Biological and Structural Characterization of a Host-Adapting Amino Acid in Influenza Virus

Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic am...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 6; no. 8; p. e1001034
Main Authors Yamada, Shinya, Hatta, Masato, Staker, Bart L., Watanabe, Shinji, Imai, Masaki, Shinya, Kyoko, Sakai-Tagawa, Yuko, Ito, Mutsumi, Ozawa, Makoto, Watanabe, Tokiko, Sakabe, Saori, Li, Chengjun, Kim, Jin Hyun, Myler, Peter J., Phan, Isabelle, Raymond, Amy, Smith, Eric, Stacy, Robin, Nidom, Chairul A., Lank, Simon M., Wiseman, Roger W., Bimber, Benjamin N., O'Connor, David H., Neumann, Gabriele, Stewart, Lance J., Kawaoka, Yoshihiro
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.08.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals.
AbstractList Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals.
Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals. Influenza viruses that originate from avian species likely have to acquire adapting amino acid changes to replicate efficiently in mammals. Two amino acid changes in the polymerase PB2 protein--a glutamic acid to lysine change at position 627 or an aspartic acid to asparagine change at position 701--are known to allow influenza viruses of avian origin to replicate efficiently in mammals. Interestingly, the pandemic H1N1 viruses (which possess an avian-like PB2 gene) do not encode the 'human-type' amino acids PB2-627K and PB2-701N. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of PB2-627K and allows efficient replication of highly pathogenic H5N1 and pandemic H1N1 viruses in mammalian species. We also present the X-ray crystal structure of the C-terminal portion of a pandemic H1N1 PB2 protein. The basic amino acid at position 591 fills a distinctive cleft found in the PB2 proteins of H5N1 viruses. We also speculate on the biological significance of the altered surface of the H1N1 PB2 protein.
Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals. Influenza viruses that originate from avian species likely have to acquire adapting amino acid changes to replicate efficiently in mammals. Two amino acid changes in the polymerase PB2 protein—a glutamic acid to lysine change at position 627 or an aspartic acid to asparagine change at position 701—are known to allow influenza viruses of avian origin to replicate efficiently in mammals. Interestingly, the pandemic H1N1 viruses (which possess an avian-like PB2 gene) do not encode the ‘human-type’ amino acids PB2-627K and PB2-701N. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of PB2-627K and allows efficient replication of highly pathogenic H5N1 and pandemic H1N1 viruses in mammalian species. We also present the X-ray crystal structure of the C-terminal portion of a pandemic H1N1 PB2 protein. The basic amino acid at position 591 fills a distinctive cleft found in the PB2 proteins of H5N1 viruses. We also speculate on the biological significance of the altered surface of the H1N1 PB2 protein.
Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals.Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals.
  Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals.
Audience Academic
Author Lank, Simon M.
Myler, Peter J.
Staker, Bart L.
Watanabe, Tokiko
Phan, Isabelle
Wiseman, Roger W.
Raymond, Amy
Kim, Jin Hyun
Bimber, Benjamin N.
Imai, Masaki
Shinya, Kyoko
Stewart, Lance J.
Nidom, Chairul A.
Watanabe, Shinji
Kawaoka, Yoshihiro
Hatta, Masato
O'Connor, David H.
Sakai-Tagawa, Yuko
Sakabe, Saori
Neumann, Gabriele
Stacy, Robin
Smith, Eric
Ito, Mutsumi
Yamada, Shinya
Ozawa, Makoto
Li, Chengjun
AuthorAffiliation 9 Departments of Global Health and Medical Education & Biomedical Informatics, University of Washington, Seattle, Washington, United States of America
10 Faculty of Veterinary Medicine, Tropical Disease Centre, Airlangga University, Surabaya, Indonesia
3 Emerald BioStructures, Inc., Bainbridge Island, Washington, United States of America
6 Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
1 Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
7 ERATO Infection-Induced Host Responses Project, Saitama, Japan
2 Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
8 Seattle Biomedical Research Institute, Seattle, Washington, United States of America
11 Collaborating Research Center-Emerging and Reem
AuthorAffiliation_xml – name: 3 Emerald BioStructures, Inc., Bainbridge Island, Washington, United States of America
– name: 5 Department of Microbiology and Infectious Diseases, Kobe University, Hyogo, Japan
– name: 8 Seattle Biomedical Research Institute, Seattle, Washington, United States of America
– name: 13 Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
– name: 1 Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
– name: 12 Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
– name: University of Maryland, United States of America
– name: 2 Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
– name: 7 ERATO Infection-Induced Host Responses Project, Saitama, Japan
– name: 6 Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
– name: 4 Seattle Structural Genomics Center for Infectious Disease, Washington, United States of America
– name: 14 Creative Research Initiative, Sousei, Hokkaido University, Sapporo, Japan
– name: 10 Faculty of Veterinary Medicine, Tropical Disease Centre, Airlangga University, Surabaya, Indonesia
– name: 11 Collaborating Research Center-Emerging and Reemerging Infectious Diseases, Tropical Disease Centre, Airlangga University, Surabaya, Indonesia
– name: 9 Departments of Global Health and Medical Education & Biomedical Informatics, University of Washington, Seattle, Washington, United States of America
Author_xml – sequence: 1
  givenname: Shinya
  surname: Yamada
  fullname: Yamada, Shinya
– sequence: 2
  givenname: Masato
  surname: Hatta
  fullname: Hatta, Masato
– sequence: 3
  givenname: Bart L.
  surname: Staker
  fullname: Staker, Bart L.
– sequence: 4
  givenname: Shinji
  surname: Watanabe
  fullname: Watanabe, Shinji
– sequence: 5
  givenname: Masaki
  surname: Imai
  fullname: Imai, Masaki
– sequence: 6
  givenname: Kyoko
  surname: Shinya
  fullname: Shinya, Kyoko
– sequence: 7
  givenname: Yuko
  surname: Sakai-Tagawa
  fullname: Sakai-Tagawa, Yuko
– sequence: 8
  givenname: Mutsumi
  surname: Ito
  fullname: Ito, Mutsumi
– sequence: 9
  givenname: Makoto
  surname: Ozawa
  fullname: Ozawa, Makoto
– sequence: 10
  givenname: Tokiko
  surname: Watanabe
  fullname: Watanabe, Tokiko
– sequence: 11
  givenname: Saori
  surname: Sakabe
  fullname: Sakabe, Saori
– sequence: 12
  givenname: Chengjun
  surname: Li
  fullname: Li, Chengjun
– sequence: 13
  givenname: Jin Hyun
  surname: Kim
  fullname: Kim, Jin Hyun
– sequence: 14
  givenname: Peter J.
  surname: Myler
  fullname: Myler, Peter J.
– sequence: 15
  givenname: Isabelle
  surname: Phan
  fullname: Phan, Isabelle
– sequence: 16
  givenname: Amy
  surname: Raymond
  fullname: Raymond, Amy
– sequence: 17
  givenname: Eric
  surname: Smith
  fullname: Smith, Eric
– sequence: 18
  givenname: Robin
  surname: Stacy
  fullname: Stacy, Robin
– sequence: 19
  givenname: Chairul A.
  surname: Nidom
  fullname: Nidom, Chairul A.
– sequence: 20
  givenname: Simon M.
  surname: Lank
  fullname: Lank, Simon M.
– sequence: 21
  givenname: Roger W.
  surname: Wiseman
  fullname: Wiseman, Roger W.
– sequence: 22
  givenname: Benjamin N.
  surname: Bimber
  fullname: Bimber, Benjamin N.
– sequence: 23
  givenname: David H.
  surname: O'Connor
  fullname: O'Connor, David H.
– sequence: 24
  givenname: Gabriele
  surname: Neumann
  fullname: Neumann, Gabriele
– sequence: 25
  givenname: Lance J.
  surname: Stewart
  fullname: Stewart, Lance J.
– sequence: 26
  givenname: Yoshihiro
  surname: Kawaoka
  fullname: Kawaoka, Yoshihiro
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20700447$$D View this record in MEDLINE/PubMed
BookMark eNqVk1-L1DAUxYusuH_0G4gWfBAfZkyatEl8EMZB3YFFwVVffAhpetPN0EnGJBXdT29mZ0Z2RBQptE36Oyfpyb2nxZHzDoriIUZTTBh-vvRjcGqYrtcqTTFCGBF6pzjBdU0mjDB6dOv9uDiNcYkQxQQ394rjCrE8oOyk-PLK-sH3VquhVK4rL1MYdRpDHs6vVFA6QbDXKlnvSm9KVZ77mCazTq2TdX05W1nny5m2XWlduXBmGMFdq_KzDWO8X9w1aojwYPc8Kz69ef1xfj65eP92MZ9dTDRHKE0EY1zVhhsOrGUMUy0wdDXmDUa65gKBYhg1AioNQrGmqgl0gmDWGWhBtOSseLz1XQ8-yl0uUeIqazmrOcrEYkt0Xi3lOtiVCj-kV1beTPjQSxWS1QNIboDplnLeiHynRhFKgNC2YtiQBmj2erlbbWxX0GlwKad1YHr4xdkr2ftvshK44Uxkg6c7g-C_jhCTXNmoYRiUAz9Gyeo6H3BG_01SLggj9WZTT7Zkr_I_WGd8XlpvaDmrSMMqkYPM1PQPVL46WFmdy8vYPH8geHYgyEyC76lXY4xycfnhP9h3h-yj2xn-Cm9flxl4sQV08DEGMFLbdFOFecd2kBjJTRPsD1tumkDumiCL6W_ivf9fZT8BoqELbg
CitedBy_id crossref_primary_10_1016_j_virol_2017_08_035
crossref_primary_10_1038_srep29888
crossref_primary_10_3390_v14051097
crossref_primary_10_1099_vir_0_062836_0
crossref_primary_10_1074_jbc_M111_262048
crossref_primary_10_1128_mBio_01162_19
crossref_primary_10_1038_ncomms3636
crossref_primary_10_3389_fimmu_2019_01602
crossref_primary_10_1128_JVI_00702_11
crossref_primary_10_1016_j_celrep_2018_08_012
crossref_primary_10_1128_JVI_00772_16
crossref_primary_10_1371_journal_pone_0033383
crossref_primary_10_1637_11110_042815_Reg
crossref_primary_10_1007_s10969_011_9101_7
crossref_primary_10_1016_j_virusres_2020_198061
crossref_primary_10_1038_s41586_020_2927_z
crossref_primary_10_1093_cid_cix707
crossref_primary_10_1128_JVI_06203_11
crossref_primary_10_1038_emi_2012_24
crossref_primary_10_2903_j_efsa_2023_8539
crossref_primary_10_1111_febs_14867
crossref_primary_10_1186_s12864_016_2919_4
crossref_primary_10_1038_s41598_017_09560_z
crossref_primary_10_1128_JVI_01582_20
crossref_primary_10_1128_JVI_01565_12
crossref_primary_10_1007_s00705_016_2962_0
crossref_primary_10_1016_j_coviro_2012_03_003
crossref_primary_10_1128_JVI_00107_14
crossref_primary_10_1128_JVI_00887_12
crossref_primary_10_2217_fvl_2016_0040
crossref_primary_10_1128_JVI_01930_19
crossref_primary_10_1128_JVI_01717_21
crossref_primary_10_1107_S1744309111028776
crossref_primary_10_1128_mBio_00151_11
crossref_primary_10_3201_eid2012_140911
crossref_primary_10_1038_srep28583
crossref_primary_10_3201_eid2807_212586
crossref_primary_10_1073_pnas_1522643113
crossref_primary_10_1016_j_virol_2014_09_008
crossref_primary_10_1038_s41467_024_48470_3
crossref_primary_10_1101_cshperspect_a038588
crossref_primary_10_1128_JVI_00605_11
crossref_primary_10_1016_j_virusres_2017_01_013
crossref_primary_10_1016_j_tim_2014_08_008
crossref_primary_10_1186_1471_2164_12_295
crossref_primary_10_3389_fmicb_2019_01328
crossref_primary_10_1038_s41598_020_68720_w
crossref_primary_10_1371_journal_ppat_1002932
crossref_primary_10_1002_wrna_1871
crossref_primary_10_3201_eid2805_211580
crossref_primary_10_1128_JVI_02740_13
crossref_primary_10_1002_bies_201200138
crossref_primary_10_1021_jacs_5b07765
crossref_primary_10_1038_s41598_017_02598_z
crossref_primary_10_3389_fvets_2023_1157984
crossref_primary_10_3390_v12091046
crossref_primary_10_1128_AAC_04623_14
crossref_primary_10_3390_v12030298
crossref_primary_10_7554_eLife_45079
crossref_primary_10_1007_s12250_012_3262_9
crossref_primary_10_1016_j_meegid_2013_02_020
crossref_primary_10_1637_9749_040111_Reg_1
crossref_primary_10_7554_eLife_18491
crossref_primary_10_1107_S1744309111029204
crossref_primary_10_1038_s41467_025_57338_z
crossref_primary_10_1016_j_coviro_2023_101363
crossref_primary_10_1093_infdis_jir435
crossref_primary_10_1099_vir_0_031492_0
crossref_primary_10_1128_JVI_01557_17
crossref_primary_10_1111_irv_12075
crossref_primary_10_1080_22221751_2024_2432364
crossref_primary_10_1038_s41598_018_31397_3
crossref_primary_10_1128_JVI_01210_20
crossref_primary_10_1099_vir_0_037648_0
crossref_primary_10_1016_j_virusres_2013_07_017
crossref_primary_10_3389_fmicb_2015_00073
crossref_primary_10_1371_journal_pone_0038637
crossref_primary_10_1038_srep19474
crossref_primary_10_1007_s00705_012_1595_1
crossref_primary_10_1038_s41426_018_0064_7
crossref_primary_10_1128_JVI_02597_12
crossref_primary_10_3390_v15091959
crossref_primary_10_1099_vir_0_063495_0
crossref_primary_10_1038_s41426_018_0088_z
crossref_primary_10_1371_journal_pone_0067616
crossref_primary_10_1128_JVI_05699_11
crossref_primary_10_1128_JVI_00508_14
crossref_primary_10_1101_cshperspect_a038398
crossref_primary_10_3201_eid_1706_101886
crossref_primary_10_1099_jgv_0_000542
crossref_primary_10_1007_s00018_021_03957_w
crossref_primary_10_1371_journal_pone_0016302
crossref_primary_10_2903_j_efsa_2023_8328
crossref_primary_10_1056_NEJMc2112416
crossref_primary_10_3390_v16030353
crossref_primary_10_1128_JVI_00057_20
crossref_primary_10_1016_j_vaccine_2012_04_049
crossref_primary_10_1016_j_rvsc_2012_11_018
crossref_primary_10_3390_v11030292
crossref_primary_10_1093_bioinformatics_btaa901
crossref_primary_10_1128_JVI_02215_16
crossref_primary_10_1099_jgv_0_000674
crossref_primary_10_1371_journal_pone_0148432
crossref_primary_10_3390_v12050541
crossref_primary_10_3201_eid2305_161905
crossref_primary_10_1038_srep10510
crossref_primary_10_1016_j_tim_2022_09_015
crossref_primary_10_1371_journal_pone_0162163
crossref_primary_10_1038_nature12515
crossref_primary_10_1128_MMBR_05023_11
crossref_primary_10_1007_s12250_020_00257_8
crossref_primary_10_1038_ncomms8491
crossref_primary_10_1128_JVI_00029_11
crossref_primary_10_3390_v6093438
crossref_primary_10_1042_BST20160002
crossref_primary_10_1007_s00705_011_0947_6
crossref_primary_10_1016_j_vaccine_2014_07_079
crossref_primary_10_1016_j_virusres_2013_02_003
crossref_primary_10_1128_genomeA_00929_14
crossref_primary_10_1111_1462_2920_14481
crossref_primary_10_3390_v12010082
crossref_primary_10_1128_JVI_02761_15
crossref_primary_10_1128_JVI_03158_13
crossref_primary_10_1016_j_virs_2024_02_002
crossref_primary_10_1128_JVI_02004_17
crossref_primary_10_1099_jgv_0_001612
crossref_primary_10_1038_s41579_018_0115_z
crossref_primary_10_1080_22221751_2019_1679611
crossref_primary_10_1093_molbev_mss095
crossref_primary_10_2217_fvl_15_62
crossref_primary_10_1016_S2222_1808_16_61064_2
crossref_primary_10_1038_ncomms6509
crossref_primary_10_1038_s41598_017_11348_0
crossref_primary_10_1128_JVI_00218_17
crossref_primary_10_1038_s41467_020_17407_x
crossref_primary_10_1128_JVI_01081_14
crossref_primary_10_1007_s00705_014_2179_z
crossref_primary_10_1089_vim_2017_0020
crossref_primary_10_1128_JVI_00522_11
crossref_primary_10_1128_JVI_00786_11
crossref_primary_10_1016_j_meegid_2015_08_017
crossref_primary_10_1073_pnas_2013267117
crossref_primary_10_3390_ijms18081650
crossref_primary_10_1038_srep05944
crossref_primary_10_1128_JVI_01694_10
crossref_primary_10_1128_mBio_00166_12
crossref_primary_10_1128_JVI_00076_13
crossref_primary_10_1016_j_cimid_2013_06_003
crossref_primary_10_1128_JVI_00665_18
crossref_primary_10_1038_s41598_020_62036_5
crossref_primary_10_1016_j_virol_2015_09_014
crossref_primary_10_3389_fmicb_2021_735305
crossref_primary_10_1016_j_molmed_2020_09_014
crossref_primary_10_1038_nature10831
crossref_primary_10_1016_j_virol_2017_02_009
crossref_primary_10_1128_JVI_02142_14
crossref_primary_10_1371_journal_pone_0076047
crossref_primary_10_1016_j_bsheal_2020_11_006
crossref_primary_10_1128_JVI_02199_16
crossref_primary_10_1099_jgv_0_000500
crossref_primary_10_1016_j_vaccine_2011_01_023
crossref_primary_10_1111_irv_12412
crossref_primary_10_1007_s11262_019_01700_z
crossref_primary_10_1128_JVI_00958_12
crossref_primary_10_1007_s12250_018_0072_8
crossref_primary_10_1080_02648725_2018_1467146
crossref_primary_10_1038_nrmicro2613
crossref_primary_10_1128_JVI_01188_16
crossref_primary_10_3390_microorganisms8020224
crossref_primary_10_1007_s12250_018_0034_1
crossref_primary_10_1016_j_virol_2012_01_015
crossref_primary_10_3201_eid1706_101886
crossref_primary_10_1016_j_vetmic_2013_10_011
crossref_primary_10_1007_s00705_017_3698_1
crossref_primary_10_1099_vir_0_027557_0
crossref_primary_10_2217_fvl_14_66
crossref_primary_10_1016_j_vetmic_2023_109760
crossref_primary_10_1128_JVI_01975_10
crossref_primary_10_1371_journal_pone_0092970
crossref_primary_10_3389_fmicb_2020_00220
crossref_primary_10_1101_cshperspect_a038695
crossref_primary_10_1099_vir_0_061721_0
crossref_primary_10_2903_j_efsa_2023_8191
crossref_primary_10_1093_molbev_msq317
crossref_primary_10_3389_fmicb_2018_01446
crossref_primary_10_1128_JVI_03532_14
crossref_primary_10_1016_j_celrep_2021_109213
crossref_primary_10_1016_j_vetmic_2019_108509
crossref_primary_10_3389_fmicb_2017_00260
crossref_primary_10_3390_v16071129
crossref_primary_10_1128_JVI_03328_14
crossref_primary_10_1007_s00705_019_04519_z
crossref_primary_10_1016_j_virusres_2013_05_010
crossref_primary_10_1016_j_virusres_2015_03_017
crossref_primary_10_1093_dnares_dsr005
crossref_primary_10_1107_S1744309111026698
crossref_primary_10_1016_j_it_2020_03_005
crossref_primary_10_1107_S1744309111027424
crossref_primary_10_1111_tbed_13736
crossref_primary_10_3390_v5061431
crossref_primary_10_1016_j_biocel_2014_05_022
crossref_primary_10_1016_j_celrep_2018_03_081
crossref_primary_10_1038_s41598_017_11625_y
crossref_primary_10_1007_s11262_019_01678_8
crossref_primary_10_1128_spectrum_00643_22
crossref_primary_10_3390_v12010052
crossref_primary_10_1038_s42003_022_04082_5
crossref_primary_10_1016_j_virol_2015_03_009
crossref_primary_10_1007_s11262_024_02068_5
crossref_primary_10_1111_tbed_14157
crossref_primary_10_1016_j_ijid_2023_04_403
crossref_primary_10_1016_j_meegid_2016_04_011
crossref_primary_10_1016_j_virol_2016_11_008
crossref_primary_10_1128_JVI_02467_16
crossref_primary_10_1016_j_jcv_2020_104441
crossref_primary_10_1371_journal_ppat_1005583
crossref_primary_10_1016_j_virol_2017_06_009
crossref_primary_10_1128_genomeA_00891_13
crossref_primary_10_1128_CMR_05012_11
crossref_primary_10_3390_v13010030
crossref_primary_10_1128_JVI_01093_14
crossref_primary_10_1128_JVI_01857_14
crossref_primary_10_3390_v15020383
crossref_primary_10_1016_j_virusres_2015_08_017
crossref_primary_10_1371_journal_ppat_1002068
crossref_primary_10_1016_j_tim_2013_05_005
crossref_primary_10_1128_JVI_01648_10
crossref_primary_10_1016_j_virol_2014_12_021
crossref_primary_10_1038_srep08039
crossref_primary_10_1128_JVI_00901_15
crossref_primary_10_1038_ncomms1804
crossref_primary_10_1016_j_tips_2011_10_004
crossref_primary_10_1038_ncomms6021
crossref_primary_10_1080_22221751_2020_1806005
crossref_primary_10_1128_JVI_00980_13
crossref_primary_10_1016_j_coviro_2011_07_003
crossref_primary_10_3390_pathogens11111385
crossref_primary_10_1016_j_chom_2015_01_005
crossref_primary_10_1007_s11262_022_01904_w
crossref_primary_10_1016_j_virol_2024_110009
crossref_primary_10_3390_ijms25158550
crossref_primary_10_1038_srep40667
crossref_primary_10_1080_22221751_2022_2143282
crossref_primary_10_3390_v15091893
crossref_primary_10_1146_annurev_animal_022114_111017
Cites_doi 10.1038/nature08260
10.1126/science.1177127
10.1186/1472-6750-9-37
10.1126/science.1062882
10.1038/18457
10.1128/JVI.79.18.12058-12064.2005
10.1107/S0907444904019158
10.1038/nature08157
10.1016/j.chom.2008.06.007
10.1371/journal.ppat.1000252
10.1107/S0907444996012255
10.1073/pnas.0308352100
10.1371/journal.ppat.1000136
10.1128/JVI.00063-09
10.1186/1472-6750-9-36
10.1074/jbc.C800224200
10.1128/JVI.75.11.5410-5415.2001
10.1128/JVI.01714-09
10.1128/JVI.02634-09
10.1016/S1097-2765(00)80326-3
10.1073/pnas.0813172106
10.1016/S0168-1702(99)00027-1
10.1073/pnas.0811052106
10.1002/prot.21786
10.1128/JVI.64.4.1808-1811.1990
10.1128/JVI.01434-06
10.1073/pnas.96.16.9345
10.1126/science.1177238
10.1128/JVI.67.4.1761-1764.1993
10.1016/j.virol.2010.02.024
ContentType Journal Article
Copyright COPYRIGHT 2010 Public Library of Science
Yamada et al. 2010
2010 Yamada et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Yamada S, Hatta M, Staker BL, Watanabe S, Imai M, et al. (2010) Biological and Structural Characterization of a Host-Adapting Amino Acid in Influenza Virus. PLoS Pathog 6(8): e1001034. doi:10.1371/journal.ppat.1001034
Copyright_xml – notice: COPYRIGHT 2010 Public Library of Science
– notice: Yamada et al. 2010
– notice: 2010 Yamada et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Yamada S, Hatta M, Staker BL, Watanabe S, Imai M, et al. (2010) Biological and Structural Characterization of a Host-Adapting Amino Acid in Influenza Virus. PLoS Pathog 6(8): e1001034. doi:10.1371/journal.ppat.1001034
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
7U9
H94
5PM
DOA
DOI 10.1371/journal.ppat.1001034
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
DatabaseTitleList MEDLINE
AIDS and Cancer Research Abstracts


MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate A Host-Adapting Amino Acid in Influenza Virus
EISSN 1553-7374
ExternalDocumentID 1289087580
oai_doaj_org_article_8fe7cb48869b484fa343e34b271f36e4
PMC2916879
A236729589
20700447
10_1371_journal_ppat_1001034
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: PHS HHS
  grantid: HHSN266200700010C
– fundername: NIAID NIH HHS
  grantid: HHSN272200700057C
– fundername: NIAID NIH HHS
  grantid: R01 AI069274
– fundername: PHS HHS
  grantid: HHSN272200700057C
– fundername: NIAID NIH HHS
  grantid: HHSN266200700010C
– fundername: NCRR NIH HHS
  grantid: P51 RR000167
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QN7
RIG
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
PPXIY
PQGLB
7U9
H94
PJZUB
5PM
PUEGO
3V.
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c800t-9778a5f8f8e7b7714c91ed518610c5890ea71069e2ce9a76253ed9317dfebe9b3
IEDL.DBID M48
ISSN 1553-7374
1553-7366
IngestDate Sun Oct 01 00:11:18 EDT 2023
Wed Aug 27 01:24:05 EDT 2025
Thu Aug 21 13:37:48 EDT 2025
Thu Aug 07 15:09:37 EDT 2025
Thu Jul 10 18:25:56 EDT 2025
Tue Jun 17 22:07:39 EDT 2025
Tue Jun 10 21:07:16 EDT 2025
Fri Jun 27 05:29:28 EDT 2025
Fri Jun 27 04:11:53 EDT 2025
Thu Apr 03 07:04:30 EDT 2025
Thu Apr 24 23:09:11 EDT 2025
Tue Jul 01 02:54:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c800t-9778a5f8f8e7b7714c91ed518610c5890ea71069e2ce9a76253ed9317dfebe9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Conceived and designed the experiments: M. Hatta, B. Staker, S. Watanabe, T. Watanabe, P. Myler, I. Phan, A. Raymond, E. Smith, R. Stacy, S. Lank, R. Wiseman, B. Bimber, D. O'Connor, L. Stewart, Y. Kawaoka. Performed the experiments: S. Yamada, M. Hatta, B. Staker, M. Imai, K. Shinya, Y. Sakai-Tagawa, M. Ito, M. Ozawa, T. Watanabe, S. Sakabe, C. Li, J. Kim, P. Myler, I. Phan, A. Raymond, E. Smith, R. Stacy, S. Lank, R. Wiseman, B. Bimber, D. O'Connor, L. Stewart. Analyzed the data: B. Staker, P. Myler, I. Phan, A. Raymond, E. Smith, R. Stacy, S. Lank, R. Wiseman, B. Bimber, D. O'Connor, L. Stewart, Y. Kawaoka. Contributed reagents/materials/analysis tools: C. Nidom. Wrote the paper: G. Neumann, Y. Kawaoka.
OpenAccessLink https://doaj.org/article/8fe7cb48869b484fa343e34b271f36e4
PMID 20700447
PQID 748937354
PQPubID 23479
ParticipantIDs plos_journals_1289087580
doaj_primary_oai_doaj_org_article_8fe7cb48869b484fa343e34b271f36e4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2916879
proquest_miscellaneous_755137687
proquest_miscellaneous_748937354
gale_infotracmisc_A236729589
gale_infotracacademiconefile_A236729589
gale_incontextgauss_ISR_A236729589
gale_incontextgauss_ISN_A236729589
pubmed_primary_20700447
crossref_citationtrail_10_1371_journal_ppat_1001034
crossref_primary_10_1371_journal_ppat_1001034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-08-01
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: 2010-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2010
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References N Van Hoeven (ref8) 2009; 106
A Mehle (ref22) 2008; 4
Y Itoh (ref14) 2009; 460
VJ Munster (ref19) 2009; 325
(ref32) 1994; D50
Z Li (ref5) 2005; 79
RA Fouchier (ref6) 2004; 101
Y Yao (ref21) 2001; 75
HE Klock (ref27) 2008; 1
M Hatta (ref3) 2001; 293
(ref35) 2002
A Raymond (ref26) 2009; 9
HL Yen (ref2) 2009; 106
M Ozawa (ref15) 2007; 81
EG Brown (ref20) 1999; 61
G Neumann (ref1) 2009; 459
K Shinya (ref10) 2009; 83
D Lorimer (ref25) 2009; 9
JM Katz (ref23) 1990; 64
A Mehle (ref13) 2009
TR Maines (ref18) 2009; 325
P Emsley (ref34) 2004; 60
PJ Myler (ref28) 2009
F Tarendeau (ref12) 2008; 4
EK Subbarao (ref4) 1993; 67
J Steel (ref9) 2009; 5
GN Murshudova (ref33) 1997; D53
G Neumann (ref24) 1999; 96
Z Otwinowski (ref31) 1997; 276
QM Le (ref7) 2009; 83
SJ Li (ref30) 1999; 398
E Mossessova (ref29) 2000; 5
T Kuzuhara (ref11) 2009; 284
S Herfst (ref16) 2010; 84
H Zhu (ref17) 2010; 401
20130063 - J Virol. 2010 Apr;84(8):3752-8
19264775 - J Virol. 2009 May;83(10):5278-81
15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
2319652 - J Virol. 1990 Apr;64(4):1808-11
19594426 - Infect Disord Drug Targets. 2009 Nov;9(5):493-506
8445709 - J Virol. 1993 Apr;67(4):1761-4
17050598 - J Virol. 2007 Jan;81(1):30-41
10430945 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9345-50
11333926 - J Virol. 2001 Jun;75(11):5410-5
20303563 - Virology. 2010 May 25;401(1):1-5
19144639 - J Biol Chem. 2009 Mar 13;284(11):6855-60
15299374 - Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3
19793811 - J Virol. 2009 Dec;83(24):13015-8
19383143 - BMC Biotechnol. 2009 Apr 21;9:37
10094048 - Nature. 1999 Mar 18;398(6724):246-51
19525932 - Nature. 2009 Jun 18;459(7249):931-9
15299926 - Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55
16140781 - J Virol. 2005 Sep;79(18):12058-64
19116267 - Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):286-91
10426210 - Virus Res. 1999 May;61(1):63-76
19995968 - Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21312-6
19672242 - Nature. 2009 Aug 20;460(7258):1021-5
11546875 - Science. 2001 Sep 7;293(5536):1840-2
19211790 - Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3366-71
19383142 - BMC Biotechnol. 2009 Apr 21;9:36
27754618 - Methods Enzymol. 1997;276:307-26
14745020 - Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1356-61
19574347 - Science. 2009 Jul 24;325(5939):484-7
18769709 - PLoS Pathog. 2008 Aug 29;4(8):e1000136
19119420 - PLoS Pathog. 2009 Jan;5(1):e1000252
19574348 - Science. 2009 Jul 24;325(5939):481-3
18692771 - Cell Host Microbe. 2008 Aug 14;4(2):111-22
10882122 - Mol Cell. 2000 May;5(5):865-76
18004753 - Proteins. 2008 May 1;71(2):982-94
References_xml – volume: 460
  start-page: 1021
  year: 2009
  ident: ref14
  article-title: In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses.
  publication-title: Nature
  doi: 10.1038/nature08260
– volume: 325
  start-page: 481
  year: 2009
  ident: ref19
  article-title: Pathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in ferrets.
  publication-title: Science
  doi: 10.1126/science.1177127
– volume: 9
  start-page: 37
  year: 2009
  ident: ref26
  article-title: Combined protein construct and synthetic gene engineering for heterologous protein expression and crystallization using Gene Composer.
  publication-title: BMC Biotechnol
  doi: 10.1186/1472-6750-9-37
– volume: 293
  start-page: 1840
  year: 2001
  ident: ref3
  article-title: Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses.
  publication-title: Science
  doi: 10.1126/science.1062882
– volume: 398
  start-page: 246
  year: 1999
  ident: ref30
  article-title: A new protease required for cell-cycle progression in yeast.
  publication-title: Nature
  doi: 10.1038/18457
– volume: 79
  start-page: 12058
  year: 2005
  ident: ref5
  article-title: Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model.
  publication-title: J Virol
  doi: 10.1128/JVI.79.18.12058-12064.2005
– volume: 60
  start-page: 2126
  year: 2004
  ident: ref34
  article-title: Coot: model- building tools for molecular graphics.
  publication-title: Acta Crystallographica Section D-Biological Crystallography
  doi: 10.1107/S0907444904019158
– year: 2009
  ident: ref13
  article-title: Adaptive strategies of the influenza virus polymerase for replication in humans.
  publication-title: Proc Natl Acad Sci U S A
– year: 2009
  ident: ref28
  article-title: The Seattle Structural Genomics Center for Infectious Disease (SSGCID).
  publication-title: Infect Disord Drug Targets
– volume: 459
  start-page: 931
  year: 2009
  ident: ref1
  article-title: Emergence and pandemic potential of swine-origin H1N1 influenza virus.
  publication-title: Nature
  doi: 10.1038/nature08157
– volume: 4
  start-page: 111
  year: 2008
  ident: ref22
  article-title: An inhibitory activity in human cells restricts the function of an avian-like influenza virus polymerase.
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2008.06.007
– volume: 5
  start-page: e1000252
  year: 2009
  ident: ref9
  article-title: Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N.
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000252
– volume: D53
  start-page: 240
  year: 1997
  ident: ref33
  article-title: Refinement of macromolecular structures by the maximum-likelihood method.
  publication-title: Acta Crystallographica Section D-Biological Crystallography
  doi: 10.1107/S0907444996012255
– volume: 101
  start-page: 1356
  year: 2004
  ident: ref6
  article-title: Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0308352100
– volume: 4
  start-page: e1000136
  year: 2008
  ident: ref12
  article-title: Host determinant residue lysine 627 lies on the surface of a discrete, folded domain of influenza virus polymerase PB2 subunit.
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000136
– volume: D50
  start-page: 760
  year: 1994
  ident: ref32
  article-title: The CCP4 Suite: Programs for Protein Crystallography.
  publication-title: Acta Cryst D
– volume: 83
  start-page: 5278
  year: 2009
  ident: ref7
  article-title: Selection of H5N1 influenza virus PB2 during replication in humans.
  publication-title: J Virol
  doi: 10.1128/JVI.00063-09
– volume: 9
  start-page: 36
  year: 2009
  ident: ref25
  article-title: Gene Composer: Database software for protein construct design, codon engineering, and gene synthesis.
  publication-title: BMC Biotechnol
  doi: 10.1186/1472-6750-9-36
– volume: 284
  start-page: 6855
  year: 2009
  ident: ref11
  article-title: Structural basis of the influenza A virus RNA polymerase PB2 RNA-binding domain containing the pathogenicity-determinant lysine 627 residue.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.C800224200
– volume: 75
  start-page: 5410
  year: 2001
  ident: ref21
  article-title: Sequences in influenza A virus PB2 protein that determine productive infection for an avian influenza virus in mouse and human cell lines.
  publication-title: J Virol
  doi: 10.1128/JVI.75.11.5410-5415.2001
– volume: 83
  start-page: 13015
  year: 2009
  ident: ref10
  article-title: Ostrich involvement in the selection of H5N1 influenza virus possessing mammalian-type amino acids in the PB2 protein.
  publication-title: J Virol
  doi: 10.1128/JVI.01714-09
– volume: 84
  start-page: 3752
  year: 2010
  ident: ref16
  article-title: Introduction of virulence markers in PB2 of pandemic swine-origin influenza virus does not result in enhanced virulence or transmission.
  publication-title: J Virol
  doi: 10.1128/JVI.02634-09
– volume: 5
  start-page: 865
  year: 2000
  ident: ref29
  article-title: Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast.
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)80326-3
– volume: 106
  start-page: 3366
  year: 2009
  ident: ref8
  article-title: Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0813172106
– volume: 61
  start-page: 63
  year: 1999
  ident: ref20
  article-title: Genetic analysis of mouse-adapted influenza A virus identifies roles for the NA, PB1, and PB2 genes in virulence.
  publication-title: Virus Res
  doi: 10.1016/S0168-1702(99)00027-1
– year: 2002
  ident: ref35
– volume: 106
  start-page: 286
  year: 2009
  ident: ref2
  article-title: Changes in H5N1 influenza virus hemagglutinin receptor binding domain affect systemic spread.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0811052106
– volume: 1
  start-page: 982
  year: 2008
  ident: ref27
  article-title: Combining the polymerase incomplete primer extension method for cloning and mutagenesis with microscreening to accelerate structural genomics efforts.
  publication-title: Proteins
  doi: 10.1002/prot.21786
– volume: 276
  start-page: 307
  year: 1997
  ident: ref31
  article-title: Processing of X-ray Diffraction Data Collected in Oscillation Mode Methonds in Enzymology
  publication-title: Processing of X-ray Diffraction Data Collected in Oscillation Mode Methonds in Enzymology
– volume: 64
  start-page: 1808
  year: 1990
  ident: ref23
  article-title: Direct sequencing of the HA gene of influenza (H3N2) virus in original clinical samples reveals sequence identity with mammalian cell-grown virus.
  publication-title: J Virol
  doi: 10.1128/JVI.64.4.1808-1811.1990
– volume: 81
  start-page: 30
  year: 2007
  ident: ref15
  article-title: Contributions of two nuclear localization signals of influenza A virus nucleoprotein to viral replication.
  publication-title: J Virol
  doi: 10.1128/JVI.01434-06
– volume: 96
  start-page: 9345
  year: 1999
  ident: ref24
  article-title: Generation of influenza A viruses entirely from cloned cDNAs.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.16.9345
– volume: 325
  start-page: 484
  year: 2009
  ident: ref18
  article-title: Transmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and mice.
  publication-title: Science
  doi: 10.1126/science.1177238
– volume: 67
  start-page: 1761
  year: 1993
  ident: ref4
  article-title: A single amino acid in the PB2 gene of influenza A virus is a determinant of host range.
  publication-title: J Virol
  doi: 10.1128/JVI.67.4.1761-1764.1993
– volume: 401
  start-page: 1
  year: 2010
  ident: ref17
  article-title: Substitution of lysine at 627 position in PB2 protein does not change virulence of the 2009 pandemic H1N1 virus in mice.
  publication-title: Virology
  doi: 10.1016/j.virol.2010.02.024
– reference: 18004753 - Proteins. 2008 May 1;71(2):982-94
– reference: 14745020 - Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1356-61
– reference: 18692771 - Cell Host Microbe. 2008 Aug 14;4(2):111-22
– reference: 19383142 - BMC Biotechnol. 2009 Apr 21;9:36
– reference: 15299926 - Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55
– reference: 19525932 - Nature. 2009 Jun 18;459(7249):931-9
– reference: 19672242 - Nature. 2009 Aug 20;460(7258):1021-5
– reference: 10430945 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9345-50
– reference: 19793811 - J Virol. 2009 Dec;83(24):13015-8
– reference: 18769709 - PLoS Pathog. 2008 Aug 29;4(8):e1000136
– reference: 19995968 - Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21312-6
– reference: 19144639 - J Biol Chem. 2009 Mar 13;284(11):6855-60
– reference: 16140781 - J Virol. 2005 Sep;79(18):12058-64
– reference: 11333926 - J Virol. 2001 Jun;75(11):5410-5
– reference: 10094048 - Nature. 1999 Mar 18;398(6724):246-51
– reference: 15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
– reference: 19211790 - Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3366-71
– reference: 15299374 - Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3
– reference: 10426210 - Virus Res. 1999 May;61(1):63-76
– reference: 19264775 - J Virol. 2009 May;83(10):5278-81
– reference: 20130063 - J Virol. 2010 Apr;84(8):3752-8
– reference: 19116267 - Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):286-91
– reference: 8445709 - J Virol. 1993 Apr;67(4):1761-4
– reference: 19574347 - Science. 2009 Jul 24;325(5939):484-7
– reference: 20303563 - Virology. 2010 May 25;401(1):1-5
– reference: 19383143 - BMC Biotechnol. 2009 Apr 21;9:37
– reference: 2319652 - J Virol. 1990 Apr;64(4):1808-11
– reference: 11546875 - Science. 2001 Sep 7;293(5536):1840-2
– reference: 19574348 - Science. 2009 Jul 24;325(5939):481-3
– reference: 10882122 - Mol Cell. 2000 May;5(5):865-76
– reference: 19119420 - PLoS Pathog. 2009 Jan;5(1):e1000252
– reference: 19594426 - Infect Disord Drug Targets. 2009 Nov;9(5):493-506
– reference: 17050598 - J Virol. 2007 Jan;81(1):30-41
– reference: 27754618 - Methods Enzymol. 1997;276:307-26
SSID ssj0041316
Score 2.4676116
Snippet Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of...
  Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1001034
SubjectTerms Amino acids
Amino Acids - chemistry
Animals
Birds
Crystallography, X-Ray
Genetic aspects
Host-virus relationships
Humans
Influenza A Virus, H1N1 Subtype - genetics
Influenza A Virus, H1N1 Subtype - pathogenicity
Influenza A Virus, H1N1 Subtype - physiology
Influenza virus
Influenza viruses
Pandemics
Physiological aspects
Protein Structure, Quaternary
Proteins
Viral Proteins - chemistry
Viral Proteins - genetics
Virology
Virology/Animal Models of Infection
Virology/Mechanisms of Resistance and Susceptibility, including Host Genetics
Virology/Viral and Gene Regulation
Virology/Virulence Factors and Mechanisms
Virulence - genetics
Virus Replication
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9cwEA_yhYEv4vy1uilBBJ_q2iZtksc5HFNwD-pg4ENI00QLsy3r9zvQv967pN-yiroXoZTSXAu5u1zuyN3nCHlZqlI54-uUVY6n3OUuVb7BSi7ZyKZwVgSQpA9n1ek5f39RXtxo9YU5YREeODLuUHonbA1qVim4c28YZ47xuhC5x_-j9YU9bxtMRRsMljk0PcWmOKlgVTUVzTGRH04yej0MZh0QiDLGF5tSwO6fLfRquOzHP7mfv2dR3tiWTu6Te5M_SY_iPHbJHdc9IDuxw-SPh-RLfEJJUNM1NMLFItQGtTNUc6zEpL2nhmLRR2oaM2A6NDXf266nxrYNbTu4QkOTn4Zet1eb8RE5P3n7-fg0nfoppBbcwnUKrp40pZdeOlELkXOrcteUuQQXypZSZc6Av1EpV1inDFjJkrlGgYPReBC1qtljsur6zu0RqjKfq9pLRKCCANtKrDpEfUD3B7ifELZlqLYT2Dj2vLjU4QRNQNAR-aNRDHoSQ0LS-ashgm3cQv8GZTXTIlR2eAEKpCcF0rcpUEJeoKQ1gmF0mG3z1WzGUb_7dKaPEN6uUMCavxJ9XBC9moh8D5O1ZqpwAJYhyNaC8mBBCUvaLob3UOu2cx51jsfBEFnKLCF0q4kav8IUuc71m1EHGCHBSv4PEuzmA_GlSMiTqLsz64oM-xxwGBELrV7wdjnStd8CHHkBEYYU6un_EMY-uRvTMzDD8oCsYFG4Z-D1revnYYH_Aiw1VHo
  priority: 102
  providerName: Directory of Open Access Journals
Title Biological and Structural Characterization of a Host-Adapting Amino Acid in Influenza Virus
URI https://www.ncbi.nlm.nih.gov/pubmed/20700447
https://www.proquest.com/docview/748937354
https://www.proquest.com/docview/755137687
https://pubmed.ncbi.nlm.nih.gov/PMC2916879
https://doaj.org/article/8fe7cb48869b484fa343e34b271f36e4
http://dx.doi.org/10.1371/journal.ppat.1001034
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdtymAvY9_N1gUxBntyiW3Zkh7GaEdLN2gY3QKBPQhZltpAZntxMtb99buTP5hHuw1MMNEpoNNJuovufj9CXiUykVa7LIhTywJmQxtIl2Mll8hFHlnDPUjS-Sw9m7MPi2SxQzrO1laB9Y2hHfJJzderwx_frt_Cgn_jWRt42HU6rCq98ZhC05jtkj04mzgu1XPW3yvAju3JUJEsJ-BxmrbFdLf9yuCw8pj-_c49qlZlfZNb-md25W_H1el9cq_1M-lRYxgPyI4tHpI7DfPk9SPypXnDGaK6yGkDI4sQHNT0EM5NhSYtHdUUi0ECnesK06Sp_rosSqrNMqfLAh5PdPJT0-_L9bZ-TOanJ5_fnQUtz0JgwF3cBOACCp044YTlGechMzK0eRIKcK1MIuTUavBDUmkjY6WG3TOJbS7B8cgdmIDM4idkVJSF3SdUTl0oMycQmQoCbyOwGhHtBN0i0P6YxJ1ClWlByJELY6X8zRqHYKTRj8JpUO00jEnQ96oaEI5_yB_jXPWyCKHtvyjXl6pdkUo4y00G-1cq4ZM5HbPYxiyLeOjQcMfkJc60QpCMArNwLvW2rtX7TzN1hLB3kQTV3Cp0MRB63Qq5EgZrdFv5ACpD8K2B5MFAEpa6GTTvo9V1Y65ViNfEEHGK6ZjQzhIV9sLUucKW21p5eCEeJ-wvIsjyA3EnH5Onje32qoumyH_AoIUPrHqg22FLsbzyMOURRB6Cy2f_Pfrn5G6Tm4HplQdkBJZvX4DLt8kmZJcv-ITsHZ_MPl5M_B8nE7-yfwHin1mE
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biological+and+structural+characterization+of+a+host-adapting+amino+acid+in+influenza+virus&rft.jtitle=PLoS+pathogens&rft.au=Yamada%2C+Shinya&rft.au=Hatta%2C+Masato&rft.au=Staker%2C+Bart+L&rft.au=Watanabe%2C+Shinji&rft.date=2010-08-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.volume=6&rft.issue=8&rft_id=info:doi/10.1371%2Fjournal.ppat.1001034&rft.externalDocID=A236729589
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon