Receptor Polymorphism and Genomic Structure Interact to Shape Bitter Taste Perception

The ability to taste bitterness evolved to safeguard most animals, including humans, against potentially toxic substances, thereby leading to food rejection. Nonetheless, bitter perception is subject to individual variations due to the presence of genetic functional polymorphisms in bitter taste rec...

Full description

Saved in:
Bibliographic Details
Published inPLOS Genetics Vol. 11; no. 9; p. e1005530
Main Authors Roudnitzky, Natacha, Behrens, Maik, Engel, Anika, Kohl, Susann, Thalmann, Sophie, Hübner, Sandra, Lossow, Kristina, Wooding, Stephen P, Meyerhof, Wolfgang
Format Journal Article
LanguageEnglish
Published United States Public Library of Science (PLoS) 01.09.2015
Public Library of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ability to taste bitterness evolved to safeguard most animals, including humans, against potentially toxic substances, thereby leading to food rejection. Nonetheless, bitter perception is subject to individual variations due to the presence of genetic functional polymorphisms in bitter taste receptor (TAS2R) genes, such as the long-known association between genetic polymorphisms in TAS2R38 and bitter taste perception of phenylthiocarbamide. Yet, due to overlaps in specificities across receptors, such associations with a single TAS2R locus are uncommon. Therefore, to investigate more complex associations, we examined taste responses to six structurally diverse compounds (absinthin, amarogentin, cascarillin, grosheimin, quassin, and quinine) in a sample of the Caucasian population. By sequencing all bitter receptor loci, inferring long-range haplotypes, mapping their effects on phenotype variation, and characterizing functionally causal allelic variants, we deciphered at the molecular level how a subjects' genotype for the whole-family of TAS2R genes shapes variation in bitter taste perception. Within each haplotype block implicated in phenotypic variation, we provided evidence for at least one locus harboring functional polymorphic alleles, e.g. one locus for sensitivity to amarogentin, one of the most bitter natural compounds known, and two loci for sensitivity to grosheimin, one of the bitter compounds of artichoke. Our analyses revealed also, besides simple associations, complex associations of bitterness sensitivity across TAS2R loci. Indeed, even if several putative loci harbored both high- and low-sensitivity alleles, phenotypic variation depended on linkage between these alleles. When sensitive alleles for bitter compounds were maintained in the same linkage phase, genetically driven perceptual differences were obvious, e.g. for grosheimin. On the contrary, when sensitive alleles were in opposite phase, only weak genotype-phenotype associations were seen, e.g. for absinthin, the bitter principle of the beverage absinth. These findings illustrate the extent to which genetic influences on taste are complex, yet arise from both receptor activation patterns and linkage structure among receptor genes.
AbstractList The ability to taste bitterness evolved to safeguard most animals, including humans, against potentially toxic substances, thereby leading to food rejection. Nonetheless, bitter perception is subject to individual variations due to the presence of genetic functional polymorphisms in bitter taste receptor (TAS2R) genes, such as the long-known association between genetic polymorphisms in TAS2R38 and bitter taste perception of phenylthiocarbamide. Yet, due to overlaps in specificities across receptors, such associations with a single TAS2R locus are uncommon. Therefore, to investigate more complex associations, we examined taste responses to six structurally diverse compounds (absinthin, amarogentin, cascarillin, grosheimin, quassin, and quinine) in a sample of the Caucasian population. By sequencing all bitter receptor loci, inferring long-range haplotypes, mapping their effects on phenotype variation, and characterizing functionally causal allelic variants, we deciphered at the molecular level how a subjects' genotype for the whole-family of TAS2R genes shapes variation in bitter taste perception. Within each haplotype block implicated in phenotypic variation, we provided evidence for at least one locus harboring functional polymorphic alleles, e.g. one locus for sensitivity to amarogentin, one of the most bitter natural compounds known, and two loci for sensitivity to grosheimin, one of the bitter compounds of artichoke. Our analyses revealed also, besides simple associations, complex associations of bitterness sensitivity across TAS2R loci. Indeed, even if several putative loci harbored both high- and low-sensitivity alleles, phenotypic variation depended on linkage between these alleles. When sensitive alleles for bitter compounds were maintained in the same linkage phase, genetically driven perceptual differences were obvious, e.g. for grosheimin. On the contrary, when sensitive alleles were in opposite phase, only weak genotype-phenotype associations were seen, e.g. for absinthin, the bitter principle of the beverage absinth. These findings illustrate the extent to which genetic influences on taste are complex, yet arise from both receptor activation patterns and linkage structure among receptor genes.
  The ability to taste bitterness evolved to safeguard most animals, including humans, against potentially toxic substances, thereby leading to food rejection. Nonetheless, bitter perception is subject to individual variations due to the presence of genetic functional polymorphisms in bitter taste receptor (TAS2R) genes, such as the long-known association between genetic polymorphisms in TAS2R38 and bitter taste perception of phenylthiocarbamide. Yet, due to overlaps in specificities across receptors, such associations with a single TAS2R locus are uncommon. Therefore, to investigate more complex associations, we examined taste responses to six structurally diverse compounds (absinthin, amarogentin, cascarillin, grosheimin, quassin, and quinine) in a sample of the Caucasian population. By sequencing all bitter receptor loci, inferring long-range haplotypes, mapping their effects on phenotype variation, and characterizing functionally causal allelic variants, we deciphered at the molecular level how a subjects' genotype for the whole-family of TAS2R genes shapes variation in bitter taste perception. Within each haplotype block implicated in phenotypic variation, we provided evidence for at least one locus harboring functional polymorphic alleles, e.g. one locus for sensitivity to amarogentin, one of the most bitter natural compounds known, and two loci for sensitivity to grosheimin, one of the bitter compounds of artichoke. Our analyses revealed also, besides simple associations, complex associations of bitterness sensitivity across TAS2R loci. Indeed, even if several putative loci harbored both high- and low-sensitivity alleles, phenotypic variation depended on linkage between these alleles. When sensitive alleles for bitter compounds were maintained in the same linkage phase, genetically driven perceptual differences were obvious, e.g. for grosheimin. On the contrary, when sensitive alleles were in opposite phase, only weak genotype-phenotype associations were seen, e.g. for absinthin, the bitter principle of the beverage absinth. These findings illustrate the extent to which genetic influences on taste are complex, yet arise from both receptor activation patterns and linkage structure among receptor genes.
The ability to taste bitterness evolved to safeguard most animals, including humans, against potentially toxic substances, thereby leading to food rejection. Nonetheless, bitter perception is subject to individual variations due to the presence of genetic functional polymorphisms in bitter taste receptor ( TAS2R ) genes, such as the long-known association between genetic polymorphisms in TAS2R38 and bitter taste perception of phenylthiocarbamide. Yet, due to overlaps in specificities across receptors, such associations with a single TAS2R locus are uncommon. Therefore, to investigate more complex associations, we examined taste responses to six structurally diverse compounds (absinthin, amarogentin, cascarillin, grosheimin, quassin, and quinine) in a sample of the Caucasian population. By sequencing all bitter receptor loci, inferring long-range haplotypes, mapping their effects on phenotype variation, and characterizing functionally causal allelic variants, we deciphered at the molecular level how a subjects’ genotype for the whole-family of TAS2R genes shapes variation in bitter taste perception. Within each haplotype block implicated in phenotypic variation, we provided evidence for at least one locus harboring functional polymorphic alleles, e.g. one locus for sensitivity to amarogentin, one of the most bitter natural compounds known, and two loci for sensitivity to grosheimin, one of the bitter compounds of artichoke. Our analyses revealed also, besides simple associations, complex associations of bitterness sensitivity across TAS2R loci. Indeed, even if several putative loci harbored both high- and low-sensitivity alleles, phenotypic variation depended on linkage between these alleles. When sensitive alleles for bitter compounds were maintained in the same linkage phase, genetically driven perceptual differences were obvious, e.g. for grosheimin. On the contrary, when sensitive alleles were in opposite phase, only weak genotype-phenotype associations were seen, e.g. for absinthin, the bitter principle of the beverage absinth. These findings illustrate the extent to which genetic influences on taste are complex, yet arise from both receptor activation patterns and linkage structure among receptor genes. Human bitter taste is believed to protect us from the ingestion of poisonous substances, thereby shaping food rejections. Bitter perception differs, however, across individuals, due to genetic variations in the ~25 bitter taste receptor ( TAS2R ) genes. A famous example known since the 1930s is the inherited bitter taste sensitivity to phenylthiocarbamide, which is associated with genetic polymorphisms in a single TAS2R gene. Yet, such simple receptor-substance associations do not reflect the full complexity of bitter perception, since individual bitter substances frequently activate several TAS2Rs. Here, we provide an in-depth analysis of the genetic variability influencing human bitter taste. While each study subject carried a different set of genetic polymorphisms, we found that most variations reside in just six blocks, each harboring only one to five haplotypes. Thus, besides simple associations between taste and TAS2R gene polymorphisms, we revealed complex associations dependent on linkage between several high- and low-sensitivity alleles. Indeed, subjects carried either sensitive or insensitive alleles for receptors sensitive to grosheimin, a bitter compound in artichoke, or at least one sensitive allele for receptors specific for absinthin, the bitter principle of absinth. In short, simple associations and complex genomic linkage determine sensitivity to selected dietary bitter compounds.
The ability to taste bitterness evolved to safeguard most animals, including humans, against potentially toxic substances, thereby leading to food rejection. Nonetheless, bitter perception is subject to individual variations due to the presence of genetic functional polymorphisms in bitter taste receptor (TAS2R) genes, such as the long-known association between genetic polymorphisms in TAS2R38 and bitter taste perception of phenylthiocarbamide. Yet, due to overlaps in specificities across receptors, such associations with a single TAS2R locus are uncommon. Therefore, to investigate more complex associations, we examined taste responses to six structurally diverse compounds (absinthin, amarogentin, cascarillin, grosheimin, quassin, and quinine) in a sample of the Caucasian population. By sequencing all bitter receptor loci, inferring long-range haplotypes, mapping their effects on phenotype variation, and characterizing functionally causal allelic variants, we deciphered at the molecular level how a subjects' genotype for the whole-family of TAS2R genes shapes variation in bitter taste perception. Within each haplotype block implicated in phenotypic variation, we provided evidence for at least one locus harboring functional polymorphic alleles, e.g. one locus for sensitivity to amarogentin, one of the most bitter natural compounds known, and two loci for sensitivity to grosheimin, one of the bitter compounds of artichoke. Our analyses revealed also, besides simple associations, complex associations of bitterness sensitivity across TAS2R loci. Indeed, even if several putative loci harbored both high- and low-sensitivity alleles, phenotypic variation depended on linkage between these alleles. When sensitive alleles for bitter compounds were maintained in the same linkage phase, genetically driven perceptual differences were obvious, e.g. for grosheimin. On the contrary, when sensitive alleles were in opposite phase, only weak genotype-phenotype associations were seen, e.g. for absinthin, the bitter principle of the beverage absinth. These findings illustrate the extent to which genetic influences on taste are complex, yet arise from both receptor activation patterns and linkage structure among receptor genes.The ability to taste bitterness evolved to safeguard most animals, including humans, against potentially toxic substances, thereby leading to food rejection. Nonetheless, bitter perception is subject to individual variations due to the presence of genetic functional polymorphisms in bitter taste receptor (TAS2R) genes, such as the long-known association between genetic polymorphisms in TAS2R38 and bitter taste perception of phenylthiocarbamide. Yet, due to overlaps in specificities across receptors, such associations with a single TAS2R locus are uncommon. Therefore, to investigate more complex associations, we examined taste responses to six structurally diverse compounds (absinthin, amarogentin, cascarillin, grosheimin, quassin, and quinine) in a sample of the Caucasian population. By sequencing all bitter receptor loci, inferring long-range haplotypes, mapping their effects on phenotype variation, and characterizing functionally causal allelic variants, we deciphered at the molecular level how a subjects' genotype for the whole-family of TAS2R genes shapes variation in bitter taste perception. Within each haplotype block implicated in phenotypic variation, we provided evidence for at least one locus harboring functional polymorphic alleles, e.g. one locus for sensitivity to amarogentin, one of the most bitter natural compounds known, and two loci for sensitivity to grosheimin, one of the bitter compounds of artichoke. Our analyses revealed also, besides simple associations, complex associations of bitterness sensitivity across TAS2R loci. Indeed, even if several putative loci harbored both high- and low-sensitivity alleles, phenotypic variation depended on linkage between these alleles. When sensitive alleles for bitter compounds were maintained in the same linkage phase, genetically driven perceptual differences were obvious, e.g. for grosheimin. On the contrary, when sensitive alleles were in opposite phase, only weak genotype-phenotype associations were seen, e.g. for absinthin, the bitter principle of the beverage absinth. These findings illustrate the extent to which genetic influences on taste are complex, yet arise from both receptor activation patterns and linkage structure among receptor genes.
Audience Academic
Author Kohl, Susann
Behrens, Maik
Roudnitzky, Natacha
Meyerhof, Wolfgang
Thalmann, Sophie
Hübner, Sandra
Wooding, Stephen P
Engel, Anika
Lossow, Kristina
AuthorAffiliation 1 German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Genetics, Nuthetal, Germany
National Institute of Genetics, JAPAN
2 Health Sciences Research Institute, University of California, Merced, California, United States of America
AuthorAffiliation_xml – name: 1 German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Genetics, Nuthetal, Germany
– name: 2 Health Sciences Research Institute, University of California, Merced, California, United States of America
– name: National Institute of Genetics, JAPAN
Author_xml – sequence: 1
  fullname: Roudnitzky, Natacha
– sequence: 2
  orcidid: 0000-0003-2082-8860
  fullname: Behrens, Maik
– sequence: 3
  fullname: Engel, Anika
– sequence: 4
  fullname: Kohl, Susann
– sequence: 5
  fullname: Thalmann, Sophie
– sequence: 6
  fullname: Hübner, Sandra
– sequence: 7
  fullname: Lossow, Kristina
– sequence: 8
  orcidid: 0009-0000-7418-906x
  fullname: Wooding, Stephen P
– sequence: 9
  fullname: Meyerhof, Wolfgang
BackLink https://cir.nii.ac.jp/crid/1870302168147693568$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/26406243$$D View this record in MEDLINE/PubMed
BookMark eNqVk11v0zAUhiM0xD7gHyCINITgosWOv1IukMYEo9LEpnXj1nKdk9ZVagfbQezf49AWNQgJUCTbOn7e1_bJOcfZgXUWsuwpRmNMBH6zcp23qhm3C7BjjBBjBD3IjnCaR4IierC3PsyOQ1ghRFg5EY-yw4JTxAtKjrK7G9DQRufza9fcr51vlyasc2Wr_AKsWxudz6LvdOw85FMbwSsd8-jy2VK1kL83MYXyWxUi5Nfgey_j7OPsYa2aAE-280l29_HD7fmn0eXVxfT87HKkxYTEUV3PK8a1ZgXHdaVpiXjJ-3cQxkWp6ZwRLgSqigJwPWdMFRoTwhAohqESNTnJnm9828YFuc1IkFgU6XmsxDwR0w1RObWSrTdr5e-lU0b-DDi_kMpHoxuQdaWQwoxjUIJyJeaKFxomaCKKieL1PHm9257WzddQabDRq2ZgOtyxZikX7pukrCRUsGTwamvg3dcOQpRrEzQ0jbLguv7euERCUFEm9HSDLlS6mrG1S466x-UZJZgRImiRqPEfqPRVkP5cqpfapPhA8HogSEyE73GhuhDkdHbzH-znf2evvgzZl3vsElQTl8E1XV84YQg-28_3r0TvqjcBbzeA9i4ED7XUJqreJ6XBNBIj2bfKrjBk3ypy2ypJTH8T7_z_InuxkVlj0nH9iEuBCCowLzEVfJKKtyQ_ACFTIKQ
CitedBy_id crossref_primary_10_1093_chemse_bjx040
crossref_primary_10_1093_emph_eoab031
crossref_primary_10_1186_s12967_021_03067_y
crossref_primary_10_3390_app132412994
crossref_primary_10_1155_2018_9541987
crossref_primary_10_3390_nu15092214
crossref_primary_10_1111_jphp_12710
crossref_primary_10_1016_j_appet_2017_03_046
crossref_primary_10_1016_j_cophys_2020_12_007
crossref_primary_10_1016_j_tifs_2019_12_026
crossref_primary_10_3389_fgene_2022_952299
crossref_primary_10_1016_j_pep_2024_106643
crossref_primary_10_3390_cells13141204
crossref_primary_10_1111_age_12472
crossref_primary_10_1186_s12864_018_5058_2
crossref_primary_10_2174_1573407214666181023115355
crossref_primary_10_1016_S0415_6412_16_30091_1
crossref_primary_10_1186_s12915_022_01367_3
crossref_primary_10_1534_g3_118_300547
crossref_primary_10_1007_s00795_020_00263_5
crossref_primary_10_3390_pharmaceutics14112454
crossref_primary_10_1016_j_endinu_2017_09_008
crossref_primary_10_3390_ijms232415989
crossref_primary_10_1016_j_appet_2021_105270
crossref_primary_10_1177_0301006616686098
crossref_primary_10_1177_11769343211035141
crossref_primary_10_3390_molecules28083298
crossref_primary_10_1016_j_appet_2017_04_029
crossref_primary_10_1021_acs_jmedchem_0c00388
crossref_primary_10_1021_acs_jafc_6b04835
crossref_primary_10_3389_fchem_2024_1449536
crossref_primary_10_3390_nu13020571
crossref_primary_10_1093_nar_gky974
crossref_primary_10_1007_s13258_021_01079_y
crossref_primary_10_1007_s00726_017_2422_5
crossref_primary_10_3390_genes14030666
crossref_primary_10_3390_ijms18081814
crossref_primary_10_3390_ijms18020437
crossref_primary_10_3389_fgene_2019_01272
crossref_primary_10_1016_j_endien_2018_03_003
crossref_primary_10_7759_cureus_74509
crossref_primary_10_1007_s12078_016_9212_4
crossref_primary_10_1586_17476348_2016_1135742
crossref_primary_10_1093_chemse_bjw067
Cites_doi 10.1093/molbev/msg083
10.1093/ajcn/72.6.1424
10.1093/hmg/ddt404
10.1007/s12078-009-9061-5
10.1093/jhered/esm127
10.1086/100480
10.1016/j.cub.2005.06.042
10.1534/genetics.108.089409
10.1111/j.1749-6632.1977.tb39713.x
10.1021/jf070503p
10.1126/science.1080190
10.1086/319501
10.1016/j.cub.2009.06.015
10.3945/ajcn.113.066688
10.1016/S0149-7634(99)00072-X
10.1086/379378
10.1007/s12263-014-0401-y
10.1038/nature04226
10.1086/383251
10.1002/humu.20203
10.1093/genetics/172.4.2015
10.1146/annurev.nutr.28.061807.155458
10.1016/j.bbrc.2013.04.066
10.1016/S0968-0004(98)01285-7
10.1093/chemse/bjq063
10.1371/journal.pone.0003974
10.1086/383092
10.1126/science.1059431
10.1534/genetics.106.067355
10.1016/j.cub.2005.01.047
10.1073/pnas.0913862107
10.1093/chemse/21.3.323
10.1007/BF02603120
10.1093/chemse/18.6.683
10.1038/ng1014
10.1016/j.cub.2013.02.037
10.1016/j.physbeh.2004.02.033
10.1017/S0007114509990286
10.1016/0031-9384(94)90368-9
10.1038/35007072
10.2307/1130670
10.2307/2411196
10.1016/B978-0-12-209750-8.50014-7
10.1126/science.171.3973.757
10.1093/hmg/ddq324
10.1093/nutrit/nuu009
10.1523/JNEUROSCI.3248-12.2013
10.1093/genetics/88.3.633
10.1016/S0140-6736(05)67176-0
10.1093/hmg/ddr252
10.1093/chemse/bjp092
10.1111/j.1471-4159.2008.05453.x
10.1523/JNEUROSCI.23-19-07376.2003
10.1016/j.cub.2007.07.046
10.1038/nature11632
10.1016/j.foodqual.2013.05.013
10.1093/chemse/bjq061
10.1371/journal.pbio.0050254
10.1016/S0092-8674(00)80705-9
10.1111/acer.12527
10.1016/S0092-8674(00)80706-0
10.1371/journal.pone.0045232
10.1186/1471-2105-13-134
10.1093/chemse/bjs063
10.1093/molbev/mst211
10.1086/100259
10.1016/0031-9384(94)90369-7
10.1038/nature06258
10.1086/344398
10.1093/chemse/bjq132
10.1093/bioinformatics/bth457
10.1038/nrg1123
ContentType Journal Article
Contributor Gojobori, Takashi
Contributor_xml – sequence: 1
  fullname: Gojobori, Takashi
Copyright COPYRIGHT 2015 Public Library of Science
2015 Roudnitzky et al 2015 Roudnitzky et al
2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Roudnitzky N, Behrens M, Engel A, Kohl S, Thalmann S, Hübner S, et al. (2015) Receptor Polymorphism and Genomic Structure Interact to Shape Bitter Taste Perception. PLoS Genet 11(9): e1005530. doi:10.1371/journal.pgen.1005530
Copyright_xml – notice: COPYRIGHT 2015 Public Library of Science
– notice: 2015 Roudnitzky et al 2015 Roudnitzky et al
– notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Roudnitzky N, Behrens M, Engel A, Kohl S, Thalmann S, Hübner S, et al. (2015) Receptor Polymorphism and Genomic Structure Interact to Shape Bitter Taste Perception. PLoS Genet 11(9): e1005530. doi:10.1371/journal.pgen.1005530
DBID RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1005530
DatabaseName CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE





MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate TAS2R Genes and Bitter Taste
EISSN 1553-7404
ExternalDocumentID 1720625816
oai_doaj_org_article_fda0a1561ea746a7ba62ce909729a6fb
PMC4583475
A431533742
26406243
10_1371_journal_pgen_1005530
Genre Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RYH
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
AAYXX
CITATION
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
WOQ
PMFND
7X8
5PM
PUEGO
-
3V.
AAPBV
ABPTK
ADACO
BBAFP
M~E
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c793t-ffbd56cc5261fdc480686553035678c4b536770d22e1fb55a2c13350ea51ed7f3
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Fri Nov 26 17:13:41 EST 2021
Wed Aug 27 01:22:41 EDT 2025
Thu Aug 21 18:13:36 EDT 2025
Fri Jul 11 16:56:24 EDT 2025
Tue Jun 17 22:05:50 EDT 2025
Tue Jun 10 21:04:20 EDT 2025
Fri Jun 27 06:04:11 EDT 2025
Fri Jun 27 03:35:24 EDT 2025
Fri Jun 27 05:43:35 EDT 2025
Thu May 22 21:23:59 EDT 2025
Mon Jul 21 05:54:11 EDT 2025
Thu Apr 24 22:50:18 EDT 2025
Tue Jul 01 00:22:44 EDT 2025
Thu Jun 26 23:38:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c793t-ffbd56cc5261fdc480686553035678c4b536770d22e1fb55a2c13350ea51ed7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: NR MB WM. Performed the experiments: NR AE SK ST. Analyzed the data: NR MB SPW WM. Contributed reagents/materials/analysis tools: NR SH KL. Wrote the paper: NR MB SPW WM.
The authors have declared that no competing interests exist.
ORCID 0009-0000-7418-906x
0000-0003-2082-8860
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1005530
PMID 26406243
PQID 1718077478
PQPubID 23479
ParticipantIDs plos_journals_1720625816
doaj_primary_oai_doaj_org_article_fda0a1561ea746a7ba62ce909729a6fb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4583475
proquest_miscellaneous_1718077478
gale_infotracmisc_A431533742
gale_infotracacademiconefile_A431533742
gale_incontextgauss_ISR_A431533742
gale_incontextgauss_ISN_A431533742
gale_incontextgauss_IOV_A431533742
gale_healthsolutions_A431533742
pubmed_primary_26406243
crossref_citationtrail_10_1371_journal_pgen_1005530
crossref_primary_10_1371_journal_pgen_1005530
nii_cinii_1870302168147693568
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLOS Genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2015
Publisher Public Library of Science (PLoS)
Public Library of Science
Publisher_xml – name: Public Library of Science (PLoS)
– name: Public Library of Science
References AA Fushan (ref51) 2009; 19
DJ Witherspoon (ref50) 2007; 176
D Altshuler (ref38) 2005; 437
HT Lawless (ref70) 1999
DR Nyholt (ref77) 2004; 74
S Born (ref41) 2013; 33
JE Hayes (ref48) 2013; 30
A Brockhoff (ref42) 2010; 107
T Ueda (ref78) 2003; 23
S Wooding (ref47) 2006; 172
S Thalmann (ref39) 2013; 435
UK Kim (ref21) 2003; 299
DF Feng (ref58) 1987; 25
JE Steiner (ref5) 1977
P Shi (ref20) 2003; 20
JC Stephens (ref49) 2001; 293
AK Ventura (ref15) 2013; 23
KC Berridge (ref1) 2000; 24
JC Barrett (ref66) 2005; 21
M Ledda (ref32) 2014; 23
U Kim (ref22) 2005; 26
M Stephens (ref62) 2003; 73
R Mauricio (ref8) 1997; 51
CD Dotson (ref29) 2012; 37
HB Loper (ref54) 2015; 73
BG Green (ref72) 1996; 21
C Schwartz (ref4) 2009; 102
D Risso (ref30) 2014; 9
JI Glendinning (ref10) 1994; 56
B Peirce (ref76) 1852; 2
LM Bartoshuk (ref74) 2004; 82
ref7
JE Hayes (ref34) 2011; 36
F Jeanmougin (ref60) 1998; 23
BG Green (ref73) 1993; 18
J Chandrashekar (ref18) 2000; 100
JJ Cai (ref68) 2008; 99
H Matsunami (ref19) 2000; 404
M Stephens (ref63) 2001; 68
ref35
DR Reed (ref33) 2010; 19
D Campa (ref43) 2012; 7
CD Dotson (ref24) 2008; 3
BA Gould (ref75) 1855; 4
K Koshimizu (ref11) 1994; 56
E Adler (ref16) 2000; 100
AV Hill (ref79) 1910; 40
JD Wall (ref44) 2003; 4
A Drewnowski (ref13) 2000; 72
D Rosenstein (ref3) 1988; 59
W Meyerhof (ref31) 2010; 35
RH Whittaker (ref9) 1971; 171
S Levy (ref57) 2007; 5
AL Allen (ref28) 2014; 38
BJ Tepper (ref14) 2008; 28
S Wooding (ref40) 2004; 74
ref71
MA Faiz (ref12) 2005; 366
N Roudnitzky (ref26) 2011; 20
BS Weir (ref64) 1978; 88
DV Zaykin (ref65) 2008; 180
N Soranzo (ref27) 2005; 15
ref69
S Wooding (ref46) 2010; 35
A Fushan (ref53) 2010; 35
MM Faas (ref55) 2010; 3
AN Pronin (ref25) 2007; 17
C Reichling (ref59) 2008; 106
PD Brown (ref6) 1997; 61
D Altshuler (ref45) 2007; 449
B Bufe (ref23) 2002; 32
C Pfaffmann (ref2) 1977; 290
B Bufe (ref17) 2005; 15
DM Altshuler (ref36) 2012; 491
A Brockhoff (ref56) 2007; 55
SV Lipchock (ref52) 2013; 98
N Wang (ref67) 2002; 71
J Ye (ref61) 2012; 13
MC Campbell (ref37) 2013; 31
References_xml – volume: 20
  start-page: 805
  issue: 5
  year: 2003
  ident: ref20
  article-title: Adaptive diversification of bitter taste receptor genes in mammalian evolution
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msg083
– volume: 72
  start-page: 1424
  issue: 6
  year: 2000
  ident: ref13
  article-title: Bitter taste, phytonutrients, and the consumer: a review
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/72.6.1424
– volume: 23
  start-page: 259
  issue: 1
  year: 2014
  ident: ref32
  article-title: GWAS of human bitter taste perception identifies new loci and reveals additional complexity of bitter taste genetics
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddt404
– volume: 3
  start-page: 51
  issue: 1
  year: 2010
  ident: ref55
  article-title: A Brief Review on How Pregnancy and Sex Hormones Interfere with Taste and Food Intake
  publication-title: Chemosens Percept
  doi: 10.1007/s12078-009-9061-5
– volume: 40
  start-page: iv
  issue: Suppl
  year: 1910
  ident: ref79
  article-title: The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves
  publication-title: J Physiol
– volume: 99
  start-page: 438
  issue: 4
  year: 2008
  ident: ref68
  article-title: PGEToolbox: A Matlab Toolbox for Population Genetics and Evolution
  publication-title: J Hered
  doi: 10.1093/jhered/esm127
– volume: 4
  start-page: 81
  issue: 83
  year: 1855
  ident: ref75
  article-title: On Peirce's Criterion for the Rejection of Doubtful Observations, with tables for facilitating its application
  publication-title: Astron J
  doi: 10.1086/100480
– volume: 15
  start-page: 1257
  issue: 14
  year: 2005
  ident: ref27
  article-title: Positive selection on a high-sensitivity allele of the human bitter-taste receptor TAS2R16
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2005.06.042
– volume: 180
  start-page: 533
  issue: 1
  year: 2008
  ident: ref65
  article-title: Correlation-Based Inference for Linkage Disequilibrium With Multiple Alleles
  publication-title: Genetics
  doi: 10.1534/genetics.108.089409
– volume: 290
  start-page: 18
  issue: 1
  year: 1977
  ident: ref2
  article-title: Sensory affect and motivation
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.1977.tb39713.x
– volume: 55
  start-page: 6236
  issue: 15
  year: 2007
  ident: ref56
  article-title: Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, strychnine, and denatonium
  publication-title: J Agric Food Chem
  doi: 10.1021/jf070503p
– ident: ref69
– year: 1999
  ident: ref70
– volume: 299
  start-page: 1221
  issue: 5610
  year: 2003
  ident: ref21
  article-title: Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide
  publication-title: Science
  doi: 10.1126/science.1080190
– volume: 68
  start-page: 978
  issue: 4
  year: 2001
  ident: ref63
  article-title: A new statistical method for haplotype reconstruction from population data
  publication-title: Am J Hum Genet
  doi: 10.1086/319501
– volume: 19
  start-page: 1288
  issue: 15
  year: 2009
  ident: ref51
  article-title: Allelic Polymorphism within the TAS1R3 Promoter Is Associated with Human Taste Sensitivity to Sucrose
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2009.06.015
– volume: 98
  start-page: 1136
  issue: 4
  year: 2013
  ident: ref52
  article-title: Human bitter perception correlates with bitter receptor messenger RNA expression in taste cells
  publication-title: Am J Clin Nutr
  doi: 10.3945/ajcn.113.066688
– volume: 24
  start-page: 173
  issue: 2
  year: 2000
  ident: ref1
  article-title: Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/S0149-7634(99)00072-X
– volume: 73
  start-page: 1162
  issue: 5
  year: 2003
  ident: ref62
  article-title: A Comparison of Bayesian Methods for Haplotype Reconstruction from Population Genotype Data
  publication-title: Am J Hum Genet
  doi: 10.1086/379378
– volume: 9
  issue: 3
  year: 2014
  ident: ref30
  article-title: Genetic signature of differential sensitivity to stevioside in the Italian population
  publication-title: Genes and Nutrition
  doi: 10.1007/s12263-014-0401-y
– volume: 437
  start-page: 1299
  issue: 7063
  year: 2005
  ident: ref38
  article-title: A haplotype map of the human genome
  publication-title: Nature
  doi: 10.1038/nature04226
– volume: 74
  start-page: 765
  issue: 4
  year: 2004
  ident: ref77
  article-title: A Simple Correction for Multiple Testing for Single-Nucleotide Polymorphisms in Linkage Disequilibrium with Each Other
  publication-title: Am J Hum Genet
  doi: 10.1086/383251
– volume: 26
  start-page: 199
  issue: 3
  year: 2005
  ident: ref22
  article-title: Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci
  publication-title: Hum Mutat
  doi: 10.1002/humu.20203
– volume: 172
  start-page: 2015
  issue: 4
  year: 2006
  ident: ref47
  article-title: Phenylthiocarbamide: A 75-Year Adventure in Genetics and Natural Selection
  publication-title: Genetics
  doi: 10.1093/genetics/172.4.2015
– volume: 28
  start-page: 367
  issue: 1
  year: 2008
  ident: ref14
  article-title: Nutritional Implications of Genetic Taste Variation: The Role of PROP Sensitivity and Other Taste Phenotypes
  publication-title: Annu Rev Nutr
  doi: 10.1146/annurev.nutr.28.061807.155458
– volume: 435
  start-page: 267
  issue: 2
  year: 2013
  ident: ref39
  article-title: Major haplotypes of the human bitter taste receptor TAS2R41 encode functional receptors for chloramphenicol
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2013.04.066
– volume: 23
  start-page: 403
  issue: 10
  year: 1998
  ident: ref60
  article-title: Multiple sequence alignment with Clustal X
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(98)01285-7
– volume: 35
  start-page: 579
  issue: 7
  year: 2010
  ident: ref53
  article-title: Association between common variation in genes encoding sweet taste signaling components and human sucrose perception
  publication-title: Chem Senses
  doi: 10.1093/chemse/bjq063
– volume: 3
  issue: 12
  year: 2008
  ident: ref24
  article-title: Bitter Taste Receptors Influence Glucose Homeostasis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003974
– volume: 74
  start-page: 637
  issue: 4
  year: 2004
  ident: ref40
  article-title: Natural selection and molecular evolution in PTC, a bitter-taste receptor gene
  publication-title: Am J Hum Genet
  doi: 10.1086/383092
– ident: ref71
– volume: 293
  start-page: 489
  issue: 5529
  year: 2001
  ident: ref49
  article-title: Haplotype Variation and Linkage Disequilibrium in 313 Human Genes
  publication-title: Science
  doi: 10.1126/science.1059431
– volume: 176
  start-page: 351
  issue: 1
  year: 2007
  ident: ref50
  article-title: Genetic Similarities Within and Between Human Populations
  publication-title: Genetics
  doi: 10.1534/genetics.106.067355
– volume: 15
  start-page: 322
  issue: 4
  year: 2005
  ident: ref17
  article-title: The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2005.01.047
– volume: 107
  start-page: 11110
  issue: 24
  year: 2010
  ident: ref42
  article-title: Structural requirements of bitter taste receptor activation
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0913862107
– volume: 21
  start-page: 323
  issue: 3
  year: 1996
  ident: ref72
  article-title: Evaluating the ‘Labeled Magnitude Scale’ for Measuring Sensations of Taste and Smell
  publication-title: Chem Senses
  doi: 10.1093/chemse/21.3.323
– volume: 25
  start-page: 351
  issue: 4
  year: 1987
  ident: ref58
  article-title: Progressive sequence alignment as a prerequisitetto correct phylogenetic trees
  publication-title: J Mol Evol
  doi: 10.1007/BF02603120
– volume: 18
  start-page: 683
  issue: 6
  year: 1993
  ident: ref73
  article-title: Derivation and evaluation of a semantic scale of oral sensation magnitude with apparent ratio properties
  publication-title: Chem Senses
  doi: 10.1093/chemse/18.6.683
– volume: 32
  start-page: 397
  issue: 3
  year: 2002
  ident: ref23
  article-title: The human TAS2R16 receptor mediates bitter taste in response to beta-glucopyranosides
  publication-title: Nat Genet
  doi: 10.1038/ng1014
– volume: 23
  start-page: R401
  issue: 9
  year: 2013
  ident: ref15
  article-title: Early Influences on the Development of Food Preferences
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2013.02.037
– volume: 82
  start-page: 109
  issue: 1
  year: 2004
  ident: ref74
  article-title: Valid across-group comparisons with labeled scales: the gLMS versus magnitude matching
  publication-title: Physiol Behav
  doi: 10.1016/j.physbeh.2004.02.033
– volume: 102
  start-page: 1375
  issue: 9
  year: 2009
  ident: ref4
  article-title: Developmental changes in the acceptance of the five basic tastes in the first year of life
  publication-title: Br J Nutr
  doi: 10.1017/S0007114509990286
– volume: 56
  start-page: 1209
  issue: 6
  year: 1994
  ident: ref11
  article-title: Use of Veronia-amygdalina by wild chimpanzee—possible roles of its bitter and related constituents
  publication-title: Physiol Behav
  doi: 10.1016/0031-9384(94)90368-9
– volume: 404
  start-page: 601
  issue: 6778
  year: 2000
  ident: ref19
  article-title: A family of candidate taste receptors in human and mouse
  publication-title: Nature
  doi: 10.1038/35007072
– volume: 59
  start-page: 1555
  year: 1988
  ident: ref3
  article-title: Differential facial responses to four basic tastes in newborns
  publication-title: Child Dev
  doi: 10.2307/1130670
– volume: 51
  start-page: 1435
  issue: 5
  year: 1997
  ident: ref8
  article-title: Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense
  publication-title: Evolution
  doi: 10.2307/2411196
– ident: ref7
  doi: 10.1016/B978-0-12-209750-8.50014-7
– volume: 171
  start-page: 757
  issue: 3973
  year: 1971
  ident: ref9
  article-title: Allelochemics: Chemical Interactions between Species
  publication-title: Science
  doi: 10.1126/science.171.3973.757
– volume: 19
  start-page: 4278
  issue: 21
  year: 2010
  ident: ref33
  article-title: The perception of quinine taste intensity is associated with common genetic variants in a bitter receptor cluster on chromosome 12
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddq324
– volume: 73
  start-page: 83
  issue: 2
  year: 2015
  ident: ref54
  article-title: Taste perception, associated hormonal modulation, and nutrient intake
  publication-title: Nutr Rev
  doi: 10.1093/nutrit/nuu009
– volume: 33
  start-page: 201
  issue: 1
  year: 2013
  ident: ref41
  article-title: The Human Bitter Taste Receptor TAS2R10 Is Tailored to Accommodate Numerous Diverse Ligands
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3248-12.2013
– volume: 88
  start-page: 633
  issue: 3
  year: 1978
  ident: ref64
  article-title: Testing hypotheses about linkage disequilibrium with multiple alleles
  publication-title: Genetics
  doi: 10.1093/genetics/88.3.633
– volume: 366
  start-page: 717
  issue: 9487
  year: 2005
  ident: ref12
  article-title: South East Asian Quinine Artesunate Malaria Trial (SEAQUAMAT) group. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)67176-0
– volume: 20
  start-page: 3437
  issue: 17
  year: 2011
  ident: ref26
  article-title: Genomic, genetic and functional dissection of bitter taste responses to artificial sweeteners
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddr252
– volume: 35
  start-page: 157
  issue: 2
  year: 2010
  ident: ref31
  article-title: The Molecular Receptive Ranges of Human TAS2R Bitter Taste Receptors
  publication-title: Chem Senses
  doi: 10.1093/chemse/bjp092
– volume: 106
  start-page: 1138
  issue: 3
  year: 2008
  ident: ref59
  article-title: Functions of human bitter taste receptors depend on N-glycosylation
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.2008.05453.x
– volume: 23
  start-page: 7376
  issue: 19
  year: 2003
  ident: ref78
  article-title: Functional Interaction between T2R Taste Receptors and G-Protein α Subunits Expressed in Taste Receptor Cells
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-19-07376.2003
– volume: 17
  start-page: 1403
  issue: 16
  year: 2007
  ident: ref25
  article-title: Specific Alleles of Bitter Receptor Genes Influence Human Sensitivity to the Bitterness of Aloin and Saccharin
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2007.07.046
– volume: 491
  start-page: 56
  issue: 7422
  year: 2012
  ident: ref36
  article-title: An integrated map of genetic variation from 1,092 human genomes
  publication-title: Nature
  doi: 10.1038/nature11632
– volume: 30
  start-page: 202
  issue: 2
  year: 2013
  ident: ref48
  article-title: Do polymorphisms in chemosensory genes matter for human ingestive behavior?
  publication-title: Food Quality and Preference
  doi: 10.1016/j.foodqual.2013.05.013
– volume: 35
  start-page: 685
  issue: 8
  year: 2010
  ident: ref46
  article-title: Genetics and Bitter Taste Responses to Goitrin, a Plant Toxin Found in Vegetables
  publication-title: Chem Senses
  doi: 10.1093/chemse/bjq061
– volume: 5
  start-page: 2113
  issue: 10
  year: 2007
  ident: ref57
  article-title: The Diploid Genome Sequence of an Individual Human
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0050254
– volume: 100
  start-page: 693
  issue: 6
  year: 2000
  ident: ref16
  article-title: A novel family of mammalian taste receptors
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80705-9
– volume: 38
  start-page: 2550
  issue: 10
  year: 2014
  ident: ref28
  article-title: Polymorphisms in TRPV1 and TAS2Rs Associate with Sensations from Sampled Ethanol
  publication-title: Alcohol Clin Exp Res
  doi: 10.1111/acer.12527
– volume: 61
  start-page: 167
  year: 1997
  ident: ref6
  article-title: Advances in Agronomy
– volume: 100
  start-page: 703
  issue: 6
  year: 2000
  ident: ref18
  article-title: T2Rs function as bitter taste receptors
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80706-0
– volume: 7
  start-page: e45232
  issue: 11
  year: 2012
  ident: ref43
  article-title: Bitter Taste Receptor Polymorphisms and Human Aging
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0045232
– volume: 13
  start-page: 134
  issue: 1
  year: 2012
  ident: ref61
  article-title: Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-13-134
– volume: 37
  start-page: 737
  issue: 8
  year: 2012
  ident: ref29
  article-title: Variation in the Gene TAS2R13 is Associated with Differences in Alcohol Consumption in Patients with Head and Neck Cancer
  publication-title: Chem Senses
  doi: 10.1093/chemse/bjs063
– volume: 31
  start-page: 288
  issue: 2
  year: 2013
  ident: ref37
  article-title: Origin and Differential Selection of Allelic Variation at TAS2R16 Associated with Salicin Bitter Taste Sensitivity in Africa
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst211
– volume: 2
  start-page: 161
  issue: 45
  year: 1852
  ident: ref76
  article-title: Criterion for the rejection of doubtful observations
  publication-title: Astron J
  doi: 10.1086/100259
– volume: 56
  start-page: 1217
  issue: 6
  year: 1994
  ident: ref10
  article-title: Is the bitter rejection response always adaptive?
  publication-title: Physiol Behav
  doi: 10.1016/0031-9384(94)90369-7
– volume: 449
  start-page: 851
  issue: 7164
  year: 2007
  ident: ref45
  article-title: International Haplotype Map (HapMap) Consortium. A second generation human haplotype map of over 3.1 million SNPs
  publication-title: Nature
  doi: 10.1038/nature06258
– volume: 71
  start-page: 1227
  issue: 5
  year: 2002
  ident: ref67
  article-title: Distribution of Recombination Crossovers and the Origin of Haplotype Blocks: The Interplay of Population History, Recombination, and Mutation
  publication-title: Am J Hum Genet
  doi: 10.1086/344398
– volume: 36
  start-page: 311
  issue: 3
  year: 2011
  ident: ref34
  article-title: Allelic Variation in TAS2R Bitter Receptor Genes Associates with Variation in Sensations from and Ingestive Behaviors toward Common Bitter Beverages in Adults
  publication-title: Chem Senses
  doi: 10.1093/chemse/bjq132
– volume: 21
  start-page: 263
  issue: 2
  year: 2005
  ident: ref66
  article-title: Haploview: analysis and visualization of LD and haplotype maps
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth457
– ident: ref35
– start-page: 173
  year: 1977
  ident: ref5
  article-title: Taste and Development: the genesis of sweet preference
– volume: 4
  start-page: 587
  issue: 8
  year: 2003
  ident: ref44
  article-title: Haplotype blocks and linkage disequilibrium in the human genome
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1123
SSID ssj0035897
Score 2.3864002
Snippet The ability to taste bitterness evolved to safeguard most animals, including humans, against potentially toxic substances, thereby leading to food rejection....
  The ability to taste bitterness evolved to safeguard most animals, including humans, against potentially toxic substances, thereby leading to food rejection....
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1005530
SubjectTerms 2.1 Biological and endogenous factors
Aetiology
Alleles
Animals
Biotechnology
Dental/Oral and Craniofacial Disease
Deoxyribonucleic acid
Developmental Biology
DNA
European Continental Ancestry Group
Experiments
Funding
G-Protein-Coupled
Genes
Genetic aspects
Genetic Association Studies
Genetic polymorphisms
Genetics
Genotype
Genotype & phenotype
Guaiane
Haplotypes
Human Genome
Humans
Iridoids
Iridoids - chemistry
Neurosciences
Nutrition
Observations
Phenylthiourea
Phenylthiourea - chemistry
Polymorphism
Polymorphism, Single Nucleotide
QH426-470
Quassins
Quassins - chemistry
Quinine
Quinine - chemistry
Receptors
Receptors, G-Protein-Coupled
Receptors, G-Protein-Coupled - genetics
Research Article
Sesquiterpenes
Sesquiterpenes - chemistry
Sesquiterpenes, Guaiane
Sesquiterpenes, Guaiane - chemistry
Single Nucleotide
Taste
Taste Buds
Taste Buds - metabolism
Taste Perception
Taste Perception - genetics
Tongue
Values
White People
Whites
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BJSQuiHcNLSwIiZOp196Hc2wRpSBRKtKg3laz6zWNFOyIJAf-PTNex6oRUnvgkoP92ZFnZmdn7JlvGHuTCVeZGjNVEIVK5cS7FKQqUhk8lWBMpJPUnPzlVJ_M5OcLdXFl1BfVhEV64Ci4g7qCDDDJEAGM1GAc6NyHCbHOTEDXjrwv7nnbZCr64EKVcayKwr81mNb3TXOFEQe9jt4tUUFUI0Bzc0abUsfdP3jo2818TsSni3b1ryD071rKK5vT8X12r48q-WF8mgfsVmgesjtxzuTvR2yGwWFYYnbNz9oFJvso2_nqJ4em4h9D15fMpx2P7OZX4N07QvBrvm759BKWgR_NqeWHnwNaBD8bKmEes9nxh_P3J2k_TyH1uArXaV27SmnvFWZNdeVlSe0h9PiFwi3LS6cKbUxW5XkQtVMKco8ZrMoCKBFQo8UTttO0Tdhl3OfSBQXKQ1bLPKiJq2qvAaO_kEGlIWHFVqDW92TjNPNiYbsvaAaTjigZS2qwvRoSlg5XLSPZxjX4I9LVgCWq7O4AGpDtDcheZ0AJe0matrHvdFjw9hBDK4yFjcwT9rpDEF1GQ_U4P2CzWtlPX7_fADQ9vQno2wj0tgfVLcrMQ98ogZInrq4Rcm-ERM_gR6f30XhR_vQrSvLtudClkDT_UukyYbtk1lvRriwGsxnmw6XQCXu1NXVLd6VKvCa0G8KIMjM0dSFhT6PpD_LH4Bqvl0XCzGhRjBQ0PtPMLztOc_p8L4169j80-pzdxbBWxUrAPbaDCyjsY-i4di86L_EHPYFoYw
  priority: 102
  providerName: Directory of Open Access Journals
Title Receptor Polymorphism and Genomic Structure Interact to Shape Bitter Taste Perception
URI https://cir.nii.ac.jp/crid/1870302168147693568
https://www.ncbi.nlm.nih.gov/pubmed/26406243
https://www.proquest.com/docview/1718077478
https://pubmed.ncbi.nlm.nih.gov/PMC4583475
https://doaj.org/article/fda0a1561ea746a7ba62ce909729a6fb
http://dx.doi.org/10.1371/journal.pgen.1005530
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB41rZC4VLxraMOCkDi58mPX6xwQalGrgtSACkG5WbvrdRspsU2cSOTfM2M7FkYFeskh_mzJ89id8c58A_DG83UqM8xUlR8Kl4-MdhUXocutoRKMEdecmpMvx9HFhH-aiukObGe2tgKsbk3taJ7UZDk__vlj8x4d_l09tUH625uOSxQ5nfrTJJwB7OHeJMlVL3l3rhCKuBm3ghBXYrrfNtP97Sm9zarm9O9W7kE-mxEh6ryobgtO_6yx_G3TOn8A-220yU4a83gIOzZ_BPea-ZObxzDBoNGWmHWzsphvFgXKfFYtmMpTRtyti5lhDb_semkZEUtQSxVbFay6UaVldLJkl2yl0FJY2VXIPIHJ-dm3DxduO2fBNeidKzfLdCoiYwRmU1lqeExtI_T6ocCtzHAtwkhKLw0C62daCBUYzGyFZ5XwLWo6fAq7eZHbA2Am4NoKJYzyMh5YMdJpZiKFUaH1VBopB8KtQBPTkpDTLIx5Up-sSUxGGskkpIakVYMDbndX2ZBw_Ad_SrrqsEShXf9RLK-T1iOTLFWewuzVt0rySEmtosDYEdEZjVSUaQdekqaTph-1WwiSEwy5MEaWPHDgdY0gGo2c6nSu1bqqko-fv98B9HV8F9BVD_S2BWUFysyotoECJU8cXj3kYQ-JK4bpXT5C40X5068f05of-FHsc5qLKaLYgQMy661oqwSDXA_z5NiPHHi1NfWEnkoVerkt1oTxY0_SNAYHnjWm38kfg268n4cOyJ5T9BTUv5LPbmquczrW51I8__cbvYD7GMiKpvbvEHbRNewRBosrPYSBnMoh7J2ejb9cDetPLsN6TfgFEHRo-g
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Receptor+polymorphism+and+genomic+structure+interact+to+shape+bitter+taste+perception&rft.jtitle=PLoS+genetics&rft.au=Roudnitzky%2C+Natacha&rft.au=Behrens%2C+Maik&rft.au=Engel%2C+Anika&rft.au=Kohl%2C+Susann&rft.date=2015-09-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=11&rft.issue=9&rft_id=info:doi/10.1371%2Fjournal.pgen.1005530&rft.externalDocID=A431533742
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon