Biological and Structural Characterization of a Host-Adapting Amino Acid in Influenza Virus
Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic am...
Saved in:
Published in | PLoS pathogens Vol. 6; no. 8; p. e1001034 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.08.2010
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals. |
---|---|
AbstractList | Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals. Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals. Influenza viruses that originate from avian species likely have to acquire adapting amino acid changes to replicate efficiently in mammals. Two amino acid changes in the polymerase PB2 protein--a glutamic acid to lysine change at position 627 or an aspartic acid to asparagine change at position 701--are known to allow influenza viruses of avian origin to replicate efficiently in mammals. Interestingly, the pandemic H1N1 viruses (which possess an avian-like PB2 gene) do not encode the 'human-type' amino acids PB2-627K and PB2-701N. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of PB2-627K and allows efficient replication of highly pathogenic H5N1 and pandemic H1N1 viruses in mammalian species. We also present the X-ray crystal structure of the C-terminal portion of a pandemic H1N1 PB2 protein. The basic amino acid at position 591 fills a distinctive cleft found in the PB2 proteins of H5N1 viruses. We also speculate on the biological significance of the altered surface of the H1N1 PB2 protein. Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals. Influenza viruses that originate from avian species likely have to acquire adapting amino acid changes to replicate efficiently in mammals. Two amino acid changes in the polymerase PB2 protein—a glutamic acid to lysine change at position 627 or an aspartic acid to asparagine change at position 701—are known to allow influenza viruses of avian origin to replicate efficiently in mammals. Interestingly, the pandemic H1N1 viruses (which possess an avian-like PB2 gene) do not encode the ‘human-type’ amino acids PB2-627K and PB2-701N. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of PB2-627K and allows efficient replication of highly pathogenic H5N1 and pandemic H1N1 viruses in mammalian species. We also present the X-ray crystal structure of the C-terminal portion of a pandemic H1N1 PB2 protein. The basic amino acid at position 591 fills a distinctive cleft found in the PB2 proteins of H5N1 viruses. We also speculate on the biological significance of the altered surface of the H1N1 PB2 protein. Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals.Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals. Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals. |
Audience | Academic |
Author | Lank, Simon M. Myler, Peter J. Staker, Bart L. Watanabe, Tokiko Phan, Isabelle Wiseman, Roger W. Raymond, Amy Kim, Jin Hyun Bimber, Benjamin N. Imai, Masaki Shinya, Kyoko Stewart, Lance J. Nidom, Chairul A. Watanabe, Shinji Kawaoka, Yoshihiro Hatta, Masato O'Connor, David H. Sakai-Tagawa, Yuko Sakabe, Saori Neumann, Gabriele Stacy, Robin Smith, Eric Ito, Mutsumi Yamada, Shinya Ozawa, Makoto Li, Chengjun |
AuthorAffiliation | 9 Departments of Global Health and Medical Education & Biomedical Informatics, University of Washington, Seattle, Washington, United States of America 10 Faculty of Veterinary Medicine, Tropical Disease Centre, Airlangga University, Surabaya, Indonesia 3 Emerald BioStructures, Inc., Bainbridge Island, Washington, United States of America 6 Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan 1 Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan 7 ERATO Infection-Induced Host Responses Project, Saitama, Japan 2 Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America 8 Seattle Biomedical Research Institute, Seattle, Washington, United States of America 11 Collaborating Research Center-Emerging and Reem |
AuthorAffiliation_xml | – name: 3 Emerald BioStructures, Inc., Bainbridge Island, Washington, United States of America – name: 5 Department of Microbiology and Infectious Diseases, Kobe University, Hyogo, Japan – name: 8 Seattle Biomedical Research Institute, Seattle, Washington, United States of America – name: 13 Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America – name: 1 Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan – name: 12 Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America – name: University of Maryland, United States of America – name: 2 Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America – name: 7 ERATO Infection-Induced Host Responses Project, Saitama, Japan – name: 6 Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan – name: 4 Seattle Structural Genomics Center for Infectious Disease, Washington, United States of America – name: 14 Creative Research Initiative, Sousei, Hokkaido University, Sapporo, Japan – name: 10 Faculty of Veterinary Medicine, Tropical Disease Centre, Airlangga University, Surabaya, Indonesia – name: 11 Collaborating Research Center-Emerging and Reemerging Infectious Diseases, Tropical Disease Centre, Airlangga University, Surabaya, Indonesia – name: 9 Departments of Global Health and Medical Education & Biomedical Informatics, University of Washington, Seattle, Washington, United States of America |
Author_xml | – sequence: 1 givenname: Shinya surname: Yamada fullname: Yamada, Shinya – sequence: 2 givenname: Masato surname: Hatta fullname: Hatta, Masato – sequence: 3 givenname: Bart L. surname: Staker fullname: Staker, Bart L. – sequence: 4 givenname: Shinji surname: Watanabe fullname: Watanabe, Shinji – sequence: 5 givenname: Masaki surname: Imai fullname: Imai, Masaki – sequence: 6 givenname: Kyoko surname: Shinya fullname: Shinya, Kyoko – sequence: 7 givenname: Yuko surname: Sakai-Tagawa fullname: Sakai-Tagawa, Yuko – sequence: 8 givenname: Mutsumi surname: Ito fullname: Ito, Mutsumi – sequence: 9 givenname: Makoto surname: Ozawa fullname: Ozawa, Makoto – sequence: 10 givenname: Tokiko surname: Watanabe fullname: Watanabe, Tokiko – sequence: 11 givenname: Saori surname: Sakabe fullname: Sakabe, Saori – sequence: 12 givenname: Chengjun surname: Li fullname: Li, Chengjun – sequence: 13 givenname: Jin Hyun surname: Kim fullname: Kim, Jin Hyun – sequence: 14 givenname: Peter J. surname: Myler fullname: Myler, Peter J. – sequence: 15 givenname: Isabelle surname: Phan fullname: Phan, Isabelle – sequence: 16 givenname: Amy surname: Raymond fullname: Raymond, Amy – sequence: 17 givenname: Eric surname: Smith fullname: Smith, Eric – sequence: 18 givenname: Robin surname: Stacy fullname: Stacy, Robin – sequence: 19 givenname: Chairul A. surname: Nidom fullname: Nidom, Chairul A. – sequence: 20 givenname: Simon M. surname: Lank fullname: Lank, Simon M. – sequence: 21 givenname: Roger W. surname: Wiseman fullname: Wiseman, Roger W. – sequence: 22 givenname: Benjamin N. surname: Bimber fullname: Bimber, Benjamin N. – sequence: 23 givenname: David H. surname: O'Connor fullname: O'Connor, David H. – sequence: 24 givenname: Gabriele surname: Neumann fullname: Neumann, Gabriele – sequence: 25 givenname: Lance J. surname: Stewart fullname: Stewart, Lance J. – sequence: 26 givenname: Yoshihiro surname: Kawaoka fullname: Kawaoka, Yoshihiro |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20700447$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk1-L1DAUxYusuH_0G4gWfBAfZkyatEl8EMZB3YFFwVVffAhpetPN0EnGJBXdT29mZ0Z2RBQptE36Oyfpyb2nxZHzDoriIUZTTBh-vvRjcGqYrtcqTTFCGBF6pzjBdU0mjDB6dOv9uDiNcYkQxQQ394rjCrE8oOyk-PLK-sH3VquhVK4rL1MYdRpDHs6vVFA6QbDXKlnvSm9KVZ77mCazTq2TdX05W1nny5m2XWlduXBmGMFdq_KzDWO8X9w1aojwYPc8Kz69ef1xfj65eP92MZ9dTDRHKE0EY1zVhhsOrGUMUy0wdDXmDUa65gKBYhg1AioNQrGmqgl0gmDWGWhBtOSseLz1XQ8-yl0uUeIqazmrOcrEYkt0Xi3lOtiVCj-kV1beTPjQSxWS1QNIboDplnLeiHynRhFKgNC2YtiQBmj2erlbbWxX0GlwKad1YHr4xdkr2ftvshK44Uxkg6c7g-C_jhCTXNmoYRiUAz9Gyeo6H3BG_01SLggj9WZTT7Zkr_I_WGd8XlpvaDmrSMMqkYPM1PQPVL46WFmdy8vYPH8geHYgyEyC76lXY4xycfnhP9h3h-yj2xn-Cm9flxl4sQV08DEGMFLbdFOFecd2kBjJTRPsD1tumkDumiCL6W_ivf9fZT8BoqELbg |
CitedBy_id | crossref_primary_10_1016_j_virol_2017_08_035 crossref_primary_10_1038_srep29888 crossref_primary_10_3390_v14051097 crossref_primary_10_1099_vir_0_062836_0 crossref_primary_10_1074_jbc_M111_262048 crossref_primary_10_1128_mBio_01162_19 crossref_primary_10_1038_ncomms3636 crossref_primary_10_3389_fimmu_2019_01602 crossref_primary_10_1128_JVI_00702_11 crossref_primary_10_1016_j_celrep_2018_08_012 crossref_primary_10_1128_JVI_00772_16 crossref_primary_10_1371_journal_pone_0033383 crossref_primary_10_1637_11110_042815_Reg crossref_primary_10_1007_s10969_011_9101_7 crossref_primary_10_1016_j_virusres_2020_198061 crossref_primary_10_1038_s41586_020_2927_z crossref_primary_10_1093_cid_cix707 crossref_primary_10_1128_JVI_06203_11 crossref_primary_10_1038_emi_2012_24 crossref_primary_10_2903_j_efsa_2023_8539 crossref_primary_10_1111_febs_14867 crossref_primary_10_1186_s12864_016_2919_4 crossref_primary_10_1038_s41598_017_09560_z crossref_primary_10_1128_JVI_01582_20 crossref_primary_10_1128_JVI_01565_12 crossref_primary_10_1007_s00705_016_2962_0 crossref_primary_10_1016_j_coviro_2012_03_003 crossref_primary_10_1128_JVI_00107_14 crossref_primary_10_1128_JVI_00887_12 crossref_primary_10_2217_fvl_2016_0040 crossref_primary_10_1128_JVI_01930_19 crossref_primary_10_1128_JVI_01717_21 crossref_primary_10_1107_S1744309111028776 crossref_primary_10_1128_mBio_00151_11 crossref_primary_10_3201_eid2012_140911 crossref_primary_10_1038_srep28583 crossref_primary_10_3201_eid2807_212586 crossref_primary_10_1073_pnas_1522643113 crossref_primary_10_1016_j_virol_2014_09_008 crossref_primary_10_1038_s41467_024_48470_3 crossref_primary_10_1101_cshperspect_a038588 crossref_primary_10_1128_JVI_00605_11 crossref_primary_10_1016_j_virusres_2017_01_013 crossref_primary_10_1016_j_tim_2014_08_008 crossref_primary_10_1186_1471_2164_12_295 crossref_primary_10_3389_fmicb_2019_01328 crossref_primary_10_1038_s41598_020_68720_w crossref_primary_10_1371_journal_ppat_1002932 crossref_primary_10_1002_wrna_1871 crossref_primary_10_3201_eid2805_211580 crossref_primary_10_1128_JVI_02740_13 crossref_primary_10_1002_bies_201200138 crossref_primary_10_1021_jacs_5b07765 crossref_primary_10_1038_s41598_017_02598_z crossref_primary_10_3389_fvets_2023_1157984 crossref_primary_10_3390_v12091046 crossref_primary_10_1128_AAC_04623_14 crossref_primary_10_3390_v12030298 crossref_primary_10_7554_eLife_45079 crossref_primary_10_1007_s12250_012_3262_9 crossref_primary_10_1016_j_meegid_2013_02_020 crossref_primary_10_1637_9749_040111_Reg_1 crossref_primary_10_7554_eLife_18491 crossref_primary_10_1107_S1744309111029204 crossref_primary_10_1038_s41467_025_57338_z crossref_primary_10_1016_j_coviro_2023_101363 crossref_primary_10_1093_infdis_jir435 crossref_primary_10_1099_vir_0_031492_0 crossref_primary_10_1128_JVI_01557_17 crossref_primary_10_1111_irv_12075 crossref_primary_10_1080_22221751_2024_2432364 crossref_primary_10_1038_s41598_018_31397_3 crossref_primary_10_1128_JVI_01210_20 crossref_primary_10_1099_vir_0_037648_0 crossref_primary_10_1016_j_virusres_2013_07_017 crossref_primary_10_3389_fmicb_2015_00073 crossref_primary_10_1371_journal_pone_0038637 crossref_primary_10_1038_srep19474 crossref_primary_10_1007_s00705_012_1595_1 crossref_primary_10_1038_s41426_018_0064_7 crossref_primary_10_1128_JVI_02597_12 crossref_primary_10_3390_v15091959 crossref_primary_10_1099_vir_0_063495_0 crossref_primary_10_1038_s41426_018_0088_z crossref_primary_10_1371_journal_pone_0067616 crossref_primary_10_1128_JVI_05699_11 crossref_primary_10_1128_JVI_00508_14 crossref_primary_10_1101_cshperspect_a038398 crossref_primary_10_3201_eid_1706_101886 crossref_primary_10_1099_jgv_0_000542 crossref_primary_10_1007_s00018_021_03957_w crossref_primary_10_1371_journal_pone_0016302 crossref_primary_10_2903_j_efsa_2023_8328 crossref_primary_10_1056_NEJMc2112416 crossref_primary_10_3390_v16030353 crossref_primary_10_1128_JVI_00057_20 crossref_primary_10_1016_j_vaccine_2012_04_049 crossref_primary_10_1016_j_rvsc_2012_11_018 crossref_primary_10_3390_v11030292 crossref_primary_10_1093_bioinformatics_btaa901 crossref_primary_10_1128_JVI_02215_16 crossref_primary_10_1099_jgv_0_000674 crossref_primary_10_1371_journal_pone_0148432 crossref_primary_10_3390_v12050541 crossref_primary_10_3201_eid2305_161905 crossref_primary_10_1038_srep10510 crossref_primary_10_1016_j_tim_2022_09_015 crossref_primary_10_1371_journal_pone_0162163 crossref_primary_10_1038_nature12515 crossref_primary_10_1128_MMBR_05023_11 crossref_primary_10_1007_s12250_020_00257_8 crossref_primary_10_1038_ncomms8491 crossref_primary_10_1128_JVI_00029_11 crossref_primary_10_3390_v6093438 crossref_primary_10_1042_BST20160002 crossref_primary_10_1007_s00705_011_0947_6 crossref_primary_10_1016_j_vaccine_2014_07_079 crossref_primary_10_1016_j_virusres_2013_02_003 crossref_primary_10_1128_genomeA_00929_14 crossref_primary_10_1111_1462_2920_14481 crossref_primary_10_3390_v12010082 crossref_primary_10_1128_JVI_02761_15 crossref_primary_10_1128_JVI_03158_13 crossref_primary_10_1016_j_virs_2024_02_002 crossref_primary_10_1128_JVI_02004_17 crossref_primary_10_1099_jgv_0_001612 crossref_primary_10_1038_s41579_018_0115_z crossref_primary_10_1080_22221751_2019_1679611 crossref_primary_10_1093_molbev_mss095 crossref_primary_10_2217_fvl_15_62 crossref_primary_10_1016_S2222_1808_16_61064_2 crossref_primary_10_1038_ncomms6509 crossref_primary_10_1038_s41598_017_11348_0 crossref_primary_10_1128_JVI_00218_17 crossref_primary_10_1038_s41467_020_17407_x crossref_primary_10_1128_JVI_01081_14 crossref_primary_10_1007_s00705_014_2179_z crossref_primary_10_1089_vim_2017_0020 crossref_primary_10_1128_JVI_00522_11 crossref_primary_10_1128_JVI_00786_11 crossref_primary_10_1016_j_meegid_2015_08_017 crossref_primary_10_1073_pnas_2013267117 crossref_primary_10_3390_ijms18081650 crossref_primary_10_1038_srep05944 crossref_primary_10_1128_JVI_01694_10 crossref_primary_10_1128_mBio_00166_12 crossref_primary_10_1128_JVI_00076_13 crossref_primary_10_1016_j_cimid_2013_06_003 crossref_primary_10_1128_JVI_00665_18 crossref_primary_10_1038_s41598_020_62036_5 crossref_primary_10_1016_j_virol_2015_09_014 crossref_primary_10_3389_fmicb_2021_735305 crossref_primary_10_1016_j_molmed_2020_09_014 crossref_primary_10_1038_nature10831 crossref_primary_10_1016_j_virol_2017_02_009 crossref_primary_10_1128_JVI_02142_14 crossref_primary_10_1371_journal_pone_0076047 crossref_primary_10_1016_j_bsheal_2020_11_006 crossref_primary_10_1128_JVI_02199_16 crossref_primary_10_1099_jgv_0_000500 crossref_primary_10_1016_j_vaccine_2011_01_023 crossref_primary_10_1111_irv_12412 crossref_primary_10_1007_s11262_019_01700_z crossref_primary_10_1128_JVI_00958_12 crossref_primary_10_1007_s12250_018_0072_8 crossref_primary_10_1080_02648725_2018_1467146 crossref_primary_10_1038_nrmicro2613 crossref_primary_10_1128_JVI_01188_16 crossref_primary_10_3390_microorganisms8020224 crossref_primary_10_1007_s12250_018_0034_1 crossref_primary_10_1016_j_virol_2012_01_015 crossref_primary_10_3201_eid1706_101886 crossref_primary_10_1016_j_vetmic_2013_10_011 crossref_primary_10_1007_s00705_017_3698_1 crossref_primary_10_1099_vir_0_027557_0 crossref_primary_10_2217_fvl_14_66 crossref_primary_10_1016_j_vetmic_2023_109760 crossref_primary_10_1128_JVI_01975_10 crossref_primary_10_1371_journal_pone_0092970 crossref_primary_10_3389_fmicb_2020_00220 crossref_primary_10_1101_cshperspect_a038695 crossref_primary_10_1099_vir_0_061721_0 crossref_primary_10_2903_j_efsa_2023_8191 crossref_primary_10_1093_molbev_msq317 crossref_primary_10_3389_fmicb_2018_01446 crossref_primary_10_1128_JVI_03532_14 crossref_primary_10_1016_j_celrep_2021_109213 crossref_primary_10_1016_j_vetmic_2019_108509 crossref_primary_10_3389_fmicb_2017_00260 crossref_primary_10_3390_v16071129 crossref_primary_10_1128_JVI_03328_14 crossref_primary_10_1007_s00705_019_04519_z crossref_primary_10_1016_j_virusres_2013_05_010 crossref_primary_10_1016_j_virusres_2015_03_017 crossref_primary_10_1093_dnares_dsr005 crossref_primary_10_1107_S1744309111026698 crossref_primary_10_1016_j_it_2020_03_005 crossref_primary_10_1107_S1744309111027424 crossref_primary_10_1111_tbed_13736 crossref_primary_10_3390_v5061431 crossref_primary_10_1016_j_biocel_2014_05_022 crossref_primary_10_1016_j_celrep_2018_03_081 crossref_primary_10_1038_s41598_017_11625_y crossref_primary_10_1007_s11262_019_01678_8 crossref_primary_10_1128_spectrum_00643_22 crossref_primary_10_3390_v12010052 crossref_primary_10_1038_s42003_022_04082_5 crossref_primary_10_1016_j_virol_2015_03_009 crossref_primary_10_1007_s11262_024_02068_5 crossref_primary_10_1111_tbed_14157 crossref_primary_10_1016_j_ijid_2023_04_403 crossref_primary_10_1016_j_meegid_2016_04_011 crossref_primary_10_1016_j_virol_2016_11_008 crossref_primary_10_1128_JVI_02467_16 crossref_primary_10_1016_j_jcv_2020_104441 crossref_primary_10_1371_journal_ppat_1005583 crossref_primary_10_1016_j_virol_2017_06_009 crossref_primary_10_1128_genomeA_00891_13 crossref_primary_10_1128_CMR_05012_11 crossref_primary_10_3390_v13010030 crossref_primary_10_1128_JVI_01093_14 crossref_primary_10_1128_JVI_01857_14 crossref_primary_10_3390_v15020383 crossref_primary_10_1016_j_virusres_2015_08_017 crossref_primary_10_1371_journal_ppat_1002068 crossref_primary_10_1016_j_tim_2013_05_005 crossref_primary_10_1128_JVI_01648_10 crossref_primary_10_1016_j_virol_2014_12_021 crossref_primary_10_1038_srep08039 crossref_primary_10_1128_JVI_00901_15 crossref_primary_10_1038_ncomms1804 crossref_primary_10_1016_j_tips_2011_10_004 crossref_primary_10_1038_ncomms6021 crossref_primary_10_1080_22221751_2020_1806005 crossref_primary_10_1128_JVI_00980_13 crossref_primary_10_1016_j_coviro_2011_07_003 crossref_primary_10_3390_pathogens11111385 crossref_primary_10_1016_j_chom_2015_01_005 crossref_primary_10_1007_s11262_022_01904_w crossref_primary_10_1016_j_virol_2024_110009 crossref_primary_10_3390_ijms25158550 crossref_primary_10_1038_srep40667 crossref_primary_10_1080_22221751_2022_2143282 crossref_primary_10_3390_v15091893 crossref_primary_10_1146_annurev_animal_022114_111017 |
Cites_doi | 10.1038/nature08260 10.1126/science.1177127 10.1186/1472-6750-9-37 10.1126/science.1062882 10.1038/18457 10.1128/JVI.79.18.12058-12064.2005 10.1107/S0907444904019158 10.1038/nature08157 10.1016/j.chom.2008.06.007 10.1371/journal.ppat.1000252 10.1107/S0907444996012255 10.1073/pnas.0308352100 10.1371/journal.ppat.1000136 10.1128/JVI.00063-09 10.1186/1472-6750-9-36 10.1074/jbc.C800224200 10.1128/JVI.75.11.5410-5415.2001 10.1128/JVI.01714-09 10.1128/JVI.02634-09 10.1016/S1097-2765(00)80326-3 10.1073/pnas.0813172106 10.1016/S0168-1702(99)00027-1 10.1073/pnas.0811052106 10.1002/prot.21786 10.1128/JVI.64.4.1808-1811.1990 10.1128/JVI.01434-06 10.1073/pnas.96.16.9345 10.1126/science.1177238 10.1128/JVI.67.4.1761-1764.1993 10.1016/j.virol.2010.02.024 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2010 Public Library of Science Yamada et al. 2010 2010 Yamada et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Yamada S, Hatta M, Staker BL, Watanabe S, Imai M, et al. (2010) Biological and Structural Characterization of a Host-Adapting Amino Acid in Influenza Virus. PLoS Pathog 6(8): e1001034. doi:10.1371/journal.ppat.1001034 |
Copyright_xml | – notice: COPYRIGHT 2010 Public Library of Science – notice: Yamada et al. 2010 – notice: 2010 Yamada et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Yamada S, Hatta M, Staker BL, Watanabe S, Imai M, et al. (2010) Biological and Structural Characterization of a Host-Adapting Amino Acid in Influenza Virus. PLoS Pathog 6(8): e1001034. doi:10.1371/journal.ppat.1001034 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7X8 7U9 H94 5PM DOA |
DOI | 10.1371/journal.ppat.1001034 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science MEDLINE - Academic Virology and AIDS Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Virology and AIDS Abstracts |
DatabaseTitleList | MEDLINE AIDS and Cancer Research Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | A Host-Adapting Amino Acid in Influenza Virus |
EISSN | 1553-7374 |
ExternalDocumentID | 1289087580 oai_doaj_org_article_8fe7cb48869b484fa343e34b271f36e4 PMC2916879 A236729589 20700447 10_1371_journal_ppat_1001034 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: PHS HHS grantid: HHSN266200700010C – fundername: NIAID NIH HHS grantid: HHSN272200700057C – fundername: NIAID NIH HHS grantid: R01 AI069274 – fundername: PHS HHS grantid: HHSN272200700057C – fundername: NIAID NIH HHS grantid: HHSN266200700010C – fundername: NCRR NIH HHS grantid: P51 RR000167 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR IPNFZ ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO QN7 RIG RNS RPM SV3 TR2 TUS UKHRP WOW ~8M CGR CUY CVF ECM EIF NPM PMFND 7X8 PPXIY PQGLB 7U9 H94 PJZUB 5PM PUEGO 3V. AAPBV ABPTK M~E |
ID | FETCH-LOGICAL-c800t-9778a5f8f8e7b7714c91ed518610c5890ea71069e2ce9a76253ed9317dfebe9b3 |
IEDL.DBID | M48 |
ISSN | 1553-7374 1553-7366 |
IngestDate | Sun Oct 01 00:11:18 EDT 2023 Wed Aug 27 01:24:05 EDT 2025 Thu Aug 21 13:37:48 EDT 2025 Thu Aug 07 15:09:37 EDT 2025 Thu Jul 10 18:25:56 EDT 2025 Tue Jun 17 22:07:39 EDT 2025 Tue Jun 10 21:07:16 EDT 2025 Fri Jun 27 05:29:28 EDT 2025 Fri Jun 27 04:11:53 EDT 2025 Thu Apr 03 07:04:30 EDT 2025 Thu Apr 24 23:09:11 EDT 2025 Tue Jul 01 02:54:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c800t-9778a5f8f8e7b7714c91ed518610c5890ea71069e2ce9a76253ed9317dfebe9b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Conceived and designed the experiments: M. Hatta, B. Staker, S. Watanabe, T. Watanabe, P. Myler, I. Phan, A. Raymond, E. Smith, R. Stacy, S. Lank, R. Wiseman, B. Bimber, D. O'Connor, L. Stewart, Y. Kawaoka. Performed the experiments: S. Yamada, M. Hatta, B. Staker, M. Imai, K. Shinya, Y. Sakai-Tagawa, M. Ito, M. Ozawa, T. Watanabe, S. Sakabe, C. Li, J. Kim, P. Myler, I. Phan, A. Raymond, E. Smith, R. Stacy, S. Lank, R. Wiseman, B. Bimber, D. O'Connor, L. Stewart. Analyzed the data: B. Staker, P. Myler, I. Phan, A. Raymond, E. Smith, R. Stacy, S. Lank, R. Wiseman, B. Bimber, D. O'Connor, L. Stewart, Y. Kawaoka. Contributed reagents/materials/analysis tools: C. Nidom. Wrote the paper: G. Neumann, Y. Kawaoka. |
OpenAccessLink | https://doaj.org/article/8fe7cb48869b484fa343e34b271f36e4 |
PMID | 20700447 |
PQID | 748937354 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1289087580 doaj_primary_oai_doaj_org_article_8fe7cb48869b484fa343e34b271f36e4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2916879 proquest_miscellaneous_755137687 proquest_miscellaneous_748937354 gale_infotracmisc_A236729589 gale_infotracacademiconefile_A236729589 gale_incontextgauss_ISR_A236729589 gale_incontextgauss_ISN_A236729589 pubmed_primary_20700447 crossref_citationtrail_10_1371_journal_ppat_1001034 crossref_primary_10_1371_journal_ppat_1001034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-08-01 |
PublicationDateYYYYMMDD | 2010-08-01 |
PublicationDate_xml | – month: 08 year: 2010 text: 2010-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS pathogens |
PublicationTitleAlternate | PLoS Pathog |
PublicationYear | 2010 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | N Van Hoeven (ref8) 2009; 106 A Mehle (ref22) 2008; 4 Y Itoh (ref14) 2009; 460 VJ Munster (ref19) 2009; 325 (ref32) 1994; D50 Z Li (ref5) 2005; 79 RA Fouchier (ref6) 2004; 101 Y Yao (ref21) 2001; 75 HE Klock (ref27) 2008; 1 M Hatta (ref3) 2001; 293 (ref35) 2002 A Raymond (ref26) 2009; 9 HL Yen (ref2) 2009; 106 M Ozawa (ref15) 2007; 81 EG Brown (ref20) 1999; 61 G Neumann (ref1) 2009; 459 K Shinya (ref10) 2009; 83 D Lorimer (ref25) 2009; 9 JM Katz (ref23) 1990; 64 A Mehle (ref13) 2009 TR Maines (ref18) 2009; 325 P Emsley (ref34) 2004; 60 PJ Myler (ref28) 2009 F Tarendeau (ref12) 2008; 4 EK Subbarao (ref4) 1993; 67 J Steel (ref9) 2009; 5 GN Murshudova (ref33) 1997; D53 G Neumann (ref24) 1999; 96 Z Otwinowski (ref31) 1997; 276 QM Le (ref7) 2009; 83 SJ Li (ref30) 1999; 398 E Mossessova (ref29) 2000; 5 T Kuzuhara (ref11) 2009; 284 S Herfst (ref16) 2010; 84 H Zhu (ref17) 2010; 401 20130063 - J Virol. 2010 Apr;84(8):3752-8 19264775 - J Virol. 2009 May;83(10):5278-81 15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 2319652 - J Virol. 1990 Apr;64(4):1808-11 19594426 - Infect Disord Drug Targets. 2009 Nov;9(5):493-506 8445709 - J Virol. 1993 Apr;67(4):1761-4 17050598 - J Virol. 2007 Jan;81(1):30-41 10430945 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9345-50 11333926 - J Virol. 2001 Jun;75(11):5410-5 20303563 - Virology. 2010 May 25;401(1):1-5 19144639 - J Biol Chem. 2009 Mar 13;284(11):6855-60 15299374 - Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3 19793811 - J Virol. 2009 Dec;83(24):13015-8 19383143 - BMC Biotechnol. 2009 Apr 21;9:37 10094048 - Nature. 1999 Mar 18;398(6724):246-51 19525932 - Nature. 2009 Jun 18;459(7249):931-9 15299926 - Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55 16140781 - J Virol. 2005 Sep;79(18):12058-64 19116267 - Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):286-91 10426210 - Virus Res. 1999 May;61(1):63-76 19995968 - Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21312-6 19672242 - Nature. 2009 Aug 20;460(7258):1021-5 11546875 - Science. 2001 Sep 7;293(5536):1840-2 19211790 - Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3366-71 19383142 - BMC Biotechnol. 2009 Apr 21;9:36 27754618 - Methods Enzymol. 1997;276:307-26 14745020 - Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1356-61 19574347 - Science. 2009 Jul 24;325(5939):484-7 18769709 - PLoS Pathog. 2008 Aug 29;4(8):e1000136 19119420 - PLoS Pathog. 2009 Jan;5(1):e1000252 19574348 - Science. 2009 Jul 24;325(5939):481-3 18692771 - Cell Host Microbe. 2008 Aug 14;4(2):111-22 10882122 - Mol Cell. 2000 May;5(5):865-76 18004753 - Proteins. 2008 May 1;71(2):982-94 |
References_xml | – volume: 460 start-page: 1021 year: 2009 ident: ref14 article-title: In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. publication-title: Nature doi: 10.1038/nature08260 – volume: 325 start-page: 481 year: 2009 ident: ref19 article-title: Pathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in ferrets. publication-title: Science doi: 10.1126/science.1177127 – volume: 9 start-page: 37 year: 2009 ident: ref26 article-title: Combined protein construct and synthetic gene engineering for heterologous protein expression and crystallization using Gene Composer. publication-title: BMC Biotechnol doi: 10.1186/1472-6750-9-37 – volume: 293 start-page: 1840 year: 2001 ident: ref3 article-title: Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. publication-title: Science doi: 10.1126/science.1062882 – volume: 398 start-page: 246 year: 1999 ident: ref30 article-title: A new protease required for cell-cycle progression in yeast. publication-title: Nature doi: 10.1038/18457 – volume: 79 start-page: 12058 year: 2005 ident: ref5 article-title: Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. publication-title: J Virol doi: 10.1128/JVI.79.18.12058-12064.2005 – volume: 60 start-page: 2126 year: 2004 ident: ref34 article-title: Coot: model- building tools for molecular graphics. publication-title: Acta Crystallographica Section D-Biological Crystallography doi: 10.1107/S0907444904019158 – year: 2009 ident: ref13 article-title: Adaptive strategies of the influenza virus polymerase for replication in humans. publication-title: Proc Natl Acad Sci U S A – year: 2009 ident: ref28 article-title: The Seattle Structural Genomics Center for Infectious Disease (SSGCID). publication-title: Infect Disord Drug Targets – volume: 459 start-page: 931 year: 2009 ident: ref1 article-title: Emergence and pandemic potential of swine-origin H1N1 influenza virus. publication-title: Nature doi: 10.1038/nature08157 – volume: 4 start-page: 111 year: 2008 ident: ref22 article-title: An inhibitory activity in human cells restricts the function of an avian-like influenza virus polymerase. publication-title: Cell Host Microbe doi: 10.1016/j.chom.2008.06.007 – volume: 5 start-page: e1000252 year: 2009 ident: ref9 article-title: Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000252 – volume: D53 start-page: 240 year: 1997 ident: ref33 article-title: Refinement of macromolecular structures by the maximum-likelihood method. publication-title: Acta Crystallographica Section D-Biological Crystallography doi: 10.1107/S0907444996012255 – volume: 101 start-page: 1356 year: 2004 ident: ref6 article-title: Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0308352100 – volume: 4 start-page: e1000136 year: 2008 ident: ref12 article-title: Host determinant residue lysine 627 lies on the surface of a discrete, folded domain of influenza virus polymerase PB2 subunit. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000136 – volume: D50 start-page: 760 year: 1994 ident: ref32 article-title: The CCP4 Suite: Programs for Protein Crystallography. publication-title: Acta Cryst D – volume: 83 start-page: 5278 year: 2009 ident: ref7 article-title: Selection of H5N1 influenza virus PB2 during replication in humans. publication-title: J Virol doi: 10.1128/JVI.00063-09 – volume: 9 start-page: 36 year: 2009 ident: ref25 article-title: Gene Composer: Database software for protein construct design, codon engineering, and gene synthesis. publication-title: BMC Biotechnol doi: 10.1186/1472-6750-9-36 – volume: 284 start-page: 6855 year: 2009 ident: ref11 article-title: Structural basis of the influenza A virus RNA polymerase PB2 RNA-binding domain containing the pathogenicity-determinant lysine 627 residue. publication-title: J Biol Chem doi: 10.1074/jbc.C800224200 – volume: 75 start-page: 5410 year: 2001 ident: ref21 article-title: Sequences in influenza A virus PB2 protein that determine productive infection for an avian influenza virus in mouse and human cell lines. publication-title: J Virol doi: 10.1128/JVI.75.11.5410-5415.2001 – volume: 83 start-page: 13015 year: 2009 ident: ref10 article-title: Ostrich involvement in the selection of H5N1 influenza virus possessing mammalian-type amino acids in the PB2 protein. publication-title: J Virol doi: 10.1128/JVI.01714-09 – volume: 84 start-page: 3752 year: 2010 ident: ref16 article-title: Introduction of virulence markers in PB2 of pandemic swine-origin influenza virus does not result in enhanced virulence or transmission. publication-title: J Virol doi: 10.1128/JVI.02634-09 – volume: 5 start-page: 865 year: 2000 ident: ref29 article-title: Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. publication-title: Mol Cell doi: 10.1016/S1097-2765(00)80326-3 – volume: 106 start-page: 3366 year: 2009 ident: ref8 article-title: Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0813172106 – volume: 61 start-page: 63 year: 1999 ident: ref20 article-title: Genetic analysis of mouse-adapted influenza A virus identifies roles for the NA, PB1, and PB2 genes in virulence. publication-title: Virus Res doi: 10.1016/S0168-1702(99)00027-1 – year: 2002 ident: ref35 – volume: 106 start-page: 286 year: 2009 ident: ref2 article-title: Changes in H5N1 influenza virus hemagglutinin receptor binding domain affect systemic spread. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0811052106 – volume: 1 start-page: 982 year: 2008 ident: ref27 article-title: Combining the polymerase incomplete primer extension method for cloning and mutagenesis with microscreening to accelerate structural genomics efforts. publication-title: Proteins doi: 10.1002/prot.21786 – volume: 276 start-page: 307 year: 1997 ident: ref31 article-title: Processing of X-ray Diffraction Data Collected in Oscillation Mode Methonds in Enzymology publication-title: Processing of X-ray Diffraction Data Collected in Oscillation Mode Methonds in Enzymology – volume: 64 start-page: 1808 year: 1990 ident: ref23 article-title: Direct sequencing of the HA gene of influenza (H3N2) virus in original clinical samples reveals sequence identity with mammalian cell-grown virus. publication-title: J Virol doi: 10.1128/JVI.64.4.1808-1811.1990 – volume: 81 start-page: 30 year: 2007 ident: ref15 article-title: Contributions of two nuclear localization signals of influenza A virus nucleoprotein to viral replication. publication-title: J Virol doi: 10.1128/JVI.01434-06 – volume: 96 start-page: 9345 year: 1999 ident: ref24 article-title: Generation of influenza A viruses entirely from cloned cDNAs. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.16.9345 – volume: 325 start-page: 484 year: 2009 ident: ref18 article-title: Transmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and mice. publication-title: Science doi: 10.1126/science.1177238 – volume: 67 start-page: 1761 year: 1993 ident: ref4 article-title: A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. publication-title: J Virol doi: 10.1128/JVI.67.4.1761-1764.1993 – volume: 401 start-page: 1 year: 2010 ident: ref17 article-title: Substitution of lysine at 627 position in PB2 protein does not change virulence of the 2009 pandemic H1N1 virus in mice. publication-title: Virology doi: 10.1016/j.virol.2010.02.024 – reference: 18004753 - Proteins. 2008 May 1;71(2):982-94 – reference: 14745020 - Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1356-61 – reference: 18692771 - Cell Host Microbe. 2008 Aug 14;4(2):111-22 – reference: 19383142 - BMC Biotechnol. 2009 Apr 21;9:36 – reference: 15299926 - Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55 – reference: 19525932 - Nature. 2009 Jun 18;459(7249):931-9 – reference: 19672242 - Nature. 2009 Aug 20;460(7258):1021-5 – reference: 10430945 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9345-50 – reference: 19793811 - J Virol. 2009 Dec;83(24):13015-8 – reference: 18769709 - PLoS Pathog. 2008 Aug 29;4(8):e1000136 – reference: 19995968 - Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21312-6 – reference: 19144639 - J Biol Chem. 2009 Mar 13;284(11):6855-60 – reference: 16140781 - J Virol. 2005 Sep;79(18):12058-64 – reference: 11333926 - J Virol. 2001 Jun;75(11):5410-5 – reference: 10094048 - Nature. 1999 Mar 18;398(6724):246-51 – reference: 15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 – reference: 19211790 - Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3366-71 – reference: 15299374 - Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3 – reference: 10426210 - Virus Res. 1999 May;61(1):63-76 – reference: 19264775 - J Virol. 2009 May;83(10):5278-81 – reference: 20130063 - J Virol. 2010 Apr;84(8):3752-8 – reference: 19116267 - Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):286-91 – reference: 8445709 - J Virol. 1993 Apr;67(4):1761-4 – reference: 19574347 - Science. 2009 Jul 24;325(5939):484-7 – reference: 20303563 - Virology. 2010 May 25;401(1):1-5 – reference: 19383143 - BMC Biotechnol. 2009 Apr 21;9:37 – reference: 2319652 - J Virol. 1990 Apr;64(4):1808-11 – reference: 11546875 - Science. 2001 Sep 7;293(5536):1840-2 – reference: 19574348 - Science. 2009 Jul 24;325(5939):481-3 – reference: 10882122 - Mol Cell. 2000 May;5(5):865-76 – reference: 19119420 - PLoS Pathog. 2009 Jan;5(1):e1000252 – reference: 19594426 - Infect Disord Drug Targets. 2009 Nov;9(5):493-506 – reference: 17050598 - J Virol. 2007 Jan;81(1):30-41 – reference: 27754618 - Methods Enzymol. 1997;276:307-26 |
SSID | ssj0041316 |
Score | 2.4676116 |
Snippet | Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of... Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1001034 |
SubjectTerms | Amino acids Amino Acids - chemistry Animals Birds Crystallography, X-Ray Genetic aspects Host-virus relationships Humans Influenza A Virus, H1N1 Subtype - genetics Influenza A Virus, H1N1 Subtype - pathogenicity Influenza A Virus, H1N1 Subtype - physiology Influenza virus Influenza viruses Pandemics Physiological aspects Protein Structure, Quaternary Proteins Viral Proteins - chemistry Viral Proteins - genetics Virology Virology/Animal Models of Infection Virology/Mechanisms of Resistance and Susceptibility, including Host Genetics Virology/Viral and Gene Regulation Virology/Virulence Factors and Mechanisms Virulence - genetics Virus Replication |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9cwEA_yhYEv4vy1uilBBJ_q2iZtksc5HFNwD-pg4ENI00QLsy3r9zvQv967pN-yiroXoZTSXAu5u1zuyN3nCHlZqlI54-uUVY6n3OUuVb7BSi7ZyKZwVgSQpA9n1ek5f39RXtxo9YU5YREeODLuUHonbA1qVim4c28YZ47xuhC5x_-j9YU9bxtMRRsMljk0PcWmOKlgVTUVzTGRH04yej0MZh0QiDLGF5tSwO6fLfRquOzHP7mfv2dR3tiWTu6Te5M_SY_iPHbJHdc9IDuxw-SPh-RLfEJJUNM1NMLFItQGtTNUc6zEpL2nhmLRR2oaM2A6NDXf266nxrYNbTu4QkOTn4Zet1eb8RE5P3n7-fg0nfoppBbcwnUKrp40pZdeOlELkXOrcteUuQQXypZSZc6Av1EpV1inDFjJkrlGgYPReBC1qtljsur6zu0RqjKfq9pLRKCCANtKrDpEfUD3B7ifELZlqLYT2Dj2vLjU4QRNQNAR-aNRDHoSQ0LS-ashgm3cQv8GZTXTIlR2eAEKpCcF0rcpUEJeoKQ1gmF0mG3z1WzGUb_7dKaPEN6uUMCavxJ9XBC9moh8D5O1ZqpwAJYhyNaC8mBBCUvaLob3UOu2cx51jsfBEFnKLCF0q4kav8IUuc71m1EHGCHBSv4PEuzmA_GlSMiTqLsz64oM-xxwGBELrV7wdjnStd8CHHkBEYYU6un_EMY-uRvTMzDD8oCsYFG4Z-D1revnYYH_Aiw1VHo priority: 102 providerName: Directory of Open Access Journals |
Title | Biological and Structural Characterization of a Host-Adapting Amino Acid in Influenza Virus |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20700447 https://www.proquest.com/docview/748937354 https://www.proquest.com/docview/755137687 https://pubmed.ncbi.nlm.nih.gov/PMC2916879 https://doaj.org/article/8fe7cb48869b484fa343e34b271f36e4 http://dx.doi.org/10.1371/journal.ppat.1001034 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdtymAvY9_N1gUxBntyiW3Zkh7GaEdLN2gY3QKBPQhZltpAZntxMtb99buTP5hHuw1MMNEpoNNJuovufj9CXiUykVa7LIhTywJmQxtIl2Mll8hFHlnDPUjS-Sw9m7MPi2SxQzrO1laB9Y2hHfJJzderwx_frt_Cgn_jWRt42HU6rCq98ZhC05jtkj04mzgu1XPW3yvAju3JUJEsJ-BxmrbFdLf9yuCw8pj-_c49qlZlfZNb-md25W_H1el9cq_1M-lRYxgPyI4tHpI7DfPk9SPypXnDGaK6yGkDI4sQHNT0EM5NhSYtHdUUi0ECnesK06Sp_rosSqrNMqfLAh5PdPJT0-_L9bZ-TOanJ5_fnQUtz0JgwF3cBOACCp044YTlGechMzK0eRIKcK1MIuTUavBDUmkjY6WG3TOJbS7B8cgdmIDM4idkVJSF3SdUTl0oMycQmQoCbyOwGhHtBN0i0P6YxJ1ClWlByJELY6X8zRqHYKTRj8JpUO00jEnQ96oaEI5_yB_jXPWyCKHtvyjXl6pdkUo4y00G-1cq4ZM5HbPYxiyLeOjQcMfkJc60QpCMArNwLvW2rtX7TzN1hLB3kQTV3Cp0MRB63Qq5EgZrdFv5ACpD8K2B5MFAEpa6GTTvo9V1Y65ViNfEEHGK6ZjQzhIV9sLUucKW21p5eCEeJ-wvIsjyA3EnH5Onje32qoumyH_AoIUPrHqg22FLsbzyMOURRB6Cy2f_Pfrn5G6Tm4HplQdkBJZvX4DLt8kmZJcv-ITsHZ_MPl5M_B8nE7-yfwHin1mE |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biological+and+structural+characterization+of+a+host-adapting+amino+acid+in+influenza+virus&rft.jtitle=PLoS+pathogens&rft.au=Yamada%2C+Shinya&rft.au=Hatta%2C+Masato&rft.au=Staker%2C+Bart+L&rft.au=Watanabe%2C+Shinji&rft.date=2010-08-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.volume=6&rft.issue=8&rft_id=info:doi/10.1371%2Fjournal.ppat.1001034&rft.externalDocID=A236729589 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |