Integration of clinical data with a genome‐scale metabolic model of the human adipocyte
We evaluated the presence/absence of proteins encoded by 14 077 genes in adipocytes obtained from different tissue samples using immunohistochemistry. By combining this with previously published adipocyte‐specific proteome data, we identified proteins associated with 7340 genes in human adipocytes....
Saved in:
Published in | Molecular systems biology Vol. 9; no. 1; pp. 649 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
2013
John Wiley & Sons, Ltd EMBO Press Nature Publishing Group Springer Nature |
Subjects | |
Online Access | Get full text |
ISSN | 1744-4292 1744-4292 |
DOI | 10.1038/msb.2013.5 |
Cover
Loading…
Abstract | We evaluated the presence/absence of proteins encoded by 14 077 genes in adipocytes obtained from different tissue samples using immunohistochemistry. By combining this with previously published adipocyte‐specific proteome data, we identified proteins associated with 7340 genes in human adipocytes. This information was used to reconstruct a comprehensive and functional genome‐scale metabolic model of adipocyte metabolism. The resulting metabolic model,
iAdipocytes1809
, enables mechanistic insights into adipocyte metabolism on a genome‐wide level, and can serve as a scaffold for integration of omics data to understand the genotype–phenotype relationship in obese subjects. By integrating human transcriptome and fluxome data, we found an increase in the metabolic activity around androsterone, ganglioside GM2 and degradation products of heparan sulfate and keratan sulfate, and a decrease in mitochondrial metabolic activities in obese subjects compared with lean subjects. Our study hereby shows a path to identify new therapeutic targets for treating obesity through combination of high throughput patient data and metabolic modeling.
Combining large‐scale immunohistochemical analysis and proteomics data, 7340 gene products are identified in human adipocytes. Based on this data, a genome‐scale metabolic model is reconstructed and used to integrate clinical and transcriptome data from lean and obese subjects.
Synopsis
Combining large‐scale immunohistochemical analysis and proteomics data, 7340 gene products are identified in human adipocytes. Based on this data, a genome‐scale metabolic model is reconstructed and used to integrate clinical and transcriptome data from lean and obese subjects.
We simulated the metabolic differences between the individuals with different body mass indexes (BMIs) using transcriptome and fluxome data.
An increase in the metabolic activity around androsterone, ganglioside GM2 and degradation products of heparan sulfate and keratan sulfate, and a decrease in mitochondrial metabolic activities are found in obese subjects compared with lean subjects.
We simulated the change in lipid droplet (LD) size and found that lean subjects have large dynamic changes in LD formation compared with obese subjects.
Besides enabling patient stratification, our study allows the identification of novel therapeutic targets for obesity. |
---|---|
AbstractList | We evaluated the presence/absence of proteins encoded by 14 077 genes in adipocytes obtained from different tissue samples using immunohistochemistry. By combining this with previously published adipocyte-specific proteome data, we identified proteins associated with 7340 genes in human adipocytes. This information was used to reconstruct a comprehensive and functional genome-scale metabolic model of adipocyte metabolism. The resulting metabolic model, iAdipocytes1809, enables mechanistic insights into adipocyte metabolism on a genome-wide level, and can serve as a scaffold for integration of omics data to understand the genotype-phenotype relationship in obese subjects. By integrating human transcriptome and fluxome data, we found an increase in the metabolic activity around androsterone, ganglioside GM2 and degradation products of heparan sulfate and keratan sulfate, and a decrease in mitochondrial metabolic activities in obese subjects compared with lean subjects. Our study hereby shows a path to identify new therapeutic targets for treating obesity through combination of high throughput patient data and metabolic modeling. We evaluated the presence/absence of proteins encoded by 14 077 genes in adipocytes obtained from different tissue samples using immunohistochemistry. By combining this with previously published adipocyte-specific proteome data, we identified proteins associated with 7340 genes in human adipocytes. This information was used to reconstruct a comprehensive and functional genome-scale metabolic model of adipocyte metabolism. The resulting metabolic model, iAdipocytes1809, enables mechanistic insights into adipocyte metabolism on a genome-wide level, and can serve as a scaffold for integration of omics data to understand the genotype-phenotype relationship in obese subjects. By integrating human transcriptome and fluxome data, we found an increase in the metabolic activity around androsterone, ganglioside GM2 and degradation products of heparan sulfate and keratan sulfate, and a decrease in mitochondrial metabolic activities in obese subjects compared with lean subjects. Our study hereby shows a path to identify new therapeutic targets for treating obesity through combination of high throughput patient data and metabolic modeling.We evaluated the presence/absence of proteins encoded by 14 077 genes in adipocytes obtained from different tissue samples using immunohistochemistry. By combining this with previously published adipocyte-specific proteome data, we identified proteins associated with 7340 genes in human adipocytes. This information was used to reconstruct a comprehensive and functional genome-scale metabolic model of adipocyte metabolism. The resulting metabolic model, iAdipocytes1809, enables mechanistic insights into adipocyte metabolism on a genome-wide level, and can serve as a scaffold for integration of omics data to understand the genotype-phenotype relationship in obese subjects. By integrating human transcriptome and fluxome data, we found an increase in the metabolic activity around androsterone, ganglioside GM2 and degradation products of heparan sulfate and keratan sulfate, and a decrease in mitochondrial metabolic activities in obese subjects compared with lean subjects. Our study hereby shows a path to identify new therapeutic targets for treating obesity through combination of high throughput patient data and metabolic modeling. We evaluated the presence/absence of proteins encoded by 14 077 genes in adipocytes obtained from different tissue samples using immunohistochemistry. By combining this with previously published adipocyte‐specific proteome data, we identified proteins associated with 7340 genes in human adipocytes. This information was used to reconstruct a comprehensive and functional genome‐scale metabolic model of adipocyte metabolism. The resulting metabolic model, iAdipocytes1809 , enables mechanistic insights into adipocyte metabolism on a genome‐wide level, and can serve as a scaffold for integration of omics data to understand the genotype–phenotype relationship in obese subjects. By integrating human transcriptome and fluxome data, we found an increase in the metabolic activity around androsterone, ganglioside GM2 and degradation products of heparan sulfate and keratan sulfate, and a decrease in mitochondrial metabolic activities in obese subjects compared with lean subjects. Our study hereby shows a path to identify new therapeutic targets for treating obesity through combination of high throughput patient data and metabolic modeling. Combining large‐scale immunohistochemical analysis and proteomics data, 7340 gene products are identified in human adipocytes. Based on this data, a genome‐scale metabolic model is reconstructed and used to integrate clinical and transcriptome data from lean and obese subjects. Combining large‐scale immunohistochemical analysis and proteomics data, 7340 gene products are identified in human adipocytes. Based on this data, a genome‐scale metabolic model is reconstructed and used to integrate clinical and transcriptome data from lean and obese subjects. image We simulated the metabolic differences between the individuals with different body mass indexes (BMIs) using transcriptome and fluxome data. An increase in the metabolic activity around androsterone, ganglioside GM2 and degradation products of heparan sulfate and keratan sulfate, and a decrease in mitochondrial metabolic activities are found in obese subjects compared with lean subjects. We simulated the change in lipid droplet (LD) size and found that lean subjects have large dynamic changes in LD formation compared with obese subjects. Besides enabling patient stratification, our study allows the identification of novel therapeutic targets for obesity. Abstract We evaluated the presence/absence of proteins encoded by 14 077 genes in adipocytes obtained from different tissue samples using immunohistochemistry. By combining this with previously published adipocyte‐specific proteome data, we identified proteins associated with 7340 genes in human adipocytes. This information was used to reconstruct a comprehensive and functional genome‐scale metabolic model of adipocyte metabolism. The resulting metabolic model, iAdipocytes1809, enables mechanistic insights into adipocyte metabolism on a genome‐wide level, and can serve as a scaffold for integration of omics data to understand the genotype–phenotype relationship in obese subjects. By integrating human transcriptome and fluxome data, we found an increase in the metabolic activity around androsterone, ganglioside GM2 and degradation products of heparan sulfate and keratan sulfate, and a decrease in mitochondrial metabolic activities in obese subjects compared with lean subjects. Our study hereby shows a path to identify new therapeutic targets for treating obesity through combination of high throughput patient data and metabolic modeling. We evaluated the presence/absence of proteins encoded by 14 077 genes in adipocytes obtained from different tissue samples using immunohistochemistry. By combining this with previously published adipocyte‐specific proteome data, we identified proteins associated with 7340 genes in human adipocytes. This information was used to reconstruct a comprehensive and functional genome‐scale metabolic model of adipocyte metabolism. The resulting metabolic model, iAdipocytes1809 , enables mechanistic insights into adipocyte metabolism on a genome‐wide level, and can serve as a scaffold for integration of omics data to understand the genotype–phenotype relationship in obese subjects. By integrating human transcriptome and fluxome data, we found an increase in the metabolic activity around androsterone, ganglioside GM2 and degradation products of heparan sulfate and keratan sulfate, and a decrease in mitochondrial metabolic activities in obese subjects compared with lean subjects. Our study hereby shows a path to identify new therapeutic targets for treating obesity through combination of high throughput patient data and metabolic modeling. Combining large‐scale immunohistochemical analysis and proteomics data, 7340 gene products are identified in human adipocytes. Based on this data, a genome‐scale metabolic model is reconstructed and used to integrate clinical and transcriptome data from lean and obese subjects. Synopsis Combining large‐scale immunohistochemical analysis and proteomics data, 7340 gene products are identified in human adipocytes. Based on this data, a genome‐scale metabolic model is reconstructed and used to integrate clinical and transcriptome data from lean and obese subjects. We simulated the metabolic differences between the individuals with different body mass indexes (BMIs) using transcriptome and fluxome data. An increase in the metabolic activity around androsterone, ganglioside GM2 and degradation products of heparan sulfate and keratan sulfate, and a decrease in mitochondrial metabolic activities are found in obese subjects compared with lean subjects. We simulated the change in lipid droplet (LD) size and found that lean subjects have large dynamic changes in LD formation compared with obese subjects. Besides enabling patient stratification, our study allows the identification of novel therapeutic targets for obesity. Combining large-scale immunohistochemical analysis and proteomics data, 7340 gene products are identified in human adipocytes. Based on this data, a genome-scale metabolic model is reconstructed and used to integrate clinical and transcriptome data from lean and obese subjects. We simulated the metabolic differences between the individuals with different body mass indexes (BMIs) using transcriptome and fluxome data. An increase in the metabolic activity around androsterone, ganglioside GM2 and degradation products of heparan sulfate and keratan sulfate, and a decrease in mitochondrial metabolic activities are found in obese subjects compared with lean subjects. We simulated the change in lipid droplet (LD) size and found that lean subjects have large dynamic changes in LD formation compared with obese subjects. Besides enabling patient stratification, our study allows the identification of novel therapeutic targets for obesity. We evaluated the presence/absence of proteins encoded by 14 077 genes in adipocytes obtained from different tissue samples using immunohistochemistry. By combining this with previously published adipocyte-specific proteome data, we identified proteins associated with 7340 genes in human adipocytes. This information was used to reconstruct a comprehensive and functional genome-scale metabolic model of adipocyte metabolism. The resulting metabolic model, iAdipocytes1809 , enables mechanistic insights into adipocyte metabolism on a genome-wide level, and can serve as a scaffold for integration of omics data to understand the genotype–phenotype relationship in obese subjects. By integrating human transcriptome and fluxome data, we found an increase in the metabolic activity around androsterone, ganglioside GM2 and degradation products of heparan sulfate and keratan sulfate, and a decrease in mitochondrial metabolic activities in obese subjects compared with lean subjects. Our study hereby shows a path to identify new therapeutic targets for treating obesity through combination of high throughput patient data and metabolic modeling. We evaluated the presence/absence of proteins encoded by 14077 genes in adipocytes obtained from different tissue samples using immunohistochemistry. By combining this with previously published adipocyte-specific proteome data, we identified proteins associated with 7340 genes in human adipocytes. This information was used to reconstruct a comprehensive and functional genome-scale metabolic model of adipocyte metabolism. The resulting metabolic model, iAdipocytes1809, enables mechanistic insights into adipocyte metabolism on a genome-wide level, and can serve as a scaffold for integration of omics data to understand the genotype-phenotype relationship in obese subjects. By integrating human transcriptome and fluxome data, we found an increase in the metabolic activity around androsterone, ganglioside GM2 and degradation products of heparan sulfate and keratan sulfate, and a decrease in mitochondrial metabolic activities in obese subjects compared with lean subjects. Our study hereby shows a path to identify new therapeutic targets for treating obesity through combination of high throughput patient data and metabolic modeling. Combining large-scale immunohistochemical analysis and proteomics data, 7340 gene products are identified in human adipocytes. Based on this data, a genome-scale metabolic model is reconstructed and used to integrate clinical and transcriptome data from lean and obese subjects. We evaluated the presence/absence of proteins encoded by 14 077 genes in adipocytes obtained from different tissue samples using immunohistochemistry. By combining this with previously published adipocyte‐specific proteome data, we identified proteins associated with 7340 genes in human adipocytes. This information was used to reconstruct a comprehensive and functional genome‐scale metabolic model of adipocyte metabolism. The resulting metabolic model, iAdipocytes1809, enables mechanistic insights into adipocyte metabolism on a genome‐wide level, and can serve as a scaffold for integration of omics data to understand the genotype–phenotype relationship in obese subjects. By integrating human transcriptome and fluxome data, we found an increase in the metabolic activity around androsterone, ganglioside GM2 and degradation products of heparan sulfate and keratan sulfate, and a decrease in mitochondrial metabolic activities in obese subjects compared with lean subjects. Our study hereby shows a path to identify new therapeutic targets for treating obesity through combination of high throughput patient data and metabolic modeling. Combining large‐scale immunohistochemical analysis and proteomics data, 7340 gene products are identified in human adipocytes. Based on this data, a genome‐scale metabolic model is reconstructed and used to integrate clinical and transcriptome data from lean and obese subjects. Synopsis Combining large‐scale immunohistochemical analysis and proteomics data, 7340 gene products are identified in human adipocytes. Based on this data, a genome‐scale metabolic model is reconstructed and used to integrate clinical and transcriptome data from lean and obese subjects. We simulated the metabolic differences between the individuals with different body mass indexes (BMIs) using transcriptome and fluxome data. An increase in the metabolic activity around androsterone, ganglioside GM2 and degradation products of heparan sulfate and keratan sulfate, and a decrease in mitochondrial metabolic activities are found in obese subjects compared with lean subjects. We simulated the change in lipid droplet (LD) size and found that lean subjects have large dynamic changes in LD formation compared with obese subjects. Besides enabling patient stratification, our study allows the identification of novel therapeutic targets for obesity. |
Author | Mardinoglu, Adil Jacobson, Peter Kampf, Caroline Nielsen, Jens Carlsson, Lena M Uhlen, Mathias Walley, Andrew J Asplund, Anna Nookaew, Intawat Agren, Rasmus Froguel, Philippe |
Author_xml | – sequence: 1 givenname: Adil surname: Mardinoglu fullname: Mardinoglu, Adil organization: Department of Chemical and Biological Engineering, Chalmers University of Technology – sequence: 2 givenname: Rasmus surname: Agren fullname: Agren, Rasmus organization: Department of Chemical and Biological Engineering, Chalmers University of Technology – sequence: 3 givenname: Caroline surname: Kampf fullname: Kampf, Caroline organization: Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University – sequence: 4 givenname: Anna surname: Asplund fullname: Asplund, Anna organization: Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University – sequence: 5 givenname: Intawat surname: Nookaew fullname: Nookaew, Intawat organization: Department of Chemical and Biological Engineering, Chalmers University of Technology – sequence: 6 givenname: Peter surname: Jacobson fullname: Jacobson, Peter organization: Department of Molecular and Clinical Medicine and Center for Cardiovascular and Metabolic Research, Sahlgrenska Academy, University of Gothenburg – sequence: 7 givenname: Andrew J surname: Walley fullname: Walley, Andrew J organization: Department of Genomics of Common Diseases, School of Public Health, Imperial College London, Hammersmith Hospital – sequence: 8 givenname: Philippe surname: Froguel fullname: Froguel, Philippe organization: Department of Genomics of Common Diseases, School of Public Health, Imperial College London, Hammersmith Hospital, Unité Mixte de Recherche 8199, Centre National de Recherche Scientifique (CNRS) and Pasteur Institute – sequence: 9 givenname: Lena M surname: Carlsson fullname: Carlsson, Lena M organization: Department of Molecular and Clinical Medicine and Center for Cardiovascular and Metabolic Research, Sahlgrenska Academy, University of Gothenburg – sequence: 10 givenname: Mathias surname: Uhlen fullname: Uhlen, Mathias organization: Department of Proteomics, School of Biotechnology, AlbaNova University Center, Royal Institute of Technology (KTH) – sequence: 11 givenname: Jens surname: Nielsen fullname: Nielsen, Jens email: nielsenj@chalmers.se organization: Department of Chemical and Biological Engineering, Chalmers University of Technology, Department of Chemical and Biological Engineering, Chalmers University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23511207$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-122122$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-199737$$DView record from Swedish Publication Index https://gup.ub.gu.se/publication/175876$$DView record from Swedish Publication Index https://research.chalmers.se/publication/175876$$DView record from Swedish Publication Index |
BookMark | eNqFk8tu1TAQQCMEog_Y8AEoEhsE3OJ3nA1SKa9KRSwKSKwsxxknLkl8sROq7vgEvpEvwem9LW3VFilSLM-Z4xl5vJXdHfwAWfYIox2MqHzZx2qHIEx3-J1sExeMLRgpyd0L641sK8YjlGAsyf1sg1COMUHFZvZtfxihCXp0fsi9zU3nBmd0l9d61PmxG9tc5w0Mvoc_v37HFIG8h1FXvnMm730N3Zw2tpC3U6-HXNdu6c3JCA-ye1Z3ER6u_9vZl3dvP-99WBx8er-_t3uwMEVZ8oXhUgopGBBLkLWUCG1qiSoBda0RpxXBQgNmdU0oFAQhkIYzIi232DAKdDvbX3lrr4_UMrhehxPltVOnGz40SofRmQ4UpZTompcUCcusLWVBJBSiqLWtuaxYch2uXPEYllN1yRYggg6mVabVXQ8hqghKE4Yw0kwJW3HFSqZVVTGuDC6osAJzQVGyLm60NtNSpa1mmm244LIQiX9xI__Gfd097WmaFC7Lgha36s_x72OrMCHpS_yrFZ_gHmoDwxh0dyntcmRwrWr8T0VFOpHN_TxdC4L_MUEcVe-iga7TA_gpqtS1kOmOhPg_SrEUJSKkTOiTK-iRn8KQRkelcIlpKcu5-McXiz-v-myiE4BWgAk-xgBWGTeejnfqxXUKIzU_GpUejZofjeIp5dmVlDPrtfDaf-w6OLmFVB8PX8-rOeX5-oISPTQQ_nV2zQF_AWqINdk |
CitedBy_id | crossref_primary_10_3389_fsysb_2022_899980 crossref_primary_10_3389_fphys_2014_00527 crossref_primary_10_1093_nar_gkw462 crossref_primary_10_3389_fonc_2022_914594 crossref_primary_10_1038_s41423_021_00783_9 crossref_primary_10_1155_2019_8304260 crossref_primary_10_1371_journal_pone_0228521 crossref_primary_10_3389_fphys_2020_00831 crossref_primary_10_1016_j_molmet_2014_12_012 crossref_primary_10_1038_s41540_021_00195_5 crossref_primary_10_1089_omi_2017_0115 crossref_primary_10_1016_j_biotechadv_2024_108400 crossref_primary_10_1371_journal_pone_0287325 crossref_primary_10_1021_pr500586e crossref_primary_10_1186_s12918_015_0184_9 crossref_primary_10_1016_j_mce_2014_11_021 crossref_primary_10_1038_s41598_018_25015_5 crossref_primary_10_1016_j_isci_2022_104483 crossref_primary_10_1016_j_isci_2023_106040 crossref_primary_10_1042_BST20190867 crossref_primary_10_3390_jpm12020166 crossref_primary_10_1371_journal_pcbi_1005618 crossref_primary_10_1038_s41574_021_00471_8 crossref_primary_10_1371_journal_pcbi_1004808 crossref_primary_10_1038_ncomms14250 crossref_primary_10_1146_annurev_biochem_061516_044757 crossref_primary_10_1152_ajpheart_00719_2020 crossref_primary_10_1016_j_coisb_2017_05_003 crossref_primary_10_1016_j_compbiomed_2020_103994 crossref_primary_10_1038_ncomms9994 crossref_primary_10_1038_s41540_024_00418_5 crossref_primary_10_1038_s41598_017_05650_0 crossref_primary_10_1371_journal_pcbi_1005698 crossref_primary_10_1038_s41540_017_0004_5 crossref_primary_10_1038_s41598_023_41765_3 crossref_primary_10_1016_j_coisb_2017_05_007 crossref_primary_10_1016_j_coph_2018_08_007 crossref_primary_10_1021_acs_jafc_3c02642 crossref_primary_10_1093_toxsci_kfaf005 crossref_primary_10_3390_biomedicines9111640 crossref_primary_10_1016_j_ymben_2023_04_008 crossref_primary_10_1096_fj_14_250555 crossref_primary_10_1142_S0219720016440017 crossref_primary_10_3390_ijms23094645 crossref_primary_10_1016_j_bbalip_2020_158857 crossref_primary_10_1038_s41575_018_0007_8 crossref_primary_10_3390_metabo13070855 crossref_primary_10_1016_j_bbagrm_2019_194416 crossref_primary_10_1038_srep10738 crossref_primary_10_1038_s41589_018_0132_2 crossref_primary_10_1016_j_coisb_2019_03_009 crossref_primary_10_1371_journal_pone_0190636 crossref_primary_10_1002_qub2_21 crossref_primary_10_1096_fj_202400498RR crossref_primary_10_15252_msb_20145307 crossref_primary_10_1038_npjsba_2016_17 crossref_primary_10_1093_bioinformatics_btx251 crossref_primary_10_3390_cancers13184609 crossref_primary_10_1093_toxsci_kfz197 crossref_primary_10_15252_msb_20156487 crossref_primary_10_3389_fcell_2017_00065 crossref_primary_10_1007_s11306_021_01802_6 crossref_primary_10_1038_s41598_020_71674_8 crossref_primary_10_3389_fmolb_2017_00096 crossref_primary_10_1016_j_nbt_2014_05_1723 crossref_primary_10_1111_febs_13128 crossref_primary_10_1371_journal_pcbi_1009294 crossref_primary_10_1371_journal_pone_0254270 crossref_primary_10_1007_s00253_022_12066_y crossref_primary_10_1038_s41540_020_00159_1 crossref_primary_10_18632_oncotarget_24805 crossref_primary_10_1016_j_xcrm_2021_100226 crossref_primary_10_1080_19396368_2017_1330368 crossref_primary_10_3389_fphys_2016_00002 crossref_primary_10_1007_s00018_020_03485_z crossref_primary_10_1016_j_compbiomed_2024_108052 crossref_primary_10_1186_s12864_015_1686_y crossref_primary_10_15252_msb_20167422 crossref_primary_10_1371_journal_pone_0105383 crossref_primary_10_1186_s12920_020_00767_0 crossref_primary_10_1038_srep25756 crossref_primary_10_2139_ssrn_4069032 crossref_primary_10_1002_hep_29268 crossref_primary_10_1016_j_lfs_2022_121325 crossref_primary_10_1016_j_yexcr_2024_113936 crossref_primary_10_1073_pnas_1319196111 crossref_primary_10_1186_s13098_023_01090_1 crossref_primary_10_1016_j_ebiom_2019_04_046 crossref_primary_10_1007_s11306_014_0721_3 crossref_primary_10_1016_j_celrep_2015_10_045 crossref_primary_10_1371_journal_pcbi_1005758 crossref_primary_10_1021_acssynbio_1c00140 crossref_primary_10_1093_bib_bbaa204 crossref_primary_10_1039_c5ib00002e crossref_primary_10_1007_s12539_017_0214_y crossref_primary_10_11603_mie_1996_1960_2023_1_2_13963 crossref_primary_10_3748_wjg_v20_i41_15070 crossref_primary_10_3389_fgene_2014_00086 crossref_primary_10_1016_j_drudis_2017_07_005 crossref_primary_10_1093_bioinformatics_btv134 crossref_primary_10_1002_biot_201200275 crossref_primary_10_1002_wsbm_1393 crossref_primary_10_1039_D3MO00152K crossref_primary_10_3389_fmolb_2015_00044 crossref_primary_10_1016_j_copbio_2014_12_013 crossref_primary_10_1038_s41596_018_0098_2 crossref_primary_10_15252_msb_20134993 crossref_primary_10_1155_2015_618658 crossref_primary_10_1186_s12918_017_0438_9 crossref_primary_10_1016_j_taap_2019_04_001 crossref_primary_10_3389_fphys_2015_00382 crossref_primary_10_3389_fphys_2018_00139 crossref_primary_10_1016_j_ymben_2025_03_010 crossref_primary_10_1093_nar_gkx994 crossref_primary_10_1371_journal_pone_0102319 crossref_primary_10_3389_fphys_2015_00413 crossref_primary_10_3389_fphys_2015_00410 crossref_primary_10_1038_nchembio_1961 crossref_primary_10_2139_ssrn_3924201 crossref_primary_10_3803_EnM_2020_303 crossref_primary_10_1038_s41598_020_63235_w crossref_primary_10_1039_C5MB00480B crossref_primary_10_1186_s12859_019_2685_9 crossref_primary_10_1186_s12859_019_2681_0 crossref_primary_10_1002_pmic_201400201 crossref_primary_10_1098_rsos_191241 crossref_primary_10_3389_fphys_2015_00364 crossref_primary_10_1038_srep08183 crossref_primary_10_15252_msb_20155865 crossref_primary_10_15302_J_QB_022_0313 crossref_primary_10_1016_j_copbio_2014_02_009 crossref_primary_10_3390_metabo13010126 crossref_primary_10_1002_wsbm_1301 crossref_primary_10_1126_scisignal_aaz1482 crossref_primary_10_1038_s41576_024_00768_0 crossref_primary_10_1038_clpt_2013_168 crossref_primary_10_3390_ijms222413213 crossref_primary_10_1016_j_cmet_2017_02_002 crossref_primary_10_3390_cancers12092694 crossref_primary_10_1186_s12918_017_0500_7 crossref_primary_10_1039_C7MB00013H crossref_primary_10_1016_j_isci_2022_104949 crossref_primary_10_1007_s43393_021_00059_3 crossref_primary_10_1371_journal_pcbi_1006936 crossref_primary_10_3390_cells11162486 crossref_primary_10_1016_j_biotechadv_2024_108506 crossref_primary_10_1093_database_bav068 crossref_primary_10_1016_j_cels_2016_03_001 crossref_primary_10_1073_pnas_1713050114 crossref_primary_10_1002_msb_145122 crossref_primary_10_3389_fphys_2016_00327 crossref_primary_10_1038_srep14841 crossref_primary_10_1016_j_celrep_2017_11_065 crossref_primary_10_1038_s41540_023_00282_9 crossref_primary_10_1016_j_coph_2013_05_006 crossref_primary_10_1038_srep03041 crossref_primary_10_1093_bioinformatics_btac403 crossref_primary_10_1371_journal_pone_0098760 crossref_primary_10_1038_ncomms4083 crossref_primary_10_1016_j_celrep_2015_04_010 crossref_primary_10_1016_j_coisb_2017_01_001 crossref_primary_10_1039_C6MB00476H crossref_primary_10_1016_j_bbadis_2014_05_030 crossref_primary_10_1186_s12918_018_0553_2 crossref_primary_10_15252_msb_20177703 crossref_primary_10_1016_j_cmpb_2024_108397 crossref_primary_10_3390_biomedicines9101310 crossref_primary_10_1371_journal_pcbi_1009522 crossref_primary_10_1016_j_jbi_2017_02_014 crossref_primary_10_1038_s41598_021_91526_3 crossref_primary_10_1073_pnas_1807305115 crossref_primary_10_3389_fmolb_2020_591406 crossref_primary_10_1016_j_compbiomed_2021_105177 crossref_primary_10_3389_fonc_2019_00681 crossref_primary_10_1038_s41568_020_0240_7 crossref_primary_10_1186_s13059_019_1730_3 crossref_primary_10_1016_j_cmet_2016_05_026 crossref_primary_10_1016_j_coisb_2021_100407 crossref_primary_10_1016_j_cmet_2018_01_005 |
Cites_doi | 10.1038/nprot.2009.203 10.1186/gb-2004-5-10-r80 10.1038/nbt.2285 10.1371/journal.pcbi.1000859 10.1093/nar/gkm791 10.1038/nbt1210-1248 10.1002/pmic.201100355 10.1016/j.cell.2008.07.048 10.1123/ijsnem.16.4.430 10.1111/j.1532-5415.2000.tb04781.x 10.2337/db08-0495 10.1038/msb4100177 10.1111/j.1463-1326.2010.01353.x 10.1093/nar/gkq1018 10.1186/1752-0509-5-180 10.1111/j.1365-2796.2011.02490.x 10.1186/gb-2004-6-1-r2 10.1021/pr100268f 10.1161/01.ATV.17.8.1545 10.1074/mcp.M500279-MCP200 10.1093/nar/gkq1020 10.1016/j.mce.2008.09.034 10.1210/jcem.86.10.7955 10.2337/db10-0867 10.1371/journal.pcbi.1002518 10.1038/nrd3055 10.1007/s00125-002-0873-y 10.1073/pnas.0406811102 10.1038/nrm3198 10.1385/CP:1:3-4:285 10.1038/msb.2010.68 10.1111/j.1365-2796.2011.02493.x 10.1016/j.bbrc.2009.03.014 10.1093/nar/gkn810 10.1007/BF02712150 10.1038/nature10426 10.1016/j.cell.2009.11.005 10.1038/msb.2010.62 10.1093/nar/gkq1064 10.1210/jc.2012-2764 10.1093/nar/gkp896 10.1038/ijo.2008.237 10.1152/ajpendo.00359.2001 10.1007/978-3-642-00300-4_13 10.1073/pnas.0610772104 10.1093/nar/gkj122 10.1073/pnas.1110817108 10.1002/pmic.201000125 10.1038/nprot.2008.211 10.1186/gm2 10.1016/j.bbrc.2008.12.086 10.1038/ncprheum0674 10.1016/j.tem.2012.06.004 10.1186/1471-2105-11-393 10.1146/annurev-biochem-060409-092612 10.1186/1752-0509-6-114 10.1016/j.cmet.2012.04.022 10.1021/bi960008e 10.1016/j.cell.2012.05.044 10.1016/j.febslet.2009.10.054 10.1371/journal.pcbi.1002980 10.1038/msb.2010.56 10.1111/j.1432-1033.1980.tb04603.x 10.1016/j.cmet.2009.04.008 10.1038/oby.2004.178 10.1038/nbt.1711 10.1371/journal.pcbi.1000938 10.1038/msb4100085 |
ContentType | Journal Article |
Copyright | EMBO and Macmillan Publishers Limited 2013 Copyright © 2013 EMBO and Macmillan Publishers Limited 2013. This work is published under http://creativecommons.org/licenses/by-nc-sa/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2013, EMBO and Macmillan Publishers Limited 2013 EMBO and Macmillan Publishers Limited |
Copyright_xml | – notice: EMBO and Macmillan Publishers Limited 2013 – notice: Copyright © 2013 EMBO and Macmillan Publishers Limited – notice: 2013. This work is published under http://creativecommons.org/licenses/by-nc-sa/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2013, EMBO and Macmillan Publishers Limited 2013 EMBO and Macmillan Publishers Limited |
DBID | C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7TM 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PADUT PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM ADTPV AFDQA AOWAS D8T D8V ZZAVC ACNBI DF2 AAOVB F1U ABBSD F1S DOA |
DOI | 10.1038/msb.2013.5 |
DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Research Library China ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text SWEPUB Uppsala universitet full text SWEPUB Uppsala universitet SWEPUB Göteborgs universitet full text SWEPUB Göteborgs universitet SWEPUB Chalmers tekniska högskola full text SWEPUB Chalmers tekniska högskola DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Research Library China ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Genetics Abstracts Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals (ODIN) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 4 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 5 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 6 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1744-4292 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_3332ad59306f4ff98728e767dafd58b4 oai_research_chalmers_se_a24010a4_6fb5_494a_bb45_c1736f615630 oai_gup_ub_gu_se_175876 oai_DiVA_org_uu_199737 oai_DiVA_org_kth_122122 PMC3619940 23511207 10_1038_msb_2013_5 MSB20135 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: G1002084 – fundername: Wellcome Trust grantid: GR079534 |
GroupedDBID | --- -Q- 0R~ 123 1OC 24P 29M 2WC 39C 4.4 53G 5VS 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAJSJ AAMMB ABDBF ABUWG ACCMX ACGFO ACPRK ACUHS ACXQS ADBBV ADKYN ADRAZ ADZMN AEFGJ AEGXH AENEX AEUYN AFKRA AFRAH AGXDD AHMBA AIAGR AIDQK AIDYY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AZFZN AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CAG CCPQU CS3 DIK DU5 DWQXO E3Z EBD EBS EJD EMB EMOBN ESX F5P FYUFA GNUQQ GODZA GROUPED_DOAJ GUQSH GX1 H13 HCIFZ HH5 HK~ HMCUK HYE IAO IHR INH ITC KQ8 LK8 M1P M2O M48 M7P ML0 M~E NAO O5R O5S OK1 OVT P2P PADUT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q2X RHI RNS RNTTT RPM SV3 TR2 TUS UKHRP WIN WOQ WOW XSB ~8M 3V. 88A AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE AVUZU COF EBLON HZ~ IGS M0L O9- AAYXX CITATION AASML CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM ADTPV AFDQA AOWAS D8T D8V ZZAVC ACNBI DF2 AAOVB F1U ABBSD F1S PUEGO |
ID | FETCH-LOGICAL-c7995-c5886864e2f20ff326acd80b6edda053b216ae14dd23e7200e8c5428f5f1c43e3 |
IEDL.DBID | M48 |
ISSN | 1744-4292 |
IngestDate | Wed Aug 27 01:31:50 EDT 2025 Thu Aug 21 06:26:57 EDT 2025 Thu Aug 21 07:18:59 EDT 2025 Thu Aug 21 06:51:32 EDT 2025 Thu Aug 21 06:46:04 EDT 2025 Thu Aug 21 18:22:09 EDT 2025 Mon Jul 21 11:11:22 EDT 2025 Fri Jul 11 07:27:29 EDT 2025 Wed Aug 13 09:55:45 EDT 2025 Mon Jul 21 05:30:27 EDT 2025 Tue Jul 01 04:10:32 EDT 2025 Thu Apr 24 22:58:28 EDT 2025 Wed Jan 22 16:34:18 EST 2025 Tue Aug 12 01:10:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | genome‐scale metabolic model flux balance analysis obesity adipocyte proteome |
Language | English |
License | Attribution-NonCommercial-ShareAlike This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial Share Alike 3.0 Unported License, which allows readers to alter, transform, or build upon the article and then distribute the resulting work under the same or similar license to this one. The work must be attributed back to the original author and commercial use is not permitted without specific permission. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c7995-c5886864e2f20ff326acd80b6edda053b216ae14dd23e7200e8c5428f5f1c43e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/msb.2013.5 |
PMID | 23511207 |
PQID | 2299139892 |
PQPubID | 29031 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3332ad59306f4ff98728e767dafd58b4 swepub_primary_oai_research_chalmers_se_a24010a4_6fb5_494a_bb45_c1736f615630 swepub_primary_oai_gup_ub_gu_se_175876 swepub_primary_oai_DiVA_org_uu_199737 swepub_primary_oai_DiVA_org_kth_122122 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3619940 proquest_miscellaneous_1566854266 proquest_miscellaneous_1318690229 proquest_journals_2299139892 pubmed_primary_23511207 crossref_citationtrail_10_1038_msb_2013_5 crossref_primary_10_1038_msb_2013_5 wiley_primary_10_1038_msb_2013_5_MSB20135 springer_journals_10_1038_msb_2013_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – year: 2013 text: 2013 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Chichester, UK – name: Germany |
PublicationTitle | Molecular systems biology |
PublicationTitleAbbrev | Mol Syst Biol |
PublicationTitleAlternate | Mol Syst Biol |
PublicationYear | 2013 |
Publisher | Nature Publishing Group UK John Wiley & Sons, Ltd EMBO Press Nature Publishing Group Springer Nature |
Publisher_xml | – name: Nature Publishing Group UK – name: John Wiley & Sons, Ltd – name: EMBO Press – name: Nature Publishing Group – name: Springer Nature |
References | 2011; 478 2007; 104 2010; 11 2010; 10 2006; 34 2000; 48 2011; 60 2008; 36 2004; 5 2011; 13 2008; 32 2011; 12 2012; 15 2004; 1 1996; 35 2012; 12 2012; 98 2001; 86 1980; 106 2010; 28 2005; 102 2002; 45 1997; 17 2007; 3 2012; 23 2010; 5 2010; 6 2010; 9 2012; 63 2010; 38 2006; 16 2009 2009; 298 1988; 13 2008; 57 2006; 2 2011; 39 2010; 80 2011; 5 2009; 379 2012; 30 2009; 139 2012; 150 2012; 271 2011; 108 2002; 282 2004; 12 2009; 583 2005; 4 2009; 9 2005; 6 2009; 382 2013 2009; 4 2008; 134 2012; 6 2009; 1 2009; 37 2012; 8 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Kampf C (e_1_2_7_38_1) 2012; 63 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 |
References_xml | – volume: 23 start-page: 435 year: 2012 end-page: 443 article-title: Mitochondrial dysfunction in white adipose tissue publication-title: Trends Endocrinol Metab – volume: 12 start-page: 722 year: 2011 end-page: 734 article-title: Forming functional fat: a growing understanding of adipocyte differentiation publication-title: Nat Rev Mol Cell Bio – volume: 39 start-page: D800 year: 2011 end-page: D806 article-title: Ensembl 2011 publication-title: Nucleic Acids Res – volume: 17 start-page: 1545 year: 1997 end-page: 1549 article-title: Lipid binding of apolipoprotein CII is required for stimulation of lipoprotein lipase activity against apolipoprotein CII‐deficient chylomicrons publication-title: Arterioscl Throm Vas – volume: 12 start-page: 607 year: 2012 end-page: 620 article-title: Proteomic characterization of adipose tissue constituents, a necessary step for understanding adipose tissue complexity publication-title: Proteomics – volume: 35 start-page: 12155 year: 1996 end-page: 12163 article-title: Interaction of lipoprotein lipase with heparin fragments and with heparan sulfate: stoichiometry, stabilization, and kinetics publication-title: Biochemistry – volume: 39 start-page: D691 year: 2011 end-page: D697 article-title: Reactome: a database of reactions, pathways and biological processes publication-title: Nucleic Acids Res – volume: 271 start-page: 108 year: 2012 end-page: 110 article-title: Translational and systems medicine introduction publication-title: J Intern Med – year: 2013 article-title: The RAVEN toolbox and its use for generating a genome‐scale metabolic model for Penicillium chrysogenum publication-title: PLoS Comput Biol – volume: 13 start-page: 263 year: 1988 end-page: 268 article-title: Similar effects of beta‐alanine and taurine in cholesterol‐metabolism publication-title: J Biosci – volume: 6 start-page: R2 year: 2005 article-title: Computational prediction of human metabolic pathways from the complete human genome publication-title: Genome Biol – volume: 13 start-page: 490 year: 2011 end-page: 497 article-title: Pharmaceutical interventions for obesity: a public health perspective publication-title: Diabetes Obes Metab – volume: 6 start-page: e1000938 year: 2010 article-title: Drug off‐target effects predicted using structural analysis in the context of a metabolic network model publication-title: PLoS Comput Biol – volume: 5 start-page: 93 year: 2010 end-page: 121 article-title: A protocol for generating a high‐quality genome‐scale metabolic reconstruction publication-title: Nat Protoc – volume: 5 start-page: R80 year: 2004 article-title: Bioconductor: open software development for computational biology and bioinformatics publication-title: Genome Biol – volume: 382 start-page: 309 year: 2009 end-page: 314 article-title: ALK7 expression is specific for adipose tissue, reduced in obesity and correlates to factors implicated in metabolic disease publication-title: Biochem Biophys Res Commun – volume: 57 start-page: 2652 year: 2008 end-page: 2660 article-title: Impaired glucose tolerance and insulin resistance are associated with increased adipose 11 beta‐hydroxysterold dehydrogenase type 1 expression and elevated hepatic 5 alpha‐reductase activity publication-title: Diabetes – volume: 9 start-page: 525 year: 2009 end-page: 536 article-title: Resistance to diet‐induced obesity in mice with synthetic glyoxylate shunt publication-title: Cell Metab – volume: 6 start-page: 114 year: 2012 article-title: CardioNet: a human metabolic network suited for the study of cardiomyocyte metabolism publication-title: BMC Syst Biol – volume: 271 start-page: 142 year: 2012 end-page: 154 article-title: Systems medicine and metabolic modelling publication-title: J Intern Med – volume: 48 start-page: 1062 year: 2000 end-page: 1072 article-title: Exercise and weight loss in obese older adults with knee osteoarthritis: A preliminary study publication-title: J Am Geriatr Soc – volume: 6 start-page: 411 year: 2010 article-title: HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology publication-title: Mol Syst Biol – volume: 10 start-page: 3984 year: 2010 end-page: 3996 article-title: Creation of an antibody‐based subcellular protein atlas publication-title: Proteomics – volume: 98 start-page: E370 year: 2012 article-title: Adipose tissue resting energy expenditure and expression of genes involved in mitochondrial function are higher in women than in men publication-title: J Clin Endocrinol Metab – volume: 36 start-page: D344 year: 2008 end-page: D350 article-title: ChEBI: a database and ontology for chemical entities of biological interest publication-title: Nucleic Acids Res – volume: 34 start-page: D507 year: 2006 end-page: D510 article-title: Lmpd: Lipid Maps Proteome Database publication-title: Nucleic Acids Res – volume: 1 start-page: 2 year: 2009 article-title: Systems medicine: the future of medical genomics and healthcare publication-title: Genome Med – volume: 15 start-page: 838 year: 2012 end-page: 847 article-title: The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high‐fat diet‐induced obesity publication-title: Cell Metab – volume: 6 start-page: 401 year: 2010 article-title: Computational reconstruction of tissue‐specific metabolic models: application to human liver metabolism publication-title: Mol Syst Biol – volume: 150 start-page: 389 year: 2012 end-page: 401 article-title: A whole‐cell computational model predicts phenotype from genotype publication-title: Cell – volume: 6 start-page: e1000859 year: 2010 article-title: Sampling the solution space in genome‐scale metabolic networks reveals transcriptional regulation in key enzymes publication-title: PLoS Comput Biol – start-page: 315 year: 2009 end-page: 369 article-title: The Ins and Outs of adipose tissue publication-title: Cell Lipid Metab – volume: 37 start-page: D603 year: 2009 end-page: D610 article-title: HMDB: a knowledgebase for the human metabolome publication-title: Nucleic Acids Res – volume: 16 start-page: 430 year: 2006 end-page: 446 article-title: Effect of creatine and beta‐alanine supplementation on performance and endocrine responses in strength/power athletes publication-title: Int J Sport Nutr Exerc Metab – volume: 3 start-page: 135 year: 2007 article-title: The Edinburgh human metabolic network reconstruction and its functional analysis publication-title: Mol Syst Biol – volume: 134 start-page: 933 year: 2008 end-page: 944 article-title: Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism publication-title: Cell – volume: 63 start-page: e3620 year: 2012 article-title: Production of tissue microarrays, immunohistochemistry staining and digitalization within the human protein atlas publication-title: J Vis Exp – volume: 38 start-page: D355 year: 2010 end-page: D360 article-title: KEGG for representation and analysis of molecular networks involving diseases and drugs publication-title: Nucleic Acids Res – volume: 39 start-page: D214 year: 2011 end-page: D219 article-title: Ongoing and future developments at the Universal Protein Resource publication-title: Nucleic Acids Res – volume: 2 start-page: 50 year: 2006 article-title: Integration of metabolome data with metabolic networks reveals reporter reactions publication-title: Mol Syst Biol – volume: 583 start-page: 3905 year: 2009 end-page: 3913 article-title: Systems biology of lipid metabolism: from yeast to human publication-title: FEBS Lett – volume: 282 start-page: E931 year: 2002 end-page: E936 article-title: Regional muscle and adipose tissue amino acid metabolism in lean and obese women publication-title: Am J Physiol Endocrinol Metab – volume: 1 start-page: 285 year: 2004 end-page: 299 article-title: Antibody‐based tissue profiling as a tool for clinical proteomics publication-title: Clin Proteomics – volume: 60 start-page: 47 year: 2011 end-page: 55 article-title: Downregulation of adipose tissue fatty acid trafficking in obesity a driver for ectopic fat deposition? publication-title: Diabetes – volume: 11 start-page: 393 year: 2010 article-title: Compartmentalization of the Edinburgh Human Metabolic Network publication-title: Bmc Bioinformatics – volume: 3 start-page: 716 year: 2007 end-page: 724 article-title: Adipokines as emerging mediators of immune response and inflammation publication-title: Nat Clin Pract Rheumatol – volume: 4 start-page: 1920 year: 2005 end-page: 1932 article-title: A human protein atlas for normal and cancer tissues based on antibody proteomics publication-title: Mol Cell Proteomics – volume: 139 start-page: 855 year: 2009 end-page: 860 article-title: Lipid droplets finally get a little R‐E‐S‐P‐E‐C‐T publication-title: Cell – volume: 45 start-page: 1201 year: 2002 end-page: 1210 article-title: Adipose tissue as a buffer for daily lipid flux publication-title: Diabetologia – volume: 9 start-page: 4521 year: 2010 end-page: 4534 article-title: Characterization of the human adipocyte proteome and reproducibility of protein abundance by one‐dimensional gel electrophoresis and HPLC‐ESI‐MS/MS publication-title: J Proteome Res – volume: 108 start-page: 19581 year: 2011 end-page: 19586 article-title: Direct binding of triglyceride to fat storage‐inducing transmembrane proteins 1 and 2 is important for lipid droplet formation publication-title: Proc Natl Acad Sci USA – volume: 28 start-page: 1279 year: 2010 end-page: 1285 article-title: Large‐scale in silico modeling of metabolic interactions between cell types in the human brain publication-title: Nat Biotechnol – volume: 4 start-page: 44 year: 2009 end-page: 57 article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources publication-title: Nat Protoc – volume: 106 start-page: 557 year: 1980 end-page: 562 article-title: Lipoprotein‐lipase ‐ mechanism of product inhibition publication-title: Eur J Biochem – volume: 32 start-page: S39 year: 2008 end-page: S51 article-title: Advances in adipose tissue metabolism publication-title: Int J Obes – volume: 28 start-page: 1248 year: 2010 end-page: 1250 article-title: Towards a knowledge‐based Human Protein Atlas publication-title: Nat Biotechnol – volume: 102 start-page: 2685 year: 2005 end-page: 2689 article-title: Uncovering transcriptional regulation of metabolism by using metabolic network topology publication-title: Proc Natl Acad Sci USA – volume: 104 start-page: 1777 year: 2007 end-page: 1782 article-title: Global reconstruction of the human metabolic network based on genomic and bibliomic data publication-title: Proc Natl Acad Sci USA – volume: 6 start-page: 422 year: 2010 article-title: Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions publication-title: Mol Syst Biol – volume: 478 start-page: 110 year: 2011 end-page: 113 article-title: Dynamics of human adipose lipid turnover in health and metabolic disease publication-title: Nature – volume: 8 start-page: e1002518 year: 2012 article-title: Reconstruction of genome‐scale active metabolic networks for 69 human cell types and 16 cancer types using INIT publication-title: PLoS Comput Biol – volume: 9 start-page: 107 year: 2010 end-page: 115 article-title: Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases publication-title: Nat Rev Drug Discov – volume: 86 start-page: 5045 year: 2001 end-page: 5051 article-title: The effects of androgens and estrogens on preadipocyte proliferation in human adipose tissue: influence of gender and site publication-title: J Clin Endocr Metab – volume: 12 start-page: 1421 year: 2004 end-page: 1425 article-title: Production rates of cortisol in obesity publication-title: Obes Res – volume: 379 start-page: 547 year: 2009 end-page: 552 article-title: Obesity causes a shift in metabolic flow of gangliosides in adipose tissues publication-title: Biochem Bioph Res Co – volume: 298 start-page: 76 year: 2009 end-page: 83 article-title: Progesterone metabolism in adipose cells publication-title: Mol Cell Endocrinol – volume: 5 start-page: 180 year: 2011 article-title: A multi‐tissue type genome‐scale metabolic network for analysis of whole‐body systems physiology publication-title: BMC Syst Biol – volume: 80 start-page: 301 year: 2010 end-page: 325 article-title: Applications of mass spectrometry to lipids and membranes publication-title: Annu Rev Biochem – volume: 30 start-page: 671 year: 2012 end-page: 678 article-title: Therapeutic targets in cancer cell metabolism and autophagy publication-title: Nat Biotechnol – ident: e_1_2_7_63_1 doi: 10.1038/nprot.2009.203 – ident: e_1_2_7_29_1 doi: 10.1186/gb-2004-5-10-r80 – ident: e_1_2_7_19_1 doi: 10.1038/nbt.2285 – ident: e_1_2_7_11_1 doi: 10.1371/journal.pcbi.1000859 – ident: e_1_2_7_24_1 doi: 10.1093/nar/gkm791 – ident: e_1_2_7_66_1 doi: 10.1038/nbt1210-1248 – ident: e_1_2_7_59_1 doi: 10.1002/pmic.201100355 – ident: e_1_2_7_14_1 doi: 10.1016/j.cell.2008.07.048 – ident: e_1_2_7_34_1 doi: 10.1123/ijsnem.16.4.430 – ident: e_1_2_7_51_1 doi: 10.1111/j.1532-5415.2000.tb04781.x – ident: e_1_2_7_64_1 doi: 10.2337/db08-0495 – ident: e_1_2_7_48_1 doi: 10.1038/msb4100177 – ident: e_1_2_7_17_1 doi: 10.1111/j.1463-1326.2010.01353.x – ident: e_1_2_7_22_1 doi: 10.1093/nar/gkq1018 – ident: e_1_2_7_9_1 doi: 10.1186/1752-0509-5-180 – ident: e_1_2_7_53_1 doi: 10.1111/j.1365-2796.2011.02490.x – ident: e_1_2_7_61_1 doi: 10.1186/gb-2004-6-1-r2 – ident: e_1_2_7_69_1 doi: 10.1021/pr100268f – ident: e_1_2_7_55_1 doi: 10.1161/01.ATV.17.8.1545 – ident: e_1_2_7_65_1 doi: 10.1074/mcp.M500279-MCP200 – ident: e_1_2_7_5_1 doi: 10.1093/nar/gkq1020 – ident: e_1_2_7_70_1 doi: 10.1016/j.mce.2008.09.034 – ident: e_1_2_7_4_1 doi: 10.1210/jcem.86.10.7955 – ident: e_1_2_7_50_1 doi: 10.2337/db10-0867 – ident: e_1_2_7_2_1 doi: 10.1371/journal.pcbi.1002518 – ident: e_1_2_7_15_1 doi: 10.1038/nrd3055 – ident: e_1_2_7_28_1 doi: 10.1007/s00125-002-0873-y – ident: e_1_2_7_57_1 doi: 10.1073/pnas.0406811102 – ident: e_1_2_7_21_1 doi: 10.1038/nrm3198 – ident: e_1_2_7_37_1 doi: 10.1385/CP:1:3-4:285 – ident: e_1_2_7_10_1 doi: 10.1038/msb.2010.68 – ident: e_1_2_7_49_1 doi: 10.1111/j.1365-2796.2011.02493.x – ident: e_1_2_7_16_1 doi: 10.1016/j.bbrc.2009.03.014 – ident: e_1_2_7_68_1 doi: 10.1093/nar/gkn810 – ident: e_1_2_7_60_1 doi: 10.1007/BF02712150 – ident: e_1_2_7_6_1 doi: 10.1038/nature10426 – ident: e_1_2_7_26_1 doi: 10.1016/j.cell.2009.11.005 – ident: e_1_2_7_30_1 doi: 10.1038/msb.2010.62 – ident: e_1_2_7_27_1 doi: 10.1093/nar/gkq1064 – ident: e_1_2_7_54_1 doi: 10.1210/jc.2012-2764 – volume: 63 start-page: e3620 year: 2012 ident: e_1_2_7_38_1 article-title: Production of tissue microarrays, immunohistochemistry staining and digitalization within the human protein atlas publication-title: J Vis Exp – ident: e_1_2_7_39_1 doi: 10.1093/nar/gkp896 – ident: e_1_2_7_43_1 doi: 10.1038/ijo.2008.237 – ident: e_1_2_7_58_1 doi: 10.1152/ajpendo.00359.2001 – ident: e_1_2_7_56_1 doi: 10.1007/978-3-642-00300-4_13 – ident: e_1_2_7_25_1 doi: 10.1073/pnas.0610772104 – ident: e_1_2_7_20_1 doi: 10.1093/nar/gkj122 – ident: e_1_2_7_31_1 doi: 10.1073/pnas.1110817108 – ident: e_1_2_7_47_1 doi: 10.1002/pmic.201000125 – ident: e_1_2_7_35_1 doi: 10.1038/nprot.2008.211 – ident: e_1_2_7_7_1 doi: 10.1186/gm2 – ident: e_1_2_7_62_1 doi: 10.1016/j.bbrc.2008.12.086 – ident: e_1_2_7_44_1 doi: 10.1038/ncprheum0674 – ident: e_1_2_7_42_1 doi: 10.1016/j.tem.2012.06.004 – ident: e_1_2_7_32_1 doi: 10.1186/1471-2105-11-393 – ident: e_1_2_7_33_1 doi: 10.1146/annurev-biochem-060409-092612 – ident: e_1_2_7_40_1 doi: 10.1186/1752-0509-6-114 – ident: e_1_2_7_13_1 doi: 10.1016/j.cmet.2012.04.022 – ident: e_1_2_7_46_1 doi: 10.1021/bi960008e – ident: e_1_2_7_41_1 doi: 10.1016/j.cell.2012.05.044 – ident: e_1_2_7_52_1 doi: 10.1016/j.febslet.2009.10.054 – ident: e_1_2_7_3_1 doi: 10.1371/journal.pcbi.1002980 – ident: e_1_2_7_36_1 doi: 10.1038/msb.2010.56 – ident: e_1_2_7_8_1 doi: 10.1111/j.1432-1033.1980.tb04603.x – ident: e_1_2_7_23_1 doi: 10.1016/j.cmet.2009.04.008 – ident: e_1_2_7_67_1 doi: 10.1038/oby.2004.178 – ident: e_1_2_7_45_1 doi: 10.1038/nbt.1711 – ident: e_1_2_7_18_1 doi: 10.1371/journal.pcbi.1000938 – ident: e_1_2_7_12_1 doi: 10.1038/msb4100085 |
SSID | ssj0038182 |
Score | 2.4830956 |
Snippet | We evaluated the presence/absence of proteins encoded by 14 077 genes in adipocytes obtained from different tissue samples using immunohistochemistry. By... We evaluated the presence/absence of proteins encoded by 14077 genes in adipocytes obtained from different tissue samples using immunohistochemistry. By... Combining large-scale immunohistochemical analysis and proteomics data, 7340 gene products are identified in human adipocytes. Based on this data, a... We evaluated the presence/absence of proteins encoded by 14 077 genes in adipocytes obtained from different tissue samples using immunohistochemistry. By... Abstract We evaluated the presence/absence of proteins encoded by 14 077 genes in adipocytes obtained from different tissue samples using immunohistochemistry.... |
SourceID | doaj swepub pubmedcentral proquest pubmed crossref wiley springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 649 |
SubjectTerms | adipocyte Adipocytes Adipocytes - metabolism Androsterone - metabolism Bioinformatics and Computational Biology Bioinformatik och beräkningsbiologi Biomarkers Body Mass Index Cardiovascular disease Degradation products Diabetes EMBO21 EMBO24 flux balance analysis G(M2) Ganglioside - metabolism Ganglioside GM2 Gene expression Genes Genome, Human genome-scale metabolic model Genomes Genotypes Heparan sulfate Heparitin Sulfate - metabolism Humans Identification Immunoglobulins Immunohistochemistry Immunohistochemistry - methods Integration Keratan sulfate Keratan Sulfate - metabolism Lipids Localization Metabolism Metabolites Mitochondria Mitochondria - metabolism Models, Biological Obesity Obesity - genetics Obesity - metabolism Phenotypes Precision medicine Proteins proteome Proteome - genetics Proteome - metabolism Proteomes Reproducibility of Results Software Sulfates Target recognition Therapeutic applications Transcriptome |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtUwELVQJSQ2iDeBgowoSF2EJn7FWbZAVRCwgaKyshw_eq_ofYjcLLrjE_hGvoSx84CI6LJhF8WTyJ4Ze47jyRmE9kpjbO5g9fMyK1KmNUypUtq0yA1zReCwMjHL94M4OWVvz_jZH6W-Qk5YSw_cKu6AUkq05SVAW8-8hy0yka4QhdXecllFJlCIef1mql2DQxgiPRkplQeLugpZXPQFH4WfyNI_BS3_zpAcjkkHStExmo3h6PgGut7hSHzY9v8muuKWt9DVtrLk5W305U1HAwFqxyuP-x8gccgIxeHjK9Y48LMu3M_vP2pocXjhNuARF3ODY3mc8BigQxyr-GFt5-uVudy4O-j0-PWnlydpV0UhNYHsLTVcSiEFc8STzHuAa9pYmVXCWathClYkF9rlzFpCwTpZ5qThsCnx3IO9qKN30c5ytXT3Ea4AL9nMUS9NxTJWaDBLaWHREEZQYX2C9nvlKtNRjIdKFxcqHnVTqcAQKhhC8QQ9HWTXLbHGpNRRsNEgEciw4w1wEdW5iPqXiyRot7ew6mZorQjEYUC_siQJejI0w9wKByZ66VZNrXIaC3aB6BYZwMOSB5yToHut0wy9JeGUlmRFgoqRO42GM25ZzmeR45uKQNqcJWivd7zfXZ9S0_PWKUdvfjX_fBgV9XUzUzkBkAJjfbZNsGlUSDyixfQLz5u1glvnjaqdAtwJkTRB7yYEO6KqmTKzWAWoDg9oAI95ppkSvuKKlUyrqmJcmbygwgOyFhTGux8n1RaXUO8_HoUr_uB_-MZDdI3EAifho9ou2tl8a9wjgJmb6nFcUX4Bfuh9bA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgCIkL4pvAQEEMpB3CEttxnBPagGkg4AKD3izHH23F2pSlOey_5z03yRRR9VY5L5Ht9-Gf7dffI-SgNMZmDqKfl2mRcK3BpUppkyIz3BXIYWVClu93cXbOv0zySXfg1nRplX1MDIHa1gbPyI8oxE1AK7Kk71d_E6wahberXQmNm-QWUpfh5quYDBsuXIxoT0nK5NGiqTCXi73LR4tQ4OrfBjD_z5McLksHYtExpg2L0uk9crdDk_HxRv33yQ23fEBub-pLXj0kvz93ZBAw-XHt4_5vkDHmhcZ4BBvrGFlaFy5poN3FC7cGq7iYmziUyMGXACHGoZJfrO18VZurtXtEzk8__fxwlnSVFBKDhG-JyaUUUnBHPU29B8imjZVpJZy1GtywopnQLuPWUgYaSlMnTQ4bE5970Blz7DHZW9ZL95TEFWAmmzrmpal4ygudl6y0EDiEEUxYH5HDfmqV6WjGsdrFhQrX3UwqUINCNag8Iq8H2dWGXGOr1AlqaJBAQuzQUF9OVedfijFGtYW-pMJz70tZUOkKUVjtbS4rHpH9Xr-q89JGXdtURF4Nj8G_8NJEL13dNipjoWgXiO6QAUwsc8Q6EXmyMZmhtxRvamlaRKQYGdNoOOMny_ks8HwzgcTNaUQOerO77vq2aXq7McnRlz_Ofx2HifqznqmMAlCBsb7ZJdi2CpOPWLH9g9N2paBp2qrGKcCesJpG5OsWwY6saqbMLFQCavAFDQAySzVXwle54iXXqqp4rkxWMOEBXQsG4z0MLrXDJNS3Hyf4K3-2W63PyR0aypfgkdk-2Vtftu4FgMh19TJEin_msnNX priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLagCIkLYidtQUYUpB4GEm9xju1AVRBwgaJyshwvMyM6i5rJoTd-Ar-RX8Kzs0DEaMRtFL9E9tv8JX7zPYQOCmNs5iD7eZnmI6Y1hFQh7SjPDHN54LAyscr3kzg9Y-_P-XlLk1O1ZZUNpWVM01112Ot5VYY6LPqKX0c3AmV7KN8bi3GXdcPGQzr6USr_kh9sOJGXfxOY_Lcmsj8Y7UlEh_g1bkAnd9DtFjnio2aud9E1t7iHbja9JK_uo2_vWuIHUDReetz95RGHGlAcPrdijQMj69z9-vGzghGH524NPnAxMzg2xAm3AR7EsW8f1na2WpqrtXuAzk7efhmfjtq-CSMT6N1GhksppGCOeJJ6DwBNGyvTUjhrNQRdSTKhXcasJRTskaZOGg6vIZ57sBB19CHaWSwX7jHCJSAkmzrqpSlZynLNC1pYSBPCCCqsT9Bhp1xlWlLx0NviQsXDbSoVGEIFQyieoOe97Kqh0tgodRxs1EsE-ut4YXk5Ua07KEop0RbmkgrPvC9kTqTLRW61t1yWLEH7nYVVG5OVIrDzAt6VBUnQs34YoikckeiFW9aVymhs0QWiW2QAAUsekE2CHjVO08-WhHNZkuYJygfuNFjOcGQxm0ZWbyoCTXOaoIPO8f5MfZOaXjZOOXjym9nXo6io7-upygjAEljri22Cda1CqRHNNz9wUq8UXJrUqnIKkCbsnQn6sEGwpaaaKjONfX-qcIMGuJilminhS65YwbQqS8aVyXIqPGBpQWG9hzGotriE-vj5OPziu_-nmz10i8SmJeFD2T7aWV_W7glAx3X5NOaM30cwcCA priority: 102 providerName: Springer Nature – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIXxJtAQUEUpB4Cie04jsSlBaqCACFBUTlZjh-7K7oPNZtDb_wEfiO_hBnnUUWsKnGL4nFke2bsL_b4G0J2S2Ns5mD28zItEq41uFQpbVJkhrsCOaxMiPL9LI6O-YeT_GSLvO7vwrT8EMOGG3pGmK_RwXVVd9fEMXB9XlcYmcVe5lfIVbxbi1ZO-Zd-HsaliLbXIXmCSZl6clImX13UHS1HgbV_E9T8N2JyODYdKEbH6DYsT4c3yY0OV8b7rSHcIltucZtcazNNnt8hP953tBCghnjp4_5CZIwRojFuxsY6Rr7Wufvz63cNJS6euzVYyOnMxCFdDlYDtBiHrH6xtrPV0pyv3V1yfPju25ujpMuqkBgkf0tMLqWQgjvqaeo9wDdtrEwr4azV4JIVzYR2GbeWMtBWmjppcvhJ8bkH_THH7pHtxXLhHpC4AvxkU8e8NBVPeaHzkpUWJhFhBBPWR2SvH1xlOspxzHxxqsLRN5MKFKFQESqPyLNBdtUSbWyUOkAdDRJIjh1eLM8mqvM1xRij2kJbUuG596UsqHSFKKz2NpcVj8hOr2HVeWytKKzLgIZlSSPydCgGX8MDFL1wy6ZWGQsJvED0EhnAxzJH3BOR-63RDK2leGpL0yIixcicRt0Zlyxm08D5zQSSOKcR2e0N76Lpm4bpRWuUoy-_nX3fDwP1cz1VGQXQAn19fplg0ygMRGLF5g9OmpWCV5NG1U4BDoWVNSIfNwh2xFVTZaYhK1CNFTSAySzVXAlf5YqXXKuq4rkyWcGEB6QtGPR3LzjVJSahPn09wKf84X_IPiLXachrgntpO2R7fda4x4Au19WTMIn8BTnmd38 priority: 102 providerName: Wiley-Blackwell |
Title | Integration of clinical data with a genome‐scale metabolic model of the human adipocyte |
URI | https://link.springer.com/article/10.1038/msb.2013.5 https://onlinelibrary.wiley.com/doi/abs/10.1038%2Fmsb.2013.5 https://www.ncbi.nlm.nih.gov/pubmed/23511207 https://www.proquest.com/docview/2299139892 https://www.proquest.com/docview/1318690229 https://www.proquest.com/docview/1566854266 https://pubmed.ncbi.nlm.nih.gov/PMC3619940 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-122122 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-199737 https://gup.ub.gu.se/publication/175876 https://research.chalmers.se/publication/175876 https://doaj.org/article/3332ad59306f4ff98728e767dafd58b4 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLa6CIkLYidQRkEUpB6mJLZjOweEpqVVqWhVUQpzsxwvnRGzMYtE_z3PzgIjQi-TkfMS2X7PeV9s5_sQ2s21NqmFp58TCe9SpWBI5cJ0eaqp5Z7DSoddvufs5Iqe9rP-Bqr1O6sOXLS-2nk9qav5aP_Xz5sPMODfl5-Mi3fjReH3aJH9bBNtQ0biXsLhjDarCT4p4ZqadM3eUwH7lTTs1WT_ykuBvr8Nc_67dbJZP224RtdhbshTx_fRvQpgxr0yIh6gDTt5iO6UkpM3j9D3TxU_BPgjnrq4_jIy9ltFYz8rG6vYE7eObXcB5TYe2yUEymio46Ca4y8C0BgHcb9YmeFsqm-W9jG6Oj76enjSrcQVutpzwHV1JgQTjFrscOIcoDiljUgKZo1RMDILnDJlU2oMJuC0JLFCZ_Cu4jIHbiSWPEFbk-nEPkNxATDKJJY4oQuaUK6ynOQGniVMM8KMi9Be3bVSV8zjXgBjJMMKOBESPCK9R2QWodeN7azk22i1OvAeaiw8R3YomM6vZTXkJCEEKwN1SZijzuWCY2E540Y5k4mCRmin9q-s405iSM8AikWOI_SqOQ1Dzq-jqImdrhYyJUHHC0xvsQGYLDIPfyL0tAyZprZ1yEWIrwXTWnPWz0yGg0D9TZjnck4itFuH3Z-qt3XT2zIk1-78cfitFzrqx3IgUwzYBdr65jbD1Ur6_UiEt9_wejWTUHS9kgsrAY5Cgo3Q5xbDir9qIPUgiAMt_AUKMGWaKCqZKzJJc6pkUdBM6pQT5gBwMwLt3QtD6paQkGeXB_5f9vy__f0C3cVBzMRPoO2greV8ZV8CpFwWHbSJ6QX88j7voO1e7_TyFI4HR-cXX6D0kB12wmRNJzxXfgNTmHuf |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviG8CA4zYkPYQltiO4zwgtLFNG-sqBBvszTj-aCu2tiyt0P4p_kbObtKpourb3irnYtm-8_lX3-V3CK0XWpvUgvdzIsljphRsqUKYOE81s7nnsNIhy7fDD07Z57PsbAX9bb6F8WmVjU8MjtoMtb8j3yLgNwGtiIJ8HP2OfdUoH11tSmhMzeLIXv2Bv2zVh8Nd0O8GIft7J58O4rqqQKw9-VmsMyG44MwSRxLnAL4obURScmuMApMsScqVTZkxhMJok8QKnQFId5mD8VNLod9baJVRgAottLqz1_nytfH9_vgjDQkqFVsXVemzx-j7bO7YC9UBFkHa_zMzZ-HZGZXpPIoOx-D-fXSvxq94e2pwD9CKHTxEt6cVLa8eoR-HNf0EqBsPHW4-vMQ-ExX7S1-ssOeFvbBxBe0WX9gx2OF5X-NQlMe_BJgUh9qBWJn-aKivxvYxOr2RVX6CWoPhwD5DuASUZhJLndAlS1iusoIWBlwV15xy4yK02Syt1DWxua-vcS5DgJ0KCWqQXg0yi9DbmexoSuexUGrHa2gm4Sm4Q8PwsivrHS0ppUQZGEvCHXOuEDkRNue5Uc5komQRWmv0K2u_UMlrK47Qm9lj2NE-TKMGdjipZEpDmTAQXSIDKFxkHl1F6OnUZGajJT42TJI8QvmcMc1NZ_7JoN8LzOKUe6roJELrjdldD33RMr2bmuRcz7v979thoX6NezIlAI1grhvLBCcT6dOdaL64w-5kJKGpO5GVlYB24fyOUHuBYE2P1ZO6F2oPVf4FBZA1TRST3JWZZAVTsixZJnWaU-4Az3MK890MW2qJScjjbzv-V_Z8uVpfozsHJ8dt2T7sHL1Ad0konuIv7NZQa3w5sS8Bwo7LV7XfwOjnTbuqf0rgsUA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFLWgCMQG8SZQIIiC1MUUx3YcZ9lOGbVQKiQoaleW48fMiM5DzWTRHZ_AN_IlXDsPiBhV7KL4OrLvwz6Jb85FaCvX2iQWVj8ncDZgSkFI5cIMskQzm3kOKx2yfI_5wQn7cJqeNi-KZZNWWVNahmW6zQ57NysLn4dFd9KdpXHX0Q3A2dh79JAP25XXbz6kpSCl4q8-vU0ncPOvA5T_5kV2h6MdkWgfw4ZNaHQX3WnQY7xbj_ceumbn99HNup7k5QN0dtiQP4Cy44WL298eY58HGvtPrrGKPSvrzP768bOEFhvP7Ar84Hyq41AUx3cDTBiH2n2xMtPlQl-u7EN0Mnr_dXgwaGonDLSneBvoVAguOLPEEewcgDSljcAFt8YoCLyCJFzZhBlDKNgEYyt0Cq8iLnVgJWrpI7QxX8ztExQXgJIMttQJXTDMMpXmNDewVHDNKTcuQtutcqVuiMV9fYtzGQ64qZBgCOkNIdMIve5klzWdxlqpPW-jTsJTYIcbi4uxbFxCUkqJMjAWzB1zLhcZETbjmVHOpKJgEdpsLSybuCwlgd0XMK_ISYRedc0QUf6YRM3toiplQkOZLhC9QgZQsEg9uonQ49pputESfzZLcBahrOdOven0W-bTSWD2ptxTNeMIbbWO92fo69T0tnbK3pP3p992g6K-ryYyIQBNYK5vrhKsKunTjWi2_oHjainh1riSpZWANmH_jNDRGsGGnmoi9STU_il9BwWQMcGKSe6KVLKcKVkULJU6ySh3gKc5hfluh6C6wiXkpy97_ip9-n-6eYlufd4fyaPD44_P0G0Sapj472abaGN1UdnngCRXxYuwfPwGuNZ0GA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+clinical+data+with+a+genome-scale+metabolic+model+of+the+human+adipocyte&rft.jtitle=Molecular+systems+biology&rft.au=Mardinoglu%2C+Adil&rft.au=Agren%2C+Rasmus&rft.au=Kampf%2C+Caroline&rft.au=Asplund%2C+Anna&rft.date=2013&rft.eissn=1744-4292&rft.volume=9&rft.spage=649&rft_id=info:doi/10.1038%2Fmsb.2013.5&rft_id=info%3Apmid%2F23511207&rft.externalDocID=23511207 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-4292&client=summon |