A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1
Nucleic acids from bacteria or viruses induce potent immune responses in infected cells 1 – 4 . The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses 5 , 6 . Cyclic GMP-AMP synthase (cGAS) is a double-strand...
Saved in:
Published in | Nature (London) Vol. 569; no. 7758; pp. 718 - 722 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nucleic acids from bacteria or viruses induce potent immune responses in infected cells
1
–
4
. The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses
5
,
6
. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor
7
,
8
. It catalyses the synthesis of cyclic GMP-AMP (cGAMP)
9
–
12
, which stimulates the induction of type I interferons through the STING–TBK1–IRF-3 signalling axis
13
–
15
. STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase
8
,
16
. The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK1
8
,
17
–
20
. Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons
21
. However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFNβ after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders.
A molecular model of STING-mediated signalling is proposed, as structural analysis identifies a crucial motif for the binding of TBK1 to STING, and a separate model involved in IRF-3 binding. |
---|---|
AbstractList | Nucleic acids from bacteria or viruses induce potent immune responses in infected cells.sup.1-4. The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses.sup.5,6. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor.sup.7,8. It catalyses the synthesis of cyclic GMP-AMP (cGAMP).sup.9-12, which stimulates the induction of type I interferons through the STING-TBK1-IRF-3 signalling axis.sup.13-15. STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase.sup.8,16. The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK1.sup.8,17-20. Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons.sup.21. However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFN[beta] after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders. A molecular model of STING-mediated signalling is proposed, as structural analysis identifies a crucial motif for the binding of TBK1 to STING, and a separate model involved in IRF-3 binding. Nucleic acids from bacteria or viruses induce potent immune responses in infected cells.sup.1-4. The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses.sup.5,6. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor.sup.7,8. It catalyses the synthesis of cyclic GMP-AMP (cGAMP).sup.9-12, which stimulates the induction of type I interferons through the STING-TBK1-IRF-3 signalling axis.sup.13-15. STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase.sup.8,16. The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK1.sup.8,17-20. Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons.sup.21. However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFN[beta] after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders. Nucleic acids from bacteria or viruses induce potent immune responses in infected cells . The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses . Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor . It catalyses the synthesis of cyclic GMP-AMP (cGAMP) , which stimulates the induction of type I interferons through the STING-TBK1-IRF-3 signalling axis . STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase . The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK1 . Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons . However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFNβ after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders. Nucleic acids from bacteria or viruses induce potent immune responses in infected cells1-4. The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses5,6. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor7,8. It catalyses the synthesis of cyclic GMP-AMP (cGAMP)9-12, which stimulates the induction of type I interferons through the STING-TBK1-IRF-3 signalling axis13-15. STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase8,16. The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK18,17-20. Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons21. However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFNβ after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders.Nucleic acids from bacteria or viruses induce potent immune responses in infected cells1-4. The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses5,6. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor7,8. It catalyses the synthesis of cyclic GMP-AMP (cGAMP)9-12, which stimulates the induction of type I interferons through the STING-TBK1-IRF-3 signalling axis13-15. STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase8,16. The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK18,17-20. Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons21. However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFNβ after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders. Nucleic acids from bacteria or viruses induce potent immune responses in infected cells1-4. The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses5,6. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor7,8. It catalyses the synthesis of cyclic GMP-AMP (cGAMP)9-12, which stimulates the induction of type I interferons through the STING-TBK1-IRF-3 signalling axis13-15. STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase8,16. The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK18,17-20. Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons21. However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFNß after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders. Nucleic acids from bacteria or viruses induce potent immune responses in infected cells 1 – 4 . The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses 5 , 6 . Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor 7 , 8 . It catalyses the synthesis of cyclic GMP-AMP (cGAMP) 9 – 12 , which stimulates the induction of type I interferons through the STING–TBK1–IRF-3 signalling axis 13 – 15 . STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase 8 , 16 . The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK1 8 , 17 – 20 . Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons 21 . However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFNβ after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders. A molecular model of STING-mediated signalling is proposed, as structural analysis identifies a crucial motif for the binding of TBK1 to STING, and a separate model involved in IRF-3 binding. Nucleic acids from bacteria or viruses induce potent immune responses in infected cells 1 – 4 . The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses 5 , 6 . Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor 7 , 8 . It catalyzes the synthesis of cyclic GMP-AMP (cGAMP) 9 – 12 , which stimulates the induction of type I interferons (IFN-Is) through the STING-TBK1-IRF-3 signaling axis 13 – 15 . Stimulator of interferon genes (STING) oligomerizes upon cGAMP binding, leading to the recruitment and activation of tank-binding kinase 1 (TBK1) 8 , 16 . Interferon regulatory factor 3 (IRF-3) is then recruited to the signaling complex and activated by TBK1 8 , 17 – 20 . Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of IFN-Is 21 . However, the precise mechanisms governing STING activation by cGAMP and subsequent TBK1 activation by STING remained poorly understood. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for IFN-β induction upon cGAMP stimulation. Moreover, we show that full-length STING oligomerizes upon cGAMP binding and highlight this as an essential step in the activation of STING-mediated signaling. Nucleic acids from bacteria or viruses induce potent immune responses in infected cells. The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor. It catalyses the synthesis of cyclic GMP-AMP (cGAMP), which stimulates the induction of type I interferons through the STING-TBK1-IRF-3 signalling axis. STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase. The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK1. Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons. However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFNβ after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. Furthermore, these findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders. |
Audience | Academic |
Author | Bell, Samantha L. Liu, Yang Laganowsky, Arthur Sankaran, Banumathi Zhu, Fanxiu Xu, Pengbiao Lei, Yuanjiu Li, Pingwei Fu, Xiaofeng Shu, Chang Watson, Robert O. Zhao, Baoyu Du, Fenglei West, A. Phillip Liu, Mengmeng Gao, Xinsheng Ji, Jun-Yuan Zheng, Xueyun |
AuthorAffiliation | 1 Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA 4 Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA 6 Department of Chemistry, Texas A&M University, College Station, TX 77843, USA 3 Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, TX, 77802, USA 5 Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA 2 Molecular Biophysics and Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA |
AuthorAffiliation_xml | – name: 3 Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, TX, 77802, USA – name: 1 Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA – name: 2 Molecular Biophysics and Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA – name: 5 Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA – name: 6 Department of Chemistry, Texas A&M University, College Station, TX 77843, USA – name: 4 Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA |
Author_xml | – sequence: 1 givenname: Baoyu surname: Zhao fullname: Zhao, Baoyu organization: Department of Biochemistry and Biophysics, Texas A&M University – sequence: 2 givenname: Fenglei surname: Du fullname: Du, Fenglei organization: Department of Biochemistry and Biophysics, Texas A&M University – sequence: 3 givenname: Pengbiao surname: Xu fullname: Xu, Pengbiao organization: Department of Biochemistry and Biophysics, Texas A&M University – sequence: 4 givenname: Chang surname: Shu fullname: Shu, Chang organization: Department of Biochemistry and Biophysics, Texas A&M University – sequence: 5 givenname: Banumathi surname: Sankaran fullname: Sankaran, Banumathi organization: Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory – sequence: 6 givenname: Samantha L. surname: Bell fullname: Bell, Samantha L. organization: Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center – sequence: 7 givenname: Mengmeng surname: Liu fullname: Liu, Mengmeng organization: Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center – sequence: 8 givenname: Yuanjiu surname: Lei fullname: Lei, Yuanjiu organization: Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center – sequence: 9 givenname: Xinsheng surname: Gao fullname: Gao, Xinsheng organization: Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center – sequence: 10 givenname: Xiaofeng surname: Fu fullname: Fu, Xiaofeng organization: Department of Biological Science, Florida State University – sequence: 11 givenname: Fanxiu surname: Zhu fullname: Zhu, Fanxiu organization: Department of Biological Science, Florida State University – sequence: 12 givenname: Yang surname: Liu fullname: Liu, Yang organization: Department of Chemistry, Texas A&M University – sequence: 13 givenname: Arthur surname: Laganowsky fullname: Laganowsky, Arthur organization: Department of Chemistry, Texas A&M University – sequence: 14 givenname: Xueyun surname: Zheng fullname: Zheng, Xueyun organization: Department of Chemistry, Texas A&M University – sequence: 15 givenname: Jun-Yuan surname: Ji fullname: Ji, Jun-Yuan organization: Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center – sequence: 16 givenname: A. Phillip surname: West fullname: West, A. Phillip organization: Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center – sequence: 17 givenname: Robert O. surname: Watson fullname: Watson, Robert O. organization: Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center – sequence: 18 givenname: Pingwei surname: Li fullname: Li, Pingwei email: pingwei@tamu.edu organization: Department of Biochemistry and Biophysics, Texas A&M University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31118511$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1577334$$D View this record in Osti.gov |
BookMark | eNp9k1Fv0zAUhSM0xLrBD-AFReMFhLLZTuIkL0ilwKioxrQW8Wi5zk3rKbG72KnKv-eGbmydOuQHS_Z3Tm587j0KDow1EASvKTmlJM7PXELTnEeEFhFlLI82z4IBTTIeJTzPDoIBIXhI8pgfBkfOXRNCUpolL4LDmFKap5QOgtkwVNY4aNdQhpeTy8nV7Gz6OWys11Voq3A6G1-chw2UWnpwoV9C2IJqO-0bMD6Upgyl8notvbamF8w-facvg-eVrB28ut2Pg59fv8xG36LJj_PxaDiJVE6Yj2hZxVIqQngGaRrnMaPFnKiCAxRlwuZzvOMl56QomFJpnCgGRcWBcqWqlCXxcfBx67vq5liiwopaWYtVqxvZ_hZWarF7Y_RSLOxa8LTgRdEbnGwNrPNaOKU9qCW-hwHlBU2zLI576N3tV1p704HzotFOQV1LA7ZzgjEsnBQ85Yi-fYRe2641-AaC5QnFuDJG76mFrEFoU1ksTvWmYpjmGc0wtxipaA-1AAP4J9gHlcbjHf5kD69W-kY8hE73QLhKaLTa6_p-R4CMh41fyM45MZ5e7bIfnmaHs1-ji136zcPw_qV215sIZFtAtda5FiqB-fztM6xZ14IS0U-B2E6BwCkQ_RSIDSrpI-Wd-f80bKtxyJoFtPfRPS36AyFhEnI |
CitedBy_id | crossref_primary_10_2147_JIR_S468609 crossref_primary_10_1021_acs_jmedchem_2c01305 crossref_primary_10_3390_cells11121958 crossref_primary_10_1002_eji_202350386 crossref_primary_10_1038_s41467_020_18128_x crossref_primary_10_3389_fimmu_2024_1402817 crossref_primary_10_1016_j_ceb_2020_03_002 crossref_primary_10_1038_s41420_023_01735_0 crossref_primary_10_1007_s12026_024_09525_1 crossref_primary_10_3389_fphar_2022_1033982 crossref_primary_10_1016_j_cej_2024_151663 crossref_primary_10_1128_mbio_02064_22 crossref_primary_10_1093_abbs_gmaa051 crossref_primary_10_1016_j_molcel_2023_09_009 crossref_primary_10_1038_s44319_025_00394_9 crossref_primary_10_1111_febs_16137 crossref_primary_10_1098_rsob_210277 crossref_primary_10_1007_s12035_024_04412_0 crossref_primary_10_1007_s11427_024_2703_6 crossref_primary_10_1038_s44318_024_00331_x crossref_primary_10_3389_fcell_2022_903781 crossref_primary_10_1038_s41577_021_00524_z crossref_primary_10_2174_1568026619666191010155903 crossref_primary_10_1016_j_jhepr_2021_100324 crossref_primary_10_1016_j_coviro_2022_101206 crossref_primary_10_1016_j_mattod_2024_07_004 crossref_primary_10_4049_jimmunol_2300669 crossref_primary_10_1007_s11427_024_2808_3 crossref_primary_10_1186_s12964_020_00659_x crossref_primary_10_1002_mog2_49 crossref_primary_10_1016_j_bbadis_2023_166997 crossref_primary_10_1016_j_immuni_2021_03_011 crossref_primary_10_1038_s41467_023_44372_y crossref_primary_10_3389_fimmu_2022_931885 crossref_primary_10_1016_j_immuni_2024_12_002 crossref_primary_10_1038_s41423_021_00758_w crossref_primary_10_1016_j_it_2022_04_011 crossref_primary_10_1016_j_molcel_2021_05_002 crossref_primary_10_1093_jmcb_mjab061 crossref_primary_10_1111_imm_13592 crossref_primary_10_1016_j_bioactmat_2024_10_006 crossref_primary_10_1016_j_immuni_2020_05_013 crossref_primary_10_1073_pnas_2320709121 crossref_primary_10_1038_s41564_022_01136_6 crossref_primary_10_1016_j_prp_2024_155330 crossref_primary_10_1126_science_adf8974 crossref_primary_10_3390_biomedicines10010033 crossref_primary_10_1021_acscatal_2c06190 crossref_primary_10_2174_1389450124666230831160820 crossref_primary_10_3389_fimmu_2024_1356369 crossref_primary_10_4049_jimmunol_2100325 crossref_primary_10_1016_j_xcrm_2024_101797 crossref_primary_10_3389_fimmu_2020_00615 crossref_primary_10_1016_j_jaci_2020_12_623 crossref_primary_10_1515_mr_2024_0016 crossref_primary_10_1038_s41467_023_44317_5 crossref_primary_10_1007_s11426_019_9662_5 crossref_primary_10_1002_anie_202407641 crossref_primary_10_1038_s41590_019_0556_1 crossref_primary_10_1080_08830185_2022_2070616 crossref_primary_10_1111_cns_14671 crossref_primary_10_1007_s12272_023_01452_3 crossref_primary_10_3389_fimmu_2021_814709 crossref_primary_10_1039_D2QO02033E crossref_primary_10_1186_s12951_024_02809_6 crossref_primary_10_1016_j_talanta_2024_127258 crossref_primary_10_1002_advs_202308890 crossref_primary_10_1146_annurev_virology_111821_115636 crossref_primary_10_1016_j_jep_2023_116427 crossref_primary_10_1002_ange_202210988 crossref_primary_10_1038_s41401_022_00967_7 crossref_primary_10_1038_s41590_021_00896_3 crossref_primary_10_4049_jimmunol_2400123 crossref_primary_10_3389_fimmu_2020_568412 crossref_primary_10_1016_j_isci_2024_110693 crossref_primary_10_1080_14728222_2020_1826929 crossref_primary_10_1016_j_pt_2020_07_001 crossref_primary_10_1084_jem_20220990 crossref_primary_10_1371_journal_ppat_1012048 crossref_primary_10_1080_17568919_2024_2383164 crossref_primary_10_1186_s12943_024_02186_6 crossref_primary_10_3724_zdxbyxb_2023_0480 crossref_primary_10_3389_fcell_2021_717610 crossref_primary_10_1002_adtp_202100066 crossref_primary_10_3389_fcimb_2022_954581 crossref_primary_10_1021_acs_chemrev_1c00716 crossref_primary_10_1073_pnas_2105465118 crossref_primary_10_1038_s41586_020_2749_z crossref_primary_10_1093_nar_gkad1058 crossref_primary_10_1002_1878_0261_13603 crossref_primary_10_1111_febs_15640 crossref_primary_10_1016_j_pharmthera_2024_108653 crossref_primary_10_1080_08820139_2024_2392587 crossref_primary_10_1016_j_jbc_2024_107775 crossref_primary_10_1016_j_ceb_2019_12_004 crossref_primary_10_3390_ph16121675 crossref_primary_10_1016_j_jmb_2021_167257 crossref_primary_10_1002_cbin_11427 crossref_primary_10_1038_s41551_020_00675_9 crossref_primary_10_1016_j_bbagen_2023_130483 crossref_primary_10_1016_j_molcel_2025_01_027 crossref_primary_10_3389_fcvm_2022_965726 crossref_primary_10_3390_biology12101311 crossref_primary_10_1002_jmv_29403 crossref_primary_10_1016_j_semcancer_2025_02_005 crossref_primary_10_3390_cells12141862 crossref_primary_10_2147_OTT_S298958 crossref_primary_10_3389_fimmu_2023_1200245 crossref_primary_10_15252_embj_2022112712 crossref_primary_10_1002_advs_202104126 crossref_primary_10_1038_s41586_022_04559_7 crossref_primary_10_1186_s13046_022_02352_y crossref_primary_10_3389_fimmu_2020_625833 crossref_primary_10_1016_j_fsi_2024_109528 crossref_primary_10_1016_j_immuni_2023_11_001 crossref_primary_10_3389_fphar_2024_1409683 crossref_primary_10_1038_s41467_022_32401_1 crossref_primary_10_3389_fimmu_2023_1273248 crossref_primary_10_3389_fphar_2024_1374179 crossref_primary_10_1016_j_molcel_2023_12_005 crossref_primary_10_1080_15548627_2021_1959086 crossref_primary_10_1073_pnas_2109022118 crossref_primary_10_1038_s41421_022_00481_4 crossref_primary_10_1038_s41392_025_02174_2 crossref_primary_10_1038_s41418_020_0588_y crossref_primary_10_3389_fimmu_2024_1403538 crossref_primary_10_1007_s13238_021_00839_6 crossref_primary_10_3389_fmicb_2023_1232314 crossref_primary_10_1111_liv_70063 crossref_primary_10_1021_acs_biochem_1c00692 crossref_primary_10_1002_jmv_70062 crossref_primary_10_1002_adhm_202200905 crossref_primary_10_18632_oncotarget_27673 crossref_primary_10_1016_j_tcb_2020_01_010 crossref_primary_10_1038_s41392_020_0198_7 crossref_primary_10_1016_j_fsi_2023_109125 crossref_primary_10_1038_s41467_023_41164_2 crossref_primary_10_3389_fimmu_2023_1239142 crossref_primary_10_1016_j_bbcan_2021_188661 crossref_primary_10_1080_25785826_2025_2475626 crossref_primary_10_1016_j_jbc_2023_104866 crossref_primary_10_1186_s12915_024_02047_0 crossref_primary_10_3389_fimmu_2024_1470468 crossref_primary_10_1186_s12967_024_05588_8 crossref_primary_10_1002_ddr_70013 crossref_primary_10_1038_s41586_022_05354_0 crossref_primary_10_15252_embr_202153932 crossref_primary_10_1042_BSR20202603 crossref_primary_10_1021_acs_jmedchem_9b01062 crossref_primary_10_2147_JIR_S465978 crossref_primary_10_1038_s41589_023_01434_y crossref_primary_10_3389_fimmu_2022_808607 crossref_primary_10_1021_acsbiomaterials_2c01509 crossref_primary_10_1371_journal_pgen_1010045 crossref_primary_10_1016_j_sbi_2023_102767 crossref_primary_10_1186_s12885_024_12667_y crossref_primary_10_1016_j_ejcb_2023_151338 crossref_primary_10_1080_2162402X_2022_2093054 crossref_primary_10_1016_j_tet_2021_132096 crossref_primary_10_1002_anie_202210988 crossref_primary_10_3390_ph15101241 crossref_primary_10_1002_med_22016 crossref_primary_10_3389_fimmu_2022_996663 crossref_primary_10_1021_acs_chemrev_1c00750 crossref_primary_10_3390_v15010226 crossref_primary_10_1096_fj_202302675R crossref_primary_10_1016_j_molcel_2022_10_026 crossref_primary_10_1158_2159_8290_CD_19_0761 crossref_primary_10_1016_j_devcel_2023_03_015 crossref_primary_10_1038_s41594_023_00933_9 crossref_primary_10_1111_imcb_12555 crossref_primary_10_3390_fishes8120597 crossref_primary_10_1016_j_it_2019_10_008 crossref_primary_10_1016_j_celrep_2022_111868 crossref_primary_10_3390_ijms241813840 crossref_primary_10_1016_j_jbc_2023_105213 crossref_primary_10_1038_s41420_024_01844_4 crossref_primary_10_1186_s12931_024_02915_x crossref_primary_10_1016_j_drudis_2019_11_007 crossref_primary_10_1016_j_phrs_2024_107063 crossref_primary_10_1016_j_lfs_2022_121336 crossref_primary_10_1038_s41586_022_05452_z crossref_primary_10_2174_0113895575271977231115062803 crossref_primary_10_1002_ange_202407641 crossref_primary_10_7554_eLife_88210 crossref_primary_10_1247_csf_21080 crossref_primary_10_1002_advs_202410432 crossref_primary_10_3389_fimmu_2020_611347 crossref_primary_10_1016_j_tcb_2022_11_001 crossref_primary_10_1002_eji_202049116 crossref_primary_10_1016_j_apsb_2020_03_001 crossref_primary_10_3389_fphar_2024_1383000 crossref_primary_10_3389_fimmu_2023_1130423 crossref_primary_10_3389_fmicb_2021_790714 crossref_primary_10_1038_s41594_024_01338_y crossref_primary_10_1038_s41392_023_01486_5 crossref_primary_10_17264_stmarieng_15_45 crossref_primary_10_7717_peerj_18559 crossref_primary_10_3390_biomedicines13030571 crossref_primary_10_1038_s41598_024_66196_6 crossref_primary_10_3390_ijms24033029 crossref_primary_10_1021_acs_jcim_3c00984 crossref_primary_10_1038_s41467_024_47046_5 crossref_primary_10_1016_j_coi_2020_04_002 crossref_primary_10_1126_scisignal_aaw4673 crossref_primary_10_1016_j_chembiol_2023_07_002 crossref_primary_10_1126_sciadv_aba7589 crossref_primary_10_1111_1756_185X_15256 crossref_primary_10_1016_j_bcp_2022_115026 crossref_primary_10_1016_j_celrep_2023_113040 crossref_primary_10_3389_fimmu_2022_954129 crossref_primary_10_3390_v16040574 crossref_primary_10_1016_j_cej_2023_145192 crossref_primary_10_1038_s41586_022_04999_1 crossref_primary_10_1016_j_matbio_2021_01_004 crossref_primary_10_1038_s41467_020_17228_y crossref_primary_10_3389_fimmu_2020_01255 crossref_primary_10_1016_j_tibs_2022_07_002 crossref_primary_10_1080_15548627_2025_2471736 crossref_primary_10_1038_s41467_023_41381_9 crossref_primary_10_1016_j_jbc_2022_102779 crossref_primary_10_15252_embr_202255099 crossref_primary_10_7554_eLife_59753 crossref_primary_10_1016_j_bbcan_2024_189107 crossref_primary_10_12677_JOCR_2022_101002 crossref_primary_10_3923_ijp_2024_1381_1389 crossref_primary_10_1111_febs_70023 crossref_primary_10_1080_13543776_2024_2365409 crossref_primary_10_1038_s41586_023_06373_1 crossref_primary_10_3389_fcell_2021_748485 crossref_primary_10_1080_08923973_2021_1890118 crossref_primary_10_1096_fj_202001607R crossref_primary_10_1016_j_biomaterials_2024_122761 crossref_primary_10_1038_s41392_022_01252_z crossref_primary_10_1016_j_molcel_2023_03_029 crossref_primary_10_1038_s41598_021_91562_z crossref_primary_10_1016_j_canlet_2024_217410 crossref_primary_10_3390_molecules28073127 crossref_primary_10_1016_j_cclet_2024_110525 crossref_primary_10_1016_j_critrevonc_2025_104658 crossref_primary_10_1038_s41580_020_0244_x crossref_primary_10_4251_wjgo_v17_i2_98556 crossref_primary_10_1016_j_bioorg_2019_103556 crossref_primary_10_4049_jimmunol_2001033 crossref_primary_10_1177_15459683231152814 crossref_primary_10_1016_j_smim_2021_101580 crossref_primary_10_1080_13543776_2022_2144220 crossref_primary_10_1016_j_phymed_2025_156403 crossref_primary_10_1016_j_cellin_2021_100001 crossref_primary_10_3389_fcell_2021_828657 crossref_primary_10_1016_j_cpcardiol_2023_102189 crossref_primary_10_1016_j_repbre_2023_05_002 crossref_primary_10_1016_j_bbrc_2024_149973 crossref_primary_10_1038_s41467_023_36132_9 crossref_primary_10_1038_s41556_025_01627_8 crossref_primary_10_1007_s12038_023_00381_z crossref_primary_10_1080_21655979_2021_1911557 crossref_primary_10_1016_j_jbc_2023_105428 crossref_primary_10_1038_s41577_024_01112_7 crossref_primary_10_1111_tra_70000 crossref_primary_10_4110_in_2024_24_e37 crossref_primary_10_1038_s44318_024_00244_9 crossref_primary_10_1038_s41467_020_17156_x crossref_primary_10_1016_j_arr_2021_101396 crossref_primary_10_3389_fimmu_2023_1254915 crossref_primary_10_1038_s12276_023_00965_7 crossref_primary_10_1002_mco2_511 crossref_primary_10_1038_s41586_020_2719_5 crossref_primary_10_3389_fcell_2022_1037999 crossref_primary_10_1038_s41565_024_01624_2 crossref_primary_10_1002_advs_202300576 crossref_primary_10_1038_s41467_023_42210_9 |
Cites_doi | 10.1038/nature10429 10.1111/j.1600-065X.2011.01052.x 10.1107/S0907444909038360 10.1038/nsmb.2331 10.1016/j.immuni.2016.04.002 10.1038/ni.2491 10.1038/ni921 10.1038/s41586-019-0998-5 10.1016/j.celrep.2013.05.009 10.1107/S0907444904019158 10.1016/j.molcel.2013.05.022 10.1038/nprot.2017.037 10.1126/scisignal.2002521 10.1126/science.1232458 10.1146/annurev-immunol-032713-120156 10.1016/j.cell.2013.04.046 10.1016/j.str.2013.04.025 10.1128/MCB.18.5.2986 10.1126/science.1229963 10.1126/science.1081315 10.1016/j.coi.2010.12.015 10.1016/j.immuni.2013.05.004 10.1038/nature07317 10.1038/nature12306 10.1126/science.aaa2630 10.1073/pnas.1603269113 10.1107/S0907444909052925 10.1038/nature08476 10.1038/ni.3558 10.1126/science.1247005 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2019 COPYRIGHT 2019 Nature Publishing Group Copyright Nature Publishing Group May 30, 2019 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019 – notice: COPYRIGHT 2019 Nature Publishing Group – notice: Copyright Nature Publishing Group May 30, 2019 |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 OIOZB OTOTI 5PM |
DOI | 10.1038/s41586-019-1228-x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Agricultural Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 722 |
ExternalDocumentID | PMC6596994 1577334 A587170023 31118511 10_1038_s41586_019_1228_x |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural General Information |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI125512 – fundername: NIH HHS grantid: S10 OD018142 – fundername: NCRR NIH HHS grantid: S10 RR025080 – fundername: Howard Hughes Medical Institute – fundername: NIAID NIH HHS grantid: R01 AI145287 – fundername: NIDCR NIH HHS grantid: R01 DE016680 – fundername: NIDCR NIH HHS grantid: R01 DE026101 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EJD EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADXHL AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AGQPQ AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EMB EMF EMK EMOBN EPL ESE ESN FA8 FAC J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NFIDA NPM NXXTH ODYON OHT P-O PEA PJZUB PM3 PPXIY PQGLB PV9 QS- R4F RHI SKT TH9 TUD TUS UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZGI ZHY ZKB ZY4 ~8M ~G0 AEIIB PMFND 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS PUEGO Q9U RC3 SOI 7X8 AGEZK B-7 OIOZB OTOTI 5PM |
ID | FETCH-LOGICAL-c802t-1df3aac0067e55383219b0c96ee9d42bbac06d660992cc534c2e9f6e16ccf5243 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:08:57 EDT 2025 Mon Nov 25 02:37:50 EST 2024 Fri Jul 11 04:03:45 EDT 2025 Sat Aug 23 14:49:17 EDT 2025 Tue Jun 17 20:51:51 EDT 2025 Thu Jun 12 23:55:31 EDT 2025 Tue Jun 10 15:35:47 EDT 2025 Tue Jun 10 20:14:04 EDT 2025 Fri Jun 27 04:59:10 EDT 2025 Fri Jun 27 03:53:24 EDT 2025 Mon Jul 21 05:46:49 EDT 2025 Tue Jul 01 01:21:05 EDT 2025 Thu Apr 24 22:50:53 EDT 2025 Fri Feb 21 02:37:03 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7758 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c802t-1df3aac0067e55383219b0c96ee9d42bbac06d660992cc534c2e9f6e16ccf5243 |
Notes | SourceType-Scholarly Journals-1 ObjectType-General Information-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 AC02-05CH11231 USDOE Office of Science (SC), Basic Energy Sciences (BES) These authors made equal contributions to the work P.L. conceived the study. B.Z. and F.D. expressed the proteins, conducted the binding studies and solved the structures. B.S. collected the data at ALS. B.Z., C.S., M.L., X. G., and Y.L. contributed to the cell-based studies. S.L.B. and R.O.W. generated the TBK1 KO cells. P.W. and J.J. supervised some of the cell-based studies. P.X. conducted the cryo-EM studies. F.Z., and X.F. helped with EM data collection. Y.L., X.Z. and A.L. conducted MS/MS analysis of phosphorylated STING. B.Z. and P.L. wrote the paper. P.W., R.O.W., and S.L.B helped with revising the manuscript. Author contributions |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6596994 |
PMID | 31118511 |
PQID | 2841415721 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6596994 osti_scitechconnect_1577334 proquest_miscellaneous_2232109656 proquest_journals_2841415721 gale_infotracmisc_A587170023 gale_infotracgeneralonefile_A587170023 gale_infotraccpiq_587170023 gale_infotracacademiconefile_A587170023 gale_incontextgauss_ISR_A587170023 gale_incontextgauss_ATWCN_A587170023 pubmed_primary_31118511 crossref_citationtrail_10_1038_s41586_019_1228_x crossref_primary_10_1038_s41586_019_1228_x springer_journals_10_1038_s41586_019_1228_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190501 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 5 year: 2019 text: 20190501 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Emsley, Cowtan (CR29) 2004; 60 Diner (CR11) 2013; 3 Sun, Wu, Du, Chen, Chen (CR7) 2013; 339 Zhao (CR20) 2016; 113 Burdette (CR22) 2011; 478 Kato, Takahasi, Fujita (CR4) 2011; 243 Chen, Sun, Chen (CR1) 2016; 17 Roers, Hiller, Hornung (CR2) 2016; 44 Tanaka, Chen (CR16) 2012; 5 Burdette, Vance (CR6) 2013; 14 Powell, Battye, Kontogiannis, Johnson, Leslie (CR26) 2017; 12 Shalem (CR30) 2014; 343 Sharma (CR17) 2003; 300 Shu (CR25) 2013; 21 Ishikawa, Barber (CR14) 2008; 455 Shang, Zhang, Chen, Bai, Zhang (CR23) 2019; 567 Adams (CR27) 2010; 66 Ablasser (CR10) 2013; 498 Gao (CR12) 2013; 153 Sheldrick (CR28) 2010; 66 Zhang (CR9) 2013; 51 Liu (CR19) 2015; 347 Barber (CR3) 2011; 23 Wu (CR13) 2013; 339 Paludan, Bowie (CR5) 2013; 38 Wu, Chen (CR8) 2014; 32 Shu, Yi, Watts, Kao, Li (CR24) 2012; 19 Ishikawa, Ma, Barber (CR15) 2009; 461 Fitzgerald (CR18) 2003; 4 Lin, Heylbroeck, Pitha, Hiscott (CR21) 1998; 18 J Wu (1228_CR13) 2013; 339 P Emsley (1228_CR29) 2004; 60 O Shalem (1228_CR30) 2014; 343 H Ishikawa (1228_CR14) 2008; 455 Y Tanaka (1228_CR16) 2012; 5 R Lin (1228_CR21) 1998; 18 G Shang (1228_CR23) 2019; 567 DL Burdette (1228_CR6) 2013; 14 J Wu (1228_CR8) 2014; 32 KA Fitzgerald (1228_CR18) 2003; 4 C Shu (1228_CR24) 2012; 19 S Liu (1228_CR19) 2015; 347 H Ishikawa (1228_CR15) 2009; 461 C Shu (1228_CR25) 2013; 21 GN Barber (1228_CR3) 2011; 23 L Sun (1228_CR7) 2013; 339 PD Adams (1228_CR27) 2010; 66 A Roers (1228_CR2) 2016; 44 Q Chen (1228_CR1) 2016; 17 B Zhao (1228_CR20) 2016; 113 S Sharma (1228_CR17) 2003; 300 SR Paludan (1228_CR5) 2013; 38 DL Burdette (1228_CR22) 2011; 478 HR Powell (1228_CR26) 2017; 12 GM Sheldrick (1228_CR28) 2010; 66 EJ Diner (1228_CR11) 2013; 3 H Kato (1228_CR4) 2011; 243 P Gao (1228_CR12) 2013; 153 A Ablasser (1228_CR10) 2013; 498 X Zhang (1228_CR9) 2013; 51 |
References_xml | – volume: 478 start-page: 515 year: 2011 end-page: 518 ident: CR22 article-title: STING is a direct innate immune sensor of cyclic di-GMP publication-title: Nature doi: 10.1038/nature10429 – volume: 243 start-page: 91 year: 2011 end-page: 98 ident: CR4 article-title: RIG-I-like receptors: cytoplasmic sensors for non-self RNA publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2011.01052.x – volume: 66 start-page: 479 year: 2010 end-page: 485 ident: CR28 article-title: Experimental phasing with SHELXC/D/E: combining chain tracing with density modification publication-title: Acta Crystallogr. D doi: 10.1107/S0907444909038360 – volume: 19 start-page: 722 year: 2012 end-page: 724 ident: CR24 article-title: Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2331 – volume: 44 start-page: 739 year: 2016 end-page: 754 ident: CR2 article-title: Recognition of endogenous nucleic acids by the innate immune system publication-title: Immunity doi: 10.1016/j.immuni.2016.04.002 – volume: 14 start-page: 19 year: 2013 end-page: 26 ident: CR6 article-title: STING and the innate immune response to nucleic acids in the cytosol publication-title: Nat. Immunol. doi: 10.1038/ni.2491 – volume: 4 start-page: 491 year: 2003 end-page: 496 ident: CR18 article-title: IKKε and TBK1 are essential components of the IRF3 signaling pathway publication-title: Nat. Immunol. doi: 10.1038/ni921 – volume: 567 start-page: 389 year: 2019 end-page: 393 ident: CR23 article-title: Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP publication-title: Nature doi: 10.1038/s41586-019-0998-5 – volume: 3 start-page: 1355 year: 2013 end-page: 1361 ident: CR11 article-title: The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING publication-title: Cell Reports doi: 10.1016/j.celrep.2013.05.009 – volume: 60 start-page: 2126 year: 2004 end-page: 2132 ident: CR29 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D doi: 10.1107/S0907444904019158 – volume: 51 start-page: 226 year: 2013 end-page: 235 ident: CR9 article-title: Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.05.022 – volume: 12 start-page: 1310 year: 2017 end-page: 1325 ident: CR26 article-title: Integrating macromolecular X-ray diffraction data with the graphical user interface iMosflm publication-title: Nat. Protocols doi: 10.1038/nprot.2017.037 – volume: 5 start-page: ra20 year: 2012 ident: CR16 article-title: STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway publication-title: Sci. Signal. doi: 10.1126/scisignal.2002521 – volume: 339 start-page: 786 year: 2013 end-page: 791 ident: CR7 article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway publication-title: Science doi: 10.1126/science.1232458 – volume: 32 start-page: 461 year: 2014 end-page: 488 ident: CR8 article-title: Innate immune sensing and signaling of cytosolic nucleic acids publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032713-120156 – volume: 153 start-page: 1094 year: 2013 end-page: 1107 ident: CR12 article-title: Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase publication-title: Cell doi: 10.1016/j.cell.2013.04.046 – volume: 21 start-page: 1137 year: 2013 end-page: 1148 ident: CR25 article-title: Structural insights into the functions of TBK1 in innate antimicrobial immunity publication-title: Structure doi: 10.1016/j.str.2013.04.025 – volume: 18 start-page: 2986 year: 1998 end-page: 2996 ident: CR21 article-title: Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.18.5.2986 – volume: 339 start-page: 826 year: 2013 end-page: 830 ident: CR13 article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA publication-title: Science doi: 10.1126/science.1229963 – volume: 300 start-page: 1148 year: 2003 end-page: 1151 ident: CR17 article-title: Triggering the interferon antiviral response through an IKK-related pathway publication-title: Science doi: 10.1126/science.1081315 – volume: 23 start-page: 10 year: 2011 end-page: 20 ident: CR3 article-title: Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2010.12.015 – volume: 38 start-page: 870 year: 2013 end-page: 880 ident: CR5 article-title: Immune sensing of DNA publication-title: Immunity doi: 10.1016/j.immuni.2013.05.004 – volume: 455 start-page: 674 year: 2008 end-page: 678 ident: CR14 article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling publication-title: Nature doi: 10.1038/nature07317 – volume: 498 start-page: 380 year: 2013 end-page: 384 ident: CR10 article-title: cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING publication-title: Nature doi: 10.1038/nature12306 – volume: 347 start-page: aaa2630 year: 2015 ident: CR19 article-title: Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation publication-title: Science doi: 10.1126/science.aaa2630 – volume: 113 start-page: E3403 year: 2016 end-page: E3412 ident: CR20 article-title: Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1603269113 – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: CR27 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D doi: 10.1107/S0907444909052925 – volume: 461 start-page: 788 year: 2009 end-page: 792 ident: CR15 article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity publication-title: Nature doi: 10.1038/nature08476 – volume: 17 start-page: 1142 year: 2016 end-page: 1149 ident: CR1 article-title: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing publication-title: Nat. Immunol. doi: 10.1038/ni.3558 – volume: 343 start-page: 84 year: 2014 end-page: 87 ident: CR30 article-title: Genome-scale CRISPR-Cas9 knockout screening in human cells publication-title: Science doi: 10.1126/science.1247005 – volume: 19 start-page: 722 year: 2012 ident: 1228_CR24 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2331 – volume: 60 start-page: 2126 year: 2004 ident: 1228_CR29 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444904019158 – volume: 12 start-page: 1310 year: 2017 ident: 1228_CR26 publication-title: Nat. Protocols doi: 10.1038/nprot.2017.037 – volume: 567 start-page: 389 year: 2019 ident: 1228_CR23 publication-title: Nature doi: 10.1038/s41586-019-0998-5 – volume: 243 start-page: 91 year: 2011 ident: 1228_CR4 publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2011.01052.x – volume: 32 start-page: 461 year: 2014 ident: 1228_CR8 publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032713-120156 – volume: 339 start-page: 786 year: 2013 ident: 1228_CR7 publication-title: Science doi: 10.1126/science.1232458 – volume: 5 start-page: ra20 year: 2012 ident: 1228_CR16 publication-title: Sci. Signal. doi: 10.1126/scisignal.2002521 – volume: 21 start-page: 1137 year: 2013 ident: 1228_CR25 publication-title: Structure doi: 10.1016/j.str.2013.04.025 – volume: 38 start-page: 870 year: 2013 ident: 1228_CR5 publication-title: Immunity doi: 10.1016/j.immuni.2013.05.004 – volume: 498 start-page: 380 year: 2013 ident: 1228_CR10 publication-title: Nature doi: 10.1038/nature12306 – volume: 461 start-page: 788 year: 2009 ident: 1228_CR15 publication-title: Nature doi: 10.1038/nature08476 – volume: 4 start-page: 491 year: 2003 ident: 1228_CR18 publication-title: Nat. Immunol. doi: 10.1038/ni921 – volume: 343 start-page: 84 year: 2014 ident: 1228_CR30 publication-title: Science doi: 10.1126/science.1247005 – volume: 66 start-page: 213 year: 2010 ident: 1228_CR27 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444909052925 – volume: 23 start-page: 10 year: 2011 ident: 1228_CR3 publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2010.12.015 – volume: 3 start-page: 1355 year: 2013 ident: 1228_CR11 publication-title: Cell Reports doi: 10.1016/j.celrep.2013.05.009 – volume: 18 start-page: 2986 year: 1998 ident: 1228_CR21 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.18.5.2986 – volume: 455 start-page: 674 year: 2008 ident: 1228_CR14 publication-title: Nature doi: 10.1038/nature07317 – volume: 17 start-page: 1142 year: 2016 ident: 1228_CR1 publication-title: Nat. Immunol. doi: 10.1038/ni.3558 – volume: 478 start-page: 515 year: 2011 ident: 1228_CR22 publication-title: Nature doi: 10.1038/nature10429 – volume: 347 start-page: aaa2630 year: 2015 ident: 1228_CR19 publication-title: Science doi: 10.1126/science.aaa2630 – volume: 113 start-page: E3403 year: 2016 ident: 1228_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1603269113 – volume: 66 start-page: 479 year: 2010 ident: 1228_CR28 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444909038360 – volume: 339 start-page: 826 year: 2013 ident: 1228_CR13 publication-title: Science doi: 10.1126/science.1229963 – volume: 44 start-page: 739 year: 2016 ident: 1228_CR2 publication-title: Immunity doi: 10.1016/j.immuni.2016.04.002 – volume: 14 start-page: 19 year: 2013 ident: 1228_CR6 publication-title: Nat. Immunol. doi: 10.1038/ni.2491 – volume: 153 start-page: 1094 year: 2013 ident: 1228_CR12 publication-title: Cell doi: 10.1016/j.cell.2013.04.046 – volume: 300 start-page: 1148 year: 2003 ident: 1228_CR17 publication-title: Science doi: 10.1126/science.1081315 – volume: 51 start-page: 226 year: 2013 ident: 1228_CR9 publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.05.022 |
SSID | ssj0005174 |
Score | 2.66904 |
Snippet | Nucleic acids from bacteria or viruses induce potent immune responses in infected cells
1
–
4
. The detection of pathogen-derived nucleic acids is a central... Nucleic acids from bacteria or viruses induce potent immune responses in infected cells . The detection of pathogen-derived nucleic acids is a central strategy... Nucleic acids from bacteria or viruses induce potent immune responses in infected cells.sup.1-4. The detection of pathogen-derived nucleic acids is a central... Nucleic acids from bacteria or viruses induce potent immune responses in infected cells1-4. The detection of pathogen-derived nucleic acids is a central... Nucleic acids from bacteria or viruses induce potent immune responses in infected cells. The detection of pathogen-derived nucleic acids is a central strategy... |
SourceID | pubmedcentral osti proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 718 |
SubjectTerms | 14/19 631/250/262 631/535/1258 631/535/1266 82/1 82/103 82/16 82/29 82/58 82/80 82/83 Amino Acid Motifs Analysis Antagonists Autoimmune diseases BASIC BIOLOGICAL SCIENCES Chemical synthesis Conserved Sequence Crystallography, X-Ray Cyclic GMP EF hand proteins Enzyme Activation HEK293 Cells Humanities and Social Sciences Humans Hydrogen bonds Immune response Influence Interferon Interferon regulatory factor 3 Interferon-beta - metabolism Letter Membrane Proteins - chemistry Membrane Proteins - genetics Membrane Proteins - metabolism Models, Molecular multidisciplinary Mutation Nucleic acids Nucleotides, Cyclic - metabolism Oligomerization Peptides Phosphorylation Protein Binding Protein kinases Protein Serine-Threonine Kinases - metabolism Science Science (multidisciplinary) Signal Transduction β-Interferon |
Title | A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1 |
URI | https://link.springer.com/article/10.1038/s41586-019-1228-x https://www.ncbi.nlm.nih.gov/pubmed/31118511 https://www.proquest.com/docview/2841415721 https://www.proquest.com/docview/2232109656 https://www.osti.gov/servlets/purl/1577334 https://pubmed.ncbi.nlm.nih.gov/PMC6596994 |
Volume | 569 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegExIviI2vsDEZNPGpqI3z_YS6sm6DqaraTOublVycUQklXdOi_fncJW5LRtlLXu7sOLkPn-2f7xg7ouSSFlhg2mmoTMf3OmasRGg6SWAnAFaSJhXaYuCdXTrfJ-5Eb7iVGla58omVo04LoD3yNrpR7NXFBcvX2Y1JVaPodFWX0HjIdih1GUG6_Im_gXjcycK8OtW0g3aJfQW0lqZiAEi-bcxL2ju3CjSzbaHnvwjKO8eo1ezUf8qe6LCSd2s92GUPVL7HHlXwTij32K424ZJ_1HmmPz1jUZcDYannv1XKhxfDi1HUHn_jhM7LeJHxcXQ-OOXV1RKMRzlGihzd43w5rYDpPM5TTrci6j1dahAd_7Ces8v-SdQ7M3WRBROCjliYVprZcQw0aykXvZ-NLizpQOgpFaaOSBKkeannYSQpAFzbAaHCzFOWB5C5wrFfsFZe5OoV48LNILE9JSAVTkJFPXzRUQqSMMagRWQG66x-sQSdgZwKYfyS1Um4HchaKhKlIkkq8tZgn9dNZnX6jfuYj0huktJa5ISbuY6XZSm70VVvILsuLg19ClEM9m4b2_l41GD6oJmyAscIsb6tgF9KCbManPsNTphNb-Rf1PcN6nUt5G3dHDQY0cqh-RZSRolxESX3BUJBwUKiQfi27WDjlY5K7YNKubEYg71dk6lfwtXlqlgij6A7XCEG9QZ7Wav0-j_bOA1SPG4wv6HsawbKTN6k5NOfVYZyzw29MMRhfVmZxWZY_xXf6_s_Yp89FmSuFdj0gLUW86V6gwHhIjmsrB6fQc-iZ__0kO0cnwyGoz-4ZFrO |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwELdGEYIviI1X2ACDxltRU-fVfECobIyWlmpaM9FvJrk4oxJKuqaF8U_xN3KXR0tG2bd9vrPj-B4-2z_fMbZLySVb0ALdjDylW65j6IESnm6FbTMEaIVRmKMthk732Po0tscb7Hf1FoZglZVPzB11lAKdkTfRjWKvNm5Y3k1PdaoaRberVQmNQi366tdP3LJlb3v7KN9nQhx88Pe6ellVQIe2IeZ6K4rNIABy08pGczfRZkMDPEcpL7JEGCLNiRwHQycBYJsWCOXFjmo5ALEtLBP7vcKu4sJrkEW5Y3cFKTmX9bm6RTXbzQzH3qa9OxUfQPJZbR0sV4NGima9LtT9F7F57to2Xw0PbrGbZRjLO4XebbINlWyxazmcFLIttlm6jIy_LPNav7rN_A4Hwm7PfqiIHw4OB0d-c7TPCQ0Y8zTmI783_MjzpywY_3KMTDm649likgPheZBEnF5hFGfI1MB_32_dYceXMv13WSNJE3WfcWHHEJqOEhAJK6QiIq4wlILQCzBIErHGjGqKJZQZz6nwxneZ37ybbVlIRaJUJElFnmns9bLJtEj3cRHzLslNUhqNhHA6J8Eiy2TH_7I3lB0bt6IuhUQae7qOrTc6qjG9KJniFMcIQfk6Av-UEnTVOLdrnDCdnMq_qM9r1JNCyOu62akxoleB-ldIGSXGYZRMGAh1BXOJBuiapoWNKx2Vpc_L5MpCNfZkSaZ-CceXqHSBPILejHm4idDYvUKll_Ns4rJL8b_G3JqyLxkoE3qdkky-5RnRHdtzPA-H9aYyi9Ww_iu-Bxf_xGN2vet_HshBb9jfZjcEmW4OdN1hjflsoR5iMDoPH-UegLOvl-1y_gCL75Ry |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGEYgXxMZX2QCDBgxQ1MbOR_OAUFkpK62qau1E30xycUYllHZNC-Nf46_jLh8tGWVve76zY_s-fI5_vmNsn5JLmmCCIUNPG5br1A1fC8-wgoYMAMwgDFK0Rd85OrE-j-3xFvtdvIUhWGXhE1NHHU6B_pHX0I1irzYeWGpRDosYtNrvZ2cGVZCim9ainEamIl396yce35J3nRbK-oUQ7Y-jwyMjrzBgQKMuFoYZRtL3gVy2ttH0JdpvUAfP0doLLREESHNCx8EwSgDY0gKhvcjRpgMQ2cKS2O81dt2Vtkk25o7dNbzkQgbo4kZVNmoJzqNB53gqRIDk89KemO8MlSma-Kaw91_05oUr3HRnbN9ht_OQljczHdxmWzreYTdSaCkkO2w7dx8JP8hzXL--y0ZNDoTjnv_QIR_0Br3jUW3Y4oQMjPg04sNRp_-Jp89aMBbmGKVydM3z5SQFxXM_Djm9yMj-J1OD0YeueY-dXMny32eVeBrrh4wLO4JAOlpAKKyACoq4oq41BJ6PAZOIqqxeLLGCPPs5FeH4rtJbeNlQmVQUSkWRVNR5lb1ZNZllqT8uY94nuSlKqRGTcp76yyRRzdGXw75q2ngsdSk8qrLnm9g6w-MS06ucKZriGMHPX0rgTClZV4lzt8QJs8mZ-ov6skQ9zYS8qZu9EiN6GCh_hZRRYUxGiYWBEFiwUGiMrpQWNi50VOX-L1Fra62yZysy9UuYvlhPl8gj6P2YhweKKnuQqfRqnSVuwXQWqDK3pOwrBsqKXqbEk29pdnTH9hzPw2G9LcxiPaz_iu_R5ZN4ym6is1G9Tr-7y24JstwU87rHKov5Uj_GuHQRPEkdAGdfr9rj_AH99Jio |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+conserved+PLPLRT%2FSD+motif+of+STING+mediates+the+recruitment+and+activation+of+TBK1&rft.jtitle=Nature+%28London%29&rft.au=Zhao%2C+Baoyu&rft.au=Du%2C+Fenglei&rft.au=Xu%2C+Pengbiao&rft.au=Shu%2C+Chang&rft.date=2019-05-01&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=569&rft.issue=7758&rft.spage=718&rft.epage=3&rft_id=info:doi/10.1038%2Fs41586-019-1228-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |