and Hastie, T. (2005) Regularization and variable selection via the elastic net. J. R. Statist. Soc. B, 67, 301-320. Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2003) Class prediction by nearest shrunken centroids, with applications to DNA microarrays. Statist. Sci., 18, 104-117. Dey, D. and Srinivasan, C. (1985) Estimation of a covariance matrix under Stein's loss. Ann. Statist., 13, 1581-1591. Monti, S., Savage, K. J., Kutok, J. L., Feuerhake, F., Kurtin, P., Mihm, M., Wu, B., Pasqualucci, L., Neuberg, D., Aguiar, R. C. T., Dal Cin, P., Ladd, C., Pinkus, G. S., Salles, G., Harris, N. L., Dalla-Favera, R., Habermann, T. M., Aster, J. C., Golub, T. R. and Shipp, M. A. (2005) Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood, 105, 1851-1861. Rosenwald, A., Wright, G., Chan, W. C., Connors, J. M., Campo, E., Fisher, R. I., Gascoyne, R. D., Muller-Hermelink, H. K., Smeland, E. B. and Staudt, L. M. (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large B-cell lymphoma. New Engl. J. Med., 346, 1937-1947. Guo, Y., Hastie, T. and Tibshirani, R. (2007) Regularized linear discriminant analysis and its application in microarrays. Biostatistics, 8, 86-100. Haff, L. (1979) Estimation of the inverse covariance matrix: random mixtures of the inverse Wishart matrix and the identity. Ann. Statist., 7, 1264-1276. Park, M. Y. and Hastie, T. (2007) L1-regularization path algorithm for generalized linear models. J. R. Statist. Soc. B, 69, 659-677. Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C., Angelo, M., Ladd, C., Reich, M., Latulippe, E., Mesirov, J., Poggio, T., Gerald, W., Loda, M., Lander, E. and Golub, T. (2001) Multiclass cancer diagnosis using tumor gene expression signature. Proc. Natn. Acad. Sci. USA, 98, 15149-15154. Breiman, L. (2001) Random forests. Mach. Learn., 45, 5-32. McLachlan, G. J. (1992) Discriminant Analysis and Statistical Pattern Recognition. New York: Wiley. Tusher, V. G., Tibshirani, R. and Chu, G. (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natn. Acad. Sci. USA, 98, 5116-5121. 1989; 84 2006; 34 1978; 73 1984; 46 2002; 8 2002; 99 2008; 9 1970; 12 2006; 7 2008 2006; 18 2004; 5 2003; 18 2004; 2 1992 1996; 58 2001; 45 2008; 2 2006; 354 1979 2005; 67 1993; 35 2005; 105 2007; 8 2007; 9 2002; 346 1961 1980 2007; 22 2007; 69 1985; 13 1979; 7 2001; 98 James (2023033000105762400_) 1961 Meinshausen (2023033000105762400_) 2006; 34 Hoerl (2023033000105762400_) 1970; 12 Tusher (2023033000105762400_) 2001; 98 Bair (2023033000105762400_) 2004; 2 Friedman (2023033000105762400_) 1989; 84 Breiman (2023033000105762400_) 2001; 45 Guo (2023033000105762400_) 2007; 8 Haff (2023033000105762400_) 1979; 7 Zhao (2023033000105762400_) 2006; 7 Dey (2023033000105762400_) 1985; 13 Banerjee (2023033000105762400_) 2008; 9 Mardia (2023033000105762400_) 1979 Tibshirani (2023033000105762400_) 1996; 58 Shipp (2023033000105762400_) 2002; 8 Rosenwald (2023033000105762400_) 2002; 346 Ramaswamy (2023033000105762400_) 2001; 98 Tibshirani (2023033000105762400_) 2003; 18 Hummel (2023033000105762400_) 2006; 354 McLachlan (2023033000105762400_) 1992 Hinton (2023033000105762400_) 2006; 18 Monti (2023033000105762400_) 2005; 105 Park (2023033000105762400_) 2007; 69 Tibshirani (2023033000105762400_) 2002; 99 Zhu (2023033000105762400_) 2004; 5 O’Neill (2023033000105762400_) 1978; 73 Frank (2023033000105762400_) 1993; 35 Green (2023033000105762400_) 1984; 46 Friedman (2023033000105762400_) 2007; 9 Rothman (2023033000105762400_) 2008; 2 Bickel (2023033000105762400_) 2008 Liang (2023033000105762400_) 2007; 22 Zou (2023033000105762400_) 2005; 67 Friedman (2023033000105762400_) 2008 Kalbfleisch (2023033000105762400_) 1980 |
References_xml | – reference: Hinton, G., Osindero, S. and Teh, Y. (2006) A fast learning algorithm for deep belief nets. Neur. Computn, 18, 1527-1553. – reference: Green, P. J. (1984) Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives. J. R. Statist. Soc. B, 46, 149-192. – reference: Monti, S., Savage, K. J., Kutok, J. L., Feuerhake, F., Kurtin, P., Mihm, M., Wu, B., Pasqualucci, L., Neuberg, D., Aguiar, R. C. T., Dal Cin, P., Ladd, C., Pinkus, G. S., Salles, G., Harris, N. L., Dalla-Favera, R., Habermann, T. M., Aster, J. C., Golub, T. R. and Shipp, M. A. (2005) Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood, 105, 1851-1861. – reference: Zou, H. and Hastie, T. (2005) Regularization and variable selection via the elastic net. J. R. Statist. Soc. B, 67, 301-320. – reference: Dey, D. and Srinivasan, C. (1985) Estimation of a covariance matrix under Stein's loss. Ann. Statist., 13, 1581-1591. – reference: Meinshausen, N. and Bühlmann, P. (2006) High dimensional graphs and variable selection with the lasso. Ann. Statist., 34, 1436-1462. – reference: Park, M. Y. and Hastie, T. (2007) L1-regularization path algorithm for generalized linear models. J. R. Statist. Soc. B, 69, 659-677. – reference: Friedman, J., Hastie, T. and Tibshirani, R. (2007) Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432-441. – reference: Zhao, P. and Yu, B. (2006) On model selection consistency of lasso. J. Mach. Learn. Res., 7, 2541-2563. – reference: Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natn. Acad. Sci. USA, 99, 6567-6572. – reference: Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2003) Class prediction by nearest shrunken centroids, with applications to DNA microarrays. Statist. Sci., 18, 104-117. – reference: Shipp, M. A., Ross, K. N., Tamayo, P., Weng, A. P., Kutok, J. L., Aguiar, R. C., Gaasenbeek, M., Angelo, M., Reich, M., Pinkus, G. S., Ray, T. S., Koval, M. A., Last, K. W., Norton, A., Lister, T. A., Mesirov, J., Neuberg, D. S., Lander, E. S., Aster, J. C. and Golub, T. R. (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med., 8, 68-74. – reference: Zhu, J. and Hastie, T. (2004) Classification of gene microarrays by penalized logistic regression. Biostatistics, 5, 427-443. – reference: Friedman, J. (1989) Regularized discriminant analysis. J. Am. Statist. Ass., 84, 165-175. – reference: Hummel, M., Bentink, S., Berger, H., Klappwe, W., Wessendorf, S., Barth, F. T. E., Bernd, H.-W., Cogliatti, S. B., Dierlamm, J., Feller, A. C., Hansmann, M. L., Haralambieva, E., Harder, L., Hasenclever, D., Kuhn, M., Lenze, D., Lichter, P., Martin-Subero, J. I., Moller, P., Muller-Hermelink, H.-K., Ott, G., Parwaresch, R. M., Pott, C., Rosenwald, A., Rosolowski, M., Schwaenen, C., Sturzenhofecker, B., Szczepanowski, M., Trautmann, H., Wacker, H.-H., Spang, R., Loefler, M., Trumper, L., Stein, H. and Siebert, R. (2006) A biological definition of Burkitt's lymphoma from transcriptional and genomic profiling. New Engl. J. Med., 354, 2419-2430. – reference: Haff, L. (1979) Estimation of the inverse covariance matrix: random mixtures of the inverse Wishart matrix and the identity. Ann. Statist., 7, 1264-1276. – reference: Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C., Angelo, M., Ladd, C., Reich, M., Latulippe, E., Mesirov, J., Poggio, T., Gerald, W., Loda, M., Lander, E. and Golub, T. (2001) Multiclass cancer diagnosis using tumor gene expression signature. Proc. Natn. Acad. Sci. USA, 98, 15149-15154. – reference: Rothman, A., Levina, E. and Zhu, J. (2008) Sparse permutation invariant covariance estimation. Electr. J. Statist., 2, 494-515. – reference: Kalbfleisch, J. and Prentice, R. (1980) The Statistical Analysis of Failure Time Data. New York: Wiley. – reference: Bair, E. and Tibshirani, R. (2004) Semi-supervised methods to predict patient survival from gene expression data. PLOS Biol., 2, 511-522. – reference: Mardia, K., Kent, J. and Bibby, J. (1979) Multivariate Analysis. London: Academic Press. – reference: Hoerl, A. E. and Kennard, R. (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 12, 55-67. – reference: McLachlan, G. J. (1992) Discriminant Analysis and Statistical Pattern Recognition. New York: Wiley. – reference: Breiman, L. (2001) Random forests. Mach. Learn., 45, 5-32. – reference: Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267-288. – reference: Tusher, V. G., Tibshirani, R. and Chu, G. (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natn. Acad. Sci. USA, 98, 5116-5121. – reference: Guo, Y., Hastie, T. and Tibshirani, R. (2007) Regularized linear discriminant analysis and its application in microarrays. Biostatistics, 8, 86-100. – reference: O'Neill, T. (1978) Normal discrimination with unclassified observations. J. Am. Statist. Ass., 73, 821-826. – reference: Frank, I. and Friedman, J. (1993) A statistical view of some chemometrics regression tools (with discussion). Technometrics, 35, 109-148. – reference: Rosenwald, A., Wright, G., Chan, W. C., Connors, J. M., Campo, E., Fisher, R. I., Gascoyne, R. D., Muller-Hermelink, H. K., Smeland, E. B. and Staudt, L. M. (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large B-cell lymphoma. New Engl. J. Med., 346, 1937-1947. – reference: Banerjee, O., El Ghaoui, L. E. and D'Aspremont, A. (2008) Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. J. Mach. Learn. Res., 9, 485-516. – reference: Liang, F., Mukherjee, S. and West, M. (2007) The use of unlabeled data in predictive modeling. Statist. Sci., 22, 189-205. – reference: Bickel, P. and Levina, E. (2008) Covariance regularization by thresholding. Ann. Statist., to be published. – start-page: 361 year: 1961 end-page: 379 – volume: 99 start-page: 6567 year: 2002 end-page: 6572 article-title: Diagnosis of multiple cancer types by shrunken centroids of gene expression publication-title: Proc. Natn. Acad. Sci. USA – volume: 98 start-page: 15149 year: 2001 end-page: 15154 article-title: Multiclass cancer diagnosis using tumor gene expression signature publication-title: Proc. Natn. Acad. Sci. USA – volume: 22 start-page: 189 year: 2007 end-page: 205 article-title: The use of unlabeled data in predictive modeling publication-title: Statist. Sci. – volume: 18 start-page: 104 year: 2003 end-page: 117 article-title: Class prediction by nearest shrunken centroids, with applications to DNA microarrays publication-title: Statist. Sci. – volume: 98 start-page: 5116 year: 2001 end-page: 5121 article-title: Significance analysis of microarrays applied to the ionizing radiation response publication-title: Proc. Natn. Acad. Sci. USA – year: 2008 article-title: Covariance regularization by thresholding publication-title: Ann. Statist. – volume: 8 start-page: 86 year: 2007 end-page: 100 article-title: Regularized linear discriminant analysis and its application in microarrays publication-title: Biostatistics – volume: 9 start-page: 432 year: 2007 end-page: 441 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Biostatistics – volume: 354 start-page: 2419 year: 2006 end-page: 2430 article-title: A biological definition of Burkitt's lymphoma from transcriptional and genomic profiling publication-title: New Engl. J. Med. – volume: 5 start-page: 427 year: 2004 end-page: 443 article-title: Classification of gene microarrays by penalized logistic regression publication-title: Biostatistics – year: 1979 – volume: 9 start-page: 485 year: 2008 end-page: 516 article-title: Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data publication-title: J. Mach. Learn. Res. – year: 1992 – volume: 105 start-page: 1851 year: 2005 end-page: 1861 article-title: Molecular profiling of diffuse large B‐cell lymphoma identifies robust subtypes including one characterized by host inflammatory response publication-title: Blood – volume: 2 start-page: 494 year: 2008 end-page: 515 article-title: Sparse permutation invariant covariance estimation publication-title: Electr. J. Statist. – volume: 34 start-page: 1436 year: 2006 end-page: 1462 article-title: High dimensional graphs and variable selection with the lasso publication-title: Ann. Statist. – volume: 7 start-page: 1264 year: 1979 end-page: 1276 article-title: Estimation of the inverse covariance matrix: random mixtures of the inverse Wishart matrix and the identity publication-title: Ann. Statist. – volume: 18 start-page: 1527 year: 2006 end-page: 1553 article-title: A fast learning algorithm for deep belief nets publication-title: Neur. Computn – volume: 2 start-page: 511 year: 2004 end-page: 522 article-title: Semi‐supervised methods to predict patient survival from gene expression data publication-title: PLOS Biol. – volume: 8 start-page: 68 year: 2002 end-page: 74 article-title: Diffuse large B‐cell lymphoma outcome prediction by gene‐expression profiling and supervised machine learning publication-title: Nat. Med. – volume: 45 start-page: 5 year: 2001 end-page: 32 article-title: Random forests publication-title: Mach. Learn. – year: 1980 – volume: 46 start-page: 149 year: 1984 end-page: 192 article-title: Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives publication-title: J. R. Statist. Soc. B – year: 2008 – volume: 35 start-page: 109 year: 1993 end-page: 148 article-title: A statistical view of some chemometrics regression tools (with discussion) publication-title: Technometrics – volume: 12 start-page: 55 year: 1970 end-page: 67 article-title: Ridge regression: biased estimation for nonorthogonal problems publication-title: Technometrics – volume: 346 start-page: 1937 year: 2002 end-page: 1947 article-title: The use of molecular profiling to predict survival after chemotherapy for diffuse large B‐cell lymphoma publication-title: New Engl. J. Med. – volume: 13 start-page: 1581 year: 1985 end-page: 1591 article-title: Estimation of a covariance matrix under Stein's loss publication-title: Ann. Statist. – volume: 67 start-page: 301 year: 2005 end-page: 320 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Statist. Soc. B – volume: 84 start-page: 165 year: 1989 end-page: 175 article-title: Regularized discriminant analysis publication-title: J. Am. Statist. Ass. – volume: 69 start-page: 659 year: 2007 end-page: 677 article-title: ‐regularization path algorithm for generalized linear models publication-title: J. R. Statist. Soc. B – volume: 7 start-page: 2541 year: 2006 end-page: 2563 article-title: On model selection consistency of lasso publication-title: J. Mach. Learn. Res. – volume: 58 start-page: 267 year: 1996 end-page: 288 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Statist. Soc. B – volume: 73 start-page: 821 year: 1978 end-page: 826 article-title: Normal discrimination with unclassified observations publication-title: J. Am. Statist. Ass. – volume: 18 start-page: 1527 year: 2006 ident: 2023033000105762400_ article-title: A fast learning algorithm for deep belief nets publication-title: Neur. Computn doi: 10.1162/neco.2006.18.7.1527 – volume: 73 start-page: 821 year: 1978 ident: 2023033000105762400_ article-title: Normal discrimination with unclassified observations publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.1978.10480106 – volume: 18 start-page: 104 year: 2003 ident: 2023033000105762400_ article-title: Class prediction by nearest shrunken centroids, with applications to DNA microarrays publication-title: Statist. Sci. doi: 10.1214/ss/1056397488 – volume: 7 start-page: 1264 year: 1979 ident: 2023033000105762400_ article-title: Estimation of the inverse covariance matrix: random mixtures of the inverse Wishart matrix and the identity publication-title: Ann. Statist. doi: 10.1214/aos/1176344845 – volume: 354 start-page: 2419 year: 2006 ident: 2023033000105762400_ article-title: A biological definition of Burkitt’s lymphoma from transcriptional and genomic profiling publication-title: New Engl. J. Med. doi: 10.1056/NEJMoa055351 – volume: 8 start-page: 68 year: 2002 ident: 2023033000105762400_ article-title: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning publication-title: Nat. Med. doi: 10.1038/nm0102-68 – volume: 9 start-page: 432 year: 2007 ident: 2023033000105762400_ article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Biostatistics doi: 10.1093/biostatistics/kxm045 – volume: 84 start-page: 165 year: 1989 ident: 2023033000105762400_ article-title: Regularized discriminant analysis publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.1989.10478752 – volume: 13 start-page: 1581 year: 1985 ident: 2023033000105762400_ article-title: Estimation of a covariance matrix under Stein’s loss publication-title: Ann. Statist. doi: 10.1214/aos/1176349756 – volume: 346 start-page: 1937 year: 2002 ident: 2023033000105762400_ article-title: The use of molecular profiling to predict survival after chemotherapy for diffuse large B-cell lymphoma publication-title: New Engl. J. Med. doi: 10.1056/NEJMoa012914 – volume: 12 start-page: 55 year: 1970 ident: 2023033000105762400_ article-title: Ridge regression: biased estimation for nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.1970.10488634 – volume: 98 start-page: 15149 year: 2001 ident: 2023033000105762400_ article-title: Multiclass cancer diagnosis using tumor gene expression signature publication-title: Proc. Natn. Acad. Sci. USA doi: 10.1073/pnas.211566398 – volume: 35 start-page: 109 year: 1993 ident: 2023033000105762400_ article-title: A statistical view of some chemometrics regression tools (with discussion) publication-title: Technometrics doi: 10.1080/00401706.1993.10485033 – volume: 58 start-page: 267 year: 1996 ident: 2023033000105762400_ article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Statist. Soc. B – volume: 34 start-page: 1436 year: 2006 ident: 2023033000105762400_ article-title: High dimensional graphs and variable selection with the lasso publication-title: Ann. Statist. doi: 10.1214/009053606000000281 – volume: 5 start-page: 427 year: 2004 ident: 2023033000105762400_ article-title: Classification of gene microarrays by penalized logistic regression publication-title: Biostatistics doi: 10.1093/biostatistics/kxg046 – volume: 8 start-page: 86 year: 2007 ident: 2023033000105762400_ article-title: Regularized linear discriminant analysis and its application in microarrays publication-title: Biostatistics doi: 10.1093/biostatistics/kxj035 – start-page: 361 volume-title: Proc. 4th Berkeley Symp. Mathematics and Statistical Probability year: 1961 ident: 2023033000105762400_ – volume: 22 start-page: 189 year: 2007 ident: 2023033000105762400_ article-title: The use of unlabeled data in predictive modeling publication-title: Statist. Sci. doi: 10.1214/088342307000000032 – volume: 98 start-page: 5116 year: 2001 ident: 2023033000105762400_ article-title: Significance analysis of microarrays applied to the ionizing radiation response publication-title: Proc. Natn. Acad. Sci. USA doi: 10.1073/pnas.091062498 – volume: 46 start-page: 149 year: 1984 ident: 2023033000105762400_ article-title: Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives publication-title: J. R. Statist. Soc. B – volume: 2 start-page: 511 year: 2004 ident: 2023033000105762400_ article-title: Semi-supervised methods to predict patient survival from gene expression data publication-title: PLOS Biol. doi: 10.1371/journal.pbio.0020108 – volume-title: Discriminant Analysis and Statistical Pattern Recognition year: 1992 ident: 2023033000105762400_ doi: 10.1002/0471725293 – volume: 105 start-page: 1851 year: 2005 ident: 2023033000105762400_ article-title: Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response publication-title: Blood doi: 10.1182/blood-2004-07-2947 – volume-title: The Statistical Analysis of Failure Time Data year: 1980 ident: 2023033000105762400_ – volume-title: Multivariate Analysis year: 1979 ident: 2023033000105762400_ – volume: 67 start-page: 301 year: 2005 ident: 2023033000105762400_ article-title: Regularization and variable selection via the elastic net publication-title: J. R. Statist. Soc. B doi: 10.1111/j.1467-9868.2005.00503.x – volume: 7 start-page: 2541 year: 2006 ident: 2023033000105762400_ article-title: On model selection consistency of lasso publication-title: J. Mach. Learn. Res. – volume: 45 start-page: 5 year: 2001 ident: 2023033000105762400_ article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 9 start-page: 485 year: 2008 ident: 2023033000105762400_ article-title: Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data publication-title: J. Mach. Learn. Res. – volume: 2 start-page: 494 year: 2008 ident: 2023033000105762400_ article-title: Sparse permutation invariant covariance estimation publication-title: Electr. J. Statist. – volume: 99 start-page: 6567 year: 2002 ident: 2023033000105762400_ article-title: Diagnosis of multiple cancer types by shrunken centroids of gene expression publication-title: Proc. Natn. Acad. Sci. USA doi: 10.1073/pnas.082099299 – year: 2008 ident: 2023033000105762400_ article-title: Covariance regularization by thresholding publication-title: Ann. Statist. doi: 10.1214/08-AOS600 – volume-title: Regularization paths for generalized linear models via coordinate descent year: 2008 ident: 2023033000105762400_ – volume: 69 start-page: 659 year: 2007 ident: 2023033000105762400_ article-title: L1-regularization path algorithm for generalized linear models publication-title: J. R. Statist. Soc. B doi: 10.1111/j.1467-9868.2007.00607.x |
SSID | ssj0000673 |
Score | 2.3603723 |
Snippet | We propose covariance-regularized regression, a family of methods for prediction in high dimensional settings that uses a shrunken estimate of the inverse... We propose covariance‐regularized regression, a family of methods for prediction in high dimensional settings that uses a shrunken estimate of the inverse... In recent years, many methods have been developed for regression in high-dimensional settings. We propose covariance-regularized regression, a family of... |
SourceID | pubmedcentral proquest repec pubmed pascalfrancis crossref wiley jstor istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 615 |
SubjectTerms | Classification Coefficients Covariance Covariance matrices Covariance regularization data collection Datasets Discriminant analysis Estimating techniques Estimation Estimation methods Estimators Exact sciences and technology Gene expression General topics Generalized linear models Least squares Linear inference, regression Linear models Linear regression Mathematical procedures Mathematics Modeling Multivariate analysis n[double less-than sign]p n≪p prediction Probability and statistics Probability theory and stochastic processes Regression Regression analysis Regression coefficients Regulation Sciences and techniques of general use Statistical methods Statistics Stochastic processes Studies Variable selection |
Title | Covariance-regularized regression and classification for high dimensional problems |
URI | https://api.istex.fr/ark:/67375/WNG-RBPDSSKB-P/fulltext.pdf https://www.jstor.org/stable/40247591 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-9868.2009.00699.x https://www.ncbi.nlm.nih.gov/pubmed/20084176 http://econpapers.repec.org/article/blajorssb/v_3a71_3ay_3a2009_3ai_3a3_3ap_3a615-636.htm https://www.proquest.com/docview/200865166 https://www.proquest.com/docview/1835471747 https://www.proquest.com/docview/37166786 https://www.proquest.com/docview/46300280 https://pubmed.ncbi.nlm.nih.gov/PMC2806603 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgvOyF77EwKEFCvGWqY8eJH2lhDCamqV3F3izbdfbRkVZNO4098SfwN_KXcOekge5DmhAPriLZjqrz3fl39i93hLyBPVQYajytXEc8MyIymrpIUysgak408zf4X3bF9oB_PkgOav4TfgtT5YdoDtzQMry_RgPXprxq5DIT2SLtpJByE_EkUrcQH_Xiv50yqz7BkhFsopdIPde-aGmnupvrMeBXFP35grqIPEpdgijzqgbGdSD1Ktfy3tRNnF3Gwn4z23pARgsxVByW0eZ8ZjbtxaUMkf9HTg_J_Rrzhu8qJX1E7rjiMVlFmFtliX5C9rvjMwjaUQN__fg5dYdIjj2-cMMQniumbhHqYhhaBPvIbvIKFQLiDjHhcjjEIgVVgpGwrpFTPiWDrQ_73e2orvcQ2Yy2JWyWCTWxy6lMHE-ZSWMXJ3kurKOAUmkmhZNYX0sbawxzNpYOgqfcGKu5NEKyNbJSjAu3TsKc5tI6wTjnsNpayJy2rUlcmnAjs9wGJF2srbJ1MnSsyXGqloKiVKHYsFSnVF5s6jwgtJk5qRKC3GLOOqiP0ofgt9WgH-NtMeLghPOAvPU61bxLT0fItUsT9XX3o-p19t73-zsdtReQNa90zUAI_DFXIw1Ia0kLmwEI5gB_i4BsLNRS1Q6q9NVHBfRD7-umFzwLXhfpwo3npaJ4JgjRPk8D8uqGMQzCbYA74uYRHHO6xVk7IM8qQ_jz_7CWA01hbrpkIs0AzHy-3FMcH_kM6EgHEG0WkK43pmaGOdUn42lZGnWmmE4p_HyH5teCwduYZtAm0MANKcGEOpp9C4jw9nPr5VS9fr8DT8__deIGWa0uJfEw7wVZmU3n7iVg25lpgdfa-dTyvus38kGVHQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagPdAL79JQaIOEuGW1jhMnPrJbykLbVbUP0Ztle522dMmu9lGVnvgJ_EZ-CTNONrB9SBXi4FUk29FqPDP-xp58Q8hb2EO5ptqllasgSjUPtKI2UNRwiJpjxdwN_kGbt_rR56P4qCwHhN_CFPwQ1YEbWobz12jgeCB93cpFytMF7yQXogaAchULfGM5g51O-LdbZsVHWCKAbfRKWs-Nb1raq-5nagQIFoV_sUhexExKNQVhZkUVjJtg6vVsy9WJHVuzjIbddrb7iAwXgiiyWM5q85mumcsrHJH_SVKPycMS9vrvCz19Qu7Z_ClZQ6RbEEU_I73m6BzidlTCXz9-Tuwx5seeXtqBD89Fsm7uq3zgG8T7mODkdMoH0O0j57I_wDoFBceIX5bJmT4n_d0PvWYrKEs-BCaldQH7ZUx1aDMqYhslTCehDeMs48ZSAKo0FdwKLLGltNGaWRMKC_FTprVRkdBcsHWyko9yu0H8jGbCWM6iKILlVlxktG50bJM40iLNjEeSxeJKU_KhY1mOoVyKixKJYsNqnUI6sckLj9Bq5rjgBLnDnA3QH6mOwXXLfjfEC2OEwnEUeeSdU6rqXWpyhul2SSy_tD_KTuNwp9vda8hDj6w7rasGQuyPdI3UI1tLalgNQDwHEJx7ZHOhl7L0UVNXgBTshEPvm6oXnAveGKncjuZTSfFYEAL-KPHI9i1jGETcgHj47SMipHUL07pHXhSW8Of_YTkHmsDcZMlGqgFIfr7ck5-eOBJ0zAjgdeaRprOmaoYeqq-jyXSq5blkKqHw8x2aWwsGb2OKQRtDA08kOePyZPbNI9wZ0J2XU3a63QY8vfzXidvkQat3sC_3P7X3NslacUeJZ3uvyMpsMrevAerO9JZzYb8BfFmYPg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdgk9Be-D8WBluQEG-d6thx4kfaUQaDqmpXsTfLdp1tdKRV005jT3wEPiOfhDunDXR_pAnx4CqS7ag6351_Z_9yR8hr2EOFocbTynWNp0bUjKaupqkVEDXHmvkb_M9tsdfnHw_jwzn_Cb-FKfNDVAduaBneX6OBjwfZVSOXqUgXaSeFlDuAJ1e5ANtBgNSN_vbKrPwGS9ZgF73E6rn2TUtb1d1MjwDAouzPF9xFJFLqAmSZlUUwrkOpV8mWqxM3dnYZDPvdrPWADBdyKEksw53Z1OzYi0spIv-PoB6S-3PQG74ttfQRuePyx2QNcW6ZJvoJOWiOziBqRxX89ePnxB0hO_bkwg1CeC6punmo80FoEe0jvclrVAiQO8SMy-EAqxSUGUbCeZGc4inpt94dNPdq84IPNZvSuoTdMqYmchmVseMJM0nkojjLhHUUYCpNpXASC2xpY41hzkbSQfSUGWM1l0ZItk5W8lHuNkiY0UxaJxjnHFZbC5nRujWxS2JuZJrZgCSLtVV2ng0di3KcqqWoKFEoNqzVKZUXmzoPCK1mjsuMILeYswHqo_QROG7V70V4XYxAOOY8IG-8TlXv0pMhku2SWH1pv1fdRme319tvqE5A1r3SVQMh8sdkjTQgW0taWA1ANAcAXARkc6GWau6hCl9-VEA_9L6qesG14H2Rzt1oViiKh4IQ7vMkINs3jGEQbwPeETeP4JjULUrrAXlWGsKf_4fFHGgCc5MlE6kGYOrz5Z785NinQEc-gKizgDS9MVUzzKn-OpoUhVFniumEws93aH4tGLyNaQZtDA38kBJMqOPpt4AIbz-3Xk7V7fUa8PT8Xyduk3ud3Zb69KG9v0nWygtKPNh7QVamk5l7CTh3ara8A_sNUzKW9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covariance-regularized+regression+and+classification+for+high+dimensional+problems&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Witten%2C+Daniela+M&rft.au=Tibshirani%2C+Robert&rft.series=Journal+of+the+Royal+Statistical+Society+Series+B&rft.date=2009-06-01&rft.pub=Royal+Statistical+Society&rft.issn=1369-7412&rft.eissn=1467-9868&rft.volume=71&rft.issue=3&rft.spage=615&rft.epage=636&rft_id=info:doi/10.1111%2Fj.1467-9868.2009.00699.x&rft.externalDocID=blajorssb_v_3a71_3ay_3a2009_3ai_3a3_3ap_3a615_636_htm |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon |