Reconfiguration of the proteasome during chaperone-mediated assembly
The proteasome degrades ubiquitin-conjugated substrates; here, structural and functional insights from studies in yeast reveal that it is reconfigured during chaperone-mediated assembly. Proteasome structure and function The proteasome is a protein complex that degrades ubiquitin-conjugated substrat...
Saved in:
Published in | Nature (London) Vol. 497; no. 7450; pp. 512 - 516 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.05.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The proteasome degrades ubiquitin-conjugated substrates; here, structural and functional insights from studies in yeast reveal that it is reconfigured during chaperone-mediated assembly.
Proteasome structure and function
The proteasome is a protein complex that degrades ubiquitin-conjugated substrates. The 26S proteasome consists of a core particle (CP) and a regulatory particle (RP) formed of a base and lid. In this study, Daniel Finley and colleagues present structural and functional insights into the assembly of the base–CP complex.
The proteasomal ATPase ring, comprising Rpt1–Rpt6, associates with the heptameric α-ring of the proteasome core particle (CP) in the mature proteasome, with the Rpt carboxy-terminal tails inserting into pockets of the α-ring
1
,
2
,
3
,
4
. Rpt ring assembly is mediated by four chaperones, each binding a distinct Rpt subunit
5
,
6
,
7
,
8
,
9
,
10
. Here we report that the base subassembly of the
Saccharomyces cerevisiae
proteasome, which includes the Rpt ring, forms a high-affinity complex with the CP. This complex is subject to active dissociation by the chaperones Hsm3, Nas6 and Rpn14. Chaperone-mediated dissociation was abrogated by a non-hydrolysable ATP analogue, indicating that chaperone action is coupled to nucleotide hydrolysis by the Rpt ring. Unexpectedly, synthetic Rpt tail peptides bound α-pockets with poor specificity, except for Rpt6, which uniquely bound the α2/α3-pocket. Although the Rpt6 tail is not visualized within an α-pocket in mature proteasomes
2
,
3
,
4
, it inserts into the α2/α3-pocket in the base–CP complex and is important for complex formation. Thus, the Rpt–CP interface is reconfigured when the lid complex joins the nascent proteasome to form the mature holoenzyme. |
---|---|
AbstractList | The proteasomal ATPase ring, comprising Rpt1-Rpt6, associates with the heptameric α-ring of the proteasome core particle (CP) in the mature proteasome, with the Rpt carboxy-terminal tails inserting into pockets of the α-ring. Rpt ring assembly is mediated by four chaperones, each binding a distinct Rpt subunit. Here we report that the base subassembly of the Saccharomyces cerevisiae proteasome, which includes the Rpt ring, forms a high-affinity complex with the CP. This complex is subject to active dissociation by the chaperones Hsm3, Nas6 and Rpn14. Chaperone-mediated dissociation was abrogated by a non-hydrolysable ATP analogue, indicating that chaperone action is coupled to nucleotide hydrolysis by the Rpt ring. Unexpectedly, synthetic Rpt tail peptides bound α-pockets with poor specificity, except for Rpt6, which uniquely bound the α2/α3-pocket. Although the Rpt6 tail is not visualized within an α-pocket in mature proteasomes, it inserts into the α2/α3-pocket in the base-CP complex and is important for complex formation. Thus, the Rpt-CP interface is reconfigured when the lid complex joins the nascent proteasome to form the mature holoenzyme. The proteasomal ATPase ring, comprising Rpt1-Rpt6, associates with the heptameric α-ring of the proteasome core particle (CP) in the mature proteasome, with the Rpt carboxy-terminal tails inserting into pockets of the α-ring. Rpt ring assembly is mediated by four chaperones, each binding a distinct Rpt subunit. Here we report that the base subassembly of the Saccharomyces cerevisiae proteasome, which includes the Rpt ring, forms a high-affinity complex with the CP. This complex is subject to active dissociation by the chaperones Hsm3, Nas6 and Rpn14. Chaperone-mediated dissociation was abrogated by a non-hydrolysable ATP analogue, indicating that chaperone action is coupled to nucleotide hydrolysis by the Rpt ring. Unexpectedly, synthetic Rpt tail peptides bound α-pockets with poor specificity, except for Rpt6, which uniquely bound the α2/α3-pocket. Although the Rpt6 tail is not visualized within an α-pocket in mature proteasomes, it inserts into the α2/α3-pocket in the base-CP complex and is important for complex formation. Thus, the Rpt-CP interface is reconfigured when the lid complex joins the nascent proteasome to form the mature holoenzyme.The proteasomal ATPase ring, comprising Rpt1-Rpt6, associates with the heptameric α-ring of the proteasome core particle (CP) in the mature proteasome, with the Rpt carboxy-terminal tails inserting into pockets of the α-ring. Rpt ring assembly is mediated by four chaperones, each binding a distinct Rpt subunit. Here we report that the base subassembly of the Saccharomyces cerevisiae proteasome, which includes the Rpt ring, forms a high-affinity complex with the CP. This complex is subject to active dissociation by the chaperones Hsm3, Nas6 and Rpn14. Chaperone-mediated dissociation was abrogated by a non-hydrolysable ATP analogue, indicating that chaperone action is coupled to nucleotide hydrolysis by the Rpt ring. Unexpectedly, synthetic Rpt tail peptides bound α-pockets with poor specificity, except for Rpt6, which uniquely bound the α2/α3-pocket. Although the Rpt6 tail is not visualized within an α-pocket in mature proteasomes, it inserts into the α2/α3-pocket in the base-CP complex and is important for complex formation. Thus, the Rpt-CP interface is reconfigured when the lid complex joins the nascent proteasome to form the mature holoenzyme. The proteasome degrades ubiquitin-conjugated substrates; here, structural and functional insights from studies in yeast reveal that it is reconfigured during chaperone-mediated assembly. Proteasome structure and function The proteasome is a protein complex that degrades ubiquitin-conjugated substrates. The 26S proteasome consists of a core particle (CP) and a regulatory particle (RP) formed of a base and lid. In this study, Daniel Finley and colleagues present structural and functional insights into the assembly of the base–CP complex. The proteasomal ATPase ring, comprising Rpt1–Rpt6, associates with the heptameric α-ring of the proteasome core particle (CP) in the mature proteasome, with the Rpt carboxy-terminal tails inserting into pockets of the α-ring 1 , 2 , 3 , 4 . Rpt ring assembly is mediated by four chaperones, each binding a distinct Rpt subunit 5 , 6 , 7 , 8 , 9 , 10 . Here we report that the base subassembly of the Saccharomyces cerevisiae proteasome, which includes the Rpt ring, forms a high-affinity complex with the CP. This complex is subject to active dissociation by the chaperones Hsm3, Nas6 and Rpn14. Chaperone-mediated dissociation was abrogated by a non-hydrolysable ATP analogue, indicating that chaperone action is coupled to nucleotide hydrolysis by the Rpt ring. Unexpectedly, synthetic Rpt tail peptides bound α-pockets with poor specificity, except for Rpt6, which uniquely bound the α2/α3-pocket. Although the Rpt6 tail is not visualized within an α-pocket in mature proteasomes 2 , 3 , 4 , it inserts into the α2/α3-pocket in the base–CP complex and is important for complex formation. Thus, the Rpt–CP interface is reconfigured when the lid complex joins the nascent proteasome to form the mature holoenzyme. The proteasomal ATPase ring, comprising Rpt1-Rpt6, associates with the heptameric α ring of the proteasome core particle (CP) in the mature proteasome, with the Rpt C-terminal tails inserting into pockets of the α ring 1 – 4 . Rpt ring assembly is mediated by four chaperones, each binding a distinct Rpt subunit 5 – 10 . We report that the base subassembly of the proteasome, which includes the Rpt ring, forms a high affinity complex with the CP. This complex is subject to active dissociation by the chaperones Hsm3, Nas6, and Rpn14. Chaperone-mediated dissociation was abrogated by a nonhydrolyzable ATP analog, indicating that chaperone action is coupled to nucleotide hydrolysis by the Rpt ring. Unexpectedly, synthetic Rpt tail peptides bound α pockets with poor specificity, except for Rpt6, which uniquely bound the α2/α3 pocket. Although the Rpt6 tail is not visualized within an α pocket in mature proteasomes 2 – 4 , it inserts into the α2/α3 pocket in the base-CP complex and is important for complex formation. Thus, the Rpt-CP interface is reconfigured when the lid complex joins the nascent proteasome to form the mature holoenzyme. The proteasome degrades ubiquitin-conjugated substrates; here, structural and functional insights from studies in yeast reveal that it is reconfigured during chaperone-mediated assembly. The proteasomal ATPase ring, comprising Rpt1-Rpt6, associates with the heptameric a-ring of the proteasome core particle (CP) in the mature proteasome, with the Rpt carboxy-terminal tails inserting into pockets of the a-ring1-4. Rpt ring assembly is mediated by four chaperones, each binding a distinct Rpt subunit5-10. Here we report that the base subassembly of the Saccharomyces cerevisiae proteasome, which includes the Rpt ring, forms a high-affinity complex with the CP. This complex is subject to active dissociation by the chaperones Hsm3, Nas6 and Rpn14. Chaperone-mediated dissociation was abrogated by a non-hydrolysable ATP analogue, indicating that chaperone action is coupled to nucleotide hydrolysis by the Rpt ring. Unexpectedly, synthetic Rpt tail peptides bound a-pockets with poor specificity, except for Rpt6, which uniquely bound the a2/a3-pocket. Although the Rpt6 tail is not visualized within an a-pocket in mature proteasomes2-4, it inserts into the a2/a3-pocket in the base-CP complex and is important for complex formation. Thus, the Rpt-CP interface is reconfigured when the lid complex joins the nascent proteasome to form the mature holoenzyme. [PUBLICATION ABSTRACT] |
Audience | Academic |
Author | Lovell, Scott Park, Soyeon Tian, Geng Zolkiewski, Michal Roelofs, Jeroen Coffino, Philip Battaile, Kevin P. Cheng, Yifan Li, Xueming Hoyt, Martin A. Kim, Ho Min Finley, Daniel Singh, Chingakham Ranjit |
AuthorAffiliation | 7 Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, KS 66047 2 MCD Biology, University of Colorado Boulder, Boulder, CO 80309 5 Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506 1 Dept. of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115 3 The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158 8 IMCA-CAT Hauptman-Woodward Medical Research Institute, 9700 South Cass Avenue, Building 435A, Argonne, Illinois, 60439 9 Department of Biochemistry, Kansas State University, 176 Chalmers Hall, Manhattan Kansas 66506 6 Department of Microbiology and Immunology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143 |
AuthorAffiliation_xml | – name: 2 MCD Biology, University of Colorado Boulder, Boulder, CO 80309 – name: 3 The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158 – name: 6 Department of Microbiology and Immunology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143 – name: 7 Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, KS 66047 – name: 8 IMCA-CAT Hauptman-Woodward Medical Research Institute, 9700 South Cass Avenue, Building 435A, Argonne, Illinois, 60439 – name: 1 Dept. of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115 – name: 5 Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506 – name: 9 Department of Biochemistry, Kansas State University, 176 Chalmers Hall, Manhattan Kansas 66506 |
Author_xml | – sequence: 1 givenname: Soyeon surname: Park fullname: Park, Soyeon organization: Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA, MCD Biology, University of Colorado Boulder – sequence: 2 givenname: Xueming surname: Li fullname: Li, Xueming organization: Department of Biochemistry and Biophysics, The W.M. Keck Advanced Microscopy Laboratory, University of California San Francisco, 600 16th Street, San Francisco, California 94158, USA – sequence: 3 givenname: Ho Min surname: Kim fullname: Kim, Ho Min organization: Department of Biochemistry and Biophysics, The W.M. Keck Advanced Microscopy Laboratory, University of California San Francisco, 600 16th Street, San Francisco, California 94158, USA, Present address: Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea – sequence: 4 givenname: Chingakham Ranjit surname: Singh fullname: Singh, Chingakham Ranjit organization: Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, Kansas 66506, USA – sequence: 5 givenname: Geng surname: Tian fullname: Tian, Geng organization: Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA – sequence: 6 givenname: Martin A. surname: Hoyt fullname: Hoyt, Martin A. organization: Department of Microbiology and Immunology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, California 94143, USA – sequence: 7 givenname: Scott surname: Lovell fullname: Lovell, Scott organization: Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas – sequence: 8 givenname: Kevin P. surname: Battaile fullname: Battaile, Kevin P. organization: IMCA-CAT Hauptman-Woodward Medical Research Institute, 9700 South Cass Avenue, Building 435A, Argonne, Illinois 60439, USA – sequence: 9 givenname: Michal surname: Zolkiewski fullname: Zolkiewski, Michal organization: Department of Biochemistry, Kansas State University, 176 Chalmers Hall, Manhattan, Kansas 66506, USA – sequence: 10 givenname: Philip surname: Coffino fullname: Coffino, Philip organization: Department of Microbiology and Immunology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, California 94143, USA – sequence: 11 givenname: Jeroen surname: Roelofs fullname: Roelofs, Jeroen email: jroelofs@ksu.edu organization: Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, Kansas 66506, USA – sequence: 12 givenname: Yifan surname: Cheng fullname: Cheng, Yifan email: ycheng@ucsf.edu organization: Department of Biochemistry and Biophysics, The W.M. Keck Advanced Microscopy Laboratory, University of California San Francisco, 600 16th Street, San Francisco, California 94158, USA – sequence: 13 givenname: Daniel surname: Finley fullname: Finley, Daniel email: daniel_finley@hms.harvard.edu organization: Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23644457$$D View this record in MEDLINE/PubMed |
BookMark | eNqFk91v1SAYxhsz4z70ynvTuBuNdkKhQG9Mlvm1ZInJ1GvCoW97WFrogBr338vxbNqzVA0XJPB7n4f3g8NszzoLWfYUoxOMiHhjVZw84BKX5EF2gClnBWWC72UHCJWiQIKw_ewwhCuEUIU5fZTtl4RRSit-kL27BO1sa7rJq2iczV2bxzXko3cRVHAD5M3kje1yvVYj-GRdDNAYFaHJVQgwrPqbx9nDVvUBntzuR9m3D--_nn0qLj5_PD87vSg0r2ksmraFkvKWY8aqRpRUlSvNOOEKOK1XSOhWcRACGkp4resKs5oz3lBFq5LUDTnK3m51x2mVHqHBRq96OXozKH8jnTJy98aatezcd0lSPZBgSeDFrYB31xOEKAcTNPS9suCmIDGpqlQ_gXhCj--hV27yNqWXKMYIZ3WF_lCd6kEa27rkqzei8pSVDFclJv-mqBCMIso2jsUC1YGFlEqqe2vS8Q7_fIHXo7mWc-u_QnOlkwUorQYGoxetX-4EJCbCj9ipKQR5_uVyN_n_sXPdZ_MG_-7s3bwmAG8B7V0IHlqpTfw1uOnFppcYyc2fkLM_kWJe3Yu5k12mX2_pMG7GHvys7wv4T-_FFoo |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1016_j_molcel_2023_07_031 crossref_primary_10_1016_j_celrep_2018_12_042 crossref_primary_10_1038_srep14909 crossref_primary_10_1074_jbc_M113_491662 crossref_primary_10_1016_j_str_2014_02_014 crossref_primary_10_1016_j_molcel_2014_06_017 crossref_primary_10_1016_j_tibs_2015_10_009 crossref_primary_10_1042_BST20170451 crossref_primary_10_1016_j_isci_2020_101090 crossref_primary_10_1021_acs_chemrev_1c00356 crossref_primary_10_1016_j_jbc_2023_102894 crossref_primary_10_1038_s41467_022_28864_x crossref_primary_10_1038_srep27873 crossref_primary_10_1016_j_str_2013_08_010 crossref_primary_10_1073_pnas_1805353115 crossref_primary_10_1016_j_jbc_2022_101906 crossref_primary_10_1146_annurev_biochem_062917_011931 crossref_primary_10_1038_nsmb_3273 crossref_primary_10_1371_journal_pone_0179893 crossref_primary_10_3389_fmolb_2017_00042 crossref_primary_10_1016_j_pharmthera_2020_107579 crossref_primary_10_1038_ncomms7609 crossref_primary_10_1007_s11515_017_1439_1 crossref_primary_10_1107_S2052252518005857 crossref_primary_10_1038_nsmb_2659 crossref_primary_10_1038_ncomms7384 crossref_primary_10_1089_ars_2013_5798 crossref_primary_10_1094_MPMI_12_13_0363_R crossref_primary_10_1038_tp_2017_39 crossref_primary_10_1107_S2053230X14003884 crossref_primary_10_1016_j_arcmed_2020_09_007 crossref_primary_10_1016_j_jbc_2023_102870 crossref_primary_10_1038_s41580_018_0040_z crossref_primary_10_1038_s41388_021_01674_z crossref_primary_10_3390_biom13081223 crossref_primary_10_1101_cshperspect_a033985 crossref_primary_10_1007_s00018_014_1699_8 crossref_primary_10_1016_j_celrep_2018_07_004 crossref_primary_10_1039_D2NR00165A crossref_primary_10_1016_j_jmb_2017_05_027 crossref_primary_10_1073_pnas_1612922114 crossref_primary_10_1038_s41467_020_19934_z crossref_primary_10_3389_fmolb_2019_00040 crossref_primary_10_1016_j_celrep_2022_110918 crossref_primary_10_1074_jbc_RA118_006298 crossref_primary_10_1098_rsob_170042 crossref_primary_10_1152_ajpcell_00198_2016 crossref_primary_10_1371_journal_pgen_1010734 crossref_primary_10_1016_j_celrep_2018_12_008 crossref_primary_10_1016_j_molcel_2017_06_007 crossref_primary_10_1242_jcs_259622 crossref_primary_10_3390_ijms22094319 crossref_primary_10_1021_acschembio_6b00083 |
Cites_doi | 10.1038/nature08065 10.1038/nsmb.1389 10.1038/nature08063 10.1073/pnas.1116538109 10.1016/j.molcel.2005.04.016 10.1016/j.molcel.2008.03.004 10.1146/annurev-biophys-083012-130417 10.1016/j.molcel.2010.02.035 10.1016/j.bbrc.2007.05.138 10.1016/j.cell.2009.05.008 10.1074/jbc.M112.345876 10.1038/nature10774 10.1073/pnas.1213333109 10.1016/j.cell.2009.05.005 10.1016/j.cell.2009.04.061 10.1016/j.molcel.2007.06.033 10.1074/jbc.M109.023218 10.1038/nsmb.2147 10.1074/jbc.M111.285924 10.1073/pnas.1120559109 10.1016/j.molcel.2005.10.019 10.1073/pnas.1117648108 10.1038/nature02046 10.1016/j.molcel.2009.01.010 10.1016/j.cell.2011.02.005 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2013 COPYRIGHT 2013 Nature Publishing Group Copyright Nature Publishing Group May 23, 2013 |
Copyright_xml | – notice: Springer Nature Limited 2013 – notice: COPYRIGHT 2013 Nature Publishing Group – notice: Copyright Nature Publishing Group May 23, 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
DOI | 10.1038/nature12123 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection (ProQuest) eLibrary Curriculum ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database (Proquest) Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Agricultural Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 516 |
ExternalDocumentID | PMC3687086 2992775591 A626152130 A488640467 23644457 10_1038_nature12123 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: 1S10RR026814-01 – fundername: NIGMS NIH HHS grantid: P20 GM103418 – fundername: NIGMS NIH HHS grantid: R01 GM045335 – fundername: NCRR NIH HHS grantid: S10 RR026814 – fundername: NIGMS NIH HHS grantid: R37GM043601 – fundername: NIGMS NIH HHS grantid: R01 GM082893 – fundername: NIGMS NIH HHS grantid: R01GM045335 – fundername: NIGMS NIH HHS grantid: 8 P20 GM103420 – fundername: NIGMS NIH HHS grantid: R37 GM043601 – fundername: NIGMS NIH HHS grantid: R01GM082893 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 00M 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH AAZLF ABAWZ ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACUHS ACWUS ADBBV ADFRT ADUKH ADYSU ADZCM AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PEA PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AEZWR AFANA AIXLP ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c794t-dffe247f71665d824a2bc6737ae749b08cfa7e88ed4379c95169767d4a45239d3 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:32:04 EDT 2025 Mon Jul 21 10:07:30 EDT 2025 Sat Aug 23 12:55:26 EDT 2025 Tue Jun 17 21:35:38 EDT 2025 Tue Jun 17 21:32:04 EDT 2025 Thu Jun 12 20:34:32 EDT 2025 Tue Jun 10 15:33:07 EDT 2025 Tue Jun 10 15:32:48 EDT 2025 Tue Jun 10 20:28:12 EDT 2025 Fri Jun 27 03:31:57 EDT 2025 Fri Jun 27 03:52:41 EDT 2025 Mon Jul 21 06:04:22 EDT 2025 Tue Jul 01 02:57:00 EDT 2025 Thu Apr 24 23:09:42 EDT 2025 Fri Feb 21 02:37:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7450 |
Language | English |
License | Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c794t-dffe247f71665d824a2bc6737ae749b08cfa7e88ed4379c95169767d4a45239d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. Present address: Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3687086 |
PMID | 23644457 |
PQID | 1366376950 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3687086 proquest_miscellaneous_1355476807 proquest_journals_1366376950 gale_infotracmisc_A626152130 gale_infotracmisc_A488640467 gale_infotracgeneralonefile_A488640467 gale_infotraccpiq_626152130 gale_infotraccpiq_488640467 gale_infotracacademiconefile_A488640467 gale_incontextgauss_ISR_A626152130 gale_incontextgauss_ISR_A488640467 pubmed_primary_23644457 crossref_citationtrail_10_1038_nature12123 crossref_primary_10_1038_nature12123 springer_journals_10_1038_nature12123 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-23 |
PublicationDateYYYYMMDD | 2013-05-23 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2013 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | RablJMechanism of gate opening in the 20S proteasome by the proteasomal ATPasesMol. Cell2008303603681:CAS:528:DC%2BD1cXmtFaktLk%3D10.1016/j.molcel.2008.03.004 BeckFNear-atomic resolution structural model of the yeast 26S proteasomeProc. Natl Acad. Sci. USA201210914870148752012PNAS..10914870B1:CAS:528:DC%2BC38XhsVelsrjL10.1073/pnas.1213333109 SmithDMATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteinsMol. Cell2005206876981:CAS:528:DC%2BD2MXhtleqtb%2FO10.1016/j.molcel.2005.10.019 SaekiYTohEAKudoTKawamuraHTanakaKMultiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particleCell20091379009131:CAS:528:DC%2BD1MXosVCltbs%3D10.1016/j.cell.2009.05.005 Le TallecBBarraultMBGueroisRCarreTPeyrocheAHsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasomeMol. Cell2009333893991:CAS:528:DC%2BD1MXltFSnuro%3D10.1016/j.molcel.2009.01.010 GhaemmaghamiSGlobal analysis of protein expression in yeastNature20034257377412003Natur.425..737G1:CAS:528:DC%2BD3sXotV2iu7c%3D10.1038/nature02046 ForsterAMastersEIWhitbyFGRobinsonHHillCPThe 1.9 Å structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactionsMol. Cell20051858959910.1016/j.molcel.2005.04.016 ParkSHexameric assembly of the proteasomal ATPases is templated through their C terminiNature20094598668702009Natur.459..866P1:CAS:528:DC%2BD1MXntV2jsLk%3D10.1038/nature08065 TomkoRJJrFunakoshiMSchneiderKWangJHochstrasserMHeterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assemblyMol. Cell2010383934031:CAS:528:DC%2BC3cXms1alsb0%3D10.1016/j.molcel.2010.02.035 LaskerKMolecular architecture of the 26S proteasome holocomplex determined by an integrative approachProc. Natl Acad. Sci. USA2012109138013872012PNAS..109.1380L1:CAS:528:DC%2BC38Xitlagsro%3D10.1073/pnas.1120559109 SmithDMFragaHReisCKafriGGoldbergALATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycleCell20111445265381:CAS:528:DC%2BC3MXit1Gqu7o%3D10.1016/j.cell.2011.02.005 ThompsonDHakalaKDeMartinoGNSubcomplexes of PA700, the 19S regulator of the 26S proteasome, reveal relative roles of AAA subunits in 26S proteasome assembly and activation and ATPase activityJ. Biol. Chem.200928424891249031:CAS:528:DC%2BD1MXhtV2nsLnI10.1074/jbc.M109.023218 SmithDMDocking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s α ring opens the gate for substrate entryMol. Cell2007277317441:CAS:528:DC%2BD2sXhtFWlsL7J10.1016/j.molcel.2007.06.033 Kish-Trier, E. & Hill, C. P. Structural biology of the proteasome. Ann. Rev.. Biophyshttp://dx.doi.org/10.1146/annurev-biophys-083012-130417 (2013) KusmierczykARKunjappuMJFunakoshiMHochstrasserMA multimeric assembly factor controls the formation of alternative 20S proteasomesNature Struct. Mol. Biol.2008152372441:CAS:528:DC%2BD1cXislKmtbg%3D10.1038/nsmb.1389 TianGAn asymmetric interface between the regulatory particle and core particle of the proteasomeNature Struct. Mol. Biol.201118125912671:CAS:528:DC%2BC3MXhtl2gs7fE10.1038/nsmb.2147 KanekoTAssembly pathway of the mammalian proteasome base subcomplex is mediated by multiple specific chaperonesCell20091379149251:CAS:528:DC%2BD1MXosVCltbg%3D10.1016/j.cell.2009.05.008 NakamuraYStructural basis for the recognition between the regulatory particles Nas6 and Rpt3 of the yeast 26S proteasomeBiochem. Biophys. Res. Commun.20073595035091:CAS:528:DC%2BD2sXmsFylu7o%3D10.1016/j.bbrc.2007.05.138 PathareGRThe proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes togetherProc. Natl Acad. Sci. USA20121091491542012PNAS..109..149P1:CAS:528:DC%2BC38XhsVehsLY%3D10.1073/pnas.1117648108 ParkSKimWTianGGygiSPFinleyDStructural defects in the RP-CP interface induce a novel proteasome stress responseJ. Biol. Chem.201128636652366661:CAS:528:DC%2BC3MXhtlSqtLzK10.1074/jbc.M111.285924 BarraultMBDual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assemblyProc. Natl Acad. Sci. USA2012109E1001E101010.1073/pnas.1116538109 RoelofsJChaperone-mediated pathway of proteasome regulatory particle assemblyNature20094598618652009Natur.459..861R1:CAS:528:DC%2BD1MXntV2jsrc%3D10.1038/nature08063 FunakoshiMTomkoRJJrKobayashiHHochstrasserMMultiple assembly chaperones govern biogenesis of the proteasome regulatory particle baseCell20091378878991:CAS:528:DC%2BD1MXosVCltbo%3D10.1016/j.cell.2009.04.061 LanderGCComplete subunit architecture of the proteasome regulatory particleNature20124821861912012Natur.482..186L1:CAS:528:DC%2BC38Xls1ShsA%3D%3D10.1038/nature10774 TakagiKStructural basis for specific recognition of Rpt1, an ATPase subunit of 26S proteasome, by proteasome-dedicated chaperone Hsm3pJ. Biol. Chem.201228712172121821:CAS:528:DC%2BC38XltVykt74%3D10.1074/jbc.M112.345876 GR Pathare (BFnature12123_CR23) 2012; 109 J Rabl (BFnature12123_CR13) 2008; 30 B Le Tallec (BFnature12123_CR7) 2009; 33 Y Saeki (BFnature12123_CR9) 2009; 137 G Tian (BFnature12123_CR22) 2011; 18 DM Smith (BFnature12123_CR24) 2011; 144 J Roelofs (BFnature12123_CR5) 2009; 459 S Park (BFnature12123_CR6) 2009; 459 GC Lander (BFnature12123_CR2) 2012; 482 A Forster (BFnature12123_CR11) 2005; 18 M Funakoshi (BFnature12123_CR10) 2009; 137 BFnature12123_CR1 T Kaneko (BFnature12123_CR8) 2009; 137 MB Barrault (BFnature12123_CR20) 2012; 109 DM Smith (BFnature12123_CR12) 2007; 27 K Lasker (BFnature12123_CR3) 2012; 109 DM Smith (BFnature12123_CR14) 2005; 20 K Takagi (BFnature12123_CR19) 2012; 287 AR Kusmierczyk (BFnature12123_CR16) 2008; 15 D Thompson (BFnature12123_CR25) 2009; 284 S Ghaemmaghami (BFnature12123_CR18) 2003; 425 RJ Tomko Jr (BFnature12123_CR17) 2010; 38 S Park (BFnature12123_CR15) 2011; 286 Y Nakamura (BFnature12123_CR21) 2007; 359 F Beck (BFnature12123_CR4) 2012; 109 22927375 - Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14870-5 22307589 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1380-7 17803938 - Mol Cell. 2007 Sep 7;27(5):731-44 18278055 - Nat Struct Mol Biol. 2008 Mar;15(3):237-44 22037170 - Nat Struct Mol Biol. 2011 Nov;18(11):1259-67 19490896 - Cell. 2009 May 29;137(5):914-25 15916965 - Mol Cell. 2005 May 27;18(5):589-99 23414347 - Annu Rev Biophys. 2013;42:29-49 17555716 - Biochem Biophys Res Commun. 2007 Aug 3;359(3):503-9 19446323 - Cell. 2009 May 29;137(5):900-13 19412160 - Nature. 2009 Jun 11;459(7248):866-70 21878652 - J Biol Chem. 2011 Oct 21;286(42):36652-66 19217412 - Mol Cell. 2009 Feb 13;33(3):389-99 20471945 - Mol Cell. 2010 May 14;38(3):393-403 22187461 - Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):149-54 14562106 - Nature. 2003 Oct 16;425(6959):737-41 19412159 - Nature. 2009 Jun 11;459(7248):861-5 19589775 - J Biol Chem. 2009 Sep 11;284(37):24891-903 22237024 - Nature. 2012 Feb 9;482(7384):186-91 18471981 - Mol Cell. 2008 May 9;30(3):360-8 21335235 - Cell. 2011 Feb 18;144(4):526-38 16337593 - Mol Cell. 2005 Dec 9;20(5):687-98 19446322 - Cell. 2009 May 29;137(5):887-99 22334676 - J Biol Chem. 2012 Apr 6;287(15):12172-82 22460800 - Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):E1001-10 |
References_xml | – reference: ForsterAMastersEIWhitbyFGRobinsonHHillCPThe 1.9 Å structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactionsMol. Cell20051858959910.1016/j.molcel.2005.04.016 – reference: SmithDMDocking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s α ring opens the gate for substrate entryMol. Cell2007277317441:CAS:528:DC%2BD2sXhtFWlsL7J10.1016/j.molcel.2007.06.033 – reference: BarraultMBDual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assemblyProc. Natl Acad. Sci. USA2012109E1001E101010.1073/pnas.1116538109 – reference: KusmierczykARKunjappuMJFunakoshiMHochstrasserMA multimeric assembly factor controls the formation of alternative 20S proteasomesNature Struct. Mol. Biol.2008152372441:CAS:528:DC%2BD1cXislKmtbg%3D10.1038/nsmb.1389 – reference: PathareGRThe proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes togetherProc. Natl Acad. Sci. USA20121091491542012PNAS..109..149P1:CAS:528:DC%2BC38XhsVehsLY%3D10.1073/pnas.1117648108 – reference: FunakoshiMTomkoRJJrKobayashiHHochstrasserMMultiple assembly chaperones govern biogenesis of the proteasome regulatory particle baseCell20091378878991:CAS:528:DC%2BD1MXosVCltbo%3D10.1016/j.cell.2009.04.061 – reference: TomkoRJJrFunakoshiMSchneiderKWangJHochstrasserMHeterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assemblyMol. Cell2010383934031:CAS:528:DC%2BC3cXms1alsb0%3D10.1016/j.molcel.2010.02.035 – reference: TianGAn asymmetric interface between the regulatory particle and core particle of the proteasomeNature Struct. Mol. Biol.201118125912671:CAS:528:DC%2BC3MXhtl2gs7fE10.1038/nsmb.2147 – reference: KanekoTAssembly pathway of the mammalian proteasome base subcomplex is mediated by multiple specific chaperonesCell20091379149251:CAS:528:DC%2BD1MXosVCltbg%3D10.1016/j.cell.2009.05.008 – reference: ParkSHexameric assembly of the proteasomal ATPases is templated through their C terminiNature20094598668702009Natur.459..866P1:CAS:528:DC%2BD1MXntV2jsLk%3D10.1038/nature08065 – reference: SmithDMFragaHReisCKafriGGoldbergALATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycleCell20111445265381:CAS:528:DC%2BC3MXit1Gqu7o%3D10.1016/j.cell.2011.02.005 – reference: SmithDMATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteinsMol. Cell2005206876981:CAS:528:DC%2BD2MXhtleqtb%2FO10.1016/j.molcel.2005.10.019 – reference: Le TallecBBarraultMBGueroisRCarreTPeyrocheAHsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasomeMol. Cell2009333893991:CAS:528:DC%2BD1MXltFSnuro%3D10.1016/j.molcel.2009.01.010 – reference: LaskerKMolecular architecture of the 26S proteasome holocomplex determined by an integrative approachProc. Natl Acad. Sci. USA2012109138013872012PNAS..109.1380L1:CAS:528:DC%2BC38Xitlagsro%3D10.1073/pnas.1120559109 – reference: NakamuraYStructural basis for the recognition between the regulatory particles Nas6 and Rpt3 of the yeast 26S proteasomeBiochem. Biophys. Res. Commun.20073595035091:CAS:528:DC%2BD2sXmsFylu7o%3D10.1016/j.bbrc.2007.05.138 – reference: RablJMechanism of gate opening in the 20S proteasome by the proteasomal ATPasesMol. Cell2008303603681:CAS:528:DC%2BD1cXmtFaktLk%3D10.1016/j.molcel.2008.03.004 – reference: GhaemmaghamiSGlobal analysis of protein expression in yeastNature20034257377412003Natur.425..737G1:CAS:528:DC%2BD3sXotV2iu7c%3D10.1038/nature02046 – reference: TakagiKStructural basis for specific recognition of Rpt1, an ATPase subunit of 26S proteasome, by proteasome-dedicated chaperone Hsm3pJ. Biol. Chem.201228712172121821:CAS:528:DC%2BC38XltVykt74%3D10.1074/jbc.M112.345876 – reference: BeckFNear-atomic resolution structural model of the yeast 26S proteasomeProc. Natl Acad. Sci. USA201210914870148752012PNAS..10914870B1:CAS:528:DC%2BC38XhsVelsrjL10.1073/pnas.1213333109 – reference: SaekiYTohEAKudoTKawamuraHTanakaKMultiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particleCell20091379009131:CAS:528:DC%2BD1MXosVCltbs%3D10.1016/j.cell.2009.05.005 – reference: RoelofsJChaperone-mediated pathway of proteasome regulatory particle assemblyNature20094598618652009Natur.459..861R1:CAS:528:DC%2BD1MXntV2jsrc%3D10.1038/nature08063 – reference: ParkSKimWTianGGygiSPFinleyDStructural defects in the RP-CP interface induce a novel proteasome stress responseJ. Biol. Chem.201128636652366661:CAS:528:DC%2BC3MXhtlSqtLzK10.1074/jbc.M111.285924 – reference: LanderGCComplete subunit architecture of the proteasome regulatory particleNature20124821861912012Natur.482..186L1:CAS:528:DC%2BC38Xls1ShsA%3D%3D10.1038/nature10774 – reference: Kish-Trier, E. & Hill, C. P. Structural biology of the proteasome. Ann. Rev.. Biophyshttp://dx.doi.org/10.1146/annurev-biophys-083012-130417 (2013) – reference: ThompsonDHakalaKDeMartinoGNSubcomplexes of PA700, the 19S regulator of the 26S proteasome, reveal relative roles of AAA subunits in 26S proteasome assembly and activation and ATPase activityJ. Biol. Chem.200928424891249031:CAS:528:DC%2BD1MXhtV2nsLnI10.1074/jbc.M109.023218 – volume: 459 start-page: 866 year: 2009 ident: BFnature12123_CR6 publication-title: Nature doi: 10.1038/nature08065 – volume: 15 start-page: 237 year: 2008 ident: BFnature12123_CR16 publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.1389 – volume: 459 start-page: 861 year: 2009 ident: BFnature12123_CR5 publication-title: Nature doi: 10.1038/nature08063 – volume: 109 start-page: E1001 year: 2012 ident: BFnature12123_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1116538109 – volume: 18 start-page: 589 year: 2005 ident: BFnature12123_CR11 publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.04.016 – volume: 30 start-page: 360 year: 2008 ident: BFnature12123_CR13 publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.03.004 – ident: BFnature12123_CR1 doi: 10.1146/annurev-biophys-083012-130417 – volume: 38 start-page: 393 year: 2010 ident: BFnature12123_CR17 publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.02.035 – volume: 359 start-page: 503 year: 2007 ident: BFnature12123_CR21 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2007.05.138 – volume: 137 start-page: 914 year: 2009 ident: BFnature12123_CR8 publication-title: Cell doi: 10.1016/j.cell.2009.05.008 – volume: 287 start-page: 12172 year: 2012 ident: BFnature12123_CR19 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.345876 – volume: 482 start-page: 186 year: 2012 ident: BFnature12123_CR2 publication-title: Nature doi: 10.1038/nature10774 – volume: 109 start-page: 14870 year: 2012 ident: BFnature12123_CR4 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1213333109 – volume: 137 start-page: 900 year: 2009 ident: BFnature12123_CR9 publication-title: Cell doi: 10.1016/j.cell.2009.05.005 – volume: 137 start-page: 887 year: 2009 ident: BFnature12123_CR10 publication-title: Cell doi: 10.1016/j.cell.2009.04.061 – volume: 27 start-page: 731 year: 2007 ident: BFnature12123_CR12 publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.06.033 – volume: 284 start-page: 24891 year: 2009 ident: BFnature12123_CR25 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.023218 – volume: 18 start-page: 1259 year: 2011 ident: BFnature12123_CR22 publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.2147 – volume: 286 start-page: 36652 year: 2011 ident: BFnature12123_CR15 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.285924 – volume: 109 start-page: 1380 year: 2012 ident: BFnature12123_CR3 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1120559109 – volume: 20 start-page: 687 year: 2005 ident: BFnature12123_CR14 publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.10.019 – volume: 109 start-page: 149 year: 2012 ident: BFnature12123_CR23 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1117648108 – volume: 425 start-page: 737 year: 2003 ident: BFnature12123_CR18 publication-title: Nature doi: 10.1038/nature02046 – volume: 33 start-page: 389 year: 2009 ident: BFnature12123_CR7 publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.01.010 – volume: 144 start-page: 526 year: 2011 ident: BFnature12123_CR24 publication-title: Cell doi: 10.1016/j.cell.2011.02.005 – reference: 21878652 - J Biol Chem. 2011 Oct 21;286(42):36652-66 – reference: 19446323 - Cell. 2009 May 29;137(5):900-13 – reference: 19412159 - Nature. 2009 Jun 11;459(7248):861-5 – reference: 14562106 - Nature. 2003 Oct 16;425(6959):737-41 – reference: 22927375 - Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14870-5 – reference: 17555716 - Biochem Biophys Res Commun. 2007 Aug 3;359(3):503-9 – reference: 19412160 - Nature. 2009 Jun 11;459(7248):866-70 – reference: 22307589 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1380-7 – reference: 22460800 - Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):E1001-10 – reference: 19490896 - Cell. 2009 May 29;137(5):914-25 – reference: 22037170 - Nat Struct Mol Biol. 2011 Nov;18(11):1259-67 – reference: 19446322 - Cell. 2009 May 29;137(5):887-99 – reference: 19589775 - J Biol Chem. 2009 Sep 11;284(37):24891-903 – reference: 17803938 - Mol Cell. 2007 Sep 7;27(5):731-44 – reference: 22237024 - Nature. 2012 Feb 9;482(7384):186-91 – reference: 21335235 - Cell. 2011 Feb 18;144(4):526-38 – reference: 18278055 - Nat Struct Mol Biol. 2008 Mar;15(3):237-44 – reference: 16337593 - Mol Cell. 2005 Dec 9;20(5):687-98 – reference: 19217412 - Mol Cell. 2009 Feb 13;33(3):389-99 – reference: 22187461 - Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):149-54 – reference: 22334676 - J Biol Chem. 2012 Apr 6;287(15):12172-82 – reference: 18471981 - Mol Cell. 2008 May 9;30(3):360-8 – reference: 23414347 - Annu Rev Biophys. 2013;42:29-49 – reference: 15916965 - Mol Cell. 2005 May 27;18(5):589-99 – reference: 20471945 - Mol Cell. 2010 May 14;38(3):393-403 |
SSID | ssj0005174 |
Score | 2.3551934 |
Snippet | The proteasome degrades ubiquitin-conjugated substrates; here, structural and functional insights from studies in yeast reveal that it is reconfigured during... The proteasomal ATPase ring, comprising Rpt1-Rpt6, associates with the heptameric α-ring of the proteasome core particle (CP) in the mature proteasome, with... The proteasomal ATPase ring, comprising Rpt1-Rpt6, associates with the heptameric a-ring of the proteasome core particle (CP) in the mature proteasome, with... The proteasomal ATPase ring, comprising Rpt1-Rpt6, associates with the heptameric α ring of the proteasome core particle (CP) in the mature proteasome, with... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 512 |
SubjectTerms | 631/45 631/535/1258 Adenosine triphosphatase Adenosine Triphosphatases - chemistry Adenosine Triphosphatases - genetics Adenosine Triphosphatases - metabolism Adenosine Triphosphate - metabolism ATPases Binding Sites Brewer's yeast Carrier Proteins - metabolism Cryoelectron Microscopy Enzymes Holoenzymes - chemistry Holoenzymes - metabolism Humanities and Social Sciences Hydrolysis letter Models, Molecular Molecular chaperones Molecular Chaperones - metabolism multidisciplinary Peptides Physiological aspects Proteasome Endopeptidase Complex - chemistry Proteasome Endopeptidase Complex - genetics Proteasome Endopeptidase Complex - metabolism Protein Conformation Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Science Ubiquitin Ubiquitin-proteasome system Yeast |
Title | Reconfiguration of the proteasome during chaperone-mediated assembly |
URI | https://link.springer.com/article/10.1038/nature12123 https://www.ncbi.nlm.nih.gov/pubmed/23644457 https://www.proquest.com/docview/1366376950 https://www.proquest.com/docview/1355476807 https://pubmed.ncbi.nlm.nih.gov/PMC3687086 |
Volume | 497 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdgExIvaBtfYWUKaHxK1pLYiZ0nNMbKQGJCg0l9ixJ_dJW2pFvaB_577hK3S8pUXiJFd4kd23e-i-9-R8h-Htg01jamXGtGuTSGFrDN0cBYLZg2YINgNvKP0-TknH8fxSP3w612YZULndgoal0p_Ed-EDLYG0WSxsGn6TXFqlF4uupKaNwnmwhdhiFdYiRuQzxWUJhdfl7A5EELmxmi4u7tSKt6ubMxrQZNrpycNhvScIs8cpakf9hO_Ta5Z8od8qCJ6FT1Dtl2Ulv77x209IfH5At6m6WdjOftxPuV9cEC9Bu0hryurozf5i366iJHCPHS0Ca3BOxSH8xsc1Vc_nlCzofHv49OqKujQBVI24xqa03EhQXXKIm1jHgeFQrr0-RG8LQIpLK5MFIajeCEKsWjM5EIzXMObmqq2VOyUUKDz4lvi0SCDxLCK0KuigJuNGOxNSovQiELj3xcjGWmHMg41rq4zJrDbiazzsB7ZH_JPG2xNe5me42TkiFaRYnhMON8XtfZt19n2SGon4SDiy_WMYHPhlYKCzzyzjHZCnqlcpeCAN-GKFi91-32ONV0cp2tp3ZaedujjttJvquRQY8RBFv9l9xpZrBYpJnTO3V2KyUeebUk45MYS1eaao48YEKClxlAC8_aNb0cfiwnwHkMFNFb7UsGRCPvU8rJRYNKzhJQ_TLxyJuFXHS69e-svljf_V3yMGoKj8Q0YgOyMbuZm5dg_s2KvUbG4SqPQrwOv-6Rzc_Hpz_P_gJl61vb |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQXRMvLNIBBLRQkq7Z37XUOCFWUKqGPA7RSbsbeRxqptVOcCPVP8RuZ8SONQxVOPUYz2d3szs4jO_MNwGbimm6gTOBwpZjDI62dFM2c42qjBFMafRCqRj46Dnun_NsgGKzAn6YWhtIqG51YKmqVS_qPfMdjaBtF2A3cz-NLh7pG0etq00KjEosDffUbQ7biU38Pz3fL9_e_nnzpOXVXAUei7E0cZYz2uTAYKISBinye-Kmkbi2JFrybupE0idBRpBVB9ckuPSSJUCiecAzauorhuHfgLhpel26UGIjrlJIF1Oe6HtBl0U4F0-mRoWhZwEU7MGcIF5M0F15qSwO4_wge1p6rvVuJ2hqs6Gwd7pUZpLJYh7VaSxT2dg1l_eEx7FF0m5nRcFoJmp0bGz1Ou0SHSIr8QttVnaQtzxKCLM-0U9ayoB9so1uvL9Lzqydweis7_BRWM5zwOdgmDSOMeTwcwuMyTfGDYiwwWiapJ6LUgo_NXsayBjWn3hrncfm4zqJ4buMt2Jwxjyssj5vZ3tKhxISOkVH6zTCZFkXc__E93kV1F3IXjcsyJowRyStirgXvayaT46pkUpc84G8j1K3WcBstTjkeXcbLqXOzvGtRh9Uh3zRJp8WIikT-lzw3TacR0rjWc0V8fSsteDMj0zcpdy_T-ZR40GXFqNbFGZ5VMj3bfmpfwHmAFNGS9hkDoZ-3KdnorERBZyGamii0YKu5F3PL-vdUXyxf_mu43zs5OowP-8cHG_DAL5ueBI7POrA6-TXVL9H1nKSvyvtuw8_bVjB_AT2VlN0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VIhAviJajpgEMajkqWbG9a6_zgFBFiBoKFYJWypux90gjtU6KE6H-NX4dMz7SOFThqY_RTHY3u7NzZGe-AdhJXNMJlAkcrhRzeKS1k6KZc1xtlGBKow9C1chfj8KDE_55EAzW4E9dC0NplbVOLBS1Gkv6j7ztMbSNIuwEbttUaRHfur0PkwuHOkjRS2vdTqMUkUN9-RvDt_x9v4tnvev7vU_HHw-cqsOAI1EOp44yRvtcGAwawkBFPk_8VFLnlkQL3kndSJpE6CjSimD7ZIcelUQoFE84BnAdxXDcW3BbsMCjOyYG4iq9ZAkBuqoNdFnULiE7PTIaDWu4bBMWjOJywubSq21hDHsP4H7lxdr7pdhtwJrONuFOkU0q803YqDRGbr-tYK3fPYQuRbqZGQ1npdDZY2Oj92kXSBFJPj7XdlkzacvThODLM-0UdS3oE9vo4uvz9OzyEZzcyA4_hvUMJ9wC26RhhPGPh0N4XKYpflCMBUbLJPVElFqwV-9lLCuAc-qzcRYXD-0sihc23oKdOfOkxPW4nu0VHUpMSBkZydwwmeV53P_xPd5H1RdyFw3NKiaMF8lDYq4FbyomM8ZVyaQqf8DfRghcjeG2G5xyMrqIV1MXZnndoA7LQ75uklaDEZWK_C95YZpWLaRxpfPy-OqGWvByTqZvUh5fpscz4kH3FSNcF2d4Usr0fPuplQHnAVJEQ9rnDISE3qRko9MCEZ2FaHai0ILd-l4sLOvfU326evkv4C6qlvhL_-hwG-75Rf-TwPFZC9anv2b6GXqh0_R5cd1t-HnT-uUvYqSZEw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconfiguration+of+the+proteasome+during+chaperone-mediated+assembly&rft.jtitle=Nature+%28London%29&rft.au=Park%2C+Soyeon&rft.au=Li%2C+Xueming&rft.au=Kim%2C+Ho+Min&rft.au=Singh%2C+Chingakham+Ranjit&rft.date=2013-05-23&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=497&rft.issue=7450&rft.spage=512&rft_id=info:doi/10.1038%2Fnature12123&rft.externalDocID=A488640467 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |