Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk
Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with susceptibility to atherosclerotic vascular disease (ASVD). Although this locus encodes three well-characterized tumor suppressors, p16(INK4a), p15(INK...
Saved in:
Published in | PLoS genetics Vol. 6; no. 12; p. e1001233 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.12.2010
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with susceptibility to atherosclerotic vascular disease (ASVD). Although this locus encodes three well-characterized tumor suppressors, p16(INK4a), p15(INK4b), and ARF, the SNPs most strongly associated with ASVD are ∼120 kb from the nearest coding gene within a long non-coding RNA (ncRNA) known as ANRIL (CDKN2BAS). While individuals homozygous for the atherosclerotic risk allele show decreased expression of ANRIL and the coding INK4/ARF transcripts, the mechanism by which such distant genetic variants influence INK4/ARF expression is unknown. Here, using rapid amplification of cDNA ends (RACE) and analysis of next-generation RNA sequencing datasets, we determined the structure and abundance of multiple ANRIL species. Each of these species was present at very low copy numbers in primary and cultured cells; however, only the expression of ANRIL isoforms containing exons proximal to the INK4/ARF locus correlated with the ASVD risk alleles. Surprisingly, RACE also identified transcripts containing non-colinear ANRIL exonic sequences, whose expression also correlated with genotype and INK4/ARF expression. These non-polyadenylated RNAs resisted RNAse R digestion and could be PCR amplified using outward-facing primers, suggesting they represent circular RNA structures that could arise from by-products of mRNA splicing. Next-generation DNA sequencing and splice prediction algorithms identified polymorphisms within the ASVD risk interval that may regulate ANRIL splicing and circular ANRIL (cANRIL) production. These results identify novel circular RNA products emanating from the ANRIL locus and suggest causal variants at 9p21.3 regulate INK4/ARF expression and ASVD risk by modulating ANRIL expression and/or structure. |
---|---|
AbstractList | Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the
INK4/ARF (CDKN2a/b)
locus with susceptibility to atherosclerotic vascular disease (ASVD). Although this locus encodes three well-characterized tumor suppressors,
p16
INK4a
,
p15
INK4b
, and
ARF
, the SNPs most strongly associated with ASVD are ∼120 kb from the nearest coding gene within a long non-coding RNA (ncRNA) known as
ANRIL
(
CDKN2BAS
). While individuals homozygous for the atherosclerotic risk allele show decreased expression of
ANRIL
and the coding
INK4/ARF
transcripts, the mechanism by which such distant genetic variants influence
INK4/ARF
expression is unknown. Here, using rapid amplification of cDNA ends (RACE) and analysis of next-generation RNA sequencing datasets, we determined the structure and abundance of multiple
ANRIL
species. Each of these species was present at very low copy numbers in primary and cultured cells; however, only the expression of
ANRIL
isoforms containing exons proximal to the
INK4/ARF
locus correlated with the ASVD risk alleles. Surprisingly, RACE also identified transcripts containing non-colinear
ANRIL
exonic sequences, whose expression also correlated with genotype and
INK4/ARF
expression. These non-polyadenylated RNAs resisted RNAse R digestion and could be PCR amplified using outward-facing primers, suggesting they represent circular RNA structures that could arise from by-products of mRNA splicing. Next-generation DNA sequencing and splice prediction algorithms identified polymorphisms within the ASVD risk interval that may regulate
ANRIL
splicing and circular
ANRIL
(
cANRIL
) production. These results identify novel circular RNA products emanating from the
ANRIL
locus and suggest causal variants at 9p21.3 regulate
INK4/ARF
expression and ASVD risk by modulating
ANRIL
expression and/or structure.
Unbiased studies of the human genome have identified strong genetic determinants of atherosclerotic vascular disease (ASVD) on chromosome 9p21.3. This region of the genome does not encode genes previously linked to ASVD, but does contain the
INK4/ARF
tumor suppressor locus. Products of the
INK4/ARF
locus regulate cell division, a process thought to be important in ASVD pathology. We and others have suggested that genetic variants in 9p21.3 influence
INK4/ARF
gene expression; however, the mechanisms by which these distant polymorphisms (>100,000 bp away) influence transcription of the locus is unknown. The ASVD–associated genetic variants lie within the predicted structure of a non-coding RNA (ncRNA) called
ANRIL
. Based upon recent work suggesting that other ncRNAs can repress nearby coding genes, we considered the possibility that
ANRIL
structure may regulate
INK4/ARF
gene expression. Coupling molecular analysis with state-of-the-art sequencing technologies in a wide variety of cell types from normal human donors and cancer cells, we found that
ANRIL
encodes a heterogeneous species of rare RNA transcripts. Moreover, we identified novel, circular
ANRIL
isoforms (
cANRIL
) whose expression correlated with
INK4/ARF
transcription and ASVD risk. These studies suggest a new model wherein
ANRIL
structure influences
INK4/ARF
expression and susceptibility to atherosclerosis. Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with susceptibility to atherosclerotic vascular disease (ASVD). Although this locus encodes three well-characterized tumor suppressors, p16INK4a, p15INK4b, and ARF, the SNPs most strongly associated with ASVD are similar to 120 kb from the nearest coding gene within a long non-coding RNA (ncRNA) known as ANRIL (CDKN2BAS). While individuals homozygous for the atherosclerotic risk allele show decreased expression of ANRIL and the coding INK4/ARF transcripts, the mechanism by which such distant genetic variants influence INK4/ARF expression is unknown. Here, using rapid amplification of cDNA ends (RACE) and analysis of next-generation RNA sequencing datasets, we determined the structure and abundance of multiple ANRIL species. Each of these species was present at very low copy numbers in primary and cultured cells; however, only the expression of ANRIL isoforms containing exons proximal to the INK4/ARF locus correlated with the ASVD risk alleles. Surprisingly, RACE also identified transcripts containing non-colinear ANRIL exonic sequences, whose expression also correlated with genotype and INK4/ARF expression. These non-polyadenylated RNAs resisted RNAse R digestion and could be PCR amplified using outward-facing primers, suggesting they represent circular RNA structures that could arise from by-products of mRNA splicing. Next-generation DNA sequencing and splice prediction algorithms identified polymorphisms within the ASVD risk interval that may regulate ANRIL splicing and circular ANRIL (cANRIL) production. These results identify novel circular RNA products emanating from the ANRIL locus and suggest causal variants at 9p21.3 regulate INK4/ARF expression and ASVD risk by modulating ANRIL expression and/or structure. Unbiased studies of the human genome have identified strong genetic determinants of atherosclerotic vascular disease (ASVD) on chromosome 9p21.3. This region of the genome does not encode genes previously linked to ASVD, but does contain the INK4/ARF tumor suppressor locus. Products of the INK4/ARF locus regulate cell division, a process thought to be important in ASVD pathology. We and others have suggested that genetic variants in 9p21.3 influence INK4/ARF gene expression; however, the mechanisms by which these distant polymorphisms (>100,000 bp away) influence transcription of the locus is unknown. The ASVD-associated genetic variants lie within the predicted structure of a non-coding RNA (ncRNA) called ANRIL. Based upon recent work suggesting that other ncRNAs can repress nearby coding genes, we considered the possibility that ANRIL structure may regulate INK4/ARF gene expression. Coupling molecular analysis with state-of-the-art sequencing technologies in a wide variety of cell types from normal human donors and cancer cells, we found that ANRIL encodes a heterogeneous species of rare RNA transcripts. Moreover, we identified novel, circular ANRIL isoforms (cANRIL) whose expression correlated with INK4/ARF transcription and ASVD risk. These studies suggest a new model wherein ANRIL structure influences INK4/ARF expression and susceptibility to atherosclerosis. Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with susceptibility to atherosclerotic vascular disease (ASVD). Although this locus encodes three well-characterized tumor suppressors, p16(INK4a), p15(INK4b), and ARF, the SNPs most strongly associated with ASVD are ∼120 kb from the nearest coding gene within a long non-coding RNA (ncRNA) known as ANRIL (CDKN2BAS). While individuals homozygous for the atherosclerotic risk allele show decreased expression of ANRIL and the coding INK4/ARF transcripts, the mechanism by which such distant genetic variants influence INK4/ARF expression is unknown. Here, using rapid amplification of cDNA ends (RACE) and analysis of next-generation RNA sequencing datasets, we determined the structure and abundance of multiple ANRIL species. Each of these species was present at very low copy numbers in primary and cultured cells; however, only the expression of ANRIL isoforms containing exons proximal to the INK4/ARF locus correlated with the ASVD risk alleles. Surprisingly, RACE also identified transcripts containing non-colinear ANRIL exonic sequences, whose expression also correlated with genotype and INK4/ARF expression. These non-polyadenylated RNAs resisted RNAse R digestion and could be PCR amplified using outward-facing primers, suggesting they represent circular RNA structures that could arise from by-products of mRNA splicing. Next-generation DNA sequencing and splice prediction algorithms identified polymorphisms within the ASVD risk interval that may regulate ANRIL splicing and circular ANRIL (cANRIL) production. These results identify novel circular RNA products emanating from the ANRIL locus and suggest causal variants at 9p21.3 regulate INK4/ARF expression and ASVD risk by modulating ANRIL expression and/or structure. Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with susceptibility to atherosclerotic vascular disease (ASVD). Although this locus encodes three well-characterized tumor suppressors, p16INK4a, p15INK4b, and ARF, the SNPs most strongly associated with ASVD are ~120 kb from the nearest coding gene within a long non-coding RNA (ncRNA) known as ANRIL (CDKN2BAS). While individuals homozygous for the atherosclerotic risk allele show decreased expression of ANRIL and the coding INK4/ARF transcripts, the mechanism by which such distant genetic variants influence INK4/ARF expression is unknown. Here, using rapid amplification of cDNA ends (RACE) and analysis of next-generation RNA sequencing datasets, we determined the structure and abundance of multiple ANRIL species. Each of these species was present at very low copy numbers in primary and cultured cells; however, only the expression of ANRIL isoforms containing exons proximal to the INK4/ARF locus correlated with the ASVD risk alleles. Surprisingly, RACE also identified transcripts containing non-colinear ANRIL exonic sequences, whose expression also correlated with genotype and INK4/ARF expression. These non-polyadenylated RNAs resisted RNAse R digestion and could be PCR amplified using outward-facing primers, suggesting they represent circular RNA structures that could arise from by-products of mRNA splicing. Next-generation DNA sequencing and splice prediction algorithms identified polymorphisms within the ASVD risk interval that may regulate ANRIL splicing and circular ANRIL (cANRIL) production. These results identify novel circular RNA products emanating from the ANRIL locus and suggest causal variants at 9p21.3 regulate INK4/ARF expression and ASVD risk by modulating ANRIL expression and/or structure. Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with susceptibility to atherosclerotic vascular disease (ASVD). Although this locus encodes three well-characterized tumor suppressors, [p16.sup.INK4a], [p15.sup.INK4b], and ARF, the SNPs most strongly associated with ASVD are ~120 kb from the nearest coding gene within a long non-coding RNA (ncRNA) known as ANRIL (CDKN2BAS). While individuals homozygous for the atherosclerotic risk allele show decreased expression of ANRIL and the coding INK4/ARF transcripts, the mechanism by which such distant genetic variants influence INK4/ARF expression is unknown. Here, using rapid amplification of cDNA ends (RACE) and analysis of next-generation RNA sequencing datasets, we determined the structure and abundance of multiple ANRIL species. Each of these species was present at very low copy numbers in primary and cultured cells; however, only the expression of ANRIL isoforms containing exons proximal to the INK4/ARF locus correlated with the ASVD risk alleles. Surprisingly, RACE also identified transcripts containing non- colinear ANRIL exonic sequences, whose expression also correlated with genotype and INK4/ARF expression. These non- polyadenylated RNAs resisted RNAse R digestion and could be PCR amplified using outward-facing primers, suggesting they represent circular RNA structures that could arise from by-products of mRNA splicing. Next-generation DNA sequencing and splice prediction algorithms identified polymorphisms within the ASVD risk interval that may regulate ANRIL splicing and circular ANRIL (cANRIL) production. These results identify novel circular RNA products emanating from the ANRIL locus and suggest causal variants at 9p21.3 regulate INK4/ARF expression and ASVD risk by modulating ANRIL expression and/or structure. |
Audience | Academic |
Author | Liu, Yan Jeck, William R Sanoff, Hanna K Sharpless, Norman E Wang, Zefeng Burd, Christin E |
AuthorAffiliation | 5 Department of Medicine, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America 1 The Curriculum in Toxicology, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America 2 Department of Genetics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America Stanford, United States of America 3 The Division of Hematology and Oncology, University of Virginia, Charlottesville, Virginia, United States of America 4 Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America |
AuthorAffiliation_xml | – name: 1 The Curriculum in Toxicology, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America – name: 3 The Division of Hematology and Oncology, University of Virginia, Charlottesville, Virginia, United States of America – name: 2 Department of Genetics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America – name: 4 Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America – name: 5 Department of Medicine, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America – name: Stanford, United States of America |
Author_xml | – sequence: 1 givenname: Christin E surname: Burd fullname: Burd, Christin E organization: The Curriculum in Toxicology, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America – sequence: 2 givenname: William R surname: Jeck fullname: Jeck, William R – sequence: 3 givenname: Yan surname: Liu fullname: Liu, Yan – sequence: 4 givenname: Hanna K surname: Sanoff fullname: Sanoff, Hanna K – sequence: 5 givenname: Zefeng surname: Wang fullname: Wang, Zefeng – sequence: 6 givenname: Norman E surname: Sharpless fullname: Sharpless, Norman E |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21151960$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk11v0zAUhiM0xLbCP0AQCQnERTo7dpr4BqmaNqiYOql83FqOfZJ6uHaxkzHEn8eh3dRIXIAiJdbx87459jnnNDmyzkKSPMdoikmJz25c760w020LdooRwjkhj5ITXBQkKymiRwfr4-Q0hBuESFGx8klynGNcYDZDJ8mvi7uthxC0s6lrUqMtCJ8Kq1LrbsGkUnvZmxhqnN-EARE2XSw_0rP56jITITipRQcDbjPplLZtulrOU-m8BxN3QvpDd-tUdGvwLkgzvHVIvQ7fniaPG2ECPNt_J8mXy4vP5x-yq-v3i_P5VSZLxroMU5rPClVTXJe4iWcqJZKSSKSwqHEhlBAVQk0hKTSIiYrWtYoC1lS0UbUiZJK83PlujQt8f2-BY4JJwUjURmKxI5QTN3zr9Ub4n9wJzf8EnG-58J2O2XMgilQCQOASUyIJAwagaMEwJnmZ59Hr3f5vfb0BJcF2XpiR6XjH6jVv3S3PGZsRQqPBm72Bd997CB3f6CDBGGHB9YFXJY21K2L2k-TVjmxFzEzbxkVDOdB8ntOiqgqKh-NP_0LFR8FGy9hUjY7xkeDtSBCZDu66VvQh8MWn1X-wy39nr7-O2dcH7BqE6dbBmb6LjRrGIN2BMjZW8NA83DRGfBiU-4LzYVD4flCi7MVhlR5E95NBfgNSYBAU |
CitedBy_id | crossref_primary_10_1002_jcla_23727 crossref_primary_10_1016_j_molcel_2013_08_017 crossref_primary_10_3892_ol_2021_13078 crossref_primary_10_1042_CS20180826 crossref_primary_10_1038_srep00303 crossref_primary_10_1016_j_tibs_2015_03_001 crossref_primary_10_1080_15476286_2015_1020271 crossref_primary_10_1155_2020_9084901 crossref_primary_10_3390_cancers15164160 crossref_primary_10_1016_j_biopha_2018_12_052 crossref_primary_10_1016_j_celrep_2014_12_002 crossref_primary_10_3389_fonc_2021_644011 crossref_primary_10_3390_biom12111586 crossref_primary_10_1161_CIRCULATIONAHA_114_011675 crossref_primary_10_1371_journal_pgen_1005893 crossref_primary_10_1371_journal_pone_0040107 crossref_primary_10_1080_07391102_2023_2241535 crossref_primary_10_1186_s12864_018_4670_5 crossref_primary_10_3389_fimmu_2019_00639 crossref_primary_10_1097_HCO_0b013e328352dfaf crossref_primary_10_1016_j_yjmcc_2018_08_012 crossref_primary_10_3389_fpls_2019_00379 crossref_primary_10_1002_jcla_22874 crossref_primary_10_1016_j_gene_2018_01_036 crossref_primary_10_1002_jcla_22998 crossref_primary_10_1109_TCBB_2015_2418782 crossref_primary_10_1038_s41598_018_35001_6 crossref_primary_10_1152_ajpcell_00041_2020 crossref_primary_10_12688_f1000research_9511_1 crossref_primary_10_1016_j_neuint_2022_105467 crossref_primary_10_1080_15476286_2016_1220473 crossref_primary_10_1111_febs_14191 crossref_primary_10_1016_j_ecoenv_2023_115778 crossref_primary_10_1016_j_envres_2019_108825 crossref_primary_10_1186_s13148_019_0610_8 crossref_primary_10_1016_j_omtn_2019_11_023 crossref_primary_10_1371_journal_pone_0090859 crossref_primary_10_1007_s00018_015_1990_3 crossref_primary_10_1016_j_ncrna_2024_03_012 crossref_primary_10_1016_j_omtn_2020_06_022 crossref_primary_10_1186_s13048_019_0558_5 crossref_primary_10_1093_nar_gkw075 crossref_primary_10_1080_15476286_2020_1771519 crossref_primary_10_1038_nbt_2890 crossref_primary_10_1002_jcla_24716 crossref_primary_10_1261_rna_048272_114 crossref_primary_10_3390_ijms19051343 crossref_primary_10_1016_j_atherosclerosis_2011_12_013 crossref_primary_10_3389_fgene_2021_668313 crossref_primary_10_1007_s00415_024_12263_x crossref_primary_10_1042_BST20170469 crossref_primary_10_2174_1567205017666201111114928 crossref_primary_10_1016_j_lfs_2020_118756 crossref_primary_10_1016_j_semcancer_2018_12_002 crossref_primary_10_1016_j_bbamcr_2016_11_005 crossref_primary_10_1093_bib_bbz080 crossref_primary_10_1002_jcla_23860 crossref_primary_10_3390_ijms21103666 crossref_primary_10_1159_000515807 crossref_primary_10_1155_2017_4587698 crossref_primary_10_1186_s13073_015_0162_2 crossref_primary_10_1007_s11596_017_1812_y crossref_primary_10_3389_fphar_2020_560537 crossref_primary_10_1007_s00018_017_2688_5 crossref_primary_10_1038_emboj_2011_359 crossref_primary_10_1371_journal_pgen_1003201 crossref_primary_10_3390_ncrna1030266 crossref_primary_10_1139_cjpp_2018_0505 crossref_primary_10_1002_2211_5463_12741 crossref_primary_10_1007_s10555_017_9718_5 crossref_primary_10_3389_fonc_2019_00885 crossref_primary_10_1016_j_ncrna_2018_05_002 crossref_primary_10_1016_j_tig_2015_03_007 crossref_primary_10_1016_j_ymthe_2019_07_001 crossref_primary_10_3892_mmr_2019_10011 crossref_primary_10_3389_fvets_2023_1040419 crossref_primary_10_1007_s13258_022_01268_3 crossref_primary_10_1186_s13046_021_01896_9 crossref_primary_10_3390_ijms23063074 crossref_primary_10_1016_j_ijbiomac_2023_128182 crossref_primary_10_1186_s12967_016_0977_7 crossref_primary_10_1038_srep39918 crossref_primary_10_1186_s12859_022_04976_5 crossref_primary_10_1007_s00432_023_04974_x crossref_primary_10_1016_j_yexcr_2024_114014 crossref_primary_10_1186_s12943_019_1041_z crossref_primary_10_18632_oncotarget_2770 crossref_primary_10_1080_2159256X_2015_1045682 crossref_primary_10_1016_j_cej_2024_149788 crossref_primary_10_3349_ymj_2019_60_7_651 crossref_primary_10_18632_aging_101541 crossref_primary_10_1016_j_ymeth_2021_04_002 crossref_primary_10_3389_fcvm_2021_806988 crossref_primary_10_1016_j_jacc_2011_01_053 crossref_primary_10_1080_15476286_2017_1360467 crossref_primary_10_1007_s11010_022_04455_8 crossref_primary_10_1186_s11658_021_00258_9 crossref_primary_10_1177_1010428317704175 crossref_primary_10_18632_oncotarget_11087 crossref_primary_10_1016_j_ncrna_2024_04_002 crossref_primary_10_3390_jcdd8120170 crossref_primary_10_1007_s11886_014_0479_2 crossref_primary_10_1038_srep35576 crossref_primary_10_1093_bfgp_ely031 crossref_primary_10_1016_j_ecoenv_2019_03_076 crossref_primary_10_1016_j_cca_2016_12_029 crossref_primary_10_4155_pbp_14_28 crossref_primary_10_1039_C8MO00252E crossref_primary_10_1155_2017_5135781 crossref_primary_10_2174_0929867329666211230104955 crossref_primary_10_1161_CIRCRESAHA_116_302521 crossref_primary_10_1186_s12864_018_4660_7 crossref_primary_10_7554_eLife_69148 crossref_primary_10_1016_j_omtn_2017_07_014 crossref_primary_10_1007_s11033_020_05368_9 crossref_primary_10_18632_oncotarget_16881 crossref_primary_10_1016_j_molimm_2017_08_008 crossref_primary_10_1007_s12035_018_0903_5 crossref_primary_10_1111_jcmm_18093 crossref_primary_10_1016_j_bbrc_2017_10_068 crossref_primary_10_1016_j_lfs_2019_117176 crossref_primary_10_3390_genes9110536 crossref_primary_10_5551_jat_28126 crossref_primary_10_1016_j_ymben_2019_01_002 crossref_primary_10_1016_j_bbcan_2018_06_002 crossref_primary_10_1016_j_ymthe_2017_05_022 crossref_primary_10_1016_j_ijcha_2018_09_006 crossref_primary_10_3892_ol_2018_9863 crossref_primary_10_3389_fgene_2018_00647 crossref_primary_10_3892_ol_2017_7348 crossref_primary_10_1080_15476286_2015_1122164 crossref_primary_10_1016_j_ygeno_2021_04_022 crossref_primary_10_1186_s12935_020_01349_x crossref_primary_10_1002_jcla_22333 crossref_primary_10_2174_1574892818666221207115016 crossref_primary_10_1016_j_canlet_2017_11_034 crossref_primary_10_1002_jcla_23788 crossref_primary_10_1007_s40291_019_00427_9 crossref_primary_10_1177_1535370216636718 crossref_primary_10_3390_ijms15069331 crossref_primary_10_1016_j_cyto_2019_154932 crossref_primary_10_3390_genes10020090 crossref_primary_10_1016_j_ncrna_2018_04_002 crossref_primary_10_1080_15384047_2018_1480889 crossref_primary_10_1016_j_jacl_2017_03_009 crossref_primary_10_3389_fgene_2021_665233 crossref_primary_10_3389_fmolb_2021_649105 crossref_primary_10_1371_journal_pgen_1003368 crossref_primary_10_1080_22221751_2023_2261558 crossref_primary_10_3390_jcm12134446 crossref_primary_10_1038_s41581_021_00465_9 crossref_primary_10_1186_s40246_019_0240_4 crossref_primary_10_1016_j_mcp_2020_101539 crossref_primary_10_1016_j_vph_2018_06_004 crossref_primary_10_3892_ol_2017_7118 crossref_primary_10_1016_j_pharmthera_2020_107715 crossref_primary_10_1016_j_tcb_2011_04_001 crossref_primary_10_1002_ejhf_801 crossref_primary_10_1016_j_canlet_2017_11_022 crossref_primary_10_3390_ijms222011168 crossref_primary_10_1002_jcp_28128 crossref_primary_10_18632_oncotarget_12186 crossref_primary_10_1016_j_atherosclerosis_2012_12_030 crossref_primary_10_1093_bioinformatics_btz537 crossref_primary_10_1186_s10020_020_00200_3 crossref_primary_10_1016_j_biocel_2013_10_009 crossref_primary_10_1111_jcmm_16849 crossref_primary_10_1093_cvr_cvr097 crossref_primary_10_1016_j_cca_2018_01_026 crossref_primary_10_1038_emboj_2013_134 crossref_primary_10_1111_jcmm_14305 crossref_primary_10_1016_j_bbagrm_2015_07_007 crossref_primary_10_3389_fgene_2016_00053 crossref_primary_10_1042_BST20140070 crossref_primary_10_3389_fgene_2019_00205 crossref_primary_10_3390_ijms18030608 crossref_primary_10_1002_jcb_28863 crossref_primary_10_1186_s12958_019_0541_4 crossref_primary_10_1093_bfgp_elu034 crossref_primary_10_1007_s11883_013_0352_6 crossref_primary_10_1080_15476286_2017_1317911 crossref_primary_10_1016_j_biocel_2013_09_003 crossref_primary_10_18632_oncotarget_18998 crossref_primary_10_3389_fonc_2015_00306 crossref_primary_10_3390_ncrna4020013 crossref_primary_10_1016_j_gene_2020_144654 crossref_primary_10_1016_j_jid_2020_08_007 crossref_primary_10_1038_nature10600 crossref_primary_10_1039_C5MB00064E crossref_primary_10_1016_j_brainres_2021_147702 crossref_primary_10_1038_nature11928 crossref_primary_10_1194_jlr_M041814 crossref_primary_10_1371_journal_pgen_1002654 crossref_primary_10_1111_jcmm_14436 crossref_primary_10_1016_j_bbrc_2020_06_067 crossref_primary_10_3390_ijms232213731 crossref_primary_10_1016_j_tig_2016_03_002 crossref_primary_10_1186_s40104_019_0339_4 crossref_primary_10_1080_15476286_2016_1239009 crossref_primary_10_1097_CM9_0000000000000465 crossref_primary_10_1155_2023_7738719 crossref_primary_10_3892_mmr_2019_10671 crossref_primary_10_1186_s13073_021_01002_w crossref_primary_10_1002_jcp_28900 crossref_primary_10_1016_j_biochi_2015_05_020 crossref_primary_10_1111_jipb_13002 crossref_primary_10_5551_jat_21774 crossref_primary_10_1097_HCO_0000000000000054 crossref_primary_10_3390_genes14040895 crossref_primary_10_4093_dmj_2019_0151 crossref_primary_10_1016_j_jneuroim_2019_576971 crossref_primary_10_1016_j_prp_2017_02_011 crossref_primary_10_3390_ncrna5030044 crossref_primary_10_3389_fcell_2021_640402 crossref_primary_10_1007_s10528_022_10256_x crossref_primary_10_1016_j_mvr_2020_103983 crossref_primary_10_1161_CIRCRESAHA_114_302692 crossref_primary_10_3390_ijms18071378 crossref_primary_10_1002_jcb_28603 crossref_primary_10_1007_s12031_020_01698_2 crossref_primary_10_1155_2021_8889569 crossref_primary_10_1016_j_ihj_2019_04_005 crossref_primary_10_1080_15384101_2018_1515553 crossref_primary_10_1038_nrm_2015_32 crossref_primary_10_1161_ATVBAHA_111_234492 crossref_primary_10_1038_s41598_018_31719_5 crossref_primary_10_1097_MOL_0b013e3283654e7c crossref_primary_10_1016_j_bbrc_2018_04_041 crossref_primary_10_1038_srep39080 crossref_primary_10_1002_iub_1479 crossref_primary_10_1093_bioinformatics_btx129 crossref_primary_10_1016_j_canlet_2019_09_008 crossref_primary_10_1161_CIRCRESAHA_118_312497 crossref_primary_10_1111_1755_5922_12436 crossref_primary_10_3389_fphar_2023_1093175 crossref_primary_10_1016_j_gpb_2020_10_001 crossref_primary_10_3389_fgene_2021_743757 crossref_primary_10_3390_ijms151017478 crossref_primary_10_1038_s41598_017_15061_w crossref_primary_10_1016_j_ncrna_2017_01_001 crossref_primary_10_2147_OTT_S270747 crossref_primary_10_3389_fcell_2020_00230 crossref_primary_10_1007_s11356_020_12117_9 crossref_primary_10_1016_j_prp_2022_153891 crossref_primary_10_1093_hmg_ddt156 crossref_primary_10_1111_jcpt_13060 crossref_primary_10_1155_2018_9351598 crossref_primary_10_1016_j_yexcr_2016_07_021 crossref_primary_10_3390_antiox11102021 crossref_primary_10_3892_ol_2018_9125 crossref_primary_10_3390_ncrna4030017 crossref_primary_10_1038_aps_2017_196 crossref_primary_10_1038_s41598_022_11668_w crossref_primary_10_1186_1756_9966_32_104 crossref_primary_10_1093_pcp_pcz043 crossref_primary_10_1155_2022_8859677 crossref_primary_10_1016_j_bbagrm_2015_06_003 crossref_primary_10_2174_1389201023666220602102133 crossref_primary_10_1007_s11239_019_01998_4 crossref_primary_10_1186_s13048_020_00709_5 crossref_primary_10_1261_rna_046342_114 crossref_primary_10_1007_s40011_022_01438_z crossref_primary_10_1038_s41598_019_54603_2 crossref_primary_10_1016_j_ygeno_2021_12_020 crossref_primary_10_1134_S1068162022020042 crossref_primary_10_1002_jcb_27346 crossref_primary_10_1186_s12935_021_01985_x crossref_primary_10_1016_j_biopha_2022_113935 crossref_primary_10_1161_CIRCGENETICS_117_001556 crossref_primary_10_3389_fonc_2020_01526 crossref_primary_10_1038_s41598_017_00877_3 crossref_primary_10_1016_j_mgene_2021_100997 crossref_primary_10_1093_hmg_ddt299 crossref_primary_10_4161_epi_26405 crossref_primary_10_1371_journal_pgen_1003777 crossref_primary_10_1111_bcp_12987 crossref_primary_10_1007_s00018_019_03016_5 crossref_primary_10_1007_s00424_014_1479_1 crossref_primary_10_1186_s12943_021_01484_7 crossref_primary_10_1002_mc_22626 crossref_primary_10_1038_s41388_023_02780_w crossref_primary_10_1111_andr_12874 crossref_primary_10_3390_medicina59081461 crossref_primary_10_1016_j_ajpath_2015_11_026 crossref_primary_10_1002_ctd2_206 crossref_primary_10_1038_nrn_2017_90 crossref_primary_10_1007_s12035_024_04074_y crossref_primary_10_1016_j_vph_2021_106898 crossref_primary_10_1080_15476286_2020_1812910 crossref_primary_10_1093_nar_gkab245 crossref_primary_10_3389_fonc_2020_00663 crossref_primary_10_1016_j_smallrumres_2018_12_009 crossref_primary_10_18632_oncotarget_17488 crossref_primary_10_1155_2018_3073467 crossref_primary_10_1186_s13059_014_0571_3 crossref_primary_10_2217_pme_2016_0090 crossref_primary_10_1038_nrg_2016_114 crossref_primary_10_1038_s12276_018_0188_9 crossref_primary_10_1111_jcmm_17966 crossref_primary_10_1172_JCI66645 crossref_primary_10_1002_2211_5463_12709 crossref_primary_10_1111_pcmr_12537 crossref_primary_10_1016_j_bbadis_2017_12_040 crossref_primary_10_7717_peerj_5011 crossref_primary_10_1089_gtmb_2020_0034 crossref_primary_10_1373_clinchem_2019_305854 crossref_primary_10_5483_BMBRep_2013_46_3_171 crossref_primary_10_1016_j_tma_2019_06_001 crossref_primary_10_1016_j_canlet_2015_03_002 crossref_primary_10_2147_IJGM_S355906 crossref_primary_10_1186_s12920_021_01094_8 crossref_primary_10_3389_fgene_2014_00164 crossref_primary_10_1093_bib_bbw045 crossref_primary_10_1093_bfgp_elv059 crossref_primary_10_1038_srep22572 crossref_primary_10_1093_nar_gkv1458 crossref_primary_10_1097_MPG_0000000000001970 crossref_primary_10_1186_s13045_018_0643_z crossref_primary_10_1016_j_vph_2018_11_006 crossref_primary_10_18632_oncotarget_18350 crossref_primary_10_1002_jez_b_22542 crossref_primary_10_1146_annurev_biochem_051410_092902 crossref_primary_10_1016_j_vph_2018_03_003 crossref_primary_10_3389_fninf_2022_859937 crossref_primary_10_1371_journal_pcbi_1008338 crossref_primary_10_1007_s00223_018_0426_0 crossref_primary_10_1007_s10577_013_9391_7 crossref_primary_10_3389_fendo_2018_00405 crossref_primary_10_3389_fgene_2019_00603 crossref_primary_10_2217_fon_2020_0470 crossref_primary_10_1016_j_cca_2017_01_025 crossref_primary_10_3390_ijms23105369 crossref_primary_10_3390_molecules27123682 crossref_primary_10_3892_ol_2019_9970 crossref_primary_10_1093_nar_gkr1009 crossref_primary_10_1002_jcla_23049 crossref_primary_10_1016_j_jns_2017_08_011 crossref_primary_10_1038_s41388_019_1092_z crossref_primary_10_1016_j_ncrna_2022_11_002 crossref_primary_10_1016_j_mad_2018_11_002 crossref_primary_10_4236_abb_2015_66043 crossref_primary_10_2174_1566524020666200129142106 crossref_primary_10_1111_tan_12227 crossref_primary_10_1016_j_lfs_2019_116571 crossref_primary_10_3389_fmolb_2017_00038 crossref_primary_10_5897_AJB2018_16471 crossref_primary_10_1002_jcb_29446 crossref_primary_10_1186_s12935_020_01245_4 crossref_primary_10_11569_wcjd_v28_i11_417 crossref_primary_10_1080_10641963_2016_1273944 crossref_primary_10_18632_oncotarget_21748 crossref_primary_10_1093_nar_gkae465 crossref_primary_10_1111_acel_12870 crossref_primary_10_1158_2159_8290_CD_11_0209 crossref_primary_10_4103_0366_6999_147824 crossref_primary_10_3390_ijms19061734 crossref_primary_10_1016_j_bcp_2023_115627 crossref_primary_10_1161_CIRCRESAHA_115_306464 crossref_primary_10_1080_00207454_2016_1236382 crossref_primary_10_1186_1480_9222_16_11 crossref_primary_10_3390_ijms24054571 crossref_primary_10_1016_j_canlet_2021_02_004 crossref_primary_10_1016_j_jacc_2015_12_051 crossref_primary_10_1007_s12041_023_01442_w crossref_primary_10_1158_0008_5472_CAN_16_2634 crossref_primary_10_1007_s13238_015_0202_0 crossref_primary_10_1371_journal_pgen_1010429 crossref_primary_10_1016_j_molcel_2018_06_034 crossref_primary_10_3389_fgene_2020_527484 crossref_primary_10_3389_fgene_2021_642969 crossref_primary_10_1038_s41598_017_09602_6 crossref_primary_10_15252_embj_2018100836 crossref_primary_10_1111_jcmm_15572 crossref_primary_10_1161_ATVBAHA_110_221721 crossref_primary_10_1016_j_tibtech_2019_07_008 crossref_primary_10_3892_ijmm_2019_4441 crossref_primary_10_1111_1471_0528_13897 crossref_primary_10_1586_erm_12_134 crossref_primary_10_1177_1535370218822988 crossref_primary_10_1186_s12859_016_0881_4 crossref_primary_10_18632_oncotarget_19228 crossref_primary_10_1007_s12031_021_01889_5 crossref_primary_10_1038_s41431_018_0210_7 crossref_primary_10_1007_s12282_017_0793_9 crossref_primary_10_1093_cvr_cvz203 crossref_primary_10_1684_ejd_2018_3483 crossref_primary_10_3389_fgene_2022_810974 crossref_primary_10_3390_cancers12102975 crossref_primary_10_3892_ol_2022_13492 crossref_primary_10_1007_s11102_014_0554_0 crossref_primary_10_1016_j_margen_2016_12_004 crossref_primary_10_3892_mmr_2015_4264 crossref_primary_10_1002_jcb_28212 crossref_primary_10_1002_jcb_28333 crossref_primary_10_3389_fcimb_2018_00255 crossref_primary_10_3390_cells9091934 crossref_primary_10_1038_s41419_024_06782_8 crossref_primary_10_3389_fcvm_2019_00091 crossref_primary_10_1038_srep40342 crossref_primary_10_1080_14737159_2020_1826313 crossref_primary_10_1186_s43066_024_00345_4 crossref_primary_10_1161_CIRCGENETICS_115_001294 crossref_primary_10_1007_s12035_016_0213_8 crossref_primary_10_1016_j_lfs_2019_116785 crossref_primary_10_1093_hmg_dds224 crossref_primary_10_1111_nph_13585 crossref_primary_10_1146_annurev_cellbio_120420_125117 crossref_primary_10_1093_database_bay044 crossref_primary_10_1186_s13046_017_0624_z crossref_primary_10_1371_journal_pcbi_1007568 crossref_primary_10_1155_2022_2371401 crossref_primary_10_3389_fgene_2020_00659 crossref_primary_10_1002_jcp_28817 crossref_primary_10_1080_21655979_2021_1953214 crossref_primary_10_3389_fcell_2022_948256 crossref_primary_10_1111_jcmm_15150 crossref_primary_10_3892_ijo_2017_4162 crossref_primary_10_1016_j_gendis_2020_07_012 crossref_primary_10_1016_j_preteyeres_2024_101247 crossref_primary_10_1136_jmedgenet_2016_103758 crossref_primary_10_1016_j_advms_2021_11_001 crossref_primary_10_3389_fgene_2022_1049786 crossref_primary_10_3892_or_2015_3904 crossref_primary_10_1172_JCI70960 crossref_primary_10_1177_25168657231213195 crossref_primary_10_3390_biology11101451 crossref_primary_10_3892_or_2017_5415 crossref_primary_10_1016_j_intimp_2023_110938 crossref_primary_10_1186_s12920_020_00817_7 crossref_primary_10_1016_j_atherosclerosis_2020_02_017 crossref_primary_10_1161_CIRCULATIONAHA_112_136556 crossref_primary_10_1038_s41388_018_0369_y crossref_primary_10_1080_15384101_2020_1831253 crossref_primary_10_1007_s12031_018_1125_z crossref_primary_10_1016_j_canlet_2018_01_011 crossref_primary_10_1038_s41598_024_51715_2 crossref_primary_10_1161_CIRCRESAHA_113_302988 crossref_primary_10_1186_s12884_018_1774_5 crossref_primary_10_1016_j_cca_2022_03_016 crossref_primary_10_1177_1933719118759439 crossref_primary_10_1016_j_mce_2017_07_020 crossref_primary_10_18632_aging_103398 crossref_primary_10_1089_gtmb_2012_0046 crossref_primary_10_1136_jmedgenet_2018_105387 crossref_primary_10_1371_journal_pone_0105723 crossref_primary_10_1042_BSR20180365 crossref_primary_10_1016_j_jgo_2011_08_004 crossref_primary_10_4251_wjgo_v16_i5_2200 crossref_primary_10_3390_ijms140815386 crossref_primary_10_3233_THC_220131 crossref_primary_10_3389_fgene_2020_00530 crossref_primary_10_3389_fbioe_2014_00071 crossref_primary_10_1186_s12864_016_3476_6 crossref_primary_10_3389_fphys_2016_00355 crossref_primary_10_3390_cancers12092701 crossref_primary_10_1093_nar_gkx1107 crossref_primary_10_3389_fcell_2021_619329 crossref_primary_10_1161_CIRCULATIONAHA_116_023686 crossref_primary_10_3389_fnmol_2016_00025 crossref_primary_10_1261_rna_035667_112 crossref_primary_10_3390_ijms14011278 crossref_primary_10_3389_fmolb_2019_00146 crossref_primary_10_1016_j_ymthe_2023_05_003 crossref_primary_10_1016_j_thromres_2019_03_020 crossref_primary_10_7717_peerj_7602 crossref_primary_10_1186_s13148_016_0170_0 crossref_primary_10_1093_cvr_cvw250 crossref_primary_10_1007_s13105_021_00807_y crossref_primary_10_1007_s12031_018_1211_2 crossref_primary_10_1016_j_leukres_2011_02_020 crossref_primary_10_1016_j_omtn_2023_08_017 crossref_primary_10_3389_fonc_2019_01091 crossref_primary_10_1177_1479164117722714 crossref_primary_10_3892_ol_2020_11623 crossref_primary_10_1155_2015_729463 crossref_primary_10_1186_s13148_018_0482_3 crossref_primary_10_3389_fonc_2020_01104 crossref_primary_10_1007_s13311_013_0199_0 crossref_primary_10_1902_jop_2017_170078 crossref_primary_10_1016_j_ajhg_2012_10_016 crossref_primary_10_1007_s11886_018_1055_y crossref_primary_10_1186_s12943_019_1069_0 crossref_primary_10_1002_1878_0261_12045 crossref_primary_10_1016_j_neuroscience_2019_12_018 crossref_primary_10_3109_10409238_2013_844092 crossref_primary_10_3390_genes8120353 crossref_primary_10_2217_mmt_2016_0008 crossref_primary_10_1016_j_plantsci_2022_111278 crossref_primary_10_1038_bcj_2016_81 crossref_primary_10_1007_s13402_014_0180_x crossref_primary_10_1007_s11010_021_04286_z crossref_primary_10_1007_s00125_016_3967_7 crossref_primary_10_1152_physiolgenomics_00096_2018 crossref_primary_10_3390_ijms21020456 crossref_primary_10_1002_jcla_23687 crossref_primary_10_1002_wsbm_1354 crossref_primary_10_1007_s12539_021_00455_2 crossref_primary_10_1093_humupd_dms001 crossref_primary_10_1371_journal_pone_0202375 crossref_primary_10_3892_mmr_2019_9905 crossref_primary_10_1002_jcp_27384 crossref_primary_10_1016_j_hlc_2019_10_018 crossref_primary_10_1161_CIRCULATIONAHA_112_111559 crossref_primary_10_1038_jid_2015_200 crossref_primary_10_7554_eLife_07540 crossref_primary_10_1161_STROKEAHA_111_625442 crossref_primary_10_3892_ol_2017_7265 crossref_primary_10_3390_biology11091350 crossref_primary_10_1089_cbr_2018_2641 crossref_primary_10_1007_s43032_020_00219_1 crossref_primary_10_1186_s13046_018_0870_8 crossref_primary_10_1186_s40246_023_00564_7 crossref_primary_10_1080_21655979_2021_1997224 crossref_primary_10_1111_cei_13181 crossref_primary_10_3389_fcvm_2018_00047 crossref_primary_10_3390_biomedicines10040871 crossref_primary_10_1016_j_bbrc_2018_01_077 crossref_primary_10_1242_dev_128074 crossref_primary_10_3390_ijms17010132 crossref_primary_10_1016_j_canlet_2015_06_003 crossref_primary_10_3389_fcvm_2018_00028 crossref_primary_10_1097_MD_0000000000007354 crossref_primary_10_1158_0008_5472_CAN_10_4379 crossref_primary_10_1002_jcp_28201 crossref_primary_10_1016_j_bbadis_2014_03_011 crossref_primary_10_1016_j_omtn_2020_08_008 crossref_primary_10_1007_s12015_018_9841_x crossref_primary_10_1158_1940_6207_CAPR_12_0346_T crossref_primary_10_1007_s10517_018_4084_z crossref_primary_10_1038_s41598_020_77080_4 crossref_primary_10_1186_s40659_020_00295_2 crossref_primary_10_1177_0394632016686985 crossref_primary_10_7717_peerj_5503 crossref_primary_10_3390_ijms25063433 crossref_primary_10_5582_irdr_2018_01013 crossref_primary_10_7717_peerj_6831 crossref_primary_10_1038_cr_2016_42 crossref_primary_10_1016_j_compbiolchem_2018_08_002 crossref_primary_10_7717_peerj_10032 crossref_primary_10_1016_j_omtn_2017_04_004 crossref_primary_10_1371_journal_pone_0030733 crossref_primary_10_1080_15476286_2016_1271524 crossref_primary_10_1007_s00109_014_1131_8 crossref_primary_10_1016_j_omtn_2019_08_026 crossref_primary_10_3390_biomedicines11112883 crossref_primary_10_1186_s12872_023_03173_3 crossref_primary_10_1007_s13277_015_3750_2 crossref_primary_10_1002_ajmg_a_38190 crossref_primary_10_18632_oncotarget_14721 crossref_primary_10_1002_wrna_1478 crossref_primary_10_3389_fcvm_2018_00145 crossref_primary_10_1007_s00395_024_01048_y crossref_primary_10_1139_bcb_2023_0155 crossref_primary_10_1177_1010428317694546 crossref_primary_10_1016_j_lfs_2020_117837 crossref_primary_10_1089_nat_2022_0040 crossref_primary_10_3389_fcvm_2018_00022 crossref_primary_10_1016_j_ophtha_2020_05_014 crossref_primary_10_7717_peerj_13135 crossref_primary_10_1007_s12282_020_01140_w crossref_primary_10_3390_jcm12185944 crossref_primary_10_1111_cpr_13302 crossref_primary_10_3892_ijmm_2018_3892 crossref_primary_10_1016_j_dnarep_2017_06_027 crossref_primary_10_1016_j_ekir_2018_05_012 crossref_primary_10_1038_s41401_018_0063_1 crossref_primary_10_1093_bib_bbad111 crossref_primary_10_18632_oncotarget_15719 crossref_primary_10_1158_1055_9965_EPI_20_0796 crossref_primary_10_1016_j_cell_2014_09_001 crossref_primary_10_1038_ncomms12429 crossref_primary_10_1016_j_biopha_2016_12_097 crossref_primary_10_1016_j_yjmcc_2015_10_028 crossref_primary_10_1155_2017_6218353 crossref_primary_10_1161_CIRCRESAHA_115_306319 crossref_primary_10_1210_er_2014_1034 crossref_primary_10_1016_j_cca_2015_02_018 crossref_primary_10_1016_j_bbcan_2022_188772 crossref_primary_10_1016_j_bbrc_2018_09_069 crossref_primary_10_1016_j_cell_2012_12_010 crossref_primary_10_1016_j_biopha_2017_12_015 crossref_primary_10_1016_j_biopha_2018_08_030 crossref_primary_10_1038_s41419_019_1382_y crossref_primary_10_1261_rna_047126_114 crossref_primary_10_1007_s00122_019_03489_9 crossref_primary_10_14336_AD_2018_1128 crossref_primary_10_18632_oncotarget_24307 crossref_primary_10_1016_j_canlet_2017_03_027 crossref_primary_10_1080_15476286_2016_1227905 crossref_primary_10_1080_15476286_2016_1227904 crossref_primary_10_1007_s00592_016_0943_0 crossref_primary_10_1002_jcla_22281 crossref_primary_10_1073_pnas_1418203112 crossref_primary_10_2217_epi_2018_0002 crossref_primary_10_1016_j_gendis_2017_12_002 crossref_primary_10_1093_nar_gkaa1085 crossref_primary_10_1016_j_ebiom_2017_03_037 crossref_primary_10_1038_s41576_024_00723_z crossref_primary_10_3389_fonc_2020_549982 crossref_primary_10_1016_j_biopha_2018_08_161 crossref_primary_10_1371_journal_pone_0039574 crossref_primary_10_1016_j_ijbiomac_2024_129658 crossref_primary_10_2217_mmt_15_30 crossref_primary_10_2217_epi_16_3 crossref_primary_10_1186_s40169_020_0256_3 crossref_primary_10_1016_j_bbrep_2023_101481 crossref_primary_10_3389_fcell_2020_584051 crossref_primary_10_2337_db17_1055 crossref_primary_10_1080_15476286_2021_1891393 crossref_primary_10_1109_TCBB_2023_3264466 crossref_primary_10_1002_wrna_1309 crossref_primary_10_18632_oncotarget_16709 crossref_primary_10_1186_s12864_024_10420_0 crossref_primary_10_1186_s12872_021_02128_w crossref_primary_10_3390_ijms21103580 crossref_primary_10_3390_plants8090302 crossref_primary_10_1101_gad_251926_114 crossref_primary_10_1159_000500063 crossref_primary_10_1007_s00425_019_03145_y crossref_primary_10_1080_15592294_2014_1003746 crossref_primary_10_1080_10409238_2016_1276882 crossref_primary_10_1038_nm_4179 crossref_primary_10_18632_oncotarget_24567 crossref_primary_10_2217_bmm_2016_0130 crossref_primary_10_1161_ATVBAHA_111_232678 crossref_primary_10_1186_s12575_020_00122_8 crossref_primary_10_3390_cells11081346 crossref_primary_10_1080_21691401_2019_1652187 crossref_primary_10_1158_1541_7786_MCR_13_0350 crossref_primary_10_1038_nrg3074 crossref_primary_10_1016_j_compbiolchem_2020_107287 crossref_primary_10_1007_s11427_014_4698_y crossref_primary_10_3390_ijms23126776 crossref_primary_10_1042_BSR20180542 crossref_primary_10_1371_journal_pone_0166481 crossref_primary_10_1007_s43032_022_00937_8 crossref_primary_10_2174_1871520621666210712090721 crossref_primary_10_1093_noajnl_vdz023 crossref_primary_10_1109_TCYB_2020_3022852 crossref_primary_10_3233_CBM_170910 crossref_primary_10_1007_s10142_024_01394_z crossref_primary_10_1016_j_ijcard_2015_04_021 crossref_primary_10_1016_j_ejim_2020_05_014 |
Cites_doi | 10.1038/ejhg.2008.196 10.1038/nmeth.1363 10.1093/bioinformatics/btp352 10.1038/sj.onc.1203942 10.1126/science.1073774 10.1038/ng.407 10.1016/j.cell.2007.05.022 10.1016/0092-8674(91)90244-S 10.1161/ATVBAHA.109.189522 10.1093/nar/gkl151 10.1089/rej.2009.0970 10.1038/sj.emboj.7601090 10.1073/pnas.93.13.6536 10.1016/j.cell.2004.11.010 10.1101/gad.1742609 10.1161/STROKEAHA.107.502963 10.1016/j.devcel.2008.08.015 10.1371/journal.pone.0005027 10.1038/nature08975 10.1002/j.1460-2075.1992.tb05148.x 10.1261/rna.876308 10.1038/nrm1987 10.1016/j.cell.2006.10.003 10.1371/journal.pone.0007677 10.1038/nature08801 10.1101/gad.1742509 10.1101/gad.1499407 10.1161/CIRCGENETICS.108.825935 10.1038/ng.408 10.1038/nature05159 10.1158/0008-5472.CAN-06-2004 10.1016/j.molcel.2010.03.021 10.1093/bioinformatics/btp324 10.1038/nature06258 10.1016/j.atherosclerosis.2009.09.036 10.1158/0008-5472.CAN-06-3311 10.1161/CIRCGENETICS.108.835173 10.1038/ng.601 10.1038/nsmb.1824 10.1016/S0168-9525(01)02324-1 10.1126/science.1163045 10.1126/science.1142842 10.1038/16476 10.1161/ATVBAHA.109.196832 10.1172/JCI22475 10.1093/nar/gki893 10.1111/j.1474-9726.2009.00489.x 10.1371/journal.pgen.1000899 10.1093/bioinformatics/btl575 10.1038/ng.72 10.1101/gad.1416906 10.1002/ana.21590 10.1093/bioinformatics/btn025 10.1038/323558a0 10.1161/01.ATV.0000114567.76772.33 10.1126/science.1142447 10.1016/j.jacc.2010.02.017 10.1161/01.ATV.0000133605.89421.79 10.1128/MCB.16.3.859 10.1093/hmg/ddm352 10.1101/gad.9.15.1831 10.1172/JCI22756 10.1126/science.1189731 10.1126/science.1142382 10.1016/j.jacc.2007.11.087 10.1101/gad.415507 10.1126/science.1142364 10.1161/CIRCGENETICS.108.789727 10.1016/j.jacc.2010.01.026 10.1016/S0076-6879(07)00405-3 10.1093/emboj/cdf289 10.1016/j.molcel.2008.08.022 10.1161/ATVBAHA.108.176800 10.1111/j.1462-5822.2008.01231.x 10.1038/ng.612 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2010 Public Library of Science Burd et al. 2010 2010 Burd et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, et al. (2010) Expression of Linear and Novel Circular Forms of an INK4/ARF-Associated Non-Coding RNA Correlates with Atherosclerosis Risk. PLoS Genet 6(12): e1001233. doi:10.1371/journal.pgen.1001233 |
Copyright_xml | – notice: COPYRIGHT 2010 Public Library of Science – notice: Burd et al. 2010 – notice: 2010 Burd et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, et al. (2010) Expression of Linear and Novel Circular Forms of an INK4/ARF-Associated Non-Coding RNA Correlates with Atherosclerosis Risk. PLoS Genet 6(12): e1001233. doi:10.1371/journal.pgen.1001233 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION IOV ISN ISR 7TM 8FD FR3 P64 RC3 5PM DOA |
DOI | 10.1371/journal.pgen.1001233 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | cANRIL Expression and Structure |
EISSN | 1553-7404 |
Editor | Chang, Howard Y. |
Editor_xml | – sequence: 1 givenname: Howard Y. surname: Chang fullname: Chang, Howard Y. |
ExternalDocumentID | 1313593800 oai_doaj_org_article_e3d38aeea17143c39e9eed4591132722 A245885413 10_1371_journal_pgen_1001233 21151960 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: K99 AG036817 – fundername: NIEHS NIH HHS grantid: T32 ES007126 – fundername: NIA NIH HHS grantid: AG024379 – fundername: NIEHS NIH HHS grantid: P30 ES010126 – fundername: NIA NIH HHS grantid: R01 AG024379 – fundername: NIA NIH HHS grantid: K99AG036817 – fundername: NCI NIH HHS grantid: CA009156-34 – fundername: NCI NIH HHS grantid: T32 CA009156 |
GroupedDBID | --- 123 29O 2WC 3V. 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CGR CS3 CUY CVF DIK DU5 E3Z EAP EAS EBD EBS ECM EIF EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P M~E NPM O5R O5S OK1 P2P PIMPY PQQKQ PROAC PSQYO QN7 RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M AAYXX CITATION 7TM 8FD FR3 P64 RC3 5PM AAPBV ABPTK |
ID | FETCH-LOGICAL-c799t-144265db41b71f1557c0cc3c0d1ab15adaa800f5c4ef09a84bbd2659f84fdbd33 |
IEDL.DBID | RPM |
ISSN | 1553-7404 1553-7390 |
IngestDate | Sun Oct 01 00:20:28 EDT 2023 Tue Oct 22 15:12:04 EDT 2024 Tue Sep 17 21:05:11 EDT 2024 Sat Jun 22 20:31:03 EDT 2024 Wed Jul 24 18:24:33 EDT 2024 Tue Jul 23 04:31:51 EDT 2024 Sat Sep 28 21:19:55 EDT 2024 Thu Aug 01 20:14:33 EDT 2024 Sat Sep 28 21:01:56 EDT 2024 Tue Aug 20 22:15:33 EDT 2024 Fri Aug 23 03:51:53 EDT 2024 Sat Sep 28 07:55:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c799t-144265db41b71f1557c0cc3c0d1ab15adaa800f5c4ef09a84bbd2659f84fdbd33 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 Conceived and designed the experiments: CEB WRJ ZW NES. Performed the experiments: CEB WRJ YL. Analyzed the data: CEB WRJ YL ZW NES. Contributed reagents/materials/analysis tools: HKS ZW. Wrote the paper: CEB WRJ NES. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996334/ |
PMID | 21151960 |
PQID | 874196531 |
PQPubID | 23462 |
ParticipantIDs | plos_journals_1313593800 doaj_primary_oai_doaj_org_article_e3d38aeea17143c39e9eed4591132722 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2996334 proquest_miscellaneous_874196531 gale_infotracmisc_A245885413 gale_infotracacademiconefile_A245885413 gale_incontextgauss_ISR_A245885413 gale_incontextgauss_ISN_A245885413 gale_incontextgauss_IOV_A245885413 gale_healthsolutions_A245885413 crossref_primary_10_1371_journal_pgen_1001233 pubmed_primary_21151960 |
PublicationCentury | 2000 |
PublicationDate | 2010-12-01 |
PublicationDateYYYYMMDD | 2010-12-01 |
PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2010 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | 20031580 - Circ Cardiovasc Genet. 2009 Apr;2(2):159-64 18974356 - Science. 2008 Oct 31;322(5902):750-6 18048406 - Hum Mol Genet. 2008 Mar 15;17(6):806-14 18369186 - RNA. 2008 May;14(5):802-13 17604720 - Cell. 2007 Jun 29;129(7):1311-23 9923679 - Nature. 1999 Jan 14;397(6715):164-8 20173736 - Nature. 2010 Mar 18;464(7287):409-12 20381282 - J Am Coll Cardiol. 2010 May 18;55(20):2258-68 19485966 - Aging Cell. 2009 Aug;8(4):439-48 17055429 - Cell. 2006 Oct 20;127(2):265-75 16921403 - Nat Rev Mol Cell Biol. 2006 Sep;7(9):667-77 20605023 - Atherosclerosis. 2010 Oct;212(2):539-42 20386740 - PLoS Genet. 2010 Apr;6(4):e1000899 17943122 - Nature. 2007 Oct 18;449(7164):851-61 7649471 - Genes Dev. 1995 Aug 1;9(15):1831-45 16682442 - Nucleic Acids Res. 2006;34(8):e63 14699019 - Arterioscler Thromb Vasc Biol. 2004 Mar;24(3):399-404 16237125 - Nucleic Acids Res. 2005;33(18):5904-13 17478681 - Science. 2007 Jun 8;316(5830):1488-91 20371516 - Nucleic Acids Res. 2010 Aug;38(14):4570-8 18854858 - Eur J Hum Genet. 2009 Mar;17(3):391-4 17478679 - Science. 2007 Jun 8;316(5830):1491-3 1339341 - EMBO J. 1992 Mar;11(3):1095-8 20512145 - Nat Genet. 2010 Jul;42(7):599-603 20031606 - Circ Cardiovasc Genet. 2009 Aug;2(4):347-53 18818413 - Arterioscler Thromb Vasc Biol. 2008 Dec;28(12):2180-6 20488992 - Science. 2010 Jun 25;328(5986):1689-93 20393566 - Nature. 2010 Apr 15;464(7291):1071-6 18176561 - Nat Genet. 2008 Feb;40(2):217-24 18848501 - Dev Cell. 2008 Nov;15(5):668-79 17105720 - Bioinformatics. 2007 Jan 15;23(2):150-5 19343170 - PLoS One. 2009;4(4):e5027 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9 16628224 - EMBO J. 2006 May 17;25(10):2096-106 15166010 - Arterioscler Thromb Vasc Biol. 2004 Aug;24(8):1391-6 17344414 - Genes Dev. 2007 Mar 1;21(5):525-30 15607979 - Cell. 2004 Dec 17;119(6):831-45 20601957 - Nat Genet. 2010 Aug;42(8):707-10 18652946 - J Am Coll Cardiol. 2008 Jul 29;52(5):378-84 20595579 - Science. 2010 Jul 1;2010:null 19390090 - Genes Dev. 2009 Apr 15;23(8):975-85 16702402 - Genes Dev. 2006 May 15;20(10):1268-82 12065407 - EMBO J. 2002 Jun 17;21(12):2936-45 20230275 - Rejuvenation Res. 2010 Feb;13(1):23-6 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60 18951091 - Mol Cell. 2008 Oct 24;32(2):232-46 1991322 - Cell. 1991 Feb 8;64(3):607-13 17463248 - Science. 2007 Jun 1;316(5829):1341-5 19578367 - Nat Genet. 2009 Aug;41(8):899-904 16957735 - Nature. 2006 Sep 28;443(7110):421-6 18764915 - Cell Microbiol. 2008 Nov;10(11):2168-79 8692851 - Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6536-41 18374156 - Methods Enzymol. 2008;439:53-72 12114529 - Science. 2002 Aug 9;297(5583):1007-13 11377794 - Trends Genet. 2001 Jun;17(6):322-31 19390085 - Genes Dev. 2009 Apr 15;23(8):906-11 15520862 - J Clin Invest. 2004 Nov;114(9):1299-307 10496532 - Lab Invest. 1999 Sep;79(9):1137-43 17463249 - Science. 2007 Jun 1;316(5829):1336-41 11126361 - Oncogene. 2000 Nov 23;19(50):5747-54 19668202 - Nat Methods. 2009 Sep;6(9):677-81 19578366 - Nat Genet. 2009 Aug;41(8):905-8 19475673 - Ann Neurol. 2009 May;65(5):531-9 19888323 - PLoS One. 2009;4(11):e7677 18227114 - Bioinformatics. 2008 Mar 1;24(5):713-4 17308088 - Cancer Res. 2007 Feb 15;67(4):1502-12 18340101 - Stroke. 2008 May;39(5):1586-9 20056914 - Arterioscler Thromb Vasc Biol. 2010 Mar;30(3):620-7 2429192 - Nature. 1986 Oct 9-15;323(6088):558-60 16239970 - J Clin Invest. 2005 Nov;115(11):3228-38 17440112 - Cancer Res. 2007 Apr 15;67(8):3963-9 19592466 - Arterioscler Thromb Vasc Biol. 2009 Oct;29(10):1671-7 20543829 - Nat Struct Mol Biol. 2010 Jul;17(7):862-8 17210787 - Genes Dev. 2007 Jan 1;21(1):49-54 8622687 - Mol Cell Biol. 1996 Mar;16(3):859-67 20031540 - Circ Cardiovasc Genet. 2008 Oct;1(1):39-42 20381281 - J Am Coll Cardiol. 2010 May 18;55(20):2269-71 14593697 - Prog Cell Cycle Res. 2003;5:19-30 20541999 - Mol Cell. 2010 Jun 11;38(5):662-74 E Hara (ref43) 1996; 16 Z Wang (ref54) 2004; 119 E Biros (ref2) 2010 Y Liu (ref16) 2009; 4 J Gil (ref36) 2006; 7 AP Bracken (ref35) 2007; 21 GP Nielsen (ref46) 1999; 79 Z Wang (ref56) 2008; 14 SB Seidelmann (ref14) 2008; 28 D Mancini-Dinardo (ref63) 2006; 20 (ref1) 2009 J Krishnamurthy (ref44) 2004; 114 E Zeggini (ref70) 2007; 316 F Gizard (ref19) 2005; 115 H Li (ref52) 2009; 25 J Zhao (ref39) 2008; 322 RA Gupta (ref41) 2010; 464 M Schmid (ref47) 2000; 19 T Kyriakou (ref29) 2009; 207 AR Thompson (ref4) 2009; 17 M Wrensch (ref73) 2009; 41 A Helgadottir (ref6) 2008; 40 H Suzuki (ref50) 2006; 34 JM Nigro (ref58) 1991; 64 S Shete (ref72) 2009; 41 JM Shields (ref80) 2007; 67 A Gschwendtner (ref9) 2009; 65 S Uno (ref74) 2010; 42 R Wessely (ref17) 2010; 55 LJ Scott (ref71) 2007; 316 JL Rinn (ref38) 2007; 129 JX Bei (ref75) 2010; 42 O Jarinova (ref30) 2009; 29 L Folkersen (ref28) 2009; 4 A Helgadottir (ref5) 2007; 316 L Bonen (ref67) 2001; 17 C Kanduri (ref64) 2006; 25 I Reynisdottir (ref22) 1995; 9 SE Messaoudi-Aubert (ref61) 2010; 17 S Ye (ref12) 2008; 52 S Dhawan (ref32) 2009; 23 P Sebastiani (ref77) 2010 R McPherson (ref7) 2007; 316 E Emanuele (ref76) 2010; 13 S Brookes (ref79) 2002; 21 R Terranova (ref37) 2008; 15 Y Liu (ref42) 2009; 8 C Cocquerelle (ref66) 1992; 11 RR Pandey (ref40) 2008; 32 KF Au (ref45) 2010 K Chen (ref48) 2009; 6 C Cluett (ref11) 2009; 2 RJ Dixon (ref51) 2005; 33 M Boehm (ref18) 2003; 5 A Kos (ref68) 1986; 323 H Li (ref81) 2009; 25 RJ Dixon (ref65) 2007; 23 H Chen (ref33) 2009; 23 WG Fairbrother (ref55) 2002; 297 E Pasmant (ref27) 2007; 67 EM Tsagris (ref69) 2008; 10 H Gonzalez-Navarro (ref20) 2010; 55 KL Yap (ref62) 2010; 38 L Yvan-Charvet (ref25) 2010; 328 A Visel (ref26) 2010; 464 PG Zaphiropoulos (ref49) 1996; 93 M Matarin (ref8) 2008; 39 HM Broadbent (ref13) 2008; 17 Y Kotake (ref34) 2007; 21 V Janzen (ref24) 2006; 443 N Kalinina (ref21) 2004; 24 JJ Jacobs (ref31) 1999; 397 DJ Grainger (ref23) 2004; 24 KA Frazer (ref57) 2007; 449 AB Hanker (ref78) 2008; 439 JG Smith (ref10) 2009; 2 LM Holdt (ref59) 2010; 30 R Li (ref53) 2008; 24 MJ Bown (ref3) 2008; 1 WY Kim (ref15) 2006; 127 MS Cunnington (ref60) 2010; 6 |
References_xml | – year: 2010 ident: ref2 article-title: Association of an allele on chromosome 9 and abdominal aortic aneurysm. publication-title: Atherosclerosis contributor: fullname: E Biros – volume: 17 start-page: 391 year: 2009 ident: ref4 article-title: Sequence variant on 9p21 is associated with the presence of abdominal aortic aneurysm disease but does not have an impact on aneurysmal expansion. publication-title: Eur J Hum Genet doi: 10.1038/ejhg.2008.196 contributor: fullname: AR Thompson – volume: 6 start-page: 677 year: 2009 ident: ref48 article-title: BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. publication-title: Nat Methods doi: 10.1038/nmeth.1363 contributor: fullname: K Chen – volume: 25 start-page: 2078 year: 2009 ident: ref81 article-title: The Sequence Alignment/Map format and SAMtools. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 contributor: fullname: H Li – volume: 19 start-page: 5747 year: 2000 ident: ref47 article-title: A methylthioadenosine phosphorylase (MTAP) fusion transcript identifies a new gene on chromosome 9p21 that is frequently deleted in cancer. publication-title: Oncogene doi: 10.1038/sj.onc.1203942 contributor: fullname: M Schmid – volume: 297 start-page: 1007 year: 2002 ident: ref55 article-title: Predictive identification of exonic splicing enhancers in human genes. publication-title: Science doi: 10.1126/science.1073774 contributor: fullname: WG Fairbrother – volume: 41 start-page: 899 year: 2009 ident: ref72 article-title: Genome-wide association study identifies five susceptibility loci for glioma. publication-title: Nat Genet doi: 10.1038/ng.407 contributor: fullname: S Shete – volume: 129 start-page: 1311 year: 2007 ident: ref38 article-title: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. publication-title: Cell doi: 10.1016/j.cell.2007.05.022 contributor: fullname: JL Rinn – volume: 64 start-page: 607 year: 1991 ident: ref58 article-title: Scrambled exons. publication-title: Cell doi: 10.1016/0092-8674(91)90244-S contributor: fullname: JM Nigro – volume: 29 start-page: 1671 year: 2009 ident: ref30 article-title: Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.109.189522 contributor: fullname: O Jarinova – volume: 34 start-page: e63 year: 2006 ident: ref50 article-title: Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl151 contributor: fullname: H Suzuki – volume: 13 start-page: 23 year: 2010 ident: ref76 article-title: Preliminary evidence of a genetic association between chromosome 9p21.3 and human longevity. publication-title: Rejuvenation Res doi: 10.1089/rej.2009.0970 contributor: fullname: E Emanuele – volume: 25 start-page: 2096 year: 2006 ident: ref64 article-title: The length of the transcript encoded from the Kcnq1ot1 antisense promoter determines the degree of silencing. publication-title: Embo J doi: 10.1038/sj.emboj.7601090 contributor: fullname: C Kanduri – volume: 93 start-page: 6536 year: 1996 ident: ref49 article-title: Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.93.13.6536 contributor: fullname: PG Zaphiropoulos – volume: 119 start-page: 831 year: 2004 ident: ref54 article-title: Systematic identification and analysis of exonic splicing silencers. publication-title: Cell doi: 10.1016/j.cell.2004.11.010 contributor: fullname: Z Wang – year: 2010 ident: ref77 article-title: Genetic Signatures of Exceptional Longevity in Humans. publication-title: Science contributor: fullname: P Sebastiani – volume: 23 start-page: 906 year: 2009 ident: ref32 article-title: Bmi-1 regulates the Ink4a/Arf locus to control pancreatic beta-cell proliferation. publication-title: Genes Dev doi: 10.1101/gad.1742609 contributor: fullname: S Dhawan – volume: 39 start-page: 1586 year: 2008 ident: ref8 article-title: Whole genome analyses suggest ischemic stroke and heart disease share an association with polymorphisms on chromosome 9p21. publication-title: Stroke doi: 10.1161/STROKEAHA.107.502963 contributor: fullname: M Matarin – volume: 15 start-page: 668 year: 2008 ident: ref37 article-title: Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. publication-title: Dev Cell doi: 10.1016/j.devcel.2008.08.015 contributor: fullname: R Terranova – volume: 4 start-page: e5027 year: 2009 ident: ref16 article-title: INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to atherosclerosis. publication-title: PLoS One doi: 10.1371/journal.pone.0005027 contributor: fullname: Y Liu – volume: 464 start-page: 1071 year: 2010 ident: ref41 article-title: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. publication-title: Nature doi: 10.1038/nature08975 contributor: fullname: RA Gupta – volume: 11 start-page: 1095 year: 1992 ident: ref66 article-title: Splicing with inverted order of exons occurs proximal to large introns. publication-title: Embo J doi: 10.1002/j.1460-2075.1992.tb05148.x contributor: fullname: C Cocquerelle – volume: 14 start-page: 802 year: 2008 ident: ref56 article-title: Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. publication-title: Rna doi: 10.1261/rna.876308 contributor: fullname: Z Wang – volume: 7 start-page: 667 year: 2006 ident: ref36 article-title: Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1987 contributor: fullname: J Gil – volume: 127 start-page: 265 year: 2006 ident: ref15 article-title: The regulation of INK4/ARF in cancer and aging. publication-title: Cell doi: 10.1016/j.cell.2006.10.003 contributor: fullname: WY Kim – volume: 4 start-page: e7677 year: 2009 ident: ref28 article-title: Relationship between CAD risk genotype in the chromosome 9p21 locus and gene expression. Identification of eight new ANRIL splice variants. publication-title: PLoS One doi: 10.1371/journal.pone.0007677 contributor: fullname: L Folkersen – volume: 464 start-page: 409 year: 2010 ident: ref26 article-title: Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. publication-title: Nature doi: 10.1038/nature08801 contributor: fullname: A Visel – volume: 23 start-page: 975 year: 2009 ident: ref33 article-title: Polycomb protein Ezh2 regulates pancreatic beta-cell Ink4a/Arf expression and regeneration in diabetes mellitus. publication-title: Genes Dev doi: 10.1101/gad.1742509 contributor: fullname: H Chen – volume: 21 start-page: 49 year: 2007 ident: ref34 article-title: pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. publication-title: Genes Dev doi: 10.1101/gad.1499407 contributor: fullname: Y Kotake – year: 2010 ident: ref45 article-title: Detection of splice junctions from paired-end RNA-seq data by SpliceMap. publication-title: Nucleic Acids Res contributor: fullname: KF Au – volume: 2 start-page: 347 year: 2009 ident: ref11 article-title: The 9p21 myocardial infarction risk allele increases risk of peripheral artery disease in older people. publication-title: Circ Cardiovasc Genet doi: 10.1161/CIRCGENETICS.108.825935 contributor: fullname: C Cluett – volume: 41 start-page: 905 year: 2009 ident: ref73 article-title: Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. publication-title: Nat Genet doi: 10.1038/ng.408 contributor: fullname: M Wrensch – volume: 443 start-page: 421 year: 2006 ident: ref24 article-title: Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. publication-title: Nature doi: 10.1038/nature05159 contributor: fullname: V Janzen – volume: 67 start-page: 3963 year: 2007 ident: ref27 article-title: Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-2004 contributor: fullname: E Pasmant – volume: 38 start-page: 662 year: 2010 ident: ref62 article-title: Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. publication-title: Mol Cell doi: 10.1016/j.molcel.2010.03.021 contributor: fullname: KL Yap – year: 2009 ident: ref1 article-title: Cardiovascular diseases Fact Sheet – volume: 25 start-page: 1754 year: 2009 ident: ref52 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 contributor: fullname: H Li – volume: 449 start-page: 851 year: 2007 ident: ref57 article-title: A second generation human haplotype map of over 3.1 million SNPs. publication-title: Nature doi: 10.1038/nature06258 contributor: fullname: KA Frazer – volume: 207 start-page: e3 year: 2009 ident: ref29 article-title: ANRIL, The non-coding RNA present in the chromosome 9 CAD associated locus, has multiple splice variants and a potential regulatory role in CDKN2B expression. publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2009.09.036 contributor: fullname: T Kyriakou – volume: 67 start-page: 1502 year: 2007 ident: ref80 article-title: Lack of extracellular signal-regulated kinase mitogen-activated protein kinase signaling shows a new type of melanoma. publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-3311 contributor: fullname: JM Shields – volume: 2 start-page: 159 year: 2009 ident: ref10 article-title: Common genetic variants on chromosome 9p21 confers risk of ischemic stroke: a large-scale genetic association study. publication-title: Circ Cardiovasc Genet doi: 10.1161/CIRCGENETICS.108.835173 contributor: fullname: JG Smith – volume: 42 start-page: 599 year: 2010 ident: ref75 article-title: A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. publication-title: Nat Genet doi: 10.1038/ng.601 contributor: fullname: JX Bei – volume: 17 start-page: 862 year: 2010 ident: ref61 article-title: Role for the MOV10 RNA helicase in polycomb-mediated repression of the INK4a tumor suppressor. publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1824 contributor: fullname: SE Messaoudi-Aubert – volume: 17 start-page: 322 year: 2001 ident: ref67 article-title: The ins and outs of group II introns. publication-title: Trends Genet doi: 10.1016/S0168-9525(01)02324-1 contributor: fullname: L Bonen – volume: 322 start-page: 750 year: 2008 ident: ref39 article-title: Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. publication-title: Science doi: 10.1126/science.1163045 contributor: fullname: J Zhao – volume: 316 start-page: 1491 year: 2007 ident: ref5 article-title: A common variant on chromosome 9p21 affects the risk of myocardial infarction. publication-title: Science doi: 10.1126/science.1142842 contributor: fullname: A Helgadottir – volume: 397 start-page: 164 year: 1999 ident: ref31 article-title: The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. publication-title: Nature doi: 10.1038/16476 contributor: fullname: JJ Jacobs – volume: 30 start-page: 620 year: 2010 ident: ref59 article-title: ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.109.196832 contributor: fullname: LM Holdt – volume: 114 start-page: 1299 year: 2004 ident: ref44 article-title: Ink4a/Arf expression is a biomarker of aging. publication-title: J Clin Invest doi: 10.1172/JCI22475 contributor: fullname: J Krishnamurthy – volume: 33 start-page: 5904 year: 2005 ident: ref51 article-title: A genome-wide survey demonstrates widespread non-linear mRNA in expressed sequences from multiple species. publication-title: Nucleic Acids Res doi: 10.1093/nar/gki893 contributor: fullname: RJ Dixon – volume: 8 start-page: 439 year: 2009 ident: ref42 article-title: Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging. publication-title: Aging Cell doi: 10.1111/j.1474-9726.2009.00489.x contributor: fullname: Y Liu – volume: 6 start-page: e1000899 year: 2010 ident: ref60 article-title: Chromosome 9p21 SNPs Associated with Multiple Disease Phenotypes Correlate with ANRIL Expression. publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000899 contributor: fullname: MS Cunnington – volume: 23 start-page: 150 year: 2007 ident: ref65 article-title: Complementary intron sequence motifs associated with human exon repetition: a role for intragenic, inter-transcript interactions in gene expression. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl575 contributor: fullname: RJ Dixon – volume: 40 start-page: 217 year: 2008 ident: ref6 article-title: The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. publication-title: Nat Genet doi: 10.1038/ng.72 contributor: fullname: A Helgadottir – volume: 20 start-page: 1268 year: 2006 ident: ref63 article-title: Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. publication-title: Genes Dev doi: 10.1101/gad.1416906 contributor: fullname: D Mancini-Dinardo – volume: 65 start-page: 531 year: 2009 ident: ref9 article-title: Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke. publication-title: Ann Neurol doi: 10.1002/ana.21590 contributor: fullname: A Gschwendtner – volume: 24 start-page: 713 year: 2008 ident: ref53 article-title: SOAP: short oligonucleotide alignment program. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn025 contributor: fullname: R Li – volume: 323 start-page: 558 year: 1986 ident: ref68 article-title: The hepatitis delta (delta) virus possesses a circular RNA. publication-title: Nature doi: 10.1038/323558a0 contributor: fullname: A Kos – volume: 24 start-page: 399 year: 2004 ident: ref23 article-title: Transforming growth factor beta and atherosclerosis: so far, so good for the protective cytokine hypothesis. publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.0000114567.76772.33 contributor: fullname: DJ Grainger – volume: 79 start-page: 1137 year: 1999 ident: ref46 article-title: Immunohistochemical survey of p16INK4A expression in normal human adult and infant tissues. publication-title: Lab Invest contributor: fullname: GP Nielsen – volume: 316 start-page: 1488 year: 2007 ident: ref7 article-title: A common allele on chromosome 9 associated with coronary heart disease. publication-title: Science doi: 10.1126/science.1142447 contributor: fullname: R McPherson – volume: 55 start-page: 2269 year: 2010 ident: ref17 article-title: Atherosclerosis and cell cycle: put the brakes on! Critical role for cyclin-dependent kinase inhibitors. publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2010.02.017 contributor: fullname: R Wessely – volume: 24 start-page: 1391 year: 2004 ident: ref21 article-title: Smad expression in human atherosclerotic lesions: evidence for impaired TGF-beta/Smad signaling in smooth muscle cells of fibrofatty lesions. publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.0000133605.89421.79 contributor: fullname: N Kalinina – volume: 16 start-page: 859 year: 1996 ident: ref43 article-title: Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. publication-title: Mol Cell Biol doi: 10.1128/MCB.16.3.859 contributor: fullname: E Hara – volume: 5 start-page: 19 year: 2003 ident: ref18 article-title: The cell cycle and cardiovascular diseases. publication-title: Prog Cell Cycle Res contributor: fullname: M Boehm – volume: 17 start-page: 806 year: 2008 ident: ref13 article-title: Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. publication-title: Hum Mol Genet doi: 10.1093/hmg/ddm352 contributor: fullname: HM Broadbent – volume: 9 start-page: 1831 year: 1995 ident: ref22 article-title: Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. publication-title: Genes Dev doi: 10.1101/gad.9.15.1831 contributor: fullname: I Reynisdottir – volume: 115 start-page: 3228 year: 2005 ident: ref19 article-title: PPAR alpha inhibits vascular smooth muscle cell proliferation underlying intimal hyperplasia by inducing the tumor suppressor p16INK4a. publication-title: J Clin Invest doi: 10.1172/JCI22756 contributor: fullname: F Gizard – volume: 328 start-page: 1689 year: 2010 ident: ref25 article-title: ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. publication-title: Science doi: 10.1126/science.1189731 contributor: fullname: L Yvan-Charvet – volume: 316 start-page: 1341 year: 2007 ident: ref71 article-title: A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. publication-title: Science doi: 10.1126/science.1142382 contributor: fullname: LJ Scott – volume: 52 start-page: 378 year: 2008 ident: ref12 article-title: Association of genetic variation on chromosome 9p21 with susceptibility and progression of atherosclerosis: a population-based, prospective study. publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2007.11.087 contributor: fullname: S Ye – volume: 21 start-page: 525 year: 2007 ident: ref35 article-title: The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. publication-title: Genes Dev doi: 10.1101/gad.415507 contributor: fullname: AP Bracken – volume: 316 start-page: 1336 year: 2007 ident: ref70 article-title: Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. publication-title: Science doi: 10.1126/science.1142364 contributor: fullname: E Zeggini – volume: 1 start-page: 39 year: 2008 ident: ref3 article-title: Association between the coronary artery disease risk locus on chromosome 9p21.3 and abdominal aortic aneurysm. publication-title: Circ Cardiovasc Genet doi: 10.1161/CIRCGENETICS.108.789727 contributor: fullname: MJ Bown – volume: 55 start-page: 2258 year: 2010 ident: ref20 article-title: p19(ARF) deficiency reduces macrophage and vascular smooth muscle cell apoptosis and aggravates atherosclerosis. publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2010.01.026 contributor: fullname: H Gonzalez-Navarro – volume: 439 start-page: 53 year: 2008 ident: ref78 article-title: Tools to study the function of the Ras-related, estrogen-regulated growth inhibitor in breast cancer. publication-title: Methods Enzymol doi: 10.1016/S0076-6879(07)00405-3 contributor: fullname: AB Hanker – volume: 21 start-page: 2936 year: 2002 ident: ref79 article-title: INK4a-deficient human diploid fibroblasts are resistant to RAS-induced senescence. publication-title: Embo J doi: 10.1093/emboj/cdf289 contributor: fullname: S Brookes – volume: 32 start-page: 232 year: 2008 ident: ref40 article-title: Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. publication-title: Mol Cell doi: 10.1016/j.molcel.2008.08.022 contributor: fullname: RR Pandey – volume: 28 start-page: 2180 year: 2008 ident: ref14 article-title: Athsq1 is an atherosclerosis modifier locus with dramatic effects on lesion area and prominent accumulation of versican. publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.108.176800 contributor: fullname: SB Seidelmann – volume: 10 start-page: 2168 year: 2008 ident: ref69 article-title: Viroids. publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2008.01231.x contributor: fullname: EM Tsagris – volume: 42 start-page: 707 year: 2010 ident: ref74 article-title: A genome-wide association study identifies genetic variants in the CDKN2BAS locus associated with endometriosis in Japanese. publication-title: Nat Genet doi: 10.1038/ng.612 contributor: fullname: S Uno |
SSID | ssj0035897 |
Score | 2.5939412 |
Snippet | Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with... Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with... Human genome-wide association studies have linked single nucleotide polymorphisms (SNPs) on chromosome 9p21.3 near the INK4/ARF (CDKN2a/b) locus with... |
SourceID | plos doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e1001233 |
SubjectTerms | Atherosclerosis Atherosclerosis - epidemiology Atherosclerosis - genetics Atherosclerosis - metabolism Cardiovascular disease Cardiovascular Disorders/Peripheral Vascular Disease Cell Biology/Gene Expression Cell division Cell Line, Tumor Cyclin-Dependent Kinase Inhibitor p15 - genetics Cyclin-Dependent Kinase Inhibitor p15 - metabolism Cyclin-Dependent Kinase Inhibitor p16 - genetics Cyclin-Dependent Kinase Inhibitor p16 - metabolism DNA, Circular - chemistry DNA, Circular - genetics DNA, Circular - metabolism Exons Gene Expression Genetic aspects Genetics Genetics and Genomics/Cancer Genetics Genome-Wide Association Study Genomes Humans Influence Molecular Biology/RNA Splicing Mortality Nucleic Acid Conformation Physiological aspects Risk Factors RNA RNA Splicing RNA, Untranslated - chemistry RNA, Untranslated - genetics RNA, Untranslated - metabolism Single nucleotide polymorphisms Tumor suppressor genes |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEA9SEHwRv2_11CCCT2t3N0nTPFa5cqdYoXpybyHJJnpQdku3FcV_3plkW25F8B586UPzS9nOTCa_aeeDkJdFKKz0rM5tHWTOPS9yMGUO5woLF62wMlZ4f1hMTs_5uwtxcWXUF-aEpfbASXBj-Bw2Nd6bOKnbMeUVuHUuFI5Il1XyvoXaB1PJBzMxTWNVhGC5hLC-L5pjshz3Onq9BgXFDkQVY4NLKfbuP3jo0XrVdn-jn39mUV65luZ3yO2eT9JZ-h53yQ3f3CM304TJn_fJr5MffaZrQ9tAkVOaDTVNTZv2u19Rd7mJiagUuWuHENPQs8V7Pp4t57npdecR3uSuxYuOLhcz6nCoxwp5KsVfcmnkkW0HjwCvlx3FjPUH5Hx-8vntad7PW8idVGqbQ2xVTURteWllGUB20hXOMVfUpbGlMLUxQC-DcNyHQpkpt7aGDSpMeahtzdhDMoKn8UeEBgE8q1C1soFxpypTWrgGja2C8E4okZF8L3C9Tm01dPxvTUI4kiSnUUG6V1BG3qBWDlhsih3fAFPRvanof5lKRp6jTnWqMD0cbT2rsFxXwHWekRcRgY0xGsy8-Wp2XafPPn65BujT4jqg5QD0qgeFFkzImb4kAmSIXbkGyOMBEnyAGywfoZnuRdeBIEsmFAN1ZYTuTVfjLsypa3y76zQcSWwnycqMPEqWfBBvBXECrMFmObDxgfyHK83lt9icHOjNhDH--H8o7Am5VR2yh47JaLvZ-afAAbf2WTzuvwG-5Vf- priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dixMxEA9nRfBF_L7VU4MIPu25u0ma5kGkypU7xQrVyr0tSTY5C2W3dlu5w3_emex2ceWEvvShmZTlNzPJb7rzQcirxCdGOlbEpvAy5o4nMZgyB7_CwkUjjAwV3p-nw9M5_3guzg_IbmZrC2B9bWiH86Tm6-Xx5c-rd-Dwb8PUBpnuNh2vAPLQUyhj7Aa5mXGI1TGZj3fvFZgYNeNWhGCxhHC_Lab736_0LqvQ0787uQerZVVfR0v_za7867qa3CV3Wp5Jx41h3CMHrrxPbjWTJ68ekN8nl20GbEkrT5Fr6jXVZUHL6pdbUrtYhwRVipy2RhFd0rPpJ_5mPJvEutWpQ_EythVegHQ2HVOLwz6WyF8p_sNLA7-sangE-FzUFDPZH5L55OTbh9O4ncMQW6nUJoaYKxuKwvDUyNQDdtIm1jKbFKk2qdCF1kA7vbDc-UTpETemgA3Kj7gvTMHYIzKAp3GHhHoB_CtRhTKecasynRq4HrXJvHBWKBGReAd4vmrabeThnZuEMKVBLkcF5a2CIvIetdLJYrPs8EW1vshb38vBFNlIO6fDsHfLlFPADLiAc55lMssi8gJ1mjeVp53L5-MMy3gFXPMReRkksGFGiRk5F3pb1_nZl-97CH2d7iM06wm9boV8BSZkdVsqARhit66e5FFPEs4G21s-RDPdQVcDkCkTioG6IkJ3ppvjLsy1K121rXNwVWwzydKIPG4suYM3g_gB1mCz7Nl4D__-Srn4EZqWA-0ZMsaf7APSU3I767KGjshgs966Z8D9NuZ5cOc_3VBXhA priority: 102 providerName: Scholars Portal |
Title | Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21151960 https://search.proquest.com/docview/874196531 https://pubmed.ncbi.nlm.nih.gov/PMC2996334 https://doaj.org/article/e3d38aeea17143c39e9eed4591132722 http://dx.doi.org/10.1371/journal.pgen.1001233 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IiReEN8LjGIhJJ7SJrFd149pabWBWqbCUN8i23G2ii6pmhaB-Oc5O0khiIeJl1RqzlJ035fc_Q6hN0EWKG5I6qs04z41NPBBlSnYlR1cVExxN-E9mw_OLun7JVseIdbMwrimfa1WvXx908tX1663cnOj-02fWP9iNgYXOiCE9o_RMShoU6JX7pewYbVRhTHic6jo63k5wsN-LZ7eBmTjwIciQhwaMIQ94UAqf4cmh-B_8NOdzboo_5WE_t1L-Udwmj5A9-usEsfV0z9ERyZ_hO5WeyZ_PEY_J9_rftccFxmG-hP0G8s8xfPim1nj8Wrr2lHxFDLY0pLIHJ_PP9B-vJj6jQSNJc_9cWHDHV7MYzy2qz3WNlvF9n0ujm02WZTwCHBdlXixKr8-QZfTyefxmV9vXfA1F2LnQ4UVDViqaKh4mAEbuQ60JjpIQ6lCJlMpIcnMmKYmC4QcUqVSOCCyIc1SlRLyFHXyIjcnCGcMsq1ApEJlhGoRyVBBMJQqypjRTDAP-Q3Dk00FrpG4L2wcipKKc4mVVVLLykMjK5UDrYXGdn8U26ukVpAEFI8MpTHSrXbXRBgBeQBl4NVJxKPIQ6-sTJNqzvRg4Ekc2aFdBkHdQ68dhYXHyG3_zZXcl2Vy_vHLLYg-zW9DtGgRva2JsgJUSMt6MAJ4aLG5WpSnLUrwBLp1-8SqacO6EhgZEiYIiMtDuFHdxJ6ynXW5KfZlAoZpQSVJ6KFnlSYf2NvYhYd4S8db_G_fAYt1EOW1hT7_75Mv0L3o0Dh0ijq77d68hPRvp7pg9EveRXfi0bvRFH5Hk_nFoutepsB1Rodd5xB-ActoXTo |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,24330,27936,27937,31732,33757,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGEYIXvscCg1kIiae0SWwv9WOpVnWwFlS2aW-W7dijWpdUS4v4-Oc5O0khEw-Dlz7UZ6m5u9_dOb37GaE3kY1UakgWqsymITU0CsGVKeDKDS4qplI_4T2Z7o9P6PszdraFWDML45v2tZp388VlN59_8b2Vy0vda_rEep8mQwih-4TQ3i10G_Aa0eaQXgVgwvrVnSqMkTCFM309MUfSuFcbqLsE63j6oYQQzwcMiY97msrfyclz-G8idWe5KMq_laHXuyn_SE-jB-i0ebCqK-Wiu16prv5xjfPxn5_8IbpfF6x4UC0_Qlsmf4zuVFdYfn-Cfh58q1tpc1xYDEdbgA6WeYanxVezwMP5le90xSMojksnInN8OP1Ae4PZKGycwzjxPBwWLpPi2XSAh-7WkIUrhLF7VYwHrlAtSvgJ8Dkv8WxeXjxFJ6OD4-E4rC90CHXK-SqEw1uyzzJFY5XGFuyT6khroqMslipmMpMS6lfLNDU24rJPlcpgA7d9ajOVEbKNOnmRmx2ELYNCLuIZV5ZQzRMZK8izUiWWGc04C1DYWFIsK94O4f-8S-G8U2lOOCcQtRME6J0z90bWsW77L4qrc1FbQIBPk740Rvpb4zXhhkOJQRkkDJKkSRKgPecsohph3cQOMUjcPDCDeiFAr72EY97IXWvPuVyXpTj8eHoDoc_TmwjNWkJvayFbgG9qWc9cgA4d7VdLcrclCUFGt5Z3nP83qitBkTFhHMAXBQg3mBBul2vay02xLgVg3vFVkjhAzyqIbNTbAC5AaQs8Lf23VwASnv28hsDz_965h-6OjydH4gic_QW6l2z6k3ZRZ3W1Ni-hylypVz6m_AJyEnly |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegCMQL37DAYBZC4iltEttN_VjKqg1YmQpD014s27FHtS6pmhbx8c9zdpKyTDxMe-lDc5Gau_vdndO73yH0JrKRSg3JQpXZNKSGRiG4MgVcucFFxVTqJ7wPJv29I_rhmB1fWPXlm_a1mnXz-Xk3n333vZWLc91r-sR6hwcjCKF9QmhvkdneTXQLMBv1m4N6FYQJG1R7VRgjYQrn-npqjqRxrzZSdwEW8hRECSGeExiSH_dUlf8SlOfx30TrzmJelP8rRS93VF5IUeP76KR5uKoz5ay7Xqmu_n2J9_FaT_8A3asLVzysRB6iGyZ_hG5Xqyx_PUZ_dn_WLbU5LiyGIy5ACMs8w5Pih5nj0WzpO17xGIrk0onIHO9PPtLecDoOGycxTjwPR4XLqHg6GeKR2x4ydwUxdq-M8dAVrEUJPwE-ZyWezsqzJ-hovPt1tBfWix1CnXK-CuEQl_RZpmis0tiCjVIdaU10lMVSxUxmUkIda5mmxkZcDqhSGdzA7YDaTGWEPEWdvMjNFsKWQUEX8YwrS6jmiYwV5FupEsuMZpwFKGysKRYVf4fwf-KlcO6pNCecI4jaEQL0zpl8I-vYt_0XxfJU1FYQ4NtkII2Rfnu8JtxwKDUog8RBkjRJArTjHEZUo6ybGCKGiZsLZlA3BOi1l3AMHLlr8TmV67IU-5-_XUHoy-QqQtOW0NtayBbgn1rWsxegQ0f_1ZLcbklCsNGty1sOA43qSlBkTBgHAEYBwg0uhLvLNe_lpliXArDveCtJHKBnFUw26m1AF6C0BaCW_ttXABaeBb2GwfNr37mD7hy-H4tP4Osv0N1k06a0jTqr5dq8hGJzpV75sPIXJ5h78g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expression+of+linear+and+novel+circular+forms+of+an+INK4%2FARF-associated+non-coding+RNA+correlates+with+atherosclerosis+risk&rft.jtitle=PLoS+genetics&rft.au=Burd%2C+Christin+E&rft.au=Jeck%2C+William+R&rft.au=Liu%2C+Yan&rft.au=Sanoff%2C+Hanna+K&rft.date=2010-12-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.eissn=1553-7404&rft.volume=6&rft.issue=12&rft_id=info:doi/10.1371%2Fjournal.pgen.1001233&rft.externalDBID=ISN&rft.externalDocID=A245885413 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |