The Fractional Landweber Method for Identifying Unknown Source for the Fractional Elliptic Equations
The article addresses the inverse problem of identifying an unknown source term in a fractional elliptic equation defined in a bounded domain. The approach to solving the problem under consideration, the Landweber fractional method is used. This method involves constructing a regularization algorith...
Saved in:
Published in | Electronic Journal of Applied Mathematics Vol. 2; no. 4; pp. 42 - 50 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
17.12.2024
|
Online Access | Get full text |
ISSN | 2980-2474 2980-2474 |
DOI | 10.61383/ejam.20242489 |
Cover
Loading…
Abstract | The article addresses the inverse problem of identifying an unknown source term in a fractional elliptic equation defined in a bounded domain. The approach to solving the problem under consideration, the Landweber fractional method is used. This method involves constructing a regularization algorithm. A posteriori and a priori lapses estimates are obtained, and final data with random data is regard. |
---|---|
AbstractList | The article addresses the inverse problem of identifying an unknown source term in a fractional elliptic equation defined in a bounded domain. The approach to solving the problem under consideration, the Landweber fractional method is used. This method involves constructing a regularization algorithm. A posteriori and a priori lapses estimates are obtained, and final data with random data is regard. |
Author | Nguyen, Doan Vuong Tri, Vo Viet NguyenHoang, Tuan |
Author_xml | – sequence: 1 givenname: Doan Vuong orcidid: 0000-0002-9438-6439 surname: Nguyen fullname: Nguyen, Doan Vuong – sequence: 2 givenname: Tuan orcidid: 0000-0003-4354-2937 surname: NguyenHoang fullname: NguyenHoang, Tuan – sequence: 3 givenname: Vo Viet orcidid: 0000-0002-8481-7469 surname: Tri fullname: Tri, Vo Viet |
BookMark | eNpVkMtOAjEARRuDiYhsXfcHBqevabs0BJRkjAvH9aRPqQ4tdoYQ_l5ATXR1b-5NzuJcg1FM0QFwi8pZhYggd-5dbWa4xBRTIS_AGEtRFphyOvrTr8C074MuGWaMSsrGwDZrB5dZmSGkqDpYq2j3TrsMn9ywThb6lOHKujgEfwjxDb7Gj5j2Eb6kXTbufA__EYuuC9shGLj43KnT1t-AS6-63k1_cgKa5aKZPxb188Nqfl8XhktZOFoZWmrnK4QEEo5pJlDFDddMWVNVwlPsJaFMe8uUtpp7Ii0ngiN8nDyZgNk31uTU99n5dpvDRuVDi8r2bKk9WWp_LZEvatJe1Q |
Cites_doi | 10.1186/s13661-017-0898-2 10.1007/s13398-021-01095-3 10.1186/1029-242X-2014-434 10.53006/rna.962068 10.1007/978-3-031-34877-8_5 10.1016/j.camwa.2019.02.017 10.1080/17415977.2019.1580707 10.1142/S1793557121500698 10.1002/mma.7621 10.1186/s13662-021-03232-z 10.1007/s41478-023-00592-5 10.3390/sym13112084 10.32523/2306-6172-2023-11-1-98-123 10.1002/mma.4705 10.31197/atnaa.752335 10.3934/math.2024162 10.1016/j.spl.2016.09.026 10.1007/s10440-019-00248-2 10.1016/j.cam.2022.114204 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.61383/ejam.20242489 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2980-2474 |
EndPage | 50 |
ExternalDocumentID | 10_61383_ejam_20242489 |
GroupedDBID | AAYXX CITATION M~E |
ID | FETCH-LOGICAL-c799-e46c40bef611818e5b58167c7b5adc668f42f9345bfd5abdb7f39d738712bfdf3 |
ISSN | 2980-2474 |
IngestDate | Thu Jul 03 08:32:31 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c799-e46c40bef611818e5b58167c7b5adc668f42f9345bfd5abdb7f39d738712bfdf3 |
ORCID | 0000-0002-9438-6439 0000-0003-4354-2937 0000-0002-8481-7469 |
OpenAccessLink | https://ejamjournal.com/index.php/ejam/article/download/ejam.20242489/ejam.20242489 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_61383_ejam_20242489 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-17 |
PublicationDateYYYYMMDD | 2024-12-17 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-17 day: 17 |
PublicationDecade | 2020 |
PublicationTitle | Electronic Journal of Applied Mathematics |
PublicationYear | 2024 |
References | 4760 4750 4761 4751 4762 4749 4752 4763 4753 4743 4754 4744 4755 4745 4756 4746 4757 4747 4758 4748 4759 |
References_xml | – ident: 4759 doi: 10.1186/s13661-017-0898-2 – ident: 4746 doi: 10.1007/s13398-021-01095-3 – ident: 4758 doi: 10.1186/1029-242X-2014-434 – ident: 4760 doi: 10.53006/rna.962068 – ident: 4744 – ident: 4747 doi: 10.1007/978-3-031-34877-8_5 – ident: 4756 doi: 10.1016/j.camwa.2019.02.017 – ident: 4762 doi: 10.1080/17415977.2019.1580707 – ident: 4754 doi: 10.1142/S1793557121500698 – ident: 4743 doi: 10.1016/j.camwa.2019.02.017 – ident: 4751 doi: 10.1002/mma.7621 – ident: 4745 doi: 10.1186/s13662-021-03232-z – ident: 4748 doi: 10.1007/s41478-023-00592-5 – ident: 4752 doi: 10.3390/sym13112084 – ident: 4753 doi: 10.32523/2306-6172-2023-11-1-98-123 – ident: 4761 doi: 10.1002/mma.4705 – ident: 4757 doi: 10.31197/atnaa.752335 – ident: 4749 doi: 10.3934/math.2024162 – ident: 4755 doi: 10.1016/j.spl.2016.09.026 – ident: 4763 doi: 10.1007/s10440-019-00248-2 – ident: 4750 doi: 10.1016/j.cam.2022.114204 |
SSID | ssib052554945 |
Score | 1.8953906 |
Snippet | The article addresses the inverse problem of identifying an unknown source term in a fractional elliptic equation defined in a bounded domain. The approach to... |
SourceID | crossref |
SourceType | Index Database |
StartPage | 42 |
Title | The Fractional Landweber Method for Identifying Unknown Source for the Fractional Elliptic Equations |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUKLCwIBIhveUBiQIHWsZN4RKioQipTqNgqO3YQDAmgZoCBX8CP5vwRN0UdgCWqnMZqe69359O9dwid8n6RQNYRR4IyHlEIIZHgIo10P1VlAQFqUBqC8_guGd3T2wf20Ot9dbqWmpm8KD6W8kr-Y1VYA7saluwfLBs2hQV4DfaFK1gYrr-28c2boybYgnSlwCtqo8xj5kLbFkLHxHVspvvKlNDgD20r9qHDsLOFaeF4MRquw9emU8trS_fzmTlLEtlxUIANefrdY_Pu_VoNjmTS1D5Qhnuj2hes82aO09zR3yf1-eTJE7R9YYJY-UPHw3T-i_CsHxHqhvBc6CVr3gGTDs5ox5k62S0flp087U-HD8lIZpQn9LMwsgKG6-ImEi0qa_-IeKEPEU5AdoepeX7aPr-C1ggcOsw8jPHnsPVODA5flNup1-FbOBVQu8XlwkfoZDmddCXfRBvePPjKgWYL9XS1jRQABs-tjQNgsAMMBkTgDmCwBwx2gLG3Z4tbtIDBATA7KL8Z5tejyI_ZiIqU80jTpKB9qcvEcJAzzSTLBklapJIJVSRJVlJS8pgyWSompJJpGXOVxnDSJrBUxrtotaorvYcwpINcDgQECqmN7h0X0kxbEIqQgeZM7aOz9leZvjgxlelyExz8-p2HaH0OviO0Ontr9DHkiTN5Ys33DQ_zbCE |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Fractional+Landweber+Method+for+Identifying+Unknown+Source+for+the+Fractional+Elliptic+Equations&rft.jtitle=Electronic+Journal+of+Applied+Mathematics&rft.au=Nguyen%2C+Doan+Vuong&rft.au=NguyenHoang%2C+Tuan&rft.au=Tri%2C+Vo+Viet&rft.date=2024-12-17&rft.issn=2980-2474&rft.eissn=2980-2474&rft.volume=2&rft.issue=4&rft.spage=42&rft.epage=50&rft_id=info:doi/10.61383%2Fejam.20242489&rft.externalDBID=n%2Fa&rft.externalDocID=10_61383_ejam_20242489 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2980-2474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2980-2474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2980-2474&client=summon |