A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1

Nucleic acids from bacteria or viruses induce potent immune responses in infected cells 1 – 4 . The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses 5 , 6 . Cyclic GMP-AMP synthase (cGAS) is a double-strand...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 569; no. 7758; pp. 718 - 722
Main Authors Zhao, Baoyu, Du, Fenglei, Xu, Pengbiao, Shu, Chang, Sankaran, Banumathi, Bell, Samantha L., Liu, Mengmeng, Lei, Yuanjiu, Gao, Xinsheng, Fu, Xiaofeng, Zhu, Fanxiu, Liu, Yang, Laganowsky, Arthur, Zheng, Xueyun, Ji, Jun-Yuan, West, A. Phillip, Watson, Robert O., Li, Pingwei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nucleic acids from bacteria or viruses induce potent immune responses in infected cells 1 – 4 . The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses 5 , 6 . Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor 7 , 8 . It catalyses the synthesis of cyclic GMP-AMP (cGAMP) 9 – 12 , which stimulates the induction of type I interferons through the STING–TBK1–IRF-3 signalling axis 13 – 15 . STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase 8 , 16 . The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK1 8 , 17 – 20 . Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons 21 . However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFNβ after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders. A molecular model of STING-mediated signalling is proposed, as structural analysis identifies a crucial motif for the binding of TBK1 to STING, and a separate model involved in IRF-3 binding.
AbstractList Nucleic acids from bacteria or viruses induce potent immune responses in infected cells.sup.1-4. The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses.sup.5,6. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor.sup.7,8. It catalyses the synthesis of cyclic GMP-AMP (cGAMP).sup.9-12, which stimulates the induction of type I interferons through the STING-TBK1-IRF-3 signalling axis.sup.13-15. STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase.sup.8,16. The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK1.sup.8,17-20. Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons.sup.21. However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFN[beta] after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders. A molecular model of STING-mediated signalling is proposed, as structural analysis identifies a crucial motif for the binding of TBK1 to STING, and a separate model involved in IRF-3 binding.
Nucleic acids from bacteria or viruses induce potent immune responses in infected cells.sup.1-4. The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses.sup.5,6. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor.sup.7,8. It catalyses the synthesis of cyclic GMP-AMP (cGAMP).sup.9-12, which stimulates the induction of type I interferons through the STING-TBK1-IRF-3 signalling axis.sup.13-15. STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase.sup.8,16. The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK1.sup.8,17-20. Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons.sup.21. However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFN[beta] after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders.
Nucleic acids from bacteria or viruses induce potent immune responses in infected cells . The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses . Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor . It catalyses the synthesis of cyclic GMP-AMP (cGAMP) , which stimulates the induction of type I interferons through the STING-TBK1-IRF-3 signalling axis . STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase . The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK1 . Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons . However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFNβ after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders.
Nucleic acids from bacteria or viruses induce potent immune responses in infected cells1-4. The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses5,6. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor7,8. It catalyses the synthesis of cyclic GMP-AMP (cGAMP)9-12, which stimulates the induction of type I interferons through the STING-TBK1-IRF-3 signalling axis13-15. STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase8,16. The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK18,17-20. Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons21. However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFNβ after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders.Nucleic acids from bacteria or viruses induce potent immune responses in infected cells1-4. The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses5,6. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor7,8. It catalyses the synthesis of cyclic GMP-AMP (cGAMP)9-12, which stimulates the induction of type I interferons through the STING-TBK1-IRF-3 signalling axis13-15. STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase8,16. The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK18,17-20. Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons21. However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFNβ after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders.
Nucleic acids from bacteria or viruses induce potent immune responses in infected cells1-4. The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses5,6. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor7,8. It catalyses the synthesis of cyclic GMP-AMP (cGAMP)9-12, which stimulates the induction of type I interferons through the STING-TBK1-IRF-3 signalling axis13-15. STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase8,16. The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK18,17-20. Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons21. However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFNß after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders.
Nucleic acids from bacteria or viruses induce potent immune responses in infected cells 1 – 4 . The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses 5 , 6 . Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor 7 , 8 . It catalyses the synthesis of cyclic GMP-AMP (cGAMP) 9 – 12 , which stimulates the induction of type I interferons through the STING–TBK1–IRF-3 signalling axis 13 – 15 . STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase 8 , 16 . The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK1 8 , 17 – 20 . Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons 21 . However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFNβ after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders. A molecular model of STING-mediated signalling is proposed, as structural analysis identifies a crucial motif for the binding of TBK1 to STING, and a separate model involved in IRF-3 binding.
Nucleic acids from bacteria or viruses induce potent immune responses in infected cells 1 – 4 . The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses 5 , 6 . Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor 7 , 8 . It catalyzes the synthesis of cyclic GMP-AMP (cGAMP) 9 – 12 , which stimulates the induction of type I interferons (IFN-Is) through the STING-TBK1-IRF-3 signaling axis 13 – 15 . Stimulator of interferon genes (STING) oligomerizes upon cGAMP binding, leading to the recruitment and activation of tank-binding kinase 1 (TBK1) 8 , 16 . Interferon regulatory factor 3 (IRF-3) is then recruited to the signaling complex and activated by TBK1 8 , 17 – 20 . Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of IFN-Is 21 . However, the precise mechanisms governing STING activation by cGAMP and subsequent TBK1 activation by STING remained poorly understood. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for IFN-β induction upon cGAMP stimulation. Moreover, we show that full-length STING oligomerizes upon cGAMP binding and highlight this as an essential step in the activation of STING-mediated signaling.
Nucleic acids from bacteria or viruses induce potent immune responses in infected cells. The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor. It catalyses the synthesis of cyclic GMP-AMP (cGAMP), which stimulates the induction of type I interferons through the STING-TBK1-IRF-3 signalling axis. STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase. The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK1. Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons. However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFNβ after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. Furthermore, these findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders.
Audience Academic
Author Bell, Samantha L.
Liu, Yang
Laganowsky, Arthur
Sankaran, Banumathi
Zhu, Fanxiu
Xu, Pengbiao
Lei, Yuanjiu
Li, Pingwei
Fu, Xiaofeng
Shu, Chang
Watson, Robert O.
Zhao, Baoyu
Du, Fenglei
West, A. Phillip
Liu, Mengmeng
Gao, Xinsheng
Ji, Jun-Yuan
Zheng, Xueyun
AuthorAffiliation 1 Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
4 Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
6 Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
3 Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, TX, 77802, USA
5 Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
2 Molecular Biophysics and Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
AuthorAffiliation_xml – name: 3 Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, TX, 77802, USA
– name: 1 Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
– name: 2 Molecular Biophysics and Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
– name: 5 Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
– name: 6 Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
– name: 4 Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
Author_xml – sequence: 1
  givenname: Baoyu
  surname: Zhao
  fullname: Zhao, Baoyu
  organization: Department of Biochemistry and Biophysics, Texas A&M University
– sequence: 2
  givenname: Fenglei
  surname: Du
  fullname: Du, Fenglei
  organization: Department of Biochemistry and Biophysics, Texas A&M University
– sequence: 3
  givenname: Pengbiao
  surname: Xu
  fullname: Xu, Pengbiao
  organization: Department of Biochemistry and Biophysics, Texas A&M University
– sequence: 4
  givenname: Chang
  surname: Shu
  fullname: Shu, Chang
  organization: Department of Biochemistry and Biophysics, Texas A&M University
– sequence: 5
  givenname: Banumathi
  surname: Sankaran
  fullname: Sankaran, Banumathi
  organization: Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory
– sequence: 6
  givenname: Samantha L.
  surname: Bell
  fullname: Bell, Samantha L.
  organization: Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center
– sequence: 7
  givenname: Mengmeng
  surname: Liu
  fullname: Liu, Mengmeng
  organization: Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center
– sequence: 8
  givenname: Yuanjiu
  surname: Lei
  fullname: Lei, Yuanjiu
  organization: Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center
– sequence: 9
  givenname: Xinsheng
  surname: Gao
  fullname: Gao, Xinsheng
  organization: Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center
– sequence: 10
  givenname: Xiaofeng
  surname: Fu
  fullname: Fu, Xiaofeng
  organization: Department of Biological Science, Florida State University
– sequence: 11
  givenname: Fanxiu
  surname: Zhu
  fullname: Zhu, Fanxiu
  organization: Department of Biological Science, Florida State University
– sequence: 12
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: Department of Chemistry, Texas A&M University
– sequence: 13
  givenname: Arthur
  surname: Laganowsky
  fullname: Laganowsky, Arthur
  organization: Department of Chemistry, Texas A&M University
– sequence: 14
  givenname: Xueyun
  surname: Zheng
  fullname: Zheng, Xueyun
  organization: Department of Chemistry, Texas A&M University
– sequence: 15
  givenname: Jun-Yuan
  surname: Ji
  fullname: Ji, Jun-Yuan
  organization: Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center
– sequence: 16
  givenname: A. Phillip
  surname: West
  fullname: West, A. Phillip
  organization: Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center
– sequence: 17
  givenname: Robert O.
  surname: Watson
  fullname: Watson, Robert O.
  organization: Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center
– sequence: 18
  givenname: Pingwei
  surname: Li
  fullname: Li, Pingwei
  email: pingwei@tamu.edu
  organization: Department of Biochemistry and Biophysics, Texas A&M University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31118511$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1577334$$D View this record in Osti.gov
BookMark eNp9k1Fv0zAUhSM0xLrBD-AFReMFhLLZTuIkL0ilwKioxrQW8Wi5zk3rKbG72KnKv-eGbmydOuQHS_Z3Tm587j0KDow1EASvKTmlJM7PXELTnEeEFhFlLI82z4IBTTIeJTzPDoIBIXhI8pgfBkfOXRNCUpolL4LDmFKap5QOgtkwVNY4aNdQhpeTy8nV7Gz6OWys11Voq3A6G1-chw2UWnpwoV9C2IJqO-0bMD6Upgyl8notvbamF8w-facvg-eVrB28ut2Pg59fv8xG36LJj_PxaDiJVE6Yj2hZxVIqQngGaRrnMaPFnKiCAxRlwuZzvOMl56QomFJpnCgGRcWBcqWqlCXxcfBx67vq5liiwopaWYtVqxvZ_hZWarF7Y_RSLOxa8LTgRdEbnGwNrPNaOKU9qCW-hwHlBU2zLI576N3tV1p704HzotFOQV1LA7ZzgjEsnBQ85Yi-fYRe2641-AaC5QnFuDJG76mFrEFoU1ksTvWmYpjmGc0wtxipaA-1AAP4J9gHlcbjHf5kD69W-kY8hE73QLhKaLTa6_p-R4CMh41fyM45MZ5e7bIfnmaHs1-ji136zcPw_qV215sIZFtAtda5FiqB-fztM6xZ14IS0U-B2E6BwCkQ_RSIDSrpI-Wd-f80bKtxyJoFtPfRPS36AyFhEnI
CitedBy_id crossref_primary_10_2147_JIR_S468609
crossref_primary_10_1021_acs_jmedchem_2c01305
crossref_primary_10_3390_cells11121958
crossref_primary_10_1002_eji_202350386
crossref_primary_10_1038_s41467_020_18128_x
crossref_primary_10_3389_fimmu_2024_1402817
crossref_primary_10_1016_j_ceb_2020_03_002
crossref_primary_10_1038_s41420_023_01735_0
crossref_primary_10_1007_s12026_024_09525_1
crossref_primary_10_3389_fphar_2022_1033982
crossref_primary_10_1016_j_cej_2024_151663
crossref_primary_10_1128_mbio_02064_22
crossref_primary_10_1093_abbs_gmaa051
crossref_primary_10_1016_j_molcel_2023_09_009
crossref_primary_10_1038_s44319_025_00394_9
crossref_primary_10_1111_febs_16137
crossref_primary_10_1098_rsob_210277
crossref_primary_10_1007_s12035_024_04412_0
crossref_primary_10_1007_s11427_024_2703_6
crossref_primary_10_1038_s44318_024_00331_x
crossref_primary_10_3389_fcell_2022_903781
crossref_primary_10_1038_s41577_021_00524_z
crossref_primary_10_2174_1568026619666191010155903
crossref_primary_10_1016_j_jhepr_2021_100324
crossref_primary_10_1016_j_coviro_2022_101206
crossref_primary_10_1016_j_mattod_2024_07_004
crossref_primary_10_4049_jimmunol_2300669
crossref_primary_10_1007_s11427_024_2808_3
crossref_primary_10_1186_s12964_020_00659_x
crossref_primary_10_1002_mog2_49
crossref_primary_10_1016_j_bbadis_2023_166997
crossref_primary_10_1016_j_immuni_2021_03_011
crossref_primary_10_1038_s41467_023_44372_y
crossref_primary_10_3389_fimmu_2022_931885
crossref_primary_10_1016_j_immuni_2024_12_002
crossref_primary_10_1038_s41423_021_00758_w
crossref_primary_10_1016_j_it_2022_04_011
crossref_primary_10_1016_j_molcel_2021_05_002
crossref_primary_10_1093_jmcb_mjab061
crossref_primary_10_1111_imm_13592
crossref_primary_10_1016_j_bioactmat_2024_10_006
crossref_primary_10_1016_j_immuni_2020_05_013
crossref_primary_10_1073_pnas_2320709121
crossref_primary_10_1038_s41564_022_01136_6
crossref_primary_10_1016_j_prp_2024_155330
crossref_primary_10_1126_science_adf8974
crossref_primary_10_3390_biomedicines10010033
crossref_primary_10_1021_acscatal_2c06190
crossref_primary_10_2174_1389450124666230831160820
crossref_primary_10_3389_fimmu_2024_1356369
crossref_primary_10_4049_jimmunol_2100325
crossref_primary_10_1016_j_xcrm_2024_101797
crossref_primary_10_3389_fimmu_2020_00615
crossref_primary_10_1016_j_jaci_2020_12_623
crossref_primary_10_1515_mr_2024_0016
crossref_primary_10_1038_s41467_023_44317_5
crossref_primary_10_1007_s11426_019_9662_5
crossref_primary_10_1002_anie_202407641
crossref_primary_10_1038_s41590_019_0556_1
crossref_primary_10_1080_08830185_2022_2070616
crossref_primary_10_1111_cns_14671
crossref_primary_10_1007_s12272_023_01452_3
crossref_primary_10_3389_fimmu_2021_814709
crossref_primary_10_1039_D2QO02033E
crossref_primary_10_1186_s12951_024_02809_6
crossref_primary_10_1016_j_talanta_2024_127258
crossref_primary_10_1002_advs_202308890
crossref_primary_10_1146_annurev_virology_111821_115636
crossref_primary_10_1016_j_jep_2023_116427
crossref_primary_10_1002_ange_202210988
crossref_primary_10_1038_s41401_022_00967_7
crossref_primary_10_1038_s41590_021_00896_3
crossref_primary_10_4049_jimmunol_2400123
crossref_primary_10_3389_fimmu_2020_568412
crossref_primary_10_1016_j_isci_2024_110693
crossref_primary_10_1080_14728222_2020_1826929
crossref_primary_10_1016_j_pt_2020_07_001
crossref_primary_10_1084_jem_20220990
crossref_primary_10_1371_journal_ppat_1012048
crossref_primary_10_1080_17568919_2024_2383164
crossref_primary_10_1186_s12943_024_02186_6
crossref_primary_10_3724_zdxbyxb_2023_0480
crossref_primary_10_3389_fcell_2021_717610
crossref_primary_10_1002_adtp_202100066
crossref_primary_10_3389_fcimb_2022_954581
crossref_primary_10_1021_acs_chemrev_1c00716
crossref_primary_10_1073_pnas_2105465118
crossref_primary_10_1038_s41586_020_2749_z
crossref_primary_10_1093_nar_gkad1058
crossref_primary_10_1002_1878_0261_13603
crossref_primary_10_1111_febs_15640
crossref_primary_10_1016_j_pharmthera_2024_108653
crossref_primary_10_1080_08820139_2024_2392587
crossref_primary_10_1016_j_jbc_2024_107775
crossref_primary_10_1016_j_ceb_2019_12_004
crossref_primary_10_3390_ph16121675
crossref_primary_10_1016_j_jmb_2021_167257
crossref_primary_10_1002_cbin_11427
crossref_primary_10_1038_s41551_020_00675_9
crossref_primary_10_1016_j_bbagen_2023_130483
crossref_primary_10_1016_j_molcel_2025_01_027
crossref_primary_10_3389_fcvm_2022_965726
crossref_primary_10_3390_biology12101311
crossref_primary_10_1002_jmv_29403
crossref_primary_10_1016_j_semcancer_2025_02_005
crossref_primary_10_3390_cells12141862
crossref_primary_10_2147_OTT_S298958
crossref_primary_10_3389_fimmu_2023_1200245
crossref_primary_10_15252_embj_2022112712
crossref_primary_10_1002_advs_202104126
crossref_primary_10_1038_s41586_022_04559_7
crossref_primary_10_1186_s13046_022_02352_y
crossref_primary_10_3389_fimmu_2020_625833
crossref_primary_10_1016_j_fsi_2024_109528
crossref_primary_10_1016_j_immuni_2023_11_001
crossref_primary_10_3389_fphar_2024_1409683
crossref_primary_10_1038_s41467_022_32401_1
crossref_primary_10_3389_fimmu_2023_1273248
crossref_primary_10_3389_fphar_2024_1374179
crossref_primary_10_1016_j_molcel_2023_12_005
crossref_primary_10_1080_15548627_2021_1959086
crossref_primary_10_1073_pnas_2109022118
crossref_primary_10_1038_s41421_022_00481_4
crossref_primary_10_1038_s41392_025_02174_2
crossref_primary_10_1038_s41418_020_0588_y
crossref_primary_10_3389_fimmu_2024_1403538
crossref_primary_10_1007_s13238_021_00839_6
crossref_primary_10_3389_fmicb_2023_1232314
crossref_primary_10_1111_liv_70063
crossref_primary_10_1021_acs_biochem_1c00692
crossref_primary_10_1002_jmv_70062
crossref_primary_10_1002_adhm_202200905
crossref_primary_10_18632_oncotarget_27673
crossref_primary_10_1016_j_tcb_2020_01_010
crossref_primary_10_1038_s41392_020_0198_7
crossref_primary_10_1016_j_fsi_2023_109125
crossref_primary_10_1038_s41467_023_41164_2
crossref_primary_10_3389_fimmu_2023_1239142
crossref_primary_10_1016_j_bbcan_2021_188661
crossref_primary_10_1080_25785826_2025_2475626
crossref_primary_10_1016_j_jbc_2023_104866
crossref_primary_10_1186_s12915_024_02047_0
crossref_primary_10_3389_fimmu_2024_1470468
crossref_primary_10_1186_s12967_024_05588_8
crossref_primary_10_1002_ddr_70013
crossref_primary_10_1038_s41586_022_05354_0
crossref_primary_10_15252_embr_202153932
crossref_primary_10_1042_BSR20202603
crossref_primary_10_1021_acs_jmedchem_9b01062
crossref_primary_10_2147_JIR_S465978
crossref_primary_10_1038_s41589_023_01434_y
crossref_primary_10_3389_fimmu_2022_808607
crossref_primary_10_1021_acsbiomaterials_2c01509
crossref_primary_10_1371_journal_pgen_1010045
crossref_primary_10_1016_j_sbi_2023_102767
crossref_primary_10_1186_s12885_024_12667_y
crossref_primary_10_1016_j_ejcb_2023_151338
crossref_primary_10_1080_2162402X_2022_2093054
crossref_primary_10_1016_j_tet_2021_132096
crossref_primary_10_1002_anie_202210988
crossref_primary_10_3390_ph15101241
crossref_primary_10_1002_med_22016
crossref_primary_10_3389_fimmu_2022_996663
crossref_primary_10_1021_acs_chemrev_1c00750
crossref_primary_10_3390_v15010226
crossref_primary_10_1096_fj_202302675R
crossref_primary_10_1016_j_molcel_2022_10_026
crossref_primary_10_1158_2159_8290_CD_19_0761
crossref_primary_10_1016_j_devcel_2023_03_015
crossref_primary_10_1038_s41594_023_00933_9
crossref_primary_10_1111_imcb_12555
crossref_primary_10_3390_fishes8120597
crossref_primary_10_1016_j_it_2019_10_008
crossref_primary_10_1016_j_celrep_2022_111868
crossref_primary_10_3390_ijms241813840
crossref_primary_10_1016_j_jbc_2023_105213
crossref_primary_10_1038_s41420_024_01844_4
crossref_primary_10_1186_s12931_024_02915_x
crossref_primary_10_1016_j_drudis_2019_11_007
crossref_primary_10_1016_j_phrs_2024_107063
crossref_primary_10_1016_j_lfs_2022_121336
crossref_primary_10_1038_s41586_022_05452_z
crossref_primary_10_2174_0113895575271977231115062803
crossref_primary_10_1002_ange_202407641
crossref_primary_10_7554_eLife_88210
crossref_primary_10_1247_csf_21080
crossref_primary_10_1002_advs_202410432
crossref_primary_10_3389_fimmu_2020_611347
crossref_primary_10_1016_j_tcb_2022_11_001
crossref_primary_10_1002_eji_202049116
crossref_primary_10_1016_j_apsb_2020_03_001
crossref_primary_10_3389_fphar_2024_1383000
crossref_primary_10_3389_fimmu_2023_1130423
crossref_primary_10_3389_fmicb_2021_790714
crossref_primary_10_1038_s41594_024_01338_y
crossref_primary_10_1038_s41392_023_01486_5
crossref_primary_10_17264_stmarieng_15_45
crossref_primary_10_7717_peerj_18559
crossref_primary_10_3390_biomedicines13030571
crossref_primary_10_1038_s41598_024_66196_6
crossref_primary_10_3390_ijms24033029
crossref_primary_10_1021_acs_jcim_3c00984
crossref_primary_10_1038_s41467_024_47046_5
crossref_primary_10_1016_j_coi_2020_04_002
crossref_primary_10_1126_scisignal_aaw4673
crossref_primary_10_1016_j_chembiol_2023_07_002
crossref_primary_10_1126_sciadv_aba7589
crossref_primary_10_1111_1756_185X_15256
crossref_primary_10_1016_j_bcp_2022_115026
crossref_primary_10_1016_j_celrep_2023_113040
crossref_primary_10_3389_fimmu_2022_954129
crossref_primary_10_3390_v16040574
crossref_primary_10_1016_j_cej_2023_145192
crossref_primary_10_1038_s41586_022_04999_1
crossref_primary_10_1016_j_matbio_2021_01_004
crossref_primary_10_1038_s41467_020_17228_y
crossref_primary_10_3389_fimmu_2020_01255
crossref_primary_10_1016_j_tibs_2022_07_002
crossref_primary_10_1080_15548627_2025_2471736
crossref_primary_10_1038_s41467_023_41381_9
crossref_primary_10_1016_j_jbc_2022_102779
crossref_primary_10_15252_embr_202255099
crossref_primary_10_7554_eLife_59753
crossref_primary_10_1016_j_bbcan_2024_189107
crossref_primary_10_12677_JOCR_2022_101002
crossref_primary_10_3923_ijp_2024_1381_1389
crossref_primary_10_1111_febs_70023
crossref_primary_10_1080_13543776_2024_2365409
crossref_primary_10_1038_s41586_023_06373_1
crossref_primary_10_3389_fcell_2021_748485
crossref_primary_10_1080_08923973_2021_1890118
crossref_primary_10_1096_fj_202001607R
crossref_primary_10_1016_j_biomaterials_2024_122761
crossref_primary_10_1038_s41392_022_01252_z
crossref_primary_10_1016_j_molcel_2023_03_029
crossref_primary_10_1038_s41598_021_91562_z
crossref_primary_10_1016_j_canlet_2024_217410
crossref_primary_10_3390_molecules28073127
crossref_primary_10_1016_j_cclet_2024_110525
crossref_primary_10_1016_j_critrevonc_2025_104658
crossref_primary_10_1038_s41580_020_0244_x
crossref_primary_10_4251_wjgo_v17_i2_98556
crossref_primary_10_1016_j_bioorg_2019_103556
crossref_primary_10_4049_jimmunol_2001033
crossref_primary_10_1177_15459683231152814
crossref_primary_10_1016_j_smim_2021_101580
crossref_primary_10_1080_13543776_2022_2144220
crossref_primary_10_1016_j_phymed_2025_156403
crossref_primary_10_1016_j_cellin_2021_100001
crossref_primary_10_3389_fcell_2021_828657
crossref_primary_10_1016_j_cpcardiol_2023_102189
crossref_primary_10_1016_j_repbre_2023_05_002
crossref_primary_10_1016_j_bbrc_2024_149973
crossref_primary_10_1038_s41467_023_36132_9
crossref_primary_10_1038_s41556_025_01627_8
crossref_primary_10_1007_s12038_023_00381_z
crossref_primary_10_1080_21655979_2021_1911557
crossref_primary_10_1016_j_jbc_2023_105428
crossref_primary_10_1038_s41577_024_01112_7
crossref_primary_10_1111_tra_70000
crossref_primary_10_4110_in_2024_24_e37
crossref_primary_10_1038_s44318_024_00244_9
crossref_primary_10_1038_s41467_020_17156_x
crossref_primary_10_1016_j_arr_2021_101396
crossref_primary_10_3389_fimmu_2023_1254915
crossref_primary_10_1038_s12276_023_00965_7
crossref_primary_10_1002_mco2_511
crossref_primary_10_1038_s41586_020_2719_5
crossref_primary_10_3389_fcell_2022_1037999
crossref_primary_10_1038_s41565_024_01624_2
crossref_primary_10_1002_advs_202300576
crossref_primary_10_1038_s41467_023_42210_9
Cites_doi 10.1038/nature10429
10.1111/j.1600-065X.2011.01052.x
10.1107/S0907444909038360
10.1038/nsmb.2331
10.1016/j.immuni.2016.04.002
10.1038/ni.2491
10.1038/ni921
10.1038/s41586-019-0998-5
10.1016/j.celrep.2013.05.009
10.1107/S0907444904019158
10.1016/j.molcel.2013.05.022
10.1038/nprot.2017.037
10.1126/scisignal.2002521
10.1126/science.1232458
10.1146/annurev-immunol-032713-120156
10.1016/j.cell.2013.04.046
10.1016/j.str.2013.04.025
10.1128/MCB.18.5.2986
10.1126/science.1229963
10.1126/science.1081315
10.1016/j.coi.2010.12.015
10.1016/j.immuni.2013.05.004
10.1038/nature07317
10.1038/nature12306
10.1126/science.aaa2630
10.1073/pnas.1603269113
10.1107/S0907444909052925
10.1038/nature08476
10.1038/ni.3558
10.1126/science.1247005
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2019
COPYRIGHT 2019 Nature Publishing Group
Copyright Nature Publishing Group May 30, 2019
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019
– notice: COPYRIGHT 2019 Nature Publishing Group
– notice: Copyright Nature Publishing Group May 30, 2019
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
OIOZB
OTOTI
5PM
DOI 10.1038/s41586-019-1228-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE
MEDLINE - Academic
Agricultural Science Database






Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 722
ExternalDocumentID PMC6596994
1577334
A587170023
31118511
10_1038_s41586_019_1228_x
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
General Information
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI125512
– fundername: NIH HHS
  grantid: S10 OD018142
– fundername: NCRR NIH HHS
  grantid: S10 RR025080
– fundername: Howard Hughes Medical Institute
– fundername: NIAID NIH HHS
  grantid: R01 AI145287
– fundername: NIDCR NIH HHS
  grantid: R01 DE016680
– fundername: NIDCR NIH HHS
  grantid: R01 DE026101
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EJD
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADXHL
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
ABAWZ
ABDBF
ABDPE
ABEFU
ABNNU
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AGQPQ
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
CGR
CUY
CVF
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
FA8
FAC
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NEJ
NFIDA
NPM
NXXTH
ODYON
OHT
P-O
PEA
PJZUB
PM3
PPXIY
PQGLB
PV9
QS-
R4F
RHI
SKT
TH9
TUD
TUS
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZGI
ZHY
ZKB
ZY4
~8M
~G0
AEIIB
PMFND
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
RC3
SOI
7X8
AGEZK
B-7
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c802t-1df3aac0067e55383219b0c96ee9d42bbac06d660992cc534c2e9f6e16ccf5243
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 18:08:57 EDT 2025
Mon Nov 25 02:37:50 EST 2024
Fri Jul 11 04:03:45 EDT 2025
Sat Aug 23 14:49:17 EDT 2025
Tue Jun 17 20:51:51 EDT 2025
Thu Jun 12 23:55:31 EDT 2025
Tue Jun 10 15:35:47 EDT 2025
Tue Jun 10 20:14:04 EDT 2025
Fri Jun 27 04:59:10 EDT 2025
Fri Jun 27 03:53:24 EDT 2025
Mon Jul 21 05:46:49 EDT 2025
Tue Jul 01 01:21:05 EDT 2025
Thu Apr 24 22:50:53 EDT 2025
Fri Feb 21 02:37:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7758
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c802t-1df3aac0067e55383219b0c96ee9d42bbac06d660992cc534c2e9f6e16ccf5243
Notes SourceType-Scholarly Journals-1
ObjectType-General Information-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
AC02-05CH11231
USDOE Office of Science (SC), Basic Energy Sciences (BES)
These authors made equal contributions to the work
P.L. conceived the study. B.Z. and F.D. expressed the proteins, conducted the binding studies and solved the structures. B.S. collected the data at ALS. B.Z., C.S., M.L., X. G., and Y.L. contributed to the cell-based studies. S.L.B. and R.O.W. generated the TBK1 KO cells. P.W. and J.J. supervised some of the cell-based studies. P.X. conducted the cryo-EM studies. F.Z., and X.F. helped with EM data collection. Y.L., X.Z. and A.L. conducted MS/MS analysis of phosphorylated STING. B.Z. and P.L. wrote the paper. P.W., R.O.W., and S.L.B helped with revising the manuscript.
Author contributions
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6596994
PMID 31118511
PQID 2841415721
PQPubID 40569
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6596994
osti_scitechconnect_1577334
proquest_miscellaneous_2232109656
proquest_journals_2841415721
gale_infotracmisc_A587170023
gale_infotracgeneralonefile_A587170023
gale_infotraccpiq_587170023
gale_infotracacademiconefile_A587170023
gale_incontextgauss_ISR_A587170023
gale_incontextgauss_ATWCN_A587170023
pubmed_primary_31118511
crossref_citationtrail_10_1038_s41586_019_1228_x
crossref_primary_10_1038_s41586_019_1228_x
springer_journals_10_1038_s41586_019_1228_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 5
  year: 2019
  text: 20190501
  day: 1
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Emsley, Cowtan (CR29) 2004; 60
Diner (CR11) 2013; 3
Sun, Wu, Du, Chen, Chen (CR7) 2013; 339
Zhao (CR20) 2016; 113
Burdette (CR22) 2011; 478
Kato, Takahasi, Fujita (CR4) 2011; 243
Chen, Sun, Chen (CR1) 2016; 17
Roers, Hiller, Hornung (CR2) 2016; 44
Tanaka, Chen (CR16) 2012; 5
Burdette, Vance (CR6) 2013; 14
Powell, Battye, Kontogiannis, Johnson, Leslie (CR26) 2017; 12
Shalem (CR30) 2014; 343
Sharma (CR17) 2003; 300
Shu (CR25) 2013; 21
Ishikawa, Barber (CR14) 2008; 455
Shang, Zhang, Chen, Bai, Zhang (CR23) 2019; 567
Adams (CR27) 2010; 66
Ablasser (CR10) 2013; 498
Gao (CR12) 2013; 153
Sheldrick (CR28) 2010; 66
Zhang (CR9) 2013; 51
Liu (CR19) 2015; 347
Barber (CR3) 2011; 23
Wu (CR13) 2013; 339
Paludan, Bowie (CR5) 2013; 38
Wu, Chen (CR8) 2014; 32
Shu, Yi, Watts, Kao, Li (CR24) 2012; 19
Ishikawa, Ma, Barber (CR15) 2009; 461
Fitzgerald (CR18) 2003; 4
Lin, Heylbroeck, Pitha, Hiscott (CR21) 1998; 18
J Wu (1228_CR13) 2013; 339
P Emsley (1228_CR29) 2004; 60
O Shalem (1228_CR30) 2014; 343
H Ishikawa (1228_CR14) 2008; 455
Y Tanaka (1228_CR16) 2012; 5
R Lin (1228_CR21) 1998; 18
G Shang (1228_CR23) 2019; 567
DL Burdette (1228_CR6) 2013; 14
J Wu (1228_CR8) 2014; 32
KA Fitzgerald (1228_CR18) 2003; 4
C Shu (1228_CR24) 2012; 19
S Liu (1228_CR19) 2015; 347
H Ishikawa (1228_CR15) 2009; 461
C Shu (1228_CR25) 2013; 21
GN Barber (1228_CR3) 2011; 23
L Sun (1228_CR7) 2013; 339
PD Adams (1228_CR27) 2010; 66
A Roers (1228_CR2) 2016; 44
Q Chen (1228_CR1) 2016; 17
B Zhao (1228_CR20) 2016; 113
S Sharma (1228_CR17) 2003; 300
SR Paludan (1228_CR5) 2013; 38
DL Burdette (1228_CR22) 2011; 478
HR Powell (1228_CR26) 2017; 12
GM Sheldrick (1228_CR28) 2010; 66
EJ Diner (1228_CR11) 2013; 3
H Kato (1228_CR4) 2011; 243
P Gao (1228_CR12) 2013; 153
A Ablasser (1228_CR10) 2013; 498
X Zhang (1228_CR9) 2013; 51
References_xml – volume: 478
  start-page: 515
  year: 2011
  end-page: 518
  ident: CR22
  article-title: STING is a direct innate immune sensor of cyclic di-GMP
  publication-title: Nature
  doi: 10.1038/nature10429
– volume: 243
  start-page: 91
  year: 2011
  end-page: 98
  ident: CR4
  article-title: RIG-I-like receptors: cytoplasmic sensors for non-self RNA
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2011.01052.x
– volume: 66
  start-page: 479
  year: 2010
  end-page: 485
  ident: CR28
  article-title: Experimental phasing with SHELXC/D/E: combining chain tracing with density modification
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444909038360
– volume: 19
  start-page: 722
  year: 2012
  end-page: 724
  ident: CR24
  article-title: Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2331
– volume: 44
  start-page: 739
  year: 2016
  end-page: 754
  ident: CR2
  article-title: Recognition of endogenous nucleic acids by the innate immune system
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.04.002
– volume: 14
  start-page: 19
  year: 2013
  end-page: 26
  ident: CR6
  article-title: STING and the innate immune response to nucleic acids in the cytosol
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2491
– volume: 4
  start-page: 491
  year: 2003
  end-page: 496
  ident: CR18
  article-title: IKKε and TBK1 are essential components of the IRF3 signaling pathway
  publication-title: Nat. Immunol.
  doi: 10.1038/ni921
– volume: 567
  start-page: 389
  year: 2019
  end-page: 393
  ident: CR23
  article-title: Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP
  publication-title: Nature
  doi: 10.1038/s41586-019-0998-5
– volume: 3
  start-page: 1355
  year: 2013
  end-page: 1361
  ident: CR11
  article-title: The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2013.05.009
– volume: 60
  start-page: 2126
  year: 2004
  end-page: 2132
  ident: CR29
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444904019158
– volume: 51
  start-page: 226
  year: 2013
  end-page: 235
  ident: CR9
  article-title: Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.05.022
– volume: 12
  start-page: 1310
  year: 2017
  end-page: 1325
  ident: CR26
  article-title: Integrating macromolecular X-ray diffraction data with the graphical user interface iMosflm
  publication-title: Nat. Protocols
  doi: 10.1038/nprot.2017.037
– volume: 5
  start-page: ra20
  year: 2012
  ident: CR16
  article-title: STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2002521
– volume: 339
  start-page: 786
  year: 2013
  end-page: 791
  ident: CR7
  article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
  publication-title: Science
  doi: 10.1126/science.1232458
– volume: 32
  start-page: 461
  year: 2014
  end-page: 488
  ident: CR8
  article-title: Innate immune sensing and signaling of cytosolic nucleic acids
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032713-120156
– volume: 153
  start-page: 1094
  year: 2013
  end-page: 1107
  ident: CR12
  article-title: Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.046
– volume: 21
  start-page: 1137
  year: 2013
  end-page: 1148
  ident: CR25
  article-title: Structural insights into the functions of TBK1 in innate antimicrobial immunity
  publication-title: Structure
  doi: 10.1016/j.str.2013.04.025
– volume: 18
  start-page: 2986
  year: 1998
  end-page: 2996
  ident: CR21
  article-title: Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.18.5.2986
– volume: 339
  start-page: 826
  year: 2013
  end-page: 830
  ident: CR13
  article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA
  publication-title: Science
  doi: 10.1126/science.1229963
– volume: 300
  start-page: 1148
  year: 2003
  end-page: 1151
  ident: CR17
  article-title: Triggering the interferon antiviral response through an IKK-related pathway
  publication-title: Science
  doi: 10.1126/science.1081315
– volume: 23
  start-page: 10
  year: 2011
  end-page: 20
  ident: CR3
  article-title: Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2010.12.015
– volume: 38
  start-page: 870
  year: 2013
  end-page: 880
  ident: CR5
  article-title: Immune sensing of DNA
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.05.004
– volume: 455
  start-page: 674
  year: 2008
  end-page: 678
  ident: CR14
  article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling
  publication-title: Nature
  doi: 10.1038/nature07317
– volume: 498
  start-page: 380
  year: 2013
  end-page: 384
  ident: CR10
  article-title: cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING
  publication-title: Nature
  doi: 10.1038/nature12306
– volume: 347
  start-page: aaa2630
  year: 2015
  ident: CR19
  article-title: Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation
  publication-title: Science
  doi: 10.1126/science.aaa2630
– volume: 113
  start-page: E3403
  year: 2016
  end-page: E3412
  ident: CR20
  article-title: Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1603269113
– volume: 66
  start-page: 213
  year: 2010
  end-page: 221
  ident: CR27
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444909052925
– volume: 461
  start-page: 788
  year: 2009
  end-page: 792
  ident: CR15
  article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity
  publication-title: Nature
  doi: 10.1038/nature08476
– volume: 17
  start-page: 1142
  year: 2016
  end-page: 1149
  ident: CR1
  article-title: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3558
– volume: 343
  start-page: 84
  year: 2014
  end-page: 87
  ident: CR30
  article-title: Genome-scale CRISPR-Cas9 knockout screening in human cells
  publication-title: Science
  doi: 10.1126/science.1247005
– volume: 19
  start-page: 722
  year: 2012
  ident: 1228_CR24
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2331
– volume: 60
  start-page: 2126
  year: 2004
  ident: 1228_CR29
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444904019158
– volume: 12
  start-page: 1310
  year: 2017
  ident: 1228_CR26
  publication-title: Nat. Protocols
  doi: 10.1038/nprot.2017.037
– volume: 567
  start-page: 389
  year: 2019
  ident: 1228_CR23
  publication-title: Nature
  doi: 10.1038/s41586-019-0998-5
– volume: 243
  start-page: 91
  year: 2011
  ident: 1228_CR4
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2011.01052.x
– volume: 32
  start-page: 461
  year: 2014
  ident: 1228_CR8
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032713-120156
– volume: 339
  start-page: 786
  year: 2013
  ident: 1228_CR7
  publication-title: Science
  doi: 10.1126/science.1232458
– volume: 5
  start-page: ra20
  year: 2012
  ident: 1228_CR16
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2002521
– volume: 21
  start-page: 1137
  year: 2013
  ident: 1228_CR25
  publication-title: Structure
  doi: 10.1016/j.str.2013.04.025
– volume: 38
  start-page: 870
  year: 2013
  ident: 1228_CR5
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.05.004
– volume: 498
  start-page: 380
  year: 2013
  ident: 1228_CR10
  publication-title: Nature
  doi: 10.1038/nature12306
– volume: 461
  start-page: 788
  year: 2009
  ident: 1228_CR15
  publication-title: Nature
  doi: 10.1038/nature08476
– volume: 4
  start-page: 491
  year: 2003
  ident: 1228_CR18
  publication-title: Nat. Immunol.
  doi: 10.1038/ni921
– volume: 343
  start-page: 84
  year: 2014
  ident: 1228_CR30
  publication-title: Science
  doi: 10.1126/science.1247005
– volume: 66
  start-page: 213
  year: 2010
  ident: 1228_CR27
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444909052925
– volume: 23
  start-page: 10
  year: 2011
  ident: 1228_CR3
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2010.12.015
– volume: 3
  start-page: 1355
  year: 2013
  ident: 1228_CR11
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2013.05.009
– volume: 18
  start-page: 2986
  year: 1998
  ident: 1228_CR21
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.18.5.2986
– volume: 455
  start-page: 674
  year: 2008
  ident: 1228_CR14
  publication-title: Nature
  doi: 10.1038/nature07317
– volume: 17
  start-page: 1142
  year: 2016
  ident: 1228_CR1
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3558
– volume: 478
  start-page: 515
  year: 2011
  ident: 1228_CR22
  publication-title: Nature
  doi: 10.1038/nature10429
– volume: 347
  start-page: aaa2630
  year: 2015
  ident: 1228_CR19
  publication-title: Science
  doi: 10.1126/science.aaa2630
– volume: 113
  start-page: E3403
  year: 2016
  ident: 1228_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1603269113
– volume: 66
  start-page: 479
  year: 2010
  ident: 1228_CR28
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444909038360
– volume: 339
  start-page: 826
  year: 2013
  ident: 1228_CR13
  publication-title: Science
  doi: 10.1126/science.1229963
– volume: 44
  start-page: 739
  year: 2016
  ident: 1228_CR2
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.04.002
– volume: 14
  start-page: 19
  year: 2013
  ident: 1228_CR6
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2491
– volume: 153
  start-page: 1094
  year: 2013
  ident: 1228_CR12
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.046
– volume: 300
  start-page: 1148
  year: 2003
  ident: 1228_CR17
  publication-title: Science
  doi: 10.1126/science.1081315
– volume: 51
  start-page: 226
  year: 2013
  ident: 1228_CR9
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.05.022
SSID ssj0005174
Score 2.66904
Snippet Nucleic acids from bacteria or viruses induce potent immune responses in infected cells 1 – 4 . The detection of pathogen-derived nucleic acids is a central...
Nucleic acids from bacteria or viruses induce potent immune responses in infected cells . The detection of pathogen-derived nucleic acids is a central strategy...
Nucleic acids from bacteria or viruses induce potent immune responses in infected cells.sup.1-4. The detection of pathogen-derived nucleic acids is a central...
Nucleic acids from bacteria or viruses induce potent immune responses in infected cells1-4. The detection of pathogen-derived nucleic acids is a central...
Nucleic acids from bacteria or viruses induce potent immune responses in infected cells. The detection of pathogen-derived nucleic acids is a central strategy...
SourceID pubmedcentral
osti
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 718
SubjectTerms 14/19
631/250/262
631/535/1258
631/535/1266
82/1
82/103
82/16
82/29
82/58
82/80
82/83
Amino Acid Motifs
Analysis
Antagonists
Autoimmune diseases
BASIC BIOLOGICAL SCIENCES
Chemical synthesis
Conserved Sequence
Crystallography, X-Ray
Cyclic GMP
EF hand proteins
Enzyme Activation
HEK293 Cells
Humanities and Social Sciences
Humans
Hydrogen bonds
Immune response
Influence
Interferon
Interferon regulatory factor 3
Interferon-beta - metabolism
Letter
Membrane Proteins - chemistry
Membrane Proteins - genetics
Membrane Proteins - metabolism
Models, Molecular
multidisciplinary
Mutation
Nucleic acids
Nucleotides, Cyclic - metabolism
Oligomerization
Peptides
Phosphorylation
Protein Binding
Protein kinases
Protein Serine-Threonine Kinases - metabolism
Science
Science (multidisciplinary)
Signal Transduction
β-Interferon
Title A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1
URI https://link.springer.com/article/10.1038/s41586-019-1228-x
https://www.ncbi.nlm.nih.gov/pubmed/31118511
https://www.proquest.com/docview/2841415721
https://www.proquest.com/docview/2232109656
https://www.osti.gov/servlets/purl/1577334
https://pubmed.ncbi.nlm.nih.gov/PMC6596994
Volume 569
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegExIviI2vsDEZNPGpqI3z_YS6sm6DqaraTOublVycUQklXdOi_fncJW5LRtlLXu7sOLkPn-2f7xg7ouSSFlhg2mmoTMf3OmasRGg6SWAnAFaSJhXaYuCdXTrfJ-5Eb7iVGla58omVo04LoD3yNrpR7NXFBcvX2Y1JVaPodFWX0HjIdih1GUG6_Im_gXjcycK8OtW0g3aJfQW0lqZiAEi-bcxL2ju3CjSzbaHnvwjKO8eo1ezUf8qe6LCSd2s92GUPVL7HHlXwTij32K424ZJ_1HmmPz1jUZcDYannv1XKhxfDi1HUHn_jhM7LeJHxcXQ-OOXV1RKMRzlGihzd43w5rYDpPM5TTrci6j1dahAd_7Ces8v-SdQ7M3WRBROCjliYVprZcQw0aykXvZ-NLizpQOgpFaaOSBKkeannYSQpAFzbAaHCzFOWB5C5wrFfsFZe5OoV48LNILE9JSAVTkJFPXzRUQqSMMagRWQG66x-sQSdgZwKYfyS1Um4HchaKhKlIkkq8tZgn9dNZnX6jfuYj0huktJa5ISbuY6XZSm70VVvILsuLg19ClEM9m4b2_l41GD6oJmyAscIsb6tgF9KCbManPsNTphNb-Rf1PcN6nUt5G3dHDQY0cqh-RZSRolxESX3BUJBwUKiQfi27WDjlY5K7YNKubEYg71dk6lfwtXlqlgij6A7XCEG9QZ7Wav0-j_bOA1SPG4wv6HsawbKTN6k5NOfVYZyzw29MMRhfVmZxWZY_xXf6_s_Yp89FmSuFdj0gLUW86V6gwHhIjmsrB6fQc-iZ__0kO0cnwyGoz-4ZFrO
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwELdGEYIviI1X2ACDxltRU-fVfECobIyWlmpaM9FvJrk4oxJKuqaF8U_xN3KXR0tG2bd9vrPj-B4-2z_fMbZLySVb0ALdjDylW65j6IESnm6FbTMEaIVRmKMthk732Po0tscb7Hf1FoZglZVPzB11lAKdkTfRjWKvNm5Y3k1PdaoaRberVQmNQi366tdP3LJlb3v7KN9nQhx88Pe6ellVQIe2IeZ6K4rNIABy08pGczfRZkMDPEcpL7JEGCLNiRwHQycBYJsWCOXFjmo5ALEtLBP7vcKu4sJrkEW5Y3cFKTmX9bm6RTXbzQzH3qa9OxUfQPJZbR0sV4NGima9LtT9F7F57to2Xw0PbrGbZRjLO4XebbINlWyxazmcFLIttlm6jIy_LPNav7rN_A4Hwm7PfqiIHw4OB0d-c7TPCQ0Y8zTmI783_MjzpywY_3KMTDm649likgPheZBEnF5hFGfI1MB_32_dYceXMv13WSNJE3WfcWHHEJqOEhAJK6QiIq4wlILQCzBIErHGjGqKJZQZz6nwxneZ37ybbVlIRaJUJElFnmns9bLJtEj3cRHzLslNUhqNhHA6J8Eiy2TH_7I3lB0bt6IuhUQae7qOrTc6qjG9KJniFMcIQfk6Av-UEnTVOLdrnDCdnMq_qM9r1JNCyOu62akxoleB-ldIGSXGYZRMGAh1BXOJBuiapoWNKx2Vpc_L5MpCNfZkSaZ-CceXqHSBPILejHm4idDYvUKll_Ns4rJL8b_G3JqyLxkoE3qdkky-5RnRHdtzPA-H9aYyi9Ww_iu-Bxf_xGN2vet_HshBb9jfZjcEmW4OdN1hjflsoR5iMDoPH-UegLOvl-1y_gCL75Ry
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGEYgXxMZX2QCDBgxQ1MbOR_OAUFkpK62qau1E30xycUYllHZNC-Nf46_jLh8tGWVve76zY_s-fI5_vmNsn5JLmmCCIUNPG5br1A1fC8-wgoYMAMwgDFK0Rd85OrE-j-3xFvtdvIUhWGXhE1NHHU6B_pHX0I1irzYeWGpRDosYtNrvZ2cGVZCim9ainEamIl396yce35J3nRbK-oUQ7Y-jwyMjrzBgQKMuFoYZRtL3gVy2ttH0JdpvUAfP0doLLREESHNCx8EwSgDY0gKhvcjRpgMQ2cKS2O81dt2Vtkk25o7dNbzkQgbo4kZVNmoJzqNB53gqRIDk89KemO8MlSma-Kaw91_05oUr3HRnbN9ht_OQljczHdxmWzreYTdSaCkkO2w7dx8JP8hzXL--y0ZNDoTjnv_QIR_0Br3jUW3Y4oQMjPg04sNRp_-Jp89aMBbmGKVydM3z5SQFxXM_Djm9yMj-J1OD0YeueY-dXMny32eVeBrrh4wLO4JAOlpAKKyACoq4oq41BJ6PAZOIqqxeLLGCPPs5FeH4rtJbeNlQmVQUSkWRVNR5lb1ZNZllqT8uY94nuSlKqRGTcp76yyRRzdGXw75q2ngsdSk8qrLnm9g6w-MS06ucKZriGMHPX0rgTClZV4lzt8QJs8mZ-ov6skQ9zYS8qZu9EiN6GCh_hZRRYUxGiYWBEFiwUGiMrpQWNi50VOX-L1Fra62yZysy9UuYvlhPl8gj6P2YhweKKnuQqfRqnSVuwXQWqDK3pOwrBsqKXqbEk29pdnTH9hzPw2G9LcxiPaz_iu_R5ZN4ym6is1G9Tr-7y24JstwU87rHKov5Uj_GuHQRPEkdAGdfr9rj_AH99Jio
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+conserved+PLPLRT%2FSD+motif+of+STING+mediates+the+recruitment+and+activation+of+TBK1&rft.jtitle=Nature+%28London%29&rft.au=Zhao%2C+Baoyu&rft.au=Du%2C+Fenglei&rft.au=Xu%2C+Pengbiao&rft.au=Shu%2C+Chang&rft.date=2019-05-01&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=569&rft.issue=7758&rft.spage=718&rft.epage=3&rft_id=info:doi/10.1038%2Fs41586-019-1228-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon