Can optimal marker weightings improve thoracohumeral kinematics accuracy?

Local and global optimization algorithms have been developed to estimate joint kinematics to reducing soft movement artifact (STA). Such algorithms can include weightings to account for different STA occur at each marker. The objective was to quantify the benefit of optimal weighting and determine i...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 48; no. 10; pp. 2019 - 2025
Main Authors Begon, Mickaël, Dal Maso, Fabien, Arndt, Anton, Monnet, Tony
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 16.07.2015
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2015.03.023

Cover

More Information
Summary:Local and global optimization algorithms have been developed to estimate joint kinematics to reducing soft movement artifact (STA). Such algorithms can include weightings to account for different STA occur at each marker. The objective was to quantify the benefit of optimal weighting and determine if optimal marker weightings can improve humerus kinematics accuracy. A pin with five reflective markers was inserted into the humerus of four subjects. Seven markers were put on the skin of the arm. Subjects performed 38 different tasks including arm elevation, rotation, daily-living tasks, and sport activities. In each movement, mean and peak errors in skin- vs. pins-orientation were reported. Then, optimal marker weightings were found to best match skin- and pin-based orientation. Without weighting, the error of the arm orientation ranged from 1.9° to 17.9°. With weighting, 100% of the trials were improved and the average error was halved. The mid-arm markers weights were close to 0 for three subjects. Weights of a subject applied to the others for a given movement, and weights of a movement applied to others for a given subject did not systematically increased accuracy of arm orientation. Without weighting, a redundant set of marker and least square algorithm improved accuracy to estimate arm orientation compared to data of the literature using electromagnetic sensor. Weightings were subject- and movement-specific, which reinforces that STA are subject- and movement-specific. However, markers on the deltoid insertion and on lateral and medial epicondyles may be preferred if a limited number of markers is used.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0021-9290
1873-2380
1873-2380
DOI:10.1016/j.jbiomech.2015.03.023