Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk

Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with susceptibility to atherosclerotic vascular disease (ASVD). Although this locus encodes three well-characterized tumor suppressors, p16(INK4a), p15(INK...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 6; no. 12; p. e1001233
Main Authors Burd, Christin E, Jeck, William R, Liu, Yan, Sanoff, Hanna K, Wang, Zefeng, Sharpless, Norman E
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.12.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with susceptibility to atherosclerotic vascular disease (ASVD). Although this locus encodes three well-characterized tumor suppressors, p16(INK4a), p15(INK4b), and ARF, the SNPs most strongly associated with ASVD are ∼120 kb from the nearest coding gene within a long non-coding RNA (ncRNA) known as ANRIL (CDKN2BAS). While individuals homozygous for the atherosclerotic risk allele show decreased expression of ANRIL and the coding INK4/ARF transcripts, the mechanism by which such distant genetic variants influence INK4/ARF expression is unknown. Here, using rapid amplification of cDNA ends (RACE) and analysis of next-generation RNA sequencing datasets, we determined the structure and abundance of multiple ANRIL species. Each of these species was present at very low copy numbers in primary and cultured cells; however, only the expression of ANRIL isoforms containing exons proximal to the INK4/ARF locus correlated with the ASVD risk alleles. Surprisingly, RACE also identified transcripts containing non-colinear ANRIL exonic sequences, whose expression also correlated with genotype and INK4/ARF expression. These non-polyadenylated RNAs resisted RNAse R digestion and could be PCR amplified using outward-facing primers, suggesting they represent circular RNA structures that could arise from by-products of mRNA splicing. Next-generation DNA sequencing and splice prediction algorithms identified polymorphisms within the ASVD risk interval that may regulate ANRIL splicing and circular ANRIL (cANRIL) production. These results identify novel circular RNA products emanating from the ANRIL locus and suggest causal variants at 9p21.3 regulate INK4/ARF expression and ASVD risk by modulating ANRIL expression and/or structure.
AbstractList Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with susceptibility to atherosclerotic vascular disease (ASVD). Although this locus encodes three well-characterized tumor suppressors, p16 INK4a , p15 INK4b , and ARF , the SNPs most strongly associated with ASVD are ∼120 kb from the nearest coding gene within a long non-coding RNA (ncRNA) known as ANRIL ( CDKN2BAS ). While individuals homozygous for the atherosclerotic risk allele show decreased expression of ANRIL and the coding INK4/ARF transcripts, the mechanism by which such distant genetic variants influence INK4/ARF expression is unknown. Here, using rapid amplification of cDNA ends (RACE) and analysis of next-generation RNA sequencing datasets, we determined the structure and abundance of multiple ANRIL species. Each of these species was present at very low copy numbers in primary and cultured cells; however, only the expression of ANRIL isoforms containing exons proximal to the INK4/ARF locus correlated with the ASVD risk alleles. Surprisingly, RACE also identified transcripts containing non-colinear ANRIL exonic sequences, whose expression also correlated with genotype and INK4/ARF expression. These non-polyadenylated RNAs resisted RNAse R digestion and could be PCR amplified using outward-facing primers, suggesting they represent circular RNA structures that could arise from by-products of mRNA splicing. Next-generation DNA sequencing and splice prediction algorithms identified polymorphisms within the ASVD risk interval that may regulate ANRIL splicing and circular ANRIL ( cANRIL ) production. These results identify novel circular RNA products emanating from the ANRIL locus and suggest causal variants at 9p21.3 regulate INK4/ARF expression and ASVD risk by modulating ANRIL expression and/or structure. Unbiased studies of the human genome have identified strong genetic determinants of atherosclerotic vascular disease (ASVD) on chromosome 9p21.3. This region of the genome does not encode genes previously linked to ASVD, but does contain the INK4/ARF tumor suppressor locus. Products of the INK4/ARF locus regulate cell division, a process thought to be important in ASVD pathology. We and others have suggested that genetic variants in 9p21.3 influence INK4/ARF gene expression; however, the mechanisms by which these distant polymorphisms (>100,000 bp away) influence transcription of the locus is unknown. The ASVD–associated genetic variants lie within the predicted structure of a non-coding RNA (ncRNA) called ANRIL . Based upon recent work suggesting that other ncRNAs can repress nearby coding genes, we considered the possibility that ANRIL structure may regulate INK4/ARF gene expression. Coupling molecular analysis with state-of-the-art sequencing technologies in a wide variety of cell types from normal human donors and cancer cells, we found that ANRIL encodes a heterogeneous species of rare RNA transcripts. Moreover, we identified novel, circular ANRIL isoforms ( cANRIL ) whose expression correlated with INK4/ARF transcription and ASVD risk. These studies suggest a new model wherein ANRIL structure influences INK4/ARF expression and susceptibility to atherosclerosis.
Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with susceptibility to atherosclerotic vascular disease (ASVD). Although this locus encodes three well-characterized tumor suppressors, p16INK4a, p15INK4b, and ARF, the SNPs most strongly associated with ASVD are similar to 120 kb from the nearest coding gene within a long non-coding RNA (ncRNA) known as ANRIL (CDKN2BAS). While individuals homozygous for the atherosclerotic risk allele show decreased expression of ANRIL and the coding INK4/ARF transcripts, the mechanism by which such distant genetic variants influence INK4/ARF expression is unknown. Here, using rapid amplification of cDNA ends (RACE) and analysis of next-generation RNA sequencing datasets, we determined the structure and abundance of multiple ANRIL species. Each of these species was present at very low copy numbers in primary and cultured cells; however, only the expression of ANRIL isoforms containing exons proximal to the INK4/ARF locus correlated with the ASVD risk alleles. Surprisingly, RACE also identified transcripts containing non-colinear ANRIL exonic sequences, whose expression also correlated with genotype and INK4/ARF expression. These non-polyadenylated RNAs resisted RNAse R digestion and could be PCR amplified using outward-facing primers, suggesting they represent circular RNA structures that could arise from by-products of mRNA splicing. Next-generation DNA sequencing and splice prediction algorithms identified polymorphisms within the ASVD risk interval that may regulate ANRIL splicing and circular ANRIL (cANRIL) production. These results identify novel circular RNA products emanating from the ANRIL locus and suggest causal variants at 9p21.3 regulate INK4/ARF expression and ASVD risk by modulating ANRIL expression and/or structure. Unbiased studies of the human genome have identified strong genetic determinants of atherosclerotic vascular disease (ASVD) on chromosome 9p21.3. This region of the genome does not encode genes previously linked to ASVD, but does contain the INK4/ARF tumor suppressor locus. Products of the INK4/ARF locus regulate cell division, a process thought to be important in ASVD pathology. We and others have suggested that genetic variants in 9p21.3 influence INK4/ARF gene expression; however, the mechanisms by which these distant polymorphisms (>100,000 bp away) influence transcription of the locus is unknown. The ASVD-associated genetic variants lie within the predicted structure of a non-coding RNA (ncRNA) called ANRIL. Based upon recent work suggesting that other ncRNAs can repress nearby coding genes, we considered the possibility that ANRIL structure may regulate INK4/ARF gene expression. Coupling molecular analysis with state-of-the-art sequencing technologies in a wide variety of cell types from normal human donors and cancer cells, we found that ANRIL encodes a heterogeneous species of rare RNA transcripts. Moreover, we identified novel, circular ANRIL isoforms (cANRIL) whose expression correlated with INK4/ARF transcription and ASVD risk. These studies suggest a new model wherein ANRIL structure influences INK4/ARF expression and susceptibility to atherosclerosis.
Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with susceptibility to atherosclerotic vascular disease (ASVD). Although this locus encodes three well-characterized tumor suppressors, p16(INK4a), p15(INK4b), and ARF, the SNPs most strongly associated with ASVD are ∼120 kb from the nearest coding gene within a long non-coding RNA (ncRNA) known as ANRIL (CDKN2BAS). While individuals homozygous for the atherosclerotic risk allele show decreased expression of ANRIL and the coding INK4/ARF transcripts, the mechanism by which such distant genetic variants influence INK4/ARF expression is unknown. Here, using rapid amplification of cDNA ends (RACE) and analysis of next-generation RNA sequencing datasets, we determined the structure and abundance of multiple ANRIL species. Each of these species was present at very low copy numbers in primary and cultured cells; however, only the expression of ANRIL isoforms containing exons proximal to the INK4/ARF locus correlated with the ASVD risk alleles. Surprisingly, RACE also identified transcripts containing non-colinear ANRIL exonic sequences, whose expression also correlated with genotype and INK4/ARF expression. These non-polyadenylated RNAs resisted RNAse R digestion and could be PCR amplified using outward-facing primers, suggesting they represent circular RNA structures that could arise from by-products of mRNA splicing. Next-generation DNA sequencing and splice prediction algorithms identified polymorphisms within the ASVD risk interval that may regulate ANRIL splicing and circular ANRIL (cANRIL) production. These results identify novel circular RNA products emanating from the ANRIL locus and suggest causal variants at 9p21.3 regulate INK4/ARF expression and ASVD risk by modulating ANRIL expression and/or structure.
  Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with susceptibility to atherosclerotic vascular disease (ASVD). Although this locus encodes three well-characterized tumor suppressors, p16INK4a, p15INK4b, and ARF, the SNPs most strongly associated with ASVD are ~120 kb from the nearest coding gene within a long non-coding RNA (ncRNA) known as ANRIL (CDKN2BAS). While individuals homozygous for the atherosclerotic risk allele show decreased expression of ANRIL and the coding INK4/ARF transcripts, the mechanism by which such distant genetic variants influence INK4/ARF expression is unknown. Here, using rapid amplification of cDNA ends (RACE) and analysis of next-generation RNA sequencing datasets, we determined the structure and abundance of multiple ANRIL species. Each of these species was present at very low copy numbers in primary and cultured cells; however, only the expression of ANRIL isoforms containing exons proximal to the INK4/ARF locus correlated with the ASVD risk alleles. Surprisingly, RACE also identified transcripts containing non-colinear ANRIL exonic sequences, whose expression also correlated with genotype and INK4/ARF expression. These non-polyadenylated RNAs resisted RNAse R digestion and could be PCR amplified using outward-facing primers, suggesting they represent circular RNA structures that could arise from by-products of mRNA splicing. Next-generation DNA sequencing and splice prediction algorithms identified polymorphisms within the ASVD risk interval that may regulate ANRIL splicing and circular ANRIL (cANRIL) production. These results identify novel circular RNA products emanating from the ANRIL locus and suggest causal variants at 9p21.3 regulate INK4/ARF expression and ASVD risk by modulating ANRIL expression and/or structure.
Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with susceptibility to atherosclerotic vascular disease (ASVD). Although this locus encodes three well-characterized tumor suppressors, [p16.sup.INK4a], [p15.sup.INK4b], and ARF, the SNPs most strongly associated with ASVD are ~120 kb from the nearest coding gene within a long non-coding RNA (ncRNA) known as ANRIL (CDKN2BAS). While individuals homozygous for the atherosclerotic risk allele show decreased expression of ANRIL and the coding INK4/ARF transcripts, the mechanism by which such distant genetic variants influence INK4/ARF expression is unknown. Here, using rapid amplification of cDNA ends (RACE) and analysis of next-generation RNA sequencing datasets, we determined the structure and abundance of multiple ANRIL species. Each of these species was present at very low copy numbers in primary and cultured cells; however, only the expression of ANRIL isoforms containing exons proximal to the INK4/ARF locus correlated with the ASVD risk alleles. Surprisingly, RACE also identified transcripts containing non- colinear ANRIL exonic sequences, whose expression also correlated with genotype and INK4/ARF expression. These non- polyadenylated RNAs resisted RNAse R digestion and could be PCR amplified using outward-facing primers, suggesting they represent circular RNA structures that could arise from by-products of mRNA splicing. Next-generation DNA sequencing and splice prediction algorithms identified polymorphisms within the ASVD risk interval that may regulate ANRIL splicing and circular ANRIL (cANRIL) production. These results identify novel circular RNA products emanating from the ANRIL locus and suggest causal variants at 9p21.3 regulate INK4/ARF expression and ASVD risk by modulating ANRIL expression and/or structure.
Audience Academic
Author Liu, Yan
Jeck, William R
Sanoff, Hanna K
Sharpless, Norman E
Wang, Zefeng
Burd, Christin E
AuthorAffiliation 5 Department of Medicine, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
1 The Curriculum in Toxicology, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
2 Department of Genetics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
Stanford, United States of America
3 The Division of Hematology and Oncology, University of Virginia, Charlottesville, Virginia, United States of America
4 Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
AuthorAffiliation_xml – name: 1 The Curriculum in Toxicology, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
– name: 3 The Division of Hematology and Oncology, University of Virginia, Charlottesville, Virginia, United States of America
– name: 2 Department of Genetics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
– name: 4 Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
– name: 5 Department of Medicine, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
– name: Stanford, United States of America
Author_xml – sequence: 1
  givenname: Christin E
  surname: Burd
  fullname: Burd, Christin E
  organization: The Curriculum in Toxicology, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
– sequence: 2
  givenname: William R
  surname: Jeck
  fullname: Jeck, William R
– sequence: 3
  givenname: Yan
  surname: Liu
  fullname: Liu, Yan
– sequence: 4
  givenname: Hanna K
  surname: Sanoff
  fullname: Sanoff, Hanna K
– sequence: 5
  givenname: Zefeng
  surname: Wang
  fullname: Wang, Zefeng
– sequence: 6
  givenname: Norman E
  surname: Sharpless
  fullname: Sharpless, Norman E
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21151960$$D View this record in MEDLINE/PubMed
BookMark eNqVk11v0zAUhiM0xLbCP0AQCQnERTo7dpr4BqmaNqiYOql83FqOfZJ6uHaxkzHEn8eh3dRIXIAiJdbx87459jnnNDmyzkKSPMdoikmJz25c760w020LdooRwjkhj5ITXBQkKymiRwfr4-Q0hBuESFGx8klynGNcYDZDJ8mvi7uthxC0s6lrUqMtCJ8Kq1LrbsGkUnvZmxhqnN-EARE2XSw_0rP56jITITipRQcDbjPplLZtulrOU-m8BxN3QvpDd-tUdGvwLkgzvHVIvQ7fniaPG2ECPNt_J8mXy4vP5x-yq-v3i_P5VSZLxroMU5rPClVTXJe4iWcqJZKSSKSwqHEhlBAVQk0hKTSIiYrWtYoC1lS0UbUiZJK83PlujQt8f2-BY4JJwUjURmKxI5QTN3zr9Ub4n9wJzf8EnG-58J2O2XMgilQCQOASUyIJAwagaMEwJnmZ59Hr3f5vfb0BJcF2XpiR6XjH6jVv3S3PGZsRQqPBm72Bd997CB3f6CDBGGHB9YFXJY21K2L2k-TVjmxFzEzbxkVDOdB8ntOiqgqKh-NP_0LFR8FGy9hUjY7xkeDtSBCZDu66VvQh8MWn1X-wy39nr7-O2dcH7BqE6dbBmb6LjRrGIN2BMjZW8NA83DRGfBiU-4LzYVD4flCi7MVhlR5E95NBfgNSYBAU
CitedBy_id crossref_primary_10_1002_jcla_23727
crossref_primary_10_1016_j_molcel_2013_08_017
crossref_primary_10_3892_ol_2021_13078
crossref_primary_10_1042_CS20180826
crossref_primary_10_1038_srep00303
crossref_primary_10_1016_j_tibs_2015_03_001
crossref_primary_10_1080_15476286_2015_1020271
crossref_primary_10_1155_2020_9084901
crossref_primary_10_3390_cancers15164160
crossref_primary_10_1016_j_biopha_2018_12_052
crossref_primary_10_1016_j_celrep_2014_12_002
crossref_primary_10_3389_fonc_2021_644011
crossref_primary_10_3390_biom12111586
crossref_primary_10_1161_CIRCULATIONAHA_114_011675
crossref_primary_10_1371_journal_pgen_1005893
crossref_primary_10_1371_journal_pone_0040107
crossref_primary_10_1080_07391102_2023_2241535
crossref_primary_10_1186_s12864_018_4670_5
crossref_primary_10_3389_fimmu_2019_00639
crossref_primary_10_1097_HCO_0b013e328352dfaf
crossref_primary_10_1016_j_yjmcc_2018_08_012
crossref_primary_10_3389_fpls_2019_00379
crossref_primary_10_1002_jcla_22874
crossref_primary_10_1016_j_gene_2018_01_036
crossref_primary_10_1002_jcla_22998
crossref_primary_10_1109_TCBB_2015_2418782
crossref_primary_10_1038_s41598_018_35001_6
crossref_primary_10_1152_ajpcell_00041_2020
crossref_primary_10_12688_f1000research_9511_1
crossref_primary_10_1016_j_neuint_2022_105467
crossref_primary_10_1080_15476286_2016_1220473
crossref_primary_10_1111_febs_14191
crossref_primary_10_1016_j_ecoenv_2023_115778
crossref_primary_10_1016_j_envres_2019_108825
crossref_primary_10_1186_s13148_019_0610_8
crossref_primary_10_1016_j_omtn_2019_11_023
crossref_primary_10_1371_journal_pone_0090859
crossref_primary_10_1007_s00018_015_1990_3
crossref_primary_10_1016_j_ncrna_2024_03_012
crossref_primary_10_1016_j_omtn_2020_06_022
crossref_primary_10_1186_s13048_019_0558_5
crossref_primary_10_1093_nar_gkw075
crossref_primary_10_1080_15476286_2020_1771519
crossref_primary_10_1038_nbt_2890
crossref_primary_10_1002_jcla_24716
crossref_primary_10_1261_rna_048272_114
crossref_primary_10_3390_ijms19051343
crossref_primary_10_1016_j_atherosclerosis_2011_12_013
crossref_primary_10_3389_fgene_2021_668313
crossref_primary_10_1007_s00415_024_12263_x
crossref_primary_10_1042_BST20170469
crossref_primary_10_2174_1567205017666201111114928
crossref_primary_10_1016_j_lfs_2020_118756
crossref_primary_10_1016_j_semcancer_2018_12_002
crossref_primary_10_1016_j_bbamcr_2016_11_005
crossref_primary_10_1093_bib_bbz080
crossref_primary_10_1002_jcla_23860
crossref_primary_10_3390_ijms21103666
crossref_primary_10_1159_000515807
crossref_primary_10_1155_2017_4587698
crossref_primary_10_1186_s13073_015_0162_2
crossref_primary_10_1007_s11596_017_1812_y
crossref_primary_10_3389_fphar_2020_560537
crossref_primary_10_1007_s00018_017_2688_5
crossref_primary_10_1038_emboj_2011_359
crossref_primary_10_1371_journal_pgen_1003201
crossref_primary_10_3390_ncrna1030266
crossref_primary_10_1139_cjpp_2018_0505
crossref_primary_10_1002_2211_5463_12741
crossref_primary_10_1007_s10555_017_9718_5
crossref_primary_10_3389_fonc_2019_00885
crossref_primary_10_1016_j_ncrna_2018_05_002
crossref_primary_10_1016_j_tig_2015_03_007
crossref_primary_10_1016_j_ymthe_2019_07_001
crossref_primary_10_3892_mmr_2019_10011
crossref_primary_10_3389_fvets_2023_1040419
crossref_primary_10_1007_s13258_022_01268_3
crossref_primary_10_1186_s13046_021_01896_9
crossref_primary_10_3390_ijms23063074
crossref_primary_10_1016_j_ijbiomac_2023_128182
crossref_primary_10_1186_s12967_016_0977_7
crossref_primary_10_1038_srep39918
crossref_primary_10_1186_s12859_022_04976_5
crossref_primary_10_1007_s00432_023_04974_x
crossref_primary_10_1016_j_yexcr_2024_114014
crossref_primary_10_1186_s12943_019_1041_z
crossref_primary_10_18632_oncotarget_2770
crossref_primary_10_1080_2159256X_2015_1045682
crossref_primary_10_1016_j_cej_2024_149788
crossref_primary_10_3349_ymj_2019_60_7_651
crossref_primary_10_18632_aging_101541
crossref_primary_10_1016_j_ymeth_2021_04_002
crossref_primary_10_3389_fcvm_2021_806988
crossref_primary_10_1016_j_jacc_2011_01_053
crossref_primary_10_1080_15476286_2017_1360467
crossref_primary_10_1007_s11010_022_04455_8
crossref_primary_10_1186_s11658_021_00258_9
crossref_primary_10_1177_1010428317704175
crossref_primary_10_18632_oncotarget_11087
crossref_primary_10_1016_j_ncrna_2024_04_002
crossref_primary_10_3390_jcdd8120170
crossref_primary_10_1007_s11886_014_0479_2
crossref_primary_10_1038_srep35576
crossref_primary_10_1093_bfgp_ely031
crossref_primary_10_1016_j_ecoenv_2019_03_076
crossref_primary_10_1016_j_cca_2016_12_029
crossref_primary_10_4155_pbp_14_28
crossref_primary_10_1039_C8MO00252E
crossref_primary_10_1155_2017_5135781
crossref_primary_10_2174_0929867329666211230104955
crossref_primary_10_1161_CIRCRESAHA_116_302521
crossref_primary_10_1186_s12864_018_4660_7
crossref_primary_10_7554_eLife_69148
crossref_primary_10_1016_j_omtn_2017_07_014
crossref_primary_10_1007_s11033_020_05368_9
crossref_primary_10_18632_oncotarget_16881
crossref_primary_10_1016_j_molimm_2017_08_008
crossref_primary_10_1007_s12035_018_0903_5
crossref_primary_10_1111_jcmm_18093
crossref_primary_10_1016_j_bbrc_2017_10_068
crossref_primary_10_1016_j_lfs_2019_117176
crossref_primary_10_3390_genes9110536
crossref_primary_10_5551_jat_28126
crossref_primary_10_1016_j_ymben_2019_01_002
crossref_primary_10_1016_j_bbcan_2018_06_002
crossref_primary_10_1016_j_ymthe_2017_05_022
crossref_primary_10_1016_j_ijcha_2018_09_006
crossref_primary_10_3892_ol_2018_9863
crossref_primary_10_3389_fgene_2018_00647
crossref_primary_10_3892_ol_2017_7348
crossref_primary_10_1080_15476286_2015_1122164
crossref_primary_10_1016_j_ygeno_2021_04_022
crossref_primary_10_1186_s12935_020_01349_x
crossref_primary_10_1002_jcla_22333
crossref_primary_10_2174_1574892818666221207115016
crossref_primary_10_1016_j_canlet_2017_11_034
crossref_primary_10_1002_jcla_23788
crossref_primary_10_1007_s40291_019_00427_9
crossref_primary_10_1177_1535370216636718
crossref_primary_10_3390_ijms15069331
crossref_primary_10_1016_j_cyto_2019_154932
crossref_primary_10_3390_genes10020090
crossref_primary_10_1016_j_ncrna_2018_04_002
crossref_primary_10_1080_15384047_2018_1480889
crossref_primary_10_1016_j_jacl_2017_03_009
crossref_primary_10_3389_fgene_2021_665233
crossref_primary_10_3389_fmolb_2021_649105
crossref_primary_10_1371_journal_pgen_1003368
crossref_primary_10_1080_22221751_2023_2261558
crossref_primary_10_3390_jcm12134446
crossref_primary_10_1038_s41581_021_00465_9
crossref_primary_10_1186_s40246_019_0240_4
crossref_primary_10_1016_j_mcp_2020_101539
crossref_primary_10_1016_j_vph_2018_06_004
crossref_primary_10_3892_ol_2017_7118
crossref_primary_10_1016_j_pharmthera_2020_107715
crossref_primary_10_1016_j_tcb_2011_04_001
crossref_primary_10_1002_ejhf_801
crossref_primary_10_1016_j_canlet_2017_11_022
crossref_primary_10_3390_ijms222011168
crossref_primary_10_1002_jcp_28128
crossref_primary_10_18632_oncotarget_12186
crossref_primary_10_1016_j_atherosclerosis_2012_12_030
crossref_primary_10_1093_bioinformatics_btz537
crossref_primary_10_1186_s10020_020_00200_3
crossref_primary_10_1016_j_biocel_2013_10_009
crossref_primary_10_1111_jcmm_16849
crossref_primary_10_1093_cvr_cvr097
crossref_primary_10_1016_j_cca_2018_01_026
crossref_primary_10_1038_emboj_2013_134
crossref_primary_10_1111_jcmm_14305
crossref_primary_10_1016_j_bbagrm_2015_07_007
crossref_primary_10_3389_fgene_2016_00053
crossref_primary_10_1042_BST20140070
crossref_primary_10_3389_fgene_2019_00205
crossref_primary_10_3390_ijms18030608
crossref_primary_10_1002_jcb_28863
crossref_primary_10_1186_s12958_019_0541_4
crossref_primary_10_1093_bfgp_elu034
crossref_primary_10_1007_s11883_013_0352_6
crossref_primary_10_1080_15476286_2017_1317911
crossref_primary_10_1016_j_biocel_2013_09_003
crossref_primary_10_18632_oncotarget_18998
crossref_primary_10_3389_fonc_2015_00306
crossref_primary_10_3390_ncrna4020013
crossref_primary_10_1016_j_gene_2020_144654
crossref_primary_10_1016_j_jid_2020_08_007
crossref_primary_10_1038_nature10600
crossref_primary_10_1039_C5MB00064E
crossref_primary_10_1016_j_brainres_2021_147702
crossref_primary_10_1038_nature11928
crossref_primary_10_1194_jlr_M041814
crossref_primary_10_1371_journal_pgen_1002654
crossref_primary_10_1111_jcmm_14436
crossref_primary_10_1016_j_bbrc_2020_06_067
crossref_primary_10_3390_ijms232213731
crossref_primary_10_1016_j_tig_2016_03_002
crossref_primary_10_1186_s40104_019_0339_4
crossref_primary_10_1080_15476286_2016_1239009
crossref_primary_10_1097_CM9_0000000000000465
crossref_primary_10_1155_2023_7738719
crossref_primary_10_3892_mmr_2019_10671
crossref_primary_10_1186_s13073_021_01002_w
crossref_primary_10_1002_jcp_28900
crossref_primary_10_1016_j_biochi_2015_05_020
crossref_primary_10_1111_jipb_13002
crossref_primary_10_5551_jat_21774
crossref_primary_10_1097_HCO_0000000000000054
crossref_primary_10_3390_genes14040895
crossref_primary_10_4093_dmj_2019_0151
crossref_primary_10_1016_j_jneuroim_2019_576971
crossref_primary_10_1016_j_prp_2017_02_011
crossref_primary_10_3390_ncrna5030044
crossref_primary_10_3389_fcell_2021_640402
crossref_primary_10_1007_s10528_022_10256_x
crossref_primary_10_1016_j_mvr_2020_103983
crossref_primary_10_1161_CIRCRESAHA_114_302692
crossref_primary_10_3390_ijms18071378
crossref_primary_10_1002_jcb_28603
crossref_primary_10_1007_s12031_020_01698_2
crossref_primary_10_1155_2021_8889569
crossref_primary_10_1016_j_ihj_2019_04_005
crossref_primary_10_1080_15384101_2018_1515553
crossref_primary_10_1038_nrm_2015_32
crossref_primary_10_1161_ATVBAHA_111_234492
crossref_primary_10_1038_s41598_018_31719_5
crossref_primary_10_1097_MOL_0b013e3283654e7c
crossref_primary_10_1016_j_bbrc_2018_04_041
crossref_primary_10_1038_srep39080
crossref_primary_10_1002_iub_1479
crossref_primary_10_1093_bioinformatics_btx129
crossref_primary_10_1016_j_canlet_2019_09_008
crossref_primary_10_1161_CIRCRESAHA_118_312497
crossref_primary_10_1111_1755_5922_12436
crossref_primary_10_3389_fphar_2023_1093175
crossref_primary_10_1016_j_gpb_2020_10_001
crossref_primary_10_3389_fgene_2021_743757
crossref_primary_10_3390_ijms151017478
crossref_primary_10_1038_s41598_017_15061_w
crossref_primary_10_1016_j_ncrna_2017_01_001
crossref_primary_10_2147_OTT_S270747
crossref_primary_10_3389_fcell_2020_00230
crossref_primary_10_1007_s11356_020_12117_9
crossref_primary_10_1016_j_prp_2022_153891
crossref_primary_10_1093_hmg_ddt156
crossref_primary_10_1111_jcpt_13060
crossref_primary_10_1155_2018_9351598
crossref_primary_10_1016_j_yexcr_2016_07_021
crossref_primary_10_3390_antiox11102021
crossref_primary_10_3892_ol_2018_9125
crossref_primary_10_3390_ncrna4030017
crossref_primary_10_1038_aps_2017_196
crossref_primary_10_1038_s41598_022_11668_w
crossref_primary_10_1186_1756_9966_32_104
crossref_primary_10_1093_pcp_pcz043
crossref_primary_10_1155_2022_8859677
crossref_primary_10_1016_j_bbagrm_2015_06_003
crossref_primary_10_2174_1389201023666220602102133
crossref_primary_10_1007_s11239_019_01998_4
crossref_primary_10_1186_s13048_020_00709_5
crossref_primary_10_1261_rna_046342_114
crossref_primary_10_1007_s40011_022_01438_z
crossref_primary_10_1038_s41598_019_54603_2
crossref_primary_10_1016_j_ygeno_2021_12_020
crossref_primary_10_1134_S1068162022020042
crossref_primary_10_1002_jcb_27346
crossref_primary_10_1186_s12935_021_01985_x
crossref_primary_10_1016_j_biopha_2022_113935
crossref_primary_10_1161_CIRCGENETICS_117_001556
crossref_primary_10_3389_fonc_2020_01526
crossref_primary_10_1038_s41598_017_00877_3
crossref_primary_10_1016_j_mgene_2021_100997
crossref_primary_10_1093_hmg_ddt299
crossref_primary_10_4161_epi_26405
crossref_primary_10_1371_journal_pgen_1003777
crossref_primary_10_1111_bcp_12987
crossref_primary_10_1007_s00018_019_03016_5
crossref_primary_10_1007_s00424_014_1479_1
crossref_primary_10_1186_s12943_021_01484_7
crossref_primary_10_1002_mc_22626
crossref_primary_10_1038_s41388_023_02780_w
crossref_primary_10_1111_andr_12874
crossref_primary_10_3390_medicina59081461
crossref_primary_10_1016_j_ajpath_2015_11_026
crossref_primary_10_1002_ctd2_206
crossref_primary_10_1038_nrn_2017_90
crossref_primary_10_1007_s12035_024_04074_y
crossref_primary_10_1016_j_vph_2021_106898
crossref_primary_10_1080_15476286_2020_1812910
crossref_primary_10_1093_nar_gkab245
crossref_primary_10_3389_fonc_2020_00663
crossref_primary_10_1016_j_smallrumres_2018_12_009
crossref_primary_10_18632_oncotarget_17488
crossref_primary_10_1155_2018_3073467
crossref_primary_10_1186_s13059_014_0571_3
crossref_primary_10_2217_pme_2016_0090
crossref_primary_10_1038_nrg_2016_114
crossref_primary_10_1038_s12276_018_0188_9
crossref_primary_10_1111_jcmm_17966
crossref_primary_10_1172_JCI66645
crossref_primary_10_1002_2211_5463_12709
crossref_primary_10_1111_pcmr_12537
crossref_primary_10_1016_j_bbadis_2017_12_040
crossref_primary_10_7717_peerj_5011
crossref_primary_10_1089_gtmb_2020_0034
crossref_primary_10_1373_clinchem_2019_305854
crossref_primary_10_5483_BMBRep_2013_46_3_171
crossref_primary_10_1016_j_tma_2019_06_001
crossref_primary_10_1016_j_canlet_2015_03_002
crossref_primary_10_2147_IJGM_S355906
crossref_primary_10_1186_s12920_021_01094_8
crossref_primary_10_3389_fgene_2014_00164
crossref_primary_10_1093_bib_bbw045
crossref_primary_10_1093_bfgp_elv059
crossref_primary_10_1038_srep22572
crossref_primary_10_1093_nar_gkv1458
crossref_primary_10_1097_MPG_0000000000001970
crossref_primary_10_1186_s13045_018_0643_z
crossref_primary_10_1016_j_vph_2018_11_006
crossref_primary_10_18632_oncotarget_18350
crossref_primary_10_1002_jez_b_22542
crossref_primary_10_1146_annurev_biochem_051410_092902
crossref_primary_10_1016_j_vph_2018_03_003
crossref_primary_10_3389_fninf_2022_859937
crossref_primary_10_1371_journal_pcbi_1008338
crossref_primary_10_1007_s00223_018_0426_0
crossref_primary_10_1007_s10577_013_9391_7
crossref_primary_10_3389_fendo_2018_00405
crossref_primary_10_3389_fgene_2019_00603
crossref_primary_10_2217_fon_2020_0470
crossref_primary_10_1016_j_cca_2017_01_025
crossref_primary_10_3390_ijms23105369
crossref_primary_10_3390_molecules27123682
crossref_primary_10_3892_ol_2019_9970
crossref_primary_10_1093_nar_gkr1009
crossref_primary_10_1002_jcla_23049
crossref_primary_10_1016_j_jns_2017_08_011
crossref_primary_10_1038_s41388_019_1092_z
crossref_primary_10_1016_j_ncrna_2022_11_002
crossref_primary_10_1016_j_mad_2018_11_002
crossref_primary_10_4236_abb_2015_66043
crossref_primary_10_2174_1566524020666200129142106
crossref_primary_10_1111_tan_12227
crossref_primary_10_1016_j_lfs_2019_116571
crossref_primary_10_3389_fmolb_2017_00038
crossref_primary_10_5897_AJB2018_16471
crossref_primary_10_1002_jcb_29446
crossref_primary_10_1186_s12935_020_01245_4
crossref_primary_10_11569_wcjd_v28_i11_417
crossref_primary_10_1080_10641963_2016_1273944
crossref_primary_10_18632_oncotarget_21748
crossref_primary_10_1093_nar_gkae465
crossref_primary_10_1111_acel_12870
crossref_primary_10_1158_2159_8290_CD_11_0209
crossref_primary_10_4103_0366_6999_147824
crossref_primary_10_3390_ijms19061734
crossref_primary_10_1016_j_bcp_2023_115627
crossref_primary_10_1161_CIRCRESAHA_115_306464
crossref_primary_10_1080_00207454_2016_1236382
crossref_primary_10_1186_1480_9222_16_11
crossref_primary_10_3390_ijms24054571
crossref_primary_10_1016_j_canlet_2021_02_004
crossref_primary_10_1016_j_jacc_2015_12_051
crossref_primary_10_1007_s12041_023_01442_w
crossref_primary_10_1158_0008_5472_CAN_16_2634
crossref_primary_10_1007_s13238_015_0202_0
crossref_primary_10_1371_journal_pgen_1010429
crossref_primary_10_1016_j_molcel_2018_06_034
crossref_primary_10_3389_fgene_2020_527484
crossref_primary_10_3389_fgene_2021_642969
crossref_primary_10_1038_s41598_017_09602_6
crossref_primary_10_15252_embj_2018100836
crossref_primary_10_1111_jcmm_15572
crossref_primary_10_1161_ATVBAHA_110_221721
crossref_primary_10_1016_j_tibtech_2019_07_008
crossref_primary_10_3892_ijmm_2019_4441
crossref_primary_10_1111_1471_0528_13897
crossref_primary_10_1586_erm_12_134
crossref_primary_10_1177_1535370218822988
crossref_primary_10_1186_s12859_016_0881_4
crossref_primary_10_18632_oncotarget_19228
crossref_primary_10_1007_s12031_021_01889_5
crossref_primary_10_1038_s41431_018_0210_7
crossref_primary_10_1007_s12282_017_0793_9
crossref_primary_10_1093_cvr_cvz203
crossref_primary_10_1684_ejd_2018_3483
crossref_primary_10_3389_fgene_2022_810974
crossref_primary_10_3390_cancers12102975
crossref_primary_10_3892_ol_2022_13492
crossref_primary_10_1007_s11102_014_0554_0
crossref_primary_10_1016_j_margen_2016_12_004
crossref_primary_10_3892_mmr_2015_4264
crossref_primary_10_1002_jcb_28212
crossref_primary_10_1002_jcb_28333
crossref_primary_10_3389_fcimb_2018_00255
crossref_primary_10_3390_cells9091934
crossref_primary_10_1038_s41419_024_06782_8
crossref_primary_10_3389_fcvm_2019_00091
crossref_primary_10_1038_srep40342
crossref_primary_10_1080_14737159_2020_1826313
crossref_primary_10_1186_s43066_024_00345_4
crossref_primary_10_1161_CIRCGENETICS_115_001294
crossref_primary_10_1007_s12035_016_0213_8
crossref_primary_10_1016_j_lfs_2019_116785
crossref_primary_10_1093_hmg_dds224
crossref_primary_10_1111_nph_13585
crossref_primary_10_1146_annurev_cellbio_120420_125117
crossref_primary_10_1093_database_bay044
crossref_primary_10_1186_s13046_017_0624_z
crossref_primary_10_1371_journal_pcbi_1007568
crossref_primary_10_1155_2022_2371401
crossref_primary_10_3389_fgene_2020_00659
crossref_primary_10_1002_jcp_28817
crossref_primary_10_1080_21655979_2021_1953214
crossref_primary_10_3389_fcell_2022_948256
crossref_primary_10_1111_jcmm_15150
crossref_primary_10_3892_ijo_2017_4162
crossref_primary_10_1016_j_gendis_2020_07_012
crossref_primary_10_1016_j_preteyeres_2024_101247
crossref_primary_10_1136_jmedgenet_2016_103758
crossref_primary_10_1016_j_advms_2021_11_001
crossref_primary_10_3389_fgene_2022_1049786
crossref_primary_10_3892_or_2015_3904
crossref_primary_10_1172_JCI70960
crossref_primary_10_1177_25168657231213195
crossref_primary_10_3390_biology11101451
crossref_primary_10_3892_or_2017_5415
crossref_primary_10_1016_j_intimp_2023_110938
crossref_primary_10_1186_s12920_020_00817_7
crossref_primary_10_1016_j_atherosclerosis_2020_02_017
crossref_primary_10_1161_CIRCULATIONAHA_112_136556
crossref_primary_10_1038_s41388_018_0369_y
crossref_primary_10_1080_15384101_2020_1831253
crossref_primary_10_1007_s12031_018_1125_z
crossref_primary_10_1016_j_canlet_2018_01_011
crossref_primary_10_1038_s41598_024_51715_2
crossref_primary_10_1161_CIRCRESAHA_113_302988
crossref_primary_10_1186_s12884_018_1774_5
crossref_primary_10_1016_j_cca_2022_03_016
crossref_primary_10_1177_1933719118759439
crossref_primary_10_1016_j_mce_2017_07_020
crossref_primary_10_18632_aging_103398
crossref_primary_10_1089_gtmb_2012_0046
crossref_primary_10_1136_jmedgenet_2018_105387
crossref_primary_10_1371_journal_pone_0105723
crossref_primary_10_1042_BSR20180365
crossref_primary_10_1016_j_jgo_2011_08_004
crossref_primary_10_4251_wjgo_v16_i5_2200
crossref_primary_10_3390_ijms140815386
crossref_primary_10_3233_THC_220131
crossref_primary_10_3389_fgene_2020_00530
crossref_primary_10_3389_fbioe_2014_00071
crossref_primary_10_1186_s12864_016_3476_6
crossref_primary_10_3389_fphys_2016_00355
crossref_primary_10_3390_cancers12092701
crossref_primary_10_1093_nar_gkx1107
crossref_primary_10_3389_fcell_2021_619329
crossref_primary_10_1161_CIRCULATIONAHA_116_023686
crossref_primary_10_3389_fnmol_2016_00025
crossref_primary_10_1261_rna_035667_112
crossref_primary_10_3390_ijms14011278
crossref_primary_10_3389_fmolb_2019_00146
crossref_primary_10_1016_j_ymthe_2023_05_003
crossref_primary_10_1016_j_thromres_2019_03_020
crossref_primary_10_7717_peerj_7602
crossref_primary_10_1186_s13148_016_0170_0
crossref_primary_10_1093_cvr_cvw250
crossref_primary_10_1007_s13105_021_00807_y
crossref_primary_10_1007_s12031_018_1211_2
crossref_primary_10_1016_j_leukres_2011_02_020
crossref_primary_10_1016_j_omtn_2023_08_017
crossref_primary_10_3389_fonc_2019_01091
crossref_primary_10_1177_1479164117722714
crossref_primary_10_3892_ol_2020_11623
crossref_primary_10_1155_2015_729463
crossref_primary_10_1186_s13148_018_0482_3
crossref_primary_10_3389_fonc_2020_01104
crossref_primary_10_1007_s13311_013_0199_0
crossref_primary_10_1902_jop_2017_170078
crossref_primary_10_1016_j_ajhg_2012_10_016
crossref_primary_10_1007_s11886_018_1055_y
crossref_primary_10_1186_s12943_019_1069_0
crossref_primary_10_1002_1878_0261_12045
crossref_primary_10_1016_j_neuroscience_2019_12_018
crossref_primary_10_3109_10409238_2013_844092
crossref_primary_10_3390_genes8120353
crossref_primary_10_2217_mmt_2016_0008
crossref_primary_10_1016_j_plantsci_2022_111278
crossref_primary_10_1038_bcj_2016_81
crossref_primary_10_1007_s13402_014_0180_x
crossref_primary_10_1007_s11010_021_04286_z
crossref_primary_10_1007_s00125_016_3967_7
crossref_primary_10_1152_physiolgenomics_00096_2018
crossref_primary_10_3390_ijms21020456
crossref_primary_10_1002_jcla_23687
crossref_primary_10_1002_wsbm_1354
crossref_primary_10_1007_s12539_021_00455_2
crossref_primary_10_1093_humupd_dms001
crossref_primary_10_1371_journal_pone_0202375
crossref_primary_10_3892_mmr_2019_9905
crossref_primary_10_1002_jcp_27384
crossref_primary_10_1016_j_hlc_2019_10_018
crossref_primary_10_1161_CIRCULATIONAHA_112_111559
crossref_primary_10_1038_jid_2015_200
crossref_primary_10_7554_eLife_07540
crossref_primary_10_1161_STROKEAHA_111_625442
crossref_primary_10_3892_ol_2017_7265
crossref_primary_10_3390_biology11091350
crossref_primary_10_1089_cbr_2018_2641
crossref_primary_10_1007_s43032_020_00219_1
crossref_primary_10_1186_s13046_018_0870_8
crossref_primary_10_1186_s40246_023_00564_7
crossref_primary_10_1080_21655979_2021_1997224
crossref_primary_10_1111_cei_13181
crossref_primary_10_3389_fcvm_2018_00047
crossref_primary_10_3390_biomedicines10040871
crossref_primary_10_1016_j_bbrc_2018_01_077
crossref_primary_10_1242_dev_128074
crossref_primary_10_3390_ijms17010132
crossref_primary_10_1016_j_canlet_2015_06_003
crossref_primary_10_3389_fcvm_2018_00028
crossref_primary_10_1097_MD_0000000000007354
crossref_primary_10_1158_0008_5472_CAN_10_4379
crossref_primary_10_1002_jcp_28201
crossref_primary_10_1016_j_bbadis_2014_03_011
crossref_primary_10_1016_j_omtn_2020_08_008
crossref_primary_10_1007_s12015_018_9841_x
crossref_primary_10_1158_1940_6207_CAPR_12_0346_T
crossref_primary_10_1007_s10517_018_4084_z
crossref_primary_10_1038_s41598_020_77080_4
crossref_primary_10_1186_s40659_020_00295_2
crossref_primary_10_1177_0394632016686985
crossref_primary_10_7717_peerj_5503
crossref_primary_10_3390_ijms25063433
crossref_primary_10_5582_irdr_2018_01013
crossref_primary_10_7717_peerj_6831
crossref_primary_10_1038_cr_2016_42
crossref_primary_10_1016_j_compbiolchem_2018_08_002
crossref_primary_10_7717_peerj_10032
crossref_primary_10_1016_j_omtn_2017_04_004
crossref_primary_10_1371_journal_pone_0030733
crossref_primary_10_1080_15476286_2016_1271524
crossref_primary_10_1007_s00109_014_1131_8
crossref_primary_10_1016_j_omtn_2019_08_026
crossref_primary_10_3390_biomedicines11112883
crossref_primary_10_1186_s12872_023_03173_3
crossref_primary_10_1007_s13277_015_3750_2
crossref_primary_10_1002_ajmg_a_38190
crossref_primary_10_18632_oncotarget_14721
crossref_primary_10_1002_wrna_1478
crossref_primary_10_3389_fcvm_2018_00145
crossref_primary_10_1007_s00395_024_01048_y
crossref_primary_10_1139_bcb_2023_0155
crossref_primary_10_1177_1010428317694546
crossref_primary_10_1016_j_lfs_2020_117837
crossref_primary_10_1089_nat_2022_0040
crossref_primary_10_3389_fcvm_2018_00022
crossref_primary_10_1016_j_ophtha_2020_05_014
crossref_primary_10_7717_peerj_13135
crossref_primary_10_1007_s12282_020_01140_w
crossref_primary_10_3390_jcm12185944
crossref_primary_10_1111_cpr_13302
crossref_primary_10_3892_ijmm_2018_3892
crossref_primary_10_1016_j_dnarep_2017_06_027
crossref_primary_10_1016_j_ekir_2018_05_012
crossref_primary_10_1038_s41401_018_0063_1
crossref_primary_10_1093_bib_bbad111
crossref_primary_10_18632_oncotarget_15719
crossref_primary_10_1158_1055_9965_EPI_20_0796
crossref_primary_10_1016_j_cell_2014_09_001
crossref_primary_10_1038_ncomms12429
crossref_primary_10_1016_j_biopha_2016_12_097
crossref_primary_10_1016_j_yjmcc_2015_10_028
crossref_primary_10_1155_2017_6218353
crossref_primary_10_1161_CIRCRESAHA_115_306319
crossref_primary_10_1210_er_2014_1034
crossref_primary_10_1016_j_cca_2015_02_018
crossref_primary_10_1016_j_bbcan_2022_188772
crossref_primary_10_1016_j_bbrc_2018_09_069
crossref_primary_10_1016_j_cell_2012_12_010
crossref_primary_10_1016_j_biopha_2017_12_015
crossref_primary_10_1016_j_biopha_2018_08_030
crossref_primary_10_1038_s41419_019_1382_y
crossref_primary_10_1261_rna_047126_114
crossref_primary_10_1007_s00122_019_03489_9
crossref_primary_10_14336_AD_2018_1128
crossref_primary_10_18632_oncotarget_24307
crossref_primary_10_1016_j_canlet_2017_03_027
crossref_primary_10_1080_15476286_2016_1227905
crossref_primary_10_1080_15476286_2016_1227904
crossref_primary_10_1007_s00592_016_0943_0
crossref_primary_10_1002_jcla_22281
crossref_primary_10_1073_pnas_1418203112
crossref_primary_10_2217_epi_2018_0002
crossref_primary_10_1016_j_gendis_2017_12_002
crossref_primary_10_1093_nar_gkaa1085
crossref_primary_10_1016_j_ebiom_2017_03_037
crossref_primary_10_1038_s41576_024_00723_z
crossref_primary_10_3389_fonc_2020_549982
crossref_primary_10_1016_j_biopha_2018_08_161
crossref_primary_10_1371_journal_pone_0039574
crossref_primary_10_1016_j_ijbiomac_2024_129658
crossref_primary_10_2217_mmt_15_30
crossref_primary_10_2217_epi_16_3
crossref_primary_10_1186_s40169_020_0256_3
crossref_primary_10_1016_j_bbrep_2023_101481
crossref_primary_10_3389_fcell_2020_584051
crossref_primary_10_2337_db17_1055
crossref_primary_10_1080_15476286_2021_1891393
crossref_primary_10_1109_TCBB_2023_3264466
crossref_primary_10_1002_wrna_1309
crossref_primary_10_18632_oncotarget_16709
crossref_primary_10_1186_s12864_024_10420_0
crossref_primary_10_1186_s12872_021_02128_w
crossref_primary_10_3390_ijms21103580
crossref_primary_10_3390_plants8090302
crossref_primary_10_1101_gad_251926_114
crossref_primary_10_1159_000500063
crossref_primary_10_1007_s00425_019_03145_y
crossref_primary_10_1080_15592294_2014_1003746
crossref_primary_10_1080_10409238_2016_1276882
crossref_primary_10_1038_nm_4179
crossref_primary_10_18632_oncotarget_24567
crossref_primary_10_2217_bmm_2016_0130
crossref_primary_10_1161_ATVBAHA_111_232678
crossref_primary_10_1186_s12575_020_00122_8
crossref_primary_10_3390_cells11081346
crossref_primary_10_1080_21691401_2019_1652187
crossref_primary_10_1158_1541_7786_MCR_13_0350
crossref_primary_10_1038_nrg3074
crossref_primary_10_1016_j_compbiolchem_2020_107287
crossref_primary_10_1007_s11427_014_4698_y
crossref_primary_10_3390_ijms23126776
crossref_primary_10_1042_BSR20180542
crossref_primary_10_1371_journal_pone_0166481
crossref_primary_10_1007_s43032_022_00937_8
crossref_primary_10_2174_1871520621666210712090721
crossref_primary_10_1093_noajnl_vdz023
crossref_primary_10_1109_TCYB_2020_3022852
crossref_primary_10_3233_CBM_170910
crossref_primary_10_1007_s10142_024_01394_z
crossref_primary_10_1016_j_ijcard_2015_04_021
crossref_primary_10_1016_j_ejim_2020_05_014
Cites_doi 10.1038/ejhg.2008.196
10.1038/nmeth.1363
10.1093/bioinformatics/btp352
10.1038/sj.onc.1203942
10.1126/science.1073774
10.1038/ng.407
10.1016/j.cell.2007.05.022
10.1016/0092-8674(91)90244-S
10.1161/ATVBAHA.109.189522
10.1093/nar/gkl151
10.1089/rej.2009.0970
10.1038/sj.emboj.7601090
10.1073/pnas.93.13.6536
10.1016/j.cell.2004.11.010
10.1101/gad.1742609
10.1161/STROKEAHA.107.502963
10.1016/j.devcel.2008.08.015
10.1371/journal.pone.0005027
10.1038/nature08975
10.1002/j.1460-2075.1992.tb05148.x
10.1261/rna.876308
10.1038/nrm1987
10.1016/j.cell.2006.10.003
10.1371/journal.pone.0007677
10.1038/nature08801
10.1101/gad.1742509
10.1101/gad.1499407
10.1161/CIRCGENETICS.108.825935
10.1038/ng.408
10.1038/nature05159
10.1158/0008-5472.CAN-06-2004
10.1016/j.molcel.2010.03.021
10.1093/bioinformatics/btp324
10.1038/nature06258
10.1016/j.atherosclerosis.2009.09.036
10.1158/0008-5472.CAN-06-3311
10.1161/CIRCGENETICS.108.835173
10.1038/ng.601
10.1038/nsmb.1824
10.1016/S0168-9525(01)02324-1
10.1126/science.1163045
10.1126/science.1142842
10.1038/16476
10.1161/ATVBAHA.109.196832
10.1172/JCI22475
10.1093/nar/gki893
10.1111/j.1474-9726.2009.00489.x
10.1371/journal.pgen.1000899
10.1093/bioinformatics/btl575
10.1038/ng.72
10.1101/gad.1416906
10.1002/ana.21590
10.1093/bioinformatics/btn025
10.1038/323558a0
10.1161/01.ATV.0000114567.76772.33
10.1126/science.1142447
10.1016/j.jacc.2010.02.017
10.1161/01.ATV.0000133605.89421.79
10.1128/MCB.16.3.859
10.1093/hmg/ddm352
10.1101/gad.9.15.1831
10.1172/JCI22756
10.1126/science.1189731
10.1126/science.1142382
10.1016/j.jacc.2007.11.087
10.1101/gad.415507
10.1126/science.1142364
10.1161/CIRCGENETICS.108.789727
10.1016/j.jacc.2010.01.026
10.1016/S0076-6879(07)00405-3
10.1093/emboj/cdf289
10.1016/j.molcel.2008.08.022
10.1161/ATVBAHA.108.176800
10.1111/j.1462-5822.2008.01231.x
10.1038/ng.612
ContentType Journal Article
Copyright COPYRIGHT 2010 Public Library of Science
Burd et al. 2010
2010 Burd et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, et al. (2010) Expression of Linear and Novel Circular Forms of an INK4/ARF-Associated Non-Coding RNA Correlates with Atherosclerosis Risk. PLoS Genet 6(12): e1001233. doi:10.1371/journal.pgen.1001233
Copyright_xml – notice: COPYRIGHT 2010 Public Library of Science
– notice: Burd et al. 2010
– notice: 2010 Burd et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, et al. (2010) Expression of Linear and Novel Circular Forms of an INK4/ARF-Associated Non-Coding RNA Correlates with Atherosclerosis Risk. PLoS Genet 6(12): e1001233. doi:10.1371/journal.pgen.1001233
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
IOV
ISN
ISR
7TM
8FD
FR3
P64
RC3
5PM
DOA
DOI 10.1371/journal.pgen.1001233
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Genetics Abstracts
MEDLINE




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate cANRIL Expression and Structure
EISSN 1553-7404
Editor Chang, Howard Y.
Editor_xml – sequence: 1
  givenname: Howard Y.
  surname: Chang
  fullname: Chang, Howard Y.
ExternalDocumentID 1313593800
oai_doaj_org_article_e3d38aeea17143c39e9eed4591132722
A245885413
10_1371_journal_pgen_1001233
21151960
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: K99 AG036817
– fundername: NIEHS NIH HHS
  grantid: T32 ES007126
– fundername: NIA NIH HHS
  grantid: AG024379
– fundername: NIEHS NIH HHS
  grantid: P30 ES010126
– fundername: NIA NIH HHS
  grantid: R01 AG024379
– fundername: NIA NIH HHS
  grantid: K99AG036817
– fundername: NCI NIH HHS
  grantid: CA009156-34
– fundername: NCI NIH HHS
  grantid: T32 CA009156
GroupedDBID ---
123
29O
2WC
3V.
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
ECM
EIF
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
NPM
O5R
O5S
OK1
P2P
PIMPY
PQQKQ
PROAC
PSQYO
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
AAYXX
CITATION
7TM
8FD
FR3
P64
RC3
5PM
AAPBV
ABPTK
ID FETCH-LOGICAL-c799t-144265db41b71f1557c0cc3c0d1ab15adaa800f5c4ef09a84bbd2659f84fdbd33
IEDL.DBID RPM
ISSN 1553-7404
1553-7390
IngestDate Sun Oct 01 00:20:28 EDT 2023
Tue Oct 22 15:12:04 EDT 2024
Tue Sep 17 21:05:11 EDT 2024
Sat Jun 22 20:31:03 EDT 2024
Wed Jul 24 18:24:33 EDT 2024
Tue Jul 23 04:31:51 EDT 2024
Sat Sep 28 21:19:55 EDT 2024
Thu Aug 01 20:14:33 EDT 2024
Sat Sep 28 21:01:56 EDT 2024
Tue Aug 20 22:15:33 EDT 2024
Fri Aug 23 03:51:53 EDT 2024
Sat Sep 28 07:55:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c799t-144265db41b71f1557c0cc3c0d1ab15adaa800f5c4ef09a84bbd2659f84fdbd33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
Conceived and designed the experiments: CEB WRJ ZW NES. Performed the experiments: CEB WRJ YL. Analyzed the data: CEB WRJ YL ZW NES. Contributed reagents/materials/analysis tools: HKS ZW. Wrote the paper: CEB WRJ NES.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996334/
PMID 21151960
PQID 874196531
PQPubID 23462
ParticipantIDs plos_journals_1313593800
doaj_primary_oai_doaj_org_article_e3d38aeea17143c39e9eed4591132722
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2996334
proquest_miscellaneous_874196531
gale_infotracmisc_A245885413
gale_infotracacademiconefile_A245885413
gale_incontextgauss_ISR_A245885413
gale_incontextgauss_ISN_A245885413
gale_incontextgauss_IOV_A245885413
gale_healthsolutions_A245885413
crossref_primary_10_1371_journal_pgen_1001233
pubmed_primary_21151960
PublicationCentury 2000
PublicationDate 2010-12-01
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2010
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References 20031580 - Circ Cardiovasc Genet. 2009 Apr;2(2):159-64
18974356 - Science. 2008 Oct 31;322(5902):750-6
18048406 - Hum Mol Genet. 2008 Mar 15;17(6):806-14
18369186 - RNA. 2008 May;14(5):802-13
17604720 - Cell. 2007 Jun 29;129(7):1311-23
9923679 - Nature. 1999 Jan 14;397(6715):164-8
20173736 - Nature. 2010 Mar 18;464(7287):409-12
20381282 - J Am Coll Cardiol. 2010 May 18;55(20):2258-68
19485966 - Aging Cell. 2009 Aug;8(4):439-48
17055429 - Cell. 2006 Oct 20;127(2):265-75
16921403 - Nat Rev Mol Cell Biol. 2006 Sep;7(9):667-77
20605023 - Atherosclerosis. 2010 Oct;212(2):539-42
20386740 - PLoS Genet. 2010 Apr;6(4):e1000899
17943122 - Nature. 2007 Oct 18;449(7164):851-61
7649471 - Genes Dev. 1995 Aug 1;9(15):1831-45
16682442 - Nucleic Acids Res. 2006;34(8):e63
14699019 - Arterioscler Thromb Vasc Biol. 2004 Mar;24(3):399-404
16237125 - Nucleic Acids Res. 2005;33(18):5904-13
17478681 - Science. 2007 Jun 8;316(5830):1488-91
20371516 - Nucleic Acids Res. 2010 Aug;38(14):4570-8
18854858 - Eur J Hum Genet. 2009 Mar;17(3):391-4
17478679 - Science. 2007 Jun 8;316(5830):1491-3
1339341 - EMBO J. 1992 Mar;11(3):1095-8
20512145 - Nat Genet. 2010 Jul;42(7):599-603
20031606 - Circ Cardiovasc Genet. 2009 Aug;2(4):347-53
18818413 - Arterioscler Thromb Vasc Biol. 2008 Dec;28(12):2180-6
20488992 - Science. 2010 Jun 25;328(5986):1689-93
20393566 - Nature. 2010 Apr 15;464(7291):1071-6
18176561 - Nat Genet. 2008 Feb;40(2):217-24
18848501 - Dev Cell. 2008 Nov;15(5):668-79
17105720 - Bioinformatics. 2007 Jan 15;23(2):150-5
19343170 - PLoS One. 2009;4(4):e5027
19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9
16628224 - EMBO J. 2006 May 17;25(10):2096-106
15166010 - Arterioscler Thromb Vasc Biol. 2004 Aug;24(8):1391-6
17344414 - Genes Dev. 2007 Mar 1;21(5):525-30
15607979 - Cell. 2004 Dec 17;119(6):831-45
20601957 - Nat Genet. 2010 Aug;42(8):707-10
18652946 - J Am Coll Cardiol. 2008 Jul 29;52(5):378-84
20595579 - Science. 2010 Jul 1;2010:null
19390090 - Genes Dev. 2009 Apr 15;23(8):975-85
16702402 - Genes Dev. 2006 May 15;20(10):1268-82
12065407 - EMBO J. 2002 Jun 17;21(12):2936-45
20230275 - Rejuvenation Res. 2010 Feb;13(1):23-6
19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60
18951091 - Mol Cell. 2008 Oct 24;32(2):232-46
1991322 - Cell. 1991 Feb 8;64(3):607-13
17463248 - Science. 2007 Jun 1;316(5829):1341-5
19578367 - Nat Genet. 2009 Aug;41(8):899-904
16957735 - Nature. 2006 Sep 28;443(7110):421-6
18764915 - Cell Microbiol. 2008 Nov;10(11):2168-79
8692851 - Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6536-41
18374156 - Methods Enzymol. 2008;439:53-72
12114529 - Science. 2002 Aug 9;297(5583):1007-13
11377794 - Trends Genet. 2001 Jun;17(6):322-31
19390085 - Genes Dev. 2009 Apr 15;23(8):906-11
15520862 - J Clin Invest. 2004 Nov;114(9):1299-307
10496532 - Lab Invest. 1999 Sep;79(9):1137-43
17463249 - Science. 2007 Jun 1;316(5829):1336-41
11126361 - Oncogene. 2000 Nov 23;19(50):5747-54
19668202 - Nat Methods. 2009 Sep;6(9):677-81
19578366 - Nat Genet. 2009 Aug;41(8):905-8
19475673 - Ann Neurol. 2009 May;65(5):531-9
19888323 - PLoS One. 2009;4(11):e7677
18227114 - Bioinformatics. 2008 Mar 1;24(5):713-4
17308088 - Cancer Res. 2007 Feb 15;67(4):1502-12
18340101 - Stroke. 2008 May;39(5):1586-9
20056914 - Arterioscler Thromb Vasc Biol. 2010 Mar;30(3):620-7
2429192 - Nature. 1986 Oct 9-15;323(6088):558-60
16239970 - J Clin Invest. 2005 Nov;115(11):3228-38
17440112 - Cancer Res. 2007 Apr 15;67(8):3963-9
19592466 - Arterioscler Thromb Vasc Biol. 2009 Oct;29(10):1671-7
20543829 - Nat Struct Mol Biol. 2010 Jul;17(7):862-8
17210787 - Genes Dev. 2007 Jan 1;21(1):49-54
8622687 - Mol Cell Biol. 1996 Mar;16(3):859-67
20031540 - Circ Cardiovasc Genet. 2008 Oct;1(1):39-42
20381281 - J Am Coll Cardiol. 2010 May 18;55(20):2269-71
14593697 - Prog Cell Cycle Res. 2003;5:19-30
20541999 - Mol Cell. 2010 Jun 11;38(5):662-74
E Hara (ref43) 1996; 16
Z Wang (ref54) 2004; 119
E Biros (ref2) 2010
Y Liu (ref16) 2009; 4
J Gil (ref36) 2006; 7
AP Bracken (ref35) 2007; 21
GP Nielsen (ref46) 1999; 79
Z Wang (ref56) 2008; 14
SB Seidelmann (ref14) 2008; 28
D Mancini-Dinardo (ref63) 2006; 20
(ref1) 2009
J Krishnamurthy (ref44) 2004; 114
E Zeggini (ref70) 2007; 316
F Gizard (ref19) 2005; 115
H Li (ref52) 2009; 25
J Zhao (ref39) 2008; 322
RA Gupta (ref41) 2010; 464
M Schmid (ref47) 2000; 19
T Kyriakou (ref29) 2009; 207
AR Thompson (ref4) 2009; 17
M Wrensch (ref73) 2009; 41
A Helgadottir (ref6) 2008; 40
H Suzuki (ref50) 2006; 34
JM Nigro (ref58) 1991; 64
S Shete (ref72) 2009; 41
JM Shields (ref80) 2007; 67
A Gschwendtner (ref9) 2009; 65
S Uno (ref74) 2010; 42
R Wessely (ref17) 2010; 55
LJ Scott (ref71) 2007; 316
JL Rinn (ref38) 2007; 129
JX Bei (ref75) 2010; 42
O Jarinova (ref30) 2009; 29
L Folkersen (ref28) 2009; 4
A Helgadottir (ref5) 2007; 316
L Bonen (ref67) 2001; 17
C Kanduri (ref64) 2006; 25
I Reynisdottir (ref22) 1995; 9
SE Messaoudi-Aubert (ref61) 2010; 17
S Ye (ref12) 2008; 52
S Dhawan (ref32) 2009; 23
P Sebastiani (ref77) 2010
R McPherson (ref7) 2007; 316
E Emanuele (ref76) 2010; 13
S Brookes (ref79) 2002; 21
R Terranova (ref37) 2008; 15
Y Liu (ref42) 2009; 8
C Cocquerelle (ref66) 1992; 11
RR Pandey (ref40) 2008; 32
KF Au (ref45) 2010
K Chen (ref48) 2009; 6
C Cluett (ref11) 2009; 2
RJ Dixon (ref51) 2005; 33
M Boehm (ref18) 2003; 5
A Kos (ref68) 1986; 323
H Li (ref81) 2009; 25
RJ Dixon (ref65) 2007; 23
H Chen (ref33) 2009; 23
WG Fairbrother (ref55) 2002; 297
E Pasmant (ref27) 2007; 67
EM Tsagris (ref69) 2008; 10
H Gonzalez-Navarro (ref20) 2010; 55
KL Yap (ref62) 2010; 38
L Yvan-Charvet (ref25) 2010; 328
A Visel (ref26) 2010; 464
PG Zaphiropoulos (ref49) 1996; 93
M Matarin (ref8) 2008; 39
HM Broadbent (ref13) 2008; 17
Y Kotake (ref34) 2007; 21
V Janzen (ref24) 2006; 443
N Kalinina (ref21) 2004; 24
JJ Jacobs (ref31) 1999; 397
DJ Grainger (ref23) 2004; 24
KA Frazer (ref57) 2007; 449
AB Hanker (ref78) 2008; 439
JG Smith (ref10) 2009; 2
LM Holdt (ref59) 2010; 30
R Li (ref53) 2008; 24
MJ Bown (ref3) 2008; 1
WY Kim (ref15) 2006; 127
MS Cunnington (ref60) 2010; 6
References_xml – year: 2010
  ident: ref2
  article-title: Association of an allele on chromosome 9 and abdominal aortic aneurysm.
  publication-title: Atherosclerosis
  contributor:
    fullname: E Biros
– volume: 17
  start-page: 391
  year: 2009
  ident: ref4
  article-title: Sequence variant on 9p21 is associated with the presence of abdominal aortic aneurysm disease but does not have an impact on aneurysmal expansion.
  publication-title: Eur J Hum Genet
  doi: 10.1038/ejhg.2008.196
  contributor:
    fullname: AR Thompson
– volume: 6
  start-page: 677
  year: 2009
  ident: ref48
  article-title: BreakDancer: an algorithm for high-resolution mapping of genomic structural variation.
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1363
  contributor:
    fullname: K Chen
– volume: 25
  start-page: 2078
  year: 2009
  ident: ref81
  article-title: The Sequence Alignment/Map format and SAMtools.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
  contributor:
    fullname: H Li
– volume: 19
  start-page: 5747
  year: 2000
  ident: ref47
  article-title: A methylthioadenosine phosphorylase (MTAP) fusion transcript identifies a new gene on chromosome 9p21 that is frequently deleted in cancer.
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1203942
  contributor:
    fullname: M Schmid
– volume: 297
  start-page: 1007
  year: 2002
  ident: ref55
  article-title: Predictive identification of exonic splicing enhancers in human genes.
  publication-title: Science
  doi: 10.1126/science.1073774
  contributor:
    fullname: WG Fairbrother
– volume: 41
  start-page: 899
  year: 2009
  ident: ref72
  article-title: Genome-wide association study identifies five susceptibility loci for glioma.
  publication-title: Nat Genet
  doi: 10.1038/ng.407
  contributor:
    fullname: S Shete
– volume: 129
  start-page: 1311
  year: 2007
  ident: ref38
  article-title: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs.
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.022
  contributor:
    fullname: JL Rinn
– volume: 64
  start-page: 607
  year: 1991
  ident: ref58
  article-title: Scrambled exons.
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90244-S
  contributor:
    fullname: JM Nigro
– volume: 29
  start-page: 1671
  year: 2009
  ident: ref30
  article-title: Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus.
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.109.189522
  contributor:
    fullname: O Jarinova
– volume: 34
  start-page: e63
  year: 2006
  ident: ref50
  article-title: Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl151
  contributor:
    fullname: H Suzuki
– volume: 13
  start-page: 23
  year: 2010
  ident: ref76
  article-title: Preliminary evidence of a genetic association between chromosome 9p21.3 and human longevity.
  publication-title: Rejuvenation Res
  doi: 10.1089/rej.2009.0970
  contributor:
    fullname: E Emanuele
– volume: 25
  start-page: 2096
  year: 2006
  ident: ref64
  article-title: The length of the transcript encoded from the Kcnq1ot1 antisense promoter determines the degree of silencing.
  publication-title: Embo J
  doi: 10.1038/sj.emboj.7601090
  contributor:
    fullname: C Kanduri
– volume: 93
  start-page: 6536
  year: 1996
  ident: ref49
  article-title: Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.93.13.6536
  contributor:
    fullname: PG Zaphiropoulos
– volume: 119
  start-page: 831
  year: 2004
  ident: ref54
  article-title: Systematic identification and analysis of exonic splicing silencers.
  publication-title: Cell
  doi: 10.1016/j.cell.2004.11.010
  contributor:
    fullname: Z Wang
– year: 2010
  ident: ref77
  article-title: Genetic Signatures of Exceptional Longevity in Humans.
  publication-title: Science
  contributor:
    fullname: P Sebastiani
– volume: 23
  start-page: 906
  year: 2009
  ident: ref32
  article-title: Bmi-1 regulates the Ink4a/Arf locus to control pancreatic beta-cell proliferation.
  publication-title: Genes Dev
  doi: 10.1101/gad.1742609
  contributor:
    fullname: S Dhawan
– volume: 39
  start-page: 1586
  year: 2008
  ident: ref8
  article-title: Whole genome analyses suggest ischemic stroke and heart disease share an association with polymorphisms on chromosome 9p21.
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.502963
  contributor:
    fullname: M Matarin
– volume: 15
  start-page: 668
  year: 2008
  ident: ref37
  article-title: Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos.
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2008.08.015
  contributor:
    fullname: R Terranova
– volume: 4
  start-page: e5027
  year: 2009
  ident: ref16
  article-title: INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to atherosclerosis.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0005027
  contributor:
    fullname: Y Liu
– volume: 464
  start-page: 1071
  year: 2010
  ident: ref41
  article-title: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis.
  publication-title: Nature
  doi: 10.1038/nature08975
  contributor:
    fullname: RA Gupta
– volume: 11
  start-page: 1095
  year: 1992
  ident: ref66
  article-title: Splicing with inverted order of exons occurs proximal to large introns.
  publication-title: Embo J
  doi: 10.1002/j.1460-2075.1992.tb05148.x
  contributor:
    fullname: C Cocquerelle
– volume: 14
  start-page: 802
  year: 2008
  ident: ref56
  article-title: Splicing regulation: from a parts list of regulatory elements to an integrated splicing code.
  publication-title: Rna
  doi: 10.1261/rna.876308
  contributor:
    fullname: Z Wang
– volume: 7
  start-page: 667
  year: 2006
  ident: ref36
  article-title: Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all.
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm1987
  contributor:
    fullname: J Gil
– volume: 127
  start-page: 265
  year: 2006
  ident: ref15
  article-title: The regulation of INK4/ARF in cancer and aging.
  publication-title: Cell
  doi: 10.1016/j.cell.2006.10.003
  contributor:
    fullname: WY Kim
– volume: 4
  start-page: e7677
  year: 2009
  ident: ref28
  article-title: Relationship between CAD risk genotype in the chromosome 9p21 locus and gene expression. Identification of eight new ANRIL splice variants.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0007677
  contributor:
    fullname: L Folkersen
– volume: 464
  start-page: 409
  year: 2010
  ident: ref26
  article-title: Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice.
  publication-title: Nature
  doi: 10.1038/nature08801
  contributor:
    fullname: A Visel
– volume: 23
  start-page: 975
  year: 2009
  ident: ref33
  article-title: Polycomb protein Ezh2 regulates pancreatic beta-cell Ink4a/Arf expression and regeneration in diabetes mellitus.
  publication-title: Genes Dev
  doi: 10.1101/gad.1742509
  contributor:
    fullname: H Chen
– volume: 21
  start-page: 49
  year: 2007
  ident: ref34
  article-title: pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene.
  publication-title: Genes Dev
  doi: 10.1101/gad.1499407
  contributor:
    fullname: Y Kotake
– year: 2010
  ident: ref45
  article-title: Detection of splice junctions from paired-end RNA-seq data by SpliceMap.
  publication-title: Nucleic Acids Res
  contributor:
    fullname: KF Au
– volume: 2
  start-page: 347
  year: 2009
  ident: ref11
  article-title: The 9p21 myocardial infarction risk allele increases risk of peripheral artery disease in older people.
  publication-title: Circ Cardiovasc Genet
  doi: 10.1161/CIRCGENETICS.108.825935
  contributor:
    fullname: C Cluett
– volume: 41
  start-page: 905
  year: 2009
  ident: ref73
  article-title: Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility.
  publication-title: Nat Genet
  doi: 10.1038/ng.408
  contributor:
    fullname: M Wrensch
– volume: 443
  start-page: 421
  year: 2006
  ident: ref24
  article-title: Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a.
  publication-title: Nature
  doi: 10.1038/nature05159
  contributor:
    fullname: V Janzen
– volume: 67
  start-page: 3963
  year: 2007
  ident: ref27
  article-title: Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF.
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-2004
  contributor:
    fullname: E Pasmant
– volume: 38
  start-page: 662
  year: 2010
  ident: ref62
  article-title: Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a.
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.03.021
  contributor:
    fullname: KL Yap
– year: 2009
  ident: ref1
  article-title: Cardiovascular diseases Fact Sheet
– volume: 25
  start-page: 1754
  year: 2009
  ident: ref52
  article-title: Fast and accurate short read alignment with Burrows-Wheeler transform.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
  contributor:
    fullname: H Li
– volume: 449
  start-page: 851
  year: 2007
  ident: ref57
  article-title: A second generation human haplotype map of over 3.1 million SNPs.
  publication-title: Nature
  doi: 10.1038/nature06258
  contributor:
    fullname: KA Frazer
– volume: 207
  start-page: e3
  year: 2009
  ident: ref29
  article-title: ANRIL, The non-coding RNA present in the chromosome 9 CAD associated locus, has multiple splice variants and a potential regulatory role in CDKN2B expression.
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2009.09.036
  contributor:
    fullname: T Kyriakou
– volume: 67
  start-page: 1502
  year: 2007
  ident: ref80
  article-title: Lack of extracellular signal-regulated kinase mitogen-activated protein kinase signaling shows a new type of melanoma.
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-3311
  contributor:
    fullname: JM Shields
– volume: 2
  start-page: 159
  year: 2009
  ident: ref10
  article-title: Common genetic variants on chromosome 9p21 confers risk of ischemic stroke: a large-scale genetic association study.
  publication-title: Circ Cardiovasc Genet
  doi: 10.1161/CIRCGENETICS.108.835173
  contributor:
    fullname: JG Smith
– volume: 42
  start-page: 599
  year: 2010
  ident: ref75
  article-title: A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci.
  publication-title: Nat Genet
  doi: 10.1038/ng.601
  contributor:
    fullname: JX Bei
– volume: 17
  start-page: 862
  year: 2010
  ident: ref61
  article-title: Role for the MOV10 RNA helicase in polycomb-mediated repression of the INK4a tumor suppressor.
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1824
  contributor:
    fullname: SE Messaoudi-Aubert
– volume: 17
  start-page: 322
  year: 2001
  ident: ref67
  article-title: The ins and outs of group II introns.
  publication-title: Trends Genet
  doi: 10.1016/S0168-9525(01)02324-1
  contributor:
    fullname: L Bonen
– volume: 322
  start-page: 750
  year: 2008
  ident: ref39
  article-title: Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome.
  publication-title: Science
  doi: 10.1126/science.1163045
  contributor:
    fullname: J Zhao
– volume: 316
  start-page: 1491
  year: 2007
  ident: ref5
  article-title: A common variant on chromosome 9p21 affects the risk of myocardial infarction.
  publication-title: Science
  doi: 10.1126/science.1142842
  contributor:
    fullname: A Helgadottir
– volume: 397
  start-page: 164
  year: 1999
  ident: ref31
  article-title: The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus.
  publication-title: Nature
  doi: 10.1038/16476
  contributor:
    fullname: JJ Jacobs
– volume: 30
  start-page: 620
  year: 2010
  ident: ref59
  article-title: ANRIL expression is associated with atherosclerosis risk at chromosome 9p21.
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.109.196832
  contributor:
    fullname: LM Holdt
– volume: 114
  start-page: 1299
  year: 2004
  ident: ref44
  article-title: Ink4a/Arf expression is a biomarker of aging.
  publication-title: J Clin Invest
  doi: 10.1172/JCI22475
  contributor:
    fullname: J Krishnamurthy
– volume: 33
  start-page: 5904
  year: 2005
  ident: ref51
  article-title: A genome-wide survey demonstrates widespread non-linear mRNA in expressed sequences from multiple species.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki893
  contributor:
    fullname: RJ Dixon
– volume: 8
  start-page: 439
  year: 2009
  ident: ref42
  article-title: Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging.
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2009.00489.x
  contributor:
    fullname: Y Liu
– volume: 6
  start-page: e1000899
  year: 2010
  ident: ref60
  article-title: Chromosome 9p21 SNPs Associated with Multiple Disease Phenotypes Correlate with ANRIL Expression.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000899
  contributor:
    fullname: MS Cunnington
– volume: 23
  start-page: 150
  year: 2007
  ident: ref65
  article-title: Complementary intron sequence motifs associated with human exon repetition: a role for intragenic, inter-transcript interactions in gene expression.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl575
  contributor:
    fullname: RJ Dixon
– volume: 40
  start-page: 217
  year: 2008
  ident: ref6
  article-title: The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm.
  publication-title: Nat Genet
  doi: 10.1038/ng.72
  contributor:
    fullname: A Helgadottir
– volume: 20
  start-page: 1268
  year: 2006
  ident: ref63
  article-title: Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes.
  publication-title: Genes Dev
  doi: 10.1101/gad.1416906
  contributor:
    fullname: D Mancini-Dinardo
– volume: 65
  start-page: 531
  year: 2009
  ident: ref9
  article-title: Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke.
  publication-title: Ann Neurol
  doi: 10.1002/ana.21590
  contributor:
    fullname: A Gschwendtner
– volume: 24
  start-page: 713
  year: 2008
  ident: ref53
  article-title: SOAP: short oligonucleotide alignment program.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn025
  contributor:
    fullname: R Li
– volume: 323
  start-page: 558
  year: 1986
  ident: ref68
  article-title: The hepatitis delta (delta) virus possesses a circular RNA.
  publication-title: Nature
  doi: 10.1038/323558a0
  contributor:
    fullname: A Kos
– volume: 24
  start-page: 399
  year: 2004
  ident: ref23
  article-title: Transforming growth factor beta and atherosclerosis: so far, so good for the protective cytokine hypothesis.
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.0000114567.76772.33
  contributor:
    fullname: DJ Grainger
– volume: 79
  start-page: 1137
  year: 1999
  ident: ref46
  article-title: Immunohistochemical survey of p16INK4A expression in normal human adult and infant tissues.
  publication-title: Lab Invest
  contributor:
    fullname: GP Nielsen
– volume: 316
  start-page: 1488
  year: 2007
  ident: ref7
  article-title: A common allele on chromosome 9 associated with coronary heart disease.
  publication-title: Science
  doi: 10.1126/science.1142447
  contributor:
    fullname: R McPherson
– volume: 55
  start-page: 2269
  year: 2010
  ident: ref17
  article-title: Atherosclerosis and cell cycle: put the brakes on! Critical role for cyclin-dependent kinase inhibitors.
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2010.02.017
  contributor:
    fullname: R Wessely
– volume: 24
  start-page: 1391
  year: 2004
  ident: ref21
  article-title: Smad expression in human atherosclerotic lesions: evidence for impaired TGF-beta/Smad signaling in smooth muscle cells of fibrofatty lesions.
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.0000133605.89421.79
  contributor:
    fullname: N Kalinina
– volume: 16
  start-page: 859
  year: 1996
  ident: ref43
  article-title: Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.16.3.859
  contributor:
    fullname: E Hara
– volume: 5
  start-page: 19
  year: 2003
  ident: ref18
  article-title: The cell cycle and cardiovascular diseases.
  publication-title: Prog Cell Cycle Res
  contributor:
    fullname: M Boehm
– volume: 17
  start-page: 806
  year: 2008
  ident: ref13
  article-title: Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p.
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddm352
  contributor:
    fullname: HM Broadbent
– volume: 9
  start-page: 1831
  year: 1995
  ident: ref22
  article-title: Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta.
  publication-title: Genes Dev
  doi: 10.1101/gad.9.15.1831
  contributor:
    fullname: I Reynisdottir
– volume: 115
  start-page: 3228
  year: 2005
  ident: ref19
  article-title: PPAR alpha inhibits vascular smooth muscle cell proliferation underlying intimal hyperplasia by inducing the tumor suppressor p16INK4a.
  publication-title: J Clin Invest
  doi: 10.1172/JCI22756
  contributor:
    fullname: F Gizard
– volume: 328
  start-page: 1689
  year: 2010
  ident: ref25
  article-title: ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation.
  publication-title: Science
  doi: 10.1126/science.1189731
  contributor:
    fullname: L Yvan-Charvet
– volume: 316
  start-page: 1341
  year: 2007
  ident: ref71
  article-title: A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants.
  publication-title: Science
  doi: 10.1126/science.1142382
  contributor:
    fullname: LJ Scott
– volume: 52
  start-page: 378
  year: 2008
  ident: ref12
  article-title: Association of genetic variation on chromosome 9p21 with susceptibility and progression of atherosclerosis: a population-based, prospective study.
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2007.11.087
  contributor:
    fullname: S Ye
– volume: 21
  start-page: 525
  year: 2007
  ident: ref35
  article-title: The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells.
  publication-title: Genes Dev
  doi: 10.1101/gad.415507
  contributor:
    fullname: AP Bracken
– volume: 316
  start-page: 1336
  year: 2007
  ident: ref70
  article-title: Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes.
  publication-title: Science
  doi: 10.1126/science.1142364
  contributor:
    fullname: E Zeggini
– volume: 1
  start-page: 39
  year: 2008
  ident: ref3
  article-title: Association between the coronary artery disease risk locus on chromosome 9p21.3 and abdominal aortic aneurysm.
  publication-title: Circ Cardiovasc Genet
  doi: 10.1161/CIRCGENETICS.108.789727
  contributor:
    fullname: MJ Bown
– volume: 55
  start-page: 2258
  year: 2010
  ident: ref20
  article-title: p19(ARF) deficiency reduces macrophage and vascular smooth muscle cell apoptosis and aggravates atherosclerosis.
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2010.01.026
  contributor:
    fullname: H Gonzalez-Navarro
– volume: 439
  start-page: 53
  year: 2008
  ident: ref78
  article-title: Tools to study the function of the Ras-related, estrogen-regulated growth inhibitor in breast cancer.
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(07)00405-3
  contributor:
    fullname: AB Hanker
– volume: 21
  start-page: 2936
  year: 2002
  ident: ref79
  article-title: INK4a-deficient human diploid fibroblasts are resistant to RAS-induced senescence.
  publication-title: Embo J
  doi: 10.1093/emboj/cdf289
  contributor:
    fullname: S Brookes
– volume: 32
  start-page: 232
  year: 2008
  ident: ref40
  article-title: Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation.
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2008.08.022
  contributor:
    fullname: RR Pandey
– volume: 28
  start-page: 2180
  year: 2008
  ident: ref14
  article-title: Athsq1 is an atherosclerosis modifier locus with dramatic effects on lesion area and prominent accumulation of versican.
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.108.176800
  contributor:
    fullname: SB Seidelmann
– volume: 10
  start-page: 2168
  year: 2008
  ident: ref69
  article-title: Viroids.
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2008.01231.x
  contributor:
    fullname: EM Tsagris
– volume: 42
  start-page: 707
  year: 2010
  ident: ref74
  article-title: A genome-wide association study identifies genetic variants in the CDKN2BAS locus associated with endometriosis in Japanese.
  publication-title: Nat Genet
  doi: 10.1038/ng.612
  contributor:
    fullname: S Uno
SSID ssj0035897
Score 2.5939412
Snippet Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with...
Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with...
  Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with...
SourceID plos
doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e1001233
SubjectTerms Atherosclerosis
Atherosclerosis - epidemiology
Atherosclerosis - genetics
Atherosclerosis - metabolism
Cardiovascular disease
Cardiovascular Disorders/Peripheral Vascular Disease
Cell Biology/Gene Expression
Cell division
Cell Line, Tumor
Cyclin-Dependent Kinase Inhibitor p15 - genetics
Cyclin-Dependent Kinase Inhibitor p15 - metabolism
Cyclin-Dependent Kinase Inhibitor p16 - genetics
Cyclin-Dependent Kinase Inhibitor p16 - metabolism
DNA, Circular - chemistry
DNA, Circular - genetics
DNA, Circular - metabolism
Exons
Gene Expression
Genetic aspects
Genetics
Genetics and Genomics/Cancer Genetics
Genome-Wide Association Study
Genomes
Humans
Influence
Molecular Biology/RNA Splicing
Mortality
Nucleic Acid Conformation
Physiological aspects
Risk Factors
RNA
RNA Splicing
RNA, Untranslated - chemistry
RNA, Untranslated - genetics
RNA, Untranslated - metabolism
Single nucleotide polymorphisms
Tumor suppressor genes
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEA9SEHwRv2_11CCCT2t3N0nTPFa5cqdYoXpybyHJJnpQdku3FcV_3plkW25F8B586UPzS9nOTCa_aeeDkJdFKKz0rM5tHWTOPS9yMGUO5woLF62wMlZ4f1hMTs_5uwtxcWXUF-aEpfbASXBj-Bw2Nd6bOKnbMeUVuHUuFI5Il1XyvoXaB1PJBzMxTWNVhGC5hLC-L5pjshz3Onq9BgXFDkQVY4NLKfbuP3jo0XrVdn-jn39mUV65luZ3yO2eT9JZ-h53yQ3f3CM304TJn_fJr5MffaZrQ9tAkVOaDTVNTZv2u19Rd7mJiagUuWuHENPQs8V7Pp4t57npdecR3uSuxYuOLhcz6nCoxwp5KsVfcmnkkW0HjwCvlx3FjPUH5Hx-8vntad7PW8idVGqbQ2xVTURteWllGUB20hXOMVfUpbGlMLUxQC-DcNyHQpkpt7aGDSpMeahtzdhDMoKn8UeEBgE8q1C1soFxpypTWrgGja2C8E4okZF8L3C9Tm01dPxvTUI4kiSnUUG6V1BG3qBWDlhsih3fAFPRvanof5lKRp6jTnWqMD0cbT2rsFxXwHWekRcRgY0xGsy8-Wp2XafPPn65BujT4jqg5QD0qgeFFkzImb4kAmSIXbkGyOMBEnyAGywfoZnuRdeBIEsmFAN1ZYTuTVfjLsypa3y76zQcSWwnycqMPEqWfBBvBXECrMFmObDxgfyHK83lt9icHOjNhDH--H8o7Am5VR2yh47JaLvZ-afAAbf2WTzuvwG-5Vf-
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dixMxEA9nRfBF_L7VU4MIPu25u0ma5kGkypU7xQrVyr0tSTY5C2W3dlu5w3_emex2ceWEvvShmZTlNzPJb7rzQcirxCdGOlbEpvAy5o4nMZgyB7_CwkUjjAwV3p-nw9M5_3guzg_IbmZrC2B9bWiH86Tm6-Xx5c-rd-Dwb8PUBpnuNh2vAPLQUyhj7Aa5mXGI1TGZj3fvFZgYNeNWhGCxhHC_Lab736_0LqvQ0787uQerZVVfR0v_za7867qa3CV3Wp5Jx41h3CMHrrxPbjWTJ68ekN8nl20GbEkrT5Fr6jXVZUHL6pdbUrtYhwRVipy2RhFd0rPpJ_5mPJvEutWpQ_EythVegHQ2HVOLwz6WyF8p_sNLA7-sangE-FzUFDPZH5L55OTbh9O4ncMQW6nUJoaYKxuKwvDUyNQDdtIm1jKbFKk2qdCF1kA7vbDc-UTpETemgA3Kj7gvTMHYIzKAp3GHhHoB_CtRhTKecasynRq4HrXJvHBWKBGReAd4vmrabeThnZuEMKVBLkcF5a2CIvIetdLJYrPs8EW1vshb38vBFNlIO6fDsHfLlFPADLiAc55lMssi8gJ1mjeVp53L5-MMy3gFXPMReRkksGFGiRk5F3pb1_nZl-97CH2d7iM06wm9boV8BSZkdVsqARhit66e5FFPEs4G21s-RDPdQVcDkCkTioG6IkJ3ppvjLsy1K121rXNwVWwzydKIPG4suYM3g_gB1mCz7Nl4D__-Srn4EZqWA-0ZMsaf7APSU3I767KGjshgs966Z8D9NuZ5cOc_3VBXhA
  priority: 102
  providerName: Scholars Portal
Title Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk
URI https://www.ncbi.nlm.nih.gov/pubmed/21151960
https://search.proquest.com/docview/874196531
https://pubmed.ncbi.nlm.nih.gov/PMC2996334
https://doaj.org/article/e3d38aeea17143c39e9eed4591132722
http://dx.doi.org/10.1371/journal.pgen.1001233
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IiReEN8LjGIhJJ7SJrFd149pabWBWqbCUN8i23G2ii6pmhaB-Oc5O0khiIeJl1RqzlJ035fc_Q6hN0EWKG5I6qs04z41NPBBlSnYlR1cVExxN-E9mw_OLun7JVseIdbMwrimfa1WvXx908tX1663cnOj-02fWP9iNgYXOiCE9o_RMShoU6JX7pewYbVRhTHic6jo63k5wsN-LZ7eBmTjwIciQhwaMIQ94UAqf4cmh-B_8NOdzboo_5WE_t1L-Udwmj5A9-usEsfV0z9ERyZ_hO5WeyZ_PEY_J9_rftccFxmG-hP0G8s8xfPim1nj8Wrr2lHxFDLY0pLIHJ_PP9B-vJj6jQSNJc_9cWHDHV7MYzy2qz3WNlvF9n0ujm02WZTwCHBdlXixKr8-QZfTyefxmV9vXfA1F2LnQ4UVDViqaKh4mAEbuQ60JjpIQ6lCJlMpIcnMmKYmC4QcUqVSOCCyIc1SlRLyFHXyIjcnCGcMsq1ApEJlhGoRyVBBMJQqypjRTDAP-Q3Dk00FrpG4L2wcipKKc4mVVVLLykMjK5UDrYXGdn8U26ukVpAEFI8MpTHSrXbXRBgBeQBl4NVJxKPIQ6-sTJNqzvRg4Ekc2aFdBkHdQ68dhYXHyG3_zZXcl2Vy_vHLLYg-zW9DtGgRva2JsgJUSMt6MAJ4aLG5WpSnLUrwBLp1-8SqacO6EhgZEiYIiMtDuFHdxJ6ynXW5KfZlAoZpQSVJ6KFnlSYf2NvYhYd4S8db_G_fAYt1EOW1hT7_75Mv0L3o0Dh0ijq77d68hPRvp7pg9EveRXfi0bvRFH5Hk_nFoutepsB1Rodd5xB-ActoXTo
link.rule.ids 230,315,730,783,787,867,888,2109,2228,24330,27936,27937,31732,33757,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGEYIXvscCg1kIiae0SWwv9WOpVnWwFlS2aW-W7dijWpdUS4v4-Oc5O0khEw-Dlz7UZ6m5u9_dOb37GaE3kY1UakgWqsymITU0CsGVKeDKDS4qplI_4T2Z7o9P6PszdraFWDML45v2tZp388VlN59_8b2Vy0vda_rEep8mQwih-4TQ3i10G_Aa0eaQXgVgwvrVnSqMkTCFM309MUfSuFcbqLsE63j6oYQQzwcMiY97msrfyclz-G8idWe5KMq_laHXuyn_SE-jB-i0ebCqK-Wiu16prv5xjfPxn5_8IbpfF6x4UC0_Qlsmf4zuVFdYfn-Cfh58q1tpc1xYDEdbgA6WeYanxVezwMP5le90xSMojksnInN8OP1Ae4PZKGycwzjxPBwWLpPi2XSAh-7WkIUrhLF7VYwHrlAtSvgJ8Dkv8WxeXjxFJ6OD4-E4rC90CHXK-SqEw1uyzzJFY5XGFuyT6khroqMslipmMpMS6lfLNDU24rJPlcpgA7d9ajOVEbKNOnmRmx2ELYNCLuIZV5ZQzRMZK8izUiWWGc04C1DYWFIsK94O4f-8S-G8U2lOOCcQtRME6J0z90bWsW77L4qrc1FbQIBPk740Rvpb4zXhhkOJQRkkDJKkSRKgPecsohph3cQOMUjcPDCDeiFAr72EY97IXWvPuVyXpTj8eHoDoc_TmwjNWkJvayFbgG9qWc9cgA4d7VdLcrclCUFGt5Z3nP83qitBkTFhHMAXBQg3mBBul2vay02xLgVg3vFVkjhAzyqIbNTbAC5AaQs8Lf23VwASnv28hsDz_965h-6OjydH4gic_QW6l2z6k3ZRZ3W1Ni-hylypVz6m_AJyEnly
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegCMQL37DAYBZC4iltEttN_VjKqg1YmQpD014s27FHtS6pmhbx8c9zdpKyTDxMe-lDc5Gau_vdndO73yH0JrKRSg3JQpXZNKSGRiG4MgVcucFFxVTqJ7wPJv29I_rhmB1fWPXlm_a1mnXz-Xk3n333vZWLc91r-sR6hwcjCKF9QmhvkdneTXQLMBv1m4N6FYQJG1R7VRgjYQrn-npqjqRxrzZSdwEW8hRECSGeExiSH_dUlf8SlOfx30TrzmJelP8rRS93VF5IUeP76KR5uKoz5ay7Xqmu_n2J9_FaT_8A3asLVzysRB6iGyZ_hG5Xqyx_PUZ_dn_WLbU5LiyGIy5ACMs8w5Pih5nj0WzpO17xGIrk0onIHO9PPtLecDoOGycxTjwPR4XLqHg6GeKR2x4ydwUxdq-M8dAVrEUJPwE-ZyWezsqzJ-hovPt1tBfWix1CnXK-CuEQl_RZpmis0tiCjVIdaU10lMVSxUxmUkIda5mmxkZcDqhSGdzA7YDaTGWEPEWdvMjNFsKWQUEX8YwrS6jmiYwV5FupEsuMZpwFKGysKRYVf4fwf-KlcO6pNCecI4jaEQL0zpl8I-vYt_0XxfJU1FYQ4NtkII2Rfnu8JtxwKDUog8RBkjRJArTjHEZUo6ybGCKGiZsLZlA3BOi1l3AMHLlr8TmV67IU-5-_XUHoy-QqQtOW0NtayBbgn1rWsxegQ0f_1ZLcbklCsNGty1sOA43qSlBkTBgHAEYBwg0uhLvLNe_lpliXArDveCtJHKBnFUw26m1AF6C0BaCW_ttXABaeBb2GwfNr37mD7hy-H4tP4Osv0N1k06a0jTqr5dq8hGJzpV75sPIXJ5h78g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expression+of+linear+and+novel+circular+forms+of+an+INK4%2FARF-associated+non-coding+RNA+correlates+with+atherosclerosis+risk&rft.jtitle=PLoS+genetics&rft.au=Burd%2C+Christin+E&rft.au=Jeck%2C+William+R&rft.au=Liu%2C+Yan&rft.au=Sanoff%2C+Hanna+K&rft.date=2010-12-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.eissn=1553-7404&rft.volume=6&rft.issue=12&rft_id=info:doi/10.1371%2Fjournal.pgen.1001233&rft.externalDBID=ISN&rft.externalDocID=A245885413
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon