Loss of the DNA Methyltransferase MET1 Induces H3K9 Hypermethylation at PcG Target Genes and Redistribution of H3K27 Trimethylation to Transposons in Arabidopsis thaliana
Dimethylation of histone H3 lysine 9 (H3K9m2) and trimethylation of histone H3 lysine 27 (H3K27m3) are two hallmarks of transcriptional repression in many organisms. In Arabidopsis thaliana, H3K27m3 is targeted by Polycomb Group (PcG) proteins and is associated with silent protein-coding genes, whil...
Saved in:
Published in | PLoS genetics Vol. 8; no. 11; p. e1003062 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.11.2012
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dimethylation of histone H3 lysine 9 (H3K9m2) and trimethylation of histone H3 lysine 27 (H3K27m3) are two hallmarks of transcriptional repression in many organisms. In Arabidopsis thaliana, H3K27m3 is targeted by Polycomb Group (PcG) proteins and is associated with silent protein-coding genes, while H3K9m2 is correlated with DNA methylation and is associated with transposons and repetitive sequences. Recently, ectopic genic DNA methylation in the CHG context (where H is any base except G) has been observed in globally DNA hypomethylated mutants such as met1, but neither the nature of the hypermethylated loci nor the biological significance of this epigenetic phenomenon have been investigated. Here, we generated high-resolution, genome-wide maps of both H3K9m2 and H3K27m3 in wild-type and met1 plants, which we integrated with transcriptional data, to explore the relationships between these two marks. We found that ectopic H3K9m2 observed in met1 can be due to defects in IBM1-mediated H3K9m2 demethylation at some sites, but most importantly targets H3K27m3-marked genes, suggesting an interplay between these two silencing marks. Furthermore, H3K9m2/DNA-hypermethylation at these PcG targets in met1 is coupled with a decrease in H3K27m3 marks, whereas CG/H3K9m2 hypomethylated transposons become ectopically H3K27m3 hypermethylated. Our results bear interesting similarities with cancer cells, which show global losses of DNA methylation but ectopic hypermethylation of genes previously marked by H3K27m3. |
---|---|
AbstractList |
Dimethylation of histone H3 lysine 9 (H3K9m2) and trimethylation of histone H3 lysine 27 (H3K27m3) are two hallmarks of transcriptional repression in many organisms. In Arabidopsis thaliana, H3K27m3 is targeted by Polycomb Group (PcG) proteins and is associated with silent protein-coding genes, while H3K9m2 is correlated with DNA methylation and is associated with transposons and repetitive sequences. Recently, ectopic genic DNA methylation in the CHG context (where H is any base except G) has been observed in globally DNA hypomethylated mutants such as met1, but neither the nature of the hypermethylated loci nor the biological significance of this epigenetic phenomenon have been investigated. Here, we generated high-resolution, genome-wide maps of both H3K9m2 and H3K27m3 in wild-type and met1 plants, which we integrated with transcriptional data, to explore the relationships between these two marks. We found that ectopic H3K9m2 observed in met1 can be due to defects in IBM1-mediated H3K9m2 demethylation at some sites, but most importantly targets H3K27m3-marked genes, suggesting an interplay between these two silencing marks. Furthermore, H3K9m2/DNA-hypermethylation at these PcG targets in met1 is coupled with a decrease in H3K27m3 marks, whereas CG/H3K9m2 hypomethylated transposons become ectopically H3K27m3 hypermethylated. Our results bear interesting similarities with cancer cells, which show global losses of DNA methylation but ectopic hypermethylation of genes previously marked by H3K27m3. Dimethylation of histone H3 lysine 9 (H3K9m2) and trimethylation of histone H3 lysine 27 (H3K27m3) are two hallmarks of transcriptional repression in many organisms. In Arabidopsis thaliana, H3K27m3 is targeted by Polycomb Group (PcG) proteins and is associated with silent protein-coding genes, while H3K9m2 is correlated with DNA methylation and is associated with transposons and repetitive sequences. Recently, ectopic genic DNA methylation in the CHG context (where H is any base except G) has been observed in globally DNA hypomethylated mutants such as met1, but neither the nature of the hypermethylated loci nor the biological significance of this epigenetic phenomenon have been investigated. Here, we generated high-resolution, genome-wide maps of both H3K9m2 and H3K27m3 in wild-type and met1 plants, which we integrated with transcriptional data, to explore the relationships between these two marks. We found that ectopic H3K9m2 observed in met1 can be due to defects in IBM1-mediated H3K9m2 demethylation at some sites, but most importantly targets H3K27m3-marked genes, suggesting an interplay between these two silencing marks. Furthermore, H3K9m2/DNA-hypermethylation at these PcG targets in met1 is coupled with a decrease in H3K27m3 marks, whereas CG/H3K9m2 hypomethylated transposons become ectopically H3K27m3 hypermethylated. Our results bear interesting similarities with cancer cells, which show global losses of DNA methylation but ectopic hypermethylation of genes previously marked by H3K27m3. Dimethylation of histone H3 lysine 9 (H3K9m2) and trimethylation of histone H3 lysine 27 (H3K27m3) are two hallmarks of transcriptional repression in many organisms. In Arabidopsis thaliana, H3K27m3 is targeted by Polycomb Group (PcG) proteins and is associated with silent protein-coding genes, while H3K9m2 is correlated with DNA methylation and is associated with transposons and repetitive sequences. Recently, ectopic genic DNA methylation in the CHG context (where H is any base except G) has been observed in globally DNA hypomethylated mutants such as met1, but neither the nature of the hypermethylated loci nor the biological significance of this epigenetic phenomenon have been investigated. Here, we generated high-resolution, genome-wide maps of both H3K9m2 and H3K27m3 in wild-type and met1 plants, which we integrated with transcriptional data, to explore the relationships between these two marks. We found that ectopic H3K9m2 observed in met1 can be due to defects in IBM1-mediated H3K9m2 demethylation at some sites, but most importantly targets H3K27m3-marked genes, suggesting an interplay between these two silencing marks. Furthermore, H3K9m2/DNA-hypermethylation at these PcG targets in met1 is coupled with a decrease in H3K27m3 marks, whereas CG/H3K9m2 hypomethylated transposons become ectopically H3K27m3 hypermethylated. Our results bear interesting similarities with cancer cells, which show global losses of DNA methylation but ectopic hypermethylation of genes previously marked by H3K27m3.Dimethylation of histone H3 lysine 9 (H3K9m2) and trimethylation of histone H3 lysine 27 (H3K27m3) are two hallmarks of transcriptional repression in many organisms. In Arabidopsis thaliana, H3K27m3 is targeted by Polycomb Group (PcG) proteins and is associated with silent protein-coding genes, while H3K9m2 is correlated with DNA methylation and is associated with transposons and repetitive sequences. Recently, ectopic genic DNA methylation in the CHG context (where H is any base except G) has been observed in globally DNA hypomethylated mutants such as met1, but neither the nature of the hypermethylated loci nor the biological significance of this epigenetic phenomenon have been investigated. Here, we generated high-resolution, genome-wide maps of both H3K9m2 and H3K27m3 in wild-type and met1 plants, which we integrated with transcriptional data, to explore the relationships between these two marks. We found that ectopic H3K9m2 observed in met1 can be due to defects in IBM1-mediated H3K9m2 demethylation at some sites, but most importantly targets H3K27m3-marked genes, suggesting an interplay between these two silencing marks. Furthermore, H3K9m2/DNA-hypermethylation at these PcG targets in met1 is coupled with a decrease in H3K27m3 marks, whereas CG/H3K9m2 hypomethylated transposons become ectopically H3K27m3 hypermethylated. Our results bear interesting similarities with cancer cells, which show global losses of DNA methylation but ectopic hypermethylation of genes previously marked by H3K27m3. Dimethylation of histone H3 lysine 9 (H3K9m2) and trimethylation of histone H3 lysine 27 (H3K27m3) are two hallmarks of transcriptional repression in many organisms. In Arabidopsis thaliana , H3K27m3 is targeted by Polycomb Group (PcG) proteins and is associated with silent protein-coding genes, while H3K9m2 is correlated with DNA methylation and is associated with transposons and repetitive sequences. Recently, ectopic genic DNA methylation in the CHG context (where H is any base except G) has been observed in globally DNA hypomethylated mutants such as met1 , but neither the nature of the hypermethylated loci nor the biological significance of this epigenetic phenomenon have been investigated. Here, we generated high-resolution, genome-wide maps of both H3K9m2 and H3K27m3 in wild-type and met1 plants, which we integrated with transcriptional data, to explore the relationships between these two marks. We found that ectopic H3K9m2 observed in met1 can be due to defects in IBM1-mediated H3K9m2 demethylation at some sites, but most importantly targets H3K27m3-marked genes, suggesting an interplay between these two silencing marks. Furthermore, H3K9m2/DNA-hypermethylation at these PcG targets in met1 is coupled with a decrease in H3K27m3 marks, whereas CG/H3K9m2 hypomethylated transposons become ectopically H3K27m3 hypermethylated. Our results bear interesting similarities with cancer cells, which show global losses of DNA methylation but ectopic hypermethylation of genes previously marked by H3K27m3. In plants and animals, repetitive DNA sequences and transposable elements are marked with DNA methylation, which is associated with methylation on lysine 9 of histone 3 (H3K9) and silencing. On the other hand, protein-coding genes, in particular the ones involved in differentiation processes, are targeted by Polycomb Group (PcG) proteins, which results in trimethylation of H3K27—another hallmark of transcriptional repression. These two systems of silencing are thought to be independent, but in this study we reveal an interplay between them. In the model plant Arabidopsis we show that, in a globally DNA–hypomethylated mutant, H3K27m3 marks can now be found at repeats and transposons; this is associated with a decrease of H3K27m3 at PcG targets, with some of them becoming targets of DNA and H3K9 methylation. Our data suggest that H3K27m3 prevents ectopic DNA/H3K9 methylation at cryptic DNA methylation targets, which could provide a novel significance for this mark with regard to genome integrity. In addition, this study reveals interesting similarities with cancer cells, which show global losses of DNA methylation but ectopic hypermethylation of genes previously marked by H3K27m3, and suggests the potential of Arabidopsis as a system for understanding mammalian developmental and cancer biology. |
Audience | Academic |
Author | Bernatavichute, Yana Klein, Gregor Johnson, Elizabeth Schubert, Daniel Deleris, Angelique Stroud, Hume Jacobsen, Steven E. |
AuthorAffiliation | University of Cambridge, United Kingdom 2 Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America 4 Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America 3 Institute of Genetics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany 1 Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America |
AuthorAffiliation_xml | – name: 2 Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America – name: 3 Institute of Genetics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany – name: 1 Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America – name: University of Cambridge, United Kingdom – name: 4 Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America |
Author_xml | – sequence: 1 givenname: Angelique surname: Deleris fullname: Deleris, Angelique – sequence: 2 givenname: Hume surname: Stroud fullname: Stroud, Hume – sequence: 3 givenname: Yana surname: Bernatavichute fullname: Bernatavichute, Yana – sequence: 4 givenname: Elizabeth surname: Johnson fullname: Johnson, Elizabeth – sequence: 5 givenname: Gregor surname: Klein fullname: Klein, Gregor – sequence: 6 givenname: Daniel surname: Schubert fullname: Schubert, Daniel – sequence: 7 givenname: Steven E. surname: Jacobsen fullname: Jacobsen, Steven E. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23209430$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk1tv0zAUxyM0xC7wDRBYQkLw0OJrEvOAVI2xVeyCRuHVcp2T1lNqF9tF7CvxKXG7bmqnCYHykOjk9_-fi332ix3nHRTFc4L7hFXk3ZVfBKe7_nwCrk8wZrikj4o9IgTrVRzznY3v3WI_xqvMiFpWT4pdyiiWnOG94vepjxH5FqUpoI_nA3QGaXrdpaBdbCHoCOjsaETQ0DULAxGdsM8SnVzPIcxWoE7WO6QT-mKO0UiHCSR0DC6T2jXoEhobU7DjxQrLabKeVmgU7KY8-RzJCec-eheRdWgQ9Ng2fh5tzJXpzmqnnxaPW91FeLZ-HxTfPh2NDk96pxfHw8PBac9UkqbeuOZCtoRKWtYlk5wCBm3GZFyXJREUl4I3WHNmNOFgKEheQSmgqkVN67bh7KB4eeM773xU6zFHRRhhAgvCcCaGN0Tj9ZWa52Z0uFZeW7UK-DBROiRrOlBMABeGUqo15RTTupRCC0IbIzVpaZu9PqyzLcYzaAy4PPtuy3T7j7NTNfE_s3M-dCqzwZu1QfA_FhCTmtlooOu0A7_IdefklAlZL-t-dQ99uLs1NdG5Aetan_OapakaMEIx4VKyTPUfoPLTwMyafFVbm-Nbgrdbgswk-JUmehGjGn69_A_2_N_Zi-_b7OsNdgq6S9Pou9XtjNvgi81TuTuO28XJAL8BTMgLFKC9QwhWy_28Ha1a7qda72eWvb8nMzatliBPz3Z_F_8BSxg-Ug |
CitedBy_id | crossref_primary_10_1186_s12864_017_3542_8 crossref_primary_10_1016_j_gde_2016_11_001 crossref_primary_10_1111_nph_13540 crossref_primary_10_1371_journal_pgen_1008093 crossref_primary_10_1016_j_tig_2017_01_006 crossref_primary_10_1093_gbe_evu040 crossref_primary_10_1093_nar_gkae690 crossref_primary_10_1371_journal_pone_0085383 crossref_primary_10_3389_fpls_2021_705249 crossref_primary_10_1016_j_tig_2021_06_003 crossref_primary_10_1007_s00299_014_1645_0 crossref_primary_10_1016_j_chemosphere_2019_04_076 crossref_primary_10_1073_pnas_2023347118 crossref_primary_10_1101_gr_155879_113 crossref_primary_10_1080_21541264_2020_1803031 crossref_primary_10_1186_s13059_022_02768_x crossref_primary_10_1093_mp_ssu079 crossref_primary_10_3390_cancers15153838 crossref_primary_10_1038_s42003_023_05501_x crossref_primary_10_1073_pnas_2010003118 crossref_primary_10_3389_fpls_2015_01161 crossref_primary_10_1016_j_cub_2019_12_015 crossref_primary_10_1146_annurev_genet_072920_015534 crossref_primary_10_1007_s12298_023_01390_w crossref_primary_10_1073_pnas_1807796115 crossref_primary_10_1093_plcell_koac219 crossref_primary_10_3748_wjg_v21_i47_13268 crossref_primary_10_1016_j_celrep_2023_112894 crossref_primary_10_1093_plphys_kiac459 crossref_primary_10_3389_fpls_2014_00780 crossref_primary_10_1093_jxb_erz435 crossref_primary_10_1016_j_cub_2020_10_098 crossref_primary_10_1038_s41556_021_00658_1 crossref_primary_10_1266_ggs_21_00041 crossref_primary_10_1186_s12915_022_01436_7 crossref_primary_10_1016_j_cell_2018_06_044 crossref_primary_10_1073_pnas_2104445118 crossref_primary_10_1016_j_celrep_2014_04_012 crossref_primary_10_7554_eLife_72676 crossref_primary_10_1101_gad_270876_115 crossref_primary_10_1371_journal_pone_0158936 crossref_primary_10_1101_gad_332924_119 crossref_primary_10_1038_s41467_022_28468_5 crossref_primary_10_1073_pnas_1716300115 crossref_primary_10_1146_annurev_phyto_080615_100308 crossref_primary_10_1007_s10142_020_00756_7 crossref_primary_10_1016_j_pbi_2023_102419 crossref_primary_10_1111_tpj_12828 crossref_primary_10_1038_s41467_020_16951_w crossref_primary_10_3390_epigenomes6010003 crossref_primary_10_1016_j_bbagrm_2016_08_009 crossref_primary_10_3389_fpls_2015_00130 crossref_primary_10_15252_embj_201593534 crossref_primary_10_1101_gad_269902_115 crossref_primary_10_1007_s11738_017_2427_4 crossref_primary_10_1073_pnas_1316009110 crossref_primary_10_1186_s13059_022_02750_7 crossref_primary_10_3390_cells11162501 crossref_primary_10_1101_gad_320796_118 crossref_primary_10_1105_tpc_114_130120 crossref_primary_10_1186_s13059_022_02833_5 crossref_primary_10_1002_bies_201300130 crossref_primary_10_1111_tpj_12519 crossref_primary_10_1007_s11103_013_0165_6 crossref_primary_10_1093_plcell_koab284 crossref_primary_10_1101_gr_227116_117 crossref_primary_10_1186_s13059_024_03466_6 crossref_primary_10_1242_dev_201989 crossref_primary_10_1186_s13072_015_0033_5 crossref_primary_10_1038_nrg_2017_45 crossref_primary_10_1371_journal_pgen_1003717 crossref_primary_10_1007_s12374_017_0053_8 crossref_primary_10_1186_s13059_017_1313_0 crossref_primary_10_3389_fpls_2017_00607 crossref_primary_10_7554_eLife_58533 crossref_primary_10_1093_jxb_erx409 crossref_primary_10_1073_pnas_1600672113 crossref_primary_10_1101_gr_194555_115 crossref_primary_10_1073_pnas_1511377112 crossref_primary_10_1007_s00438_015_1149_9 crossref_primary_10_1073_pnas_1618224114 crossref_primary_10_1371_journal_pgen_1006014 crossref_primary_10_1016_j_molcel_2014_07_008 crossref_primary_10_3390_cells10112952 crossref_primary_10_1002_wdev_342 crossref_primary_10_1093_nar_gkad610 crossref_primary_10_1038_nsmb_2735 crossref_primary_10_1016_j_molcel_2019_10_011 crossref_primary_10_1093_jxb_ert410 crossref_primary_10_1093_jxb_erw486 crossref_primary_10_1186_s13059_016_0967_3 crossref_primary_10_26508_lsa_202000848 crossref_primary_10_1038_ncomms3301 crossref_primary_10_1371_journal_pgen_1005154 crossref_primary_10_15252_embj_201798482 crossref_primary_10_1186_s13059_024_03163_4 crossref_primary_10_3390_genes11060638 crossref_primary_10_1186_s12870_014_0293_4 crossref_primary_10_1101_gr_182238_114 crossref_primary_10_7554_eLife_31216 crossref_primary_10_1038_nplants_2016_145 crossref_primary_10_1534_genetics_117_300103 crossref_primary_10_1016_j_pbi_2019_02_008 crossref_primary_10_1371_journal_pgen_1005142 crossref_primary_10_1371_journal_pgen_1005660 crossref_primary_10_1042_BST20200192 crossref_primary_10_7554_eLife_64593 crossref_primary_10_15252_embj_201695602 crossref_primary_10_3389_fgene_2022_760690 crossref_primary_10_1093_bib_bbz039 crossref_primary_10_1146_annurev_arplant_043014_115627 crossref_primary_10_1186_s13072_021_00395_7 crossref_primary_10_1101_gr_277353_122 crossref_primary_10_1073_pnas_2210844119 |
Cites_doi | 10.1093/emboj/cdf657 10.1016/j.cell.2007.07.007 10.1126/science.1063127 10.1371/journal.pgen.1001152 10.1126/science.277.5329.1100 10.1016/j.gde.2007.08.011 10.1038/ng1929 10.1016/j.cell.2008.03.029 10.1038/ng1972 10.1038/ng1950 10.1038/ng1941 10.1016/j.tig.2009.09.013 10.1104/pp.111.186445 10.1371/journal.pbio.0050129 10.1038/emboj.2009.59 10.1371/journal.pgen.0030086 10.1016/j.cub.2005.01.008 10.1016/S0960-9822(00)00324-9 10.1038/emboj.2011.399 10.1101/gr.131169.111 10.1038/nature06745 10.1016/j.gde.2007.09.004 10.1371/journal.pgen.1000145 10.1016/S1097-2765(05)00090-0 10.1038/nature08618 10.1101/gad.1667808 10.1101/gr.080861.108 10.1126/science.1172417 10.1038/emboj.2010.227 10.1023/A:1010636222327 10.1016/j.cub.2007.01.009 10.1016/j.cell.2006.08.003 10.1371/journal.pbio.0060194 10.1038/sj.emboj.7600743 10.1038/nrg2719 10.1371/journal.pone.0003156 10.1101/gr.125872.111 10.1126/science.1150987 10.1038/ng1138 10.1038/emboj.2012.141 10.1038/nrg1601 10.1073/pnas.1432939100 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2012 Public Library of Science 2012 Deleris et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Deleris A, Stroud H, Bernatavichute Y, Johnson E, Klein G, et al. (2012) Loss of the DNA Methyltransferase MET1 Induces H3K9 Hypermethylation at PcG Target Genes and Redistribution of H3K27 Trimethylation to Transposons in Arabidopsis thaliana. PLoS Genet 8(11): e1003062. doi:10.1371/journal.pgen.1003062 2012 Deleris et al 2012 Deleris et al |
Copyright_xml | – notice: COPYRIGHT 2012 Public Library of Science – notice: 2012 Deleris et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Deleris A, Stroud H, Bernatavichute Y, Johnson E, Klein G, et al. (2012) Loss of the DNA Methyltransferase MET1 Induces H3K9 Hypermethylation at PcG Target Genes and Redistribution of H3K27 Trimethylation to Transposons in Arabidopsis thaliana. PLoS Genet 8(11): e1003062. doi:10.1371/journal.pgen.1003062 – notice: 2012 Deleris et al 2012 Deleris et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 3V. 7QP 7QR 7SS 7TK 7TM 7TO 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pgen.1003062 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | H3K27m3 and Ectopic H3K9/DNA Methylation in met1 Mutant |
EISSN | 1553-7404 |
ExternalDocumentID | 1313505130 oai_doaj_org_article_35e45c222aa242028695a512dc9a1f2f PMC3510029 2904936331 A312014993 23209430 10_1371_journal_pgen_1003062 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | France |
GeographicLocations_xml | – name: France |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM60398 – fundername: NIGMS NIH HHS grantid: R37 GM060398 – fundername: Howard Hughes Medical Institute – fundername: NIGMS NIH HHS grantid: R01 GM060398 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO QF4 QN7 RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY PQGLB PV9 RIG RZL WOQ PMFND 3V. 7QP 7QR 7SS 7TK 7TM 7TO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM PUEGO AAPBV ABPTK M~E |
ID | FETCH-LOGICAL-c792t-b8459f12926863942e0eacb1b8661520654d0a43ca14ec2e947e65e785828fd43 |
IEDL.DBID | M48 |
ISSN | 1553-7404 1553-7390 |
IngestDate | Sun Oct 01 00:20:28 EDT 2023 Wed Aug 27 01:31:31 EDT 2025 Thu Aug 21 17:27:26 EDT 2025 Mon Jul 21 10:47:37 EDT 2025 Fri Jul 25 12:26:13 EDT 2025 Tue Jun 17 21:50:31 EDT 2025 Tue Jun 10 20:14:03 EDT 2025 Fri Jun 27 03:54:31 EDT 2025 Fri Jun 27 03:51:03 EDT 2025 Fri Jun 27 04:58:59 EDT 2025 Thu May 22 21:22:05 EDT 2025 Tue Aug 05 11:41:57 EDT 2025 Tue Jul 01 00:25:58 EDT 2025 Thu Apr 24 23:06:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c792t-b8459f12926863942e0eacb1b8661520654d0a43ca14ec2e947e65e785828fd43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceived and designed the experiments: AD HS SEJ. Performed the experiments: AD HS YB EJ. Analyzed the data: AD HS. Contributed reagents/materials/analysis tools: AD HS SEJ GK DS. Wrote the paper: AD. The authors have declared that no competing interests exist. Current address: Environmental and Evolutionary Genomics Section, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1003062 |
PMID | 23209430 |
PQID | 1313505130 |
PQPubID | 1436339 |
ParticipantIDs | plos_journals_1313505130 doaj_primary_oai_doaj_org_article_35e45c222aa242028695a512dc9a1f2f pubmedcentral_primary_oai_pubmedcentral_nih_gov_3510029 proquest_miscellaneous_1222235980 proquest_journals_1313505130 gale_infotracmisc_A312014993 gale_infotracacademiconefile_A312014993 gale_incontextgauss_ISR_A312014993 gale_incontextgauss_ISN_A312014993 gale_incontextgauss_IOV_A312014993 gale_healthsolutions_A312014993 pubmed_primary_23209430 crossref_primary_10_1371_journal_pgen_1003062 crossref_citationtrail_10_1371_journal_pgen_1003062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-11-01 |
PublicationDateYYYYMMDD | 2012-11-01 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2012 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | X Zhang (ref17) 2006; 126 H Saze (ref43) 2003; 34 S Swiezewski (ref36) 2009; 462 H Easwaran (ref42) 2012; 22 A Miura (ref20) 2009; 28 TF Hsieh (ref41) 2009; 324 F Turck (ref3) 2007; 3 R Lister (ref16) 2008; 133 MD Lynch (ref33) 2012; 31 O Mathieu (ref25) 2007; 130 M Widschwendter (ref29) 2007; 39 WJ Soppe (ref12) 2002; 21 JH Huh (ref40) 2007; 17 JA Law (ref8) 2010; 11 AM Lindroth (ref34) 2008; 4 H Saze (ref21) 2008; 319 JE Ohm (ref30) 2007; 39 SE Jacobsen (ref23) 1997; 277 FM Pauler (ref26) 2009; 19 JB Heo (ref37) 2010; 331 Y Schlesinger (ref31) 2007; 39 IR Henderson (ref14) 2008; 22 SW Chan (ref32) 2005; 6 RK Tran (ref19) 2005; 15 GC Hon (ref35) 2011; 22 D Zilberman (ref18) 2007; 39 C Baroux (ref39) 2007; 17 SJ Cokus (ref15) 2008; 452 PE Jullien (ref38) 2008; 6 WJ Soppe (ref13) 2000; 6 T Jenuwein (ref1) 2001; 293 M Rigal (ref28); 31 M Tariq (ref10) 2003; 100 X Zhang (ref4) 2007; 5 F Roudier (ref2) 2009; 25 N Kishimoto (ref27) 2001; 46 I Weinhofer (ref7) 2010; 6 O Mathieu (ref6) 2005; 24 SE Jacobsen (ref24) 2000; 10 S Inagaki (ref22) 2010; 29 S Holec (ref5) 2011; 158 LM Johnson (ref11) 2007; 17 YV Bernatavichute (ref9) 2008; 3 |
References_xml | – volume: 21 start-page: 6549 year: 2002 ident: ref12 article-title: DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis publication-title: EMBO J doi: 10.1093/emboj/cdf657 – volume: 130 start-page: 851 year: 2007 ident: ref25 article-title: Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation publication-title: Cell doi: 10.1016/j.cell.2007.07.007 – volume: 293 start-page: 1074 year: 2001 ident: ref1 article-title: Translating the histone code publication-title: Science doi: 10.1126/science.1063127 – volume: 6 start-page: e1001152 year: 2010 ident: ref7 article-title: H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation publication-title: PLoS Genet doi: 10.1371/journal.pgen.1001152 – volume: 277 start-page: 1100 year: 1997 ident: ref23 article-title: Hypermethylated SUPERMAN epigenetic alleles in arabidopsis publication-title: Science doi: 10.1126/science.277.5329.1100 – volume: 17 start-page: 480 year: 2007 ident: ref40 article-title: Endosperm gene imprinting and seed development publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2007.08.011 – volume: 39 start-page: 61 year: 2007 ident: ref18 article-title: Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription publication-title: Nat Genet doi: 10.1038/ng1929 – volume: 133 start-page: 523 year: 2008 ident: ref16 article-title: Highly integrated single-base resolution maps of the epigenome in Arabidopsis publication-title: Cell doi: 10.1016/j.cell.2008.03.029 – volume: 39 start-page: 237 year: 2007 ident: ref30 article-title: A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing publication-title: Nat Genet doi: 10.1038/ng1972 – volume: 39 start-page: 232 year: 2007 ident: ref31 article-title: Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer publication-title: Nat Genet doi: 10.1038/ng1950 – volume: 39 start-page: 157 year: 2007 ident: ref29 article-title: Epigenetic stem cell signature in cancer publication-title: Nat Genet doi: 10.1038/ng1941 – volume: 25 start-page: 511 year: 2009 ident: ref2 article-title: Chromatin indexing in Arabidopsis: an epigenomic tale of tails and more publication-title: Trends Genet doi: 10.1016/j.tig.2009.09.013 – volume: 158 start-page: 35 year: 2011 ident: ref5 article-title: Polycomb group complexes mediate developmental transitions in plants publication-title: Plant Physiol doi: 10.1104/pp.111.186445 – volume: 5 start-page: e129 year: 2007 ident: ref4 article-title: Whole-Genome Analysis of Histone H3 Lysine 27 Trimethylation in Arabidopsis publication-title: PLoS Biol doi: 10.1371/journal.pbio.0050129 – volume: 28 start-page: 1078 year: 2009 ident: ref20 article-title: An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites publication-title: EMBO J doi: 10.1038/emboj.2009.59 – volume: 3 start-page: e86 year: 2007 ident: ref3 article-title: Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27 publication-title: PLoS Genet doi: 10.1371/journal.pgen.0030086 – volume: 15 start-page: 154 year: 2005 ident: ref19 article-title: DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes publication-title: Curr Biol doi: 10.1016/j.cub.2005.01.008 – volume: 10 start-page: 179 year: 2000 ident: ref24 article-title: Ectopic hypermethylation of flower-specific genes in Arabidopsis publication-title: Curr Biol doi: 10.1016/S0960-9822(00)00324-9 – volume: 31 start-page: 317 year: 2012 ident: ref33 article-title: An interspecies analysis reveals a key role for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment publication-title: EMBO J doi: 10.1038/emboj.2011.399 – volume: 22 start-page: 837 year: 2012 ident: ref42 article-title: A DNA hypermethylation module for the stem/progenitor cell signature of cancer publication-title: Genome Res doi: 10.1101/gr.131169.111 – volume: 452 start-page: 215 year: 2008 ident: ref15 article-title: Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning publication-title: Nature doi: 10.1038/nature06745 – volume: 17 start-page: 473 year: 2007 ident: ref39 article-title: Chromatin modification and remodeling during early seed development publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2007.09.004 – volume: 4 start-page: e1000145 year: 2008 ident: ref34 article-title: Antagonism between DNA and H3K27 methylation at the imprinted Rasgrf1 locus publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000145 – volume: 6 start-page: 791 year: 2000 ident: ref13 article-title: The Late Flowering Phenotype of fwa Mutants Is Caused by Gain-of- Function Epigenetic Alleles of a Homeodomain Gene publication-title: Mol Cell doi: 10.1016/S1097-2765(05)00090-0 – volume: 462 start-page: 799 year: 2009 ident: ref36 article-title: Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target publication-title: Nature doi: 10.1038/nature08618 – volume: 22 start-page: 1597 year: 2008 ident: ref14 article-title: Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading publication-title: Genes Dev doi: 10.1101/gad.1667808 – volume: 19 start-page: 221 year: 2009 ident: ref26 article-title: H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome publication-title: Genome Res doi: 10.1101/gr.080861.108 – volume: 324 start-page: 1451 year: 2009 ident: ref41 article-title: Genome-wide demethylation of Arabidopsis endosperm publication-title: Science doi: 10.1126/science.1172417 – volume: 29 start-page: 3496 year: 2010 ident: ref22 article-title: Autocatalytic differentiation of epigenetic modifications within the Arabidopsis genome publication-title: EMBO J doi: 10.1038/emboj.2010.227 – volume: 46 start-page: 171 year: 2001 ident: ref27 article-title: Site specificity of the Arabidopsis MET1 DNA methyltransferase demonstrated through hypermethylation of the SUPERMAN locus publication-title: Plant Mol Biol doi: 10.1023/A:1010636222327 – volume: 17 start-page: 379 year: 2007 ident: ref11 article-title: The SRA Methyl-Cytosine-Binding Domain Links DNA and Histone Methylation publication-title: Current Biology doi: 10.1016/j.cub.2007.01.009 – volume: 126 start-page: 1189 year: 2006 ident: ref17 article-title: Genome-wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis publication-title: Cell doi: 10.1016/j.cell.2006.08.003 – volume: 6 start-page: e194 year: 2008 ident: ref38 article-title: Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis publication-title: PLoS Biol doi: 10.1371/journal.pbio.0060194 – volume: 24 start-page: 2783 year: 2005 ident: ref6 article-title: Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in Arabidopsis publication-title: Embo J doi: 10.1038/sj.emboj.7600743 – volume: 11 start-page: 204 year: 2010 ident: ref8 article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals publication-title: Nat Rev Genet doi: 10.1038/nrg2719 – volume: 3 start-page: e3156 year: 2008 ident: ref9 article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana publication-title: PLoS ONE doi: 10.1371/journal.pone.0003156 – volume: 22 start-page: 246 year: 2011 ident: ref35 article-title: Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer publication-title: Genome Res doi: 10.1101/gr.125872.111 – volume: 319 start-page: 462 year: 2008 ident: ref21 article-title: Control of genic DNA methylation by a jmjC domain-containing protein in Arabidopsis thaliana publication-title: Science doi: 10.1126/science.1150987 – volume: 34 start-page: 65 year: 2003 ident: ref43 article-title: Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis publication-title: Nat Genet doi: 10.1038/ng1138 – volume: 31 start-page: 2981 ident: ref28 article-title: DNA methylation in an intron of the IBM1 histone demethylase gene stabilizes chromatin modification patterns publication-title: EMBO J doi: 10.1038/emboj.2012.141 – volume: 6 start-page: 351 year: 2005 ident: ref32 article-title: Gardening the genome: DNA methylation in Arabidopsis thaliana publication-title: Nat Rev Genet doi: 10.1038/nrg1601 – volume: 331 start-page: 76 year: 2010 ident: ref37 article-title: Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA publication-title: Science – volume: 100 start-page: 8823 year: 2003 ident: ref10 article-title: Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1432939100 |
SSID | ssj0035897 |
Score | 2.434608 |
Snippet | Dimethylation of histone H3 lysine 9 (H3K9m2) and trimethylation of histone H3 lysine 27 (H3K27m3) are two hallmarks of transcriptional repression in many... Dimethylation of histone H3 lysine 9 (H3K9m2) and trimethylation of histone H3 lysine 27 (H3K27m3) are two hallmarks of transcriptional repression in many... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1003062 |
SubjectTerms | Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Biology Deoxyribonucleic acid DNA DNA (Cytosine-5-)-Methyltransferases - genetics DNA (Cytosine-5-)-Methyltransferases - metabolism DNA Methylation DNA Transposable Elements - genetics Epigenesis, Genetic Gene expression Gene Expression Regulation, Plant Genes Genetic aspects Genetics Health aspects Heterochromatin - genetics Histone-Lysine N-Methyltransferase Histones - genetics Interspersed Repetitive Sequences Jumonji Domain-Containing Histone Demethylases - genetics Jumonji Domain-Containing Histone Demethylases - metabolism Lysine - genetics Methylation Methyltransferases Physiological aspects Plant genetics Polycomb-Group Proteins - genetics Polycomb-Group Proteins - metabolism Proteins Transposons |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hSEhcEO-mFFgQEifTeNdre48BWsKjAUGLerPW9rqNFNlR7Bz6l_iVfON1TI0qtQeu2W9jZ2Y98008D8ZeK5wSGcapZyaF8AKdwg4WWeBFKfyZSeMg0FTvfDQPZyfB51N1emnUF-WEufbATnD7UtlAZfBixsCbwBuGWhl4qTzTxi9EQdYXPm8bTDkbLFXsxqooJb0IYX1XNCcjf7_T0dsVFEQ5AuDMYuCU2t79vYUerZZVfRX9_DeL8pJbOrzH7nZ8kk_d77jPbtnyAbvtJkxePGS_v-J6vCo4eB7_MJ9ymhh9sWxaumrXcGH86ODY5zTBAxaDz-QXzc8Rm64dsNUbNw3_nn3kLmucn5F55KbM-ZqKevuRWXQZ7BcRb2hmwN_tTcUb10Md5L7mixK3a9JFXq3qRY07a_9qMY_YyeHB8fuZ141n8LJIi8aDIpUuwBdEGIPnBMJOYMVTP43h85WgqtV8YgKZGT-wmbA6iGyobBTTm7oiD-RjNiqr0u4wHuU5Aqcs1dYiXi-KGLhQ5XkK9pZaEY-Z3Oonybre5TRCY5m0L-QixDBO3AlpNem0OmZev2vlendcg39Hqu-x1Hm7_QDnMenOY3LdeRyzF3RwElfG2tuPZCp9QeGolmP2qkVQ942S0nvOzKauk0_fft0A9HN-E9CPAehNByoqyCwzXd0FJE-tvwbIvQEShiYbLO_Qs7AVXQ1B-hIEGiwIO7fPx9XLL_tl-lLK6ytttQFGED9VOgbmiXucevGD61PaK1aiwYM20M9wpVyctx3SpaLOwnr3fyj0KbsDAQhXf7rHRs16Y5-BiDbp89bm_AEc1YOE priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagCIkL4r2FBQxC4hS28SOJT6jALuXRgpYu6i1yHGepVJLSpAf-Er-SGcfNErSCvdafm8Rjj7-x50HIMwmzhEdJFuhRwQKhMtCDhRFBnMF-prNECIXxztNZNDkR7xdy4Q_cau9WudOJTlHnlcEz8oOQhxx2a1C5L9c_AqwahbervoTGZXIFU5fhrI4XncHFZdIWV5GSBzEY9z50jsfhgZfUizWICT0FgDmz3tbkMvh3enqwXlX1eST0b1_KPzanoxvkumeVdNxOg5vkki1vkattncmft8mvj_A8WhUU2B59MxvTqQX5rBpHWu0GNjI6PZyHFOt4gN6gE_5B0QlYqJvvDuikR3VDP5u3dO58xynmq66pLnN6jKG9XeEsfAz0ZzGdY-WAs-5NRX0mdaD4NV2W8Lo6W-bVul7W8GbuwEXfISdHh_PXk8AXaQhMrFgTgDilKoA1sCgBtiOYHYEuz8IsgZ1fMoxdzUdacKNDYQ2zSsQ2kjZO8L6uyAW_SwZlVdo9QuM8B_PJZMpasNqLIgFcJPM8Aw6XWZYMCd_JJzU-gzkW0lil7louBkumHe4UpZp6qQ5J0PVatxk8_oN_haLvsJh_2_1QbU5Tv5xTLq2QBriV1sBxgKNFSmrgTrlROixYMSSPceKkbTBrp0XSMQ8ZGqWKD8lTh8AcHCU6-ZzqbV2n7z59vQDoy-wioOMe6LkHFRWMmdE--gJGHhOA9ZD7PSSoG9Nr3sO1sBu6Oj1bmNBztz7Ob37SNeOfondfaastYBiyVKkSwNxrl1M3_MD40fkVWuLeQuvJp99SLr-5POlcYn5hdf_fr_WAXINPY2186T4ZNJutfQhEs8keOW3yGxQsesw priority: 102 providerName: ProQuest |
Title | Loss of the DNA Methyltransferase MET1 Induces H3K9 Hypermethylation at PcG Target Genes and Redistribution of H3K27 Trimethylation to Transposons in Arabidopsis thaliana |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23209430 https://www.proquest.com/docview/1313505130 https://www.proquest.com/docview/1222235980 https://pubmed.ncbi.nlm.nih.gov/PMC3510029 https://doaj.org/article/35e45c222aa242028695a512dc9a1f2f http://dx.doi.org/10.1371/journal.pgen.1003062 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJyReJr5XGMUgJJ4yNf6o4weEOugoHy3TWFHfIidxtkpVUpJUov8SfyV3SRoIKrC3qv45H3f2-Xex746QFxJGCR94gWP6MXOEDsAOxqFwVADrmQk8ITTGO0-mg_FMfJjL-R7Z1mytBZjvdO2wntQsWx5__7Z5DRP-VVm1QbnbTscrEDnu-gMLBqO8D2uTwpoGE9HsK3DpVeVWpOSOAne_Dqb721Vai1WZ07-x3J3VMs130dI_T1f-tlyd3iYHNc-kw2pg3CF7NrlLblaVJzf3yI9PcD-axhT4H307HVKsJL1ZFiWNtRksbXQyunApeOyg-5yO-UdNr8BnzSpgqU9qCnoWvqPVaXJ6iWaTmiSiGQb7NqW08DbQnylaYC2BX92LlBZVbnUg_TncCx7XBIsoXeWLHJ6s_ARj7pPZ6ejizdipyzY4odKscEDBUsfAI9jAA_4jmO2DdQ_cwAMuIBlGs0Z9I3hoXGFDZrVQdiCt8nAHL44Ef0A6SZrYQ0JVFIFDFQbaWvDj49gD3EBGUQCsLrDM6xK-1Y8f1jnNsbTG0i836hT4NpW4fdSqX2u1S5ym16rK6fEf_AmqvsFiRu7yjzS79OsJ7nNphQyBbRkDrAdY20BLA2wqCrVxYxZ3yVMcOH4V3trYFX_IXYZuquZd8rxEYFaOBI_9XJp1nvvvP3-9BujL9Dqg8xboZQ2KU5BZaOp4DJA8pgRrIY9aSDBAYav5EOfCVnQ5CNLlQKyBHUHP7fzY3fysacaL4nm_xKZrwDDkrVJ7gHlYTadG_OAD4HFYaFGtidbST7slWVyVmdO5xIzD-tG_X-gxuQW_WBVxekQ6Rba2T4B6FkGP3FBz1SP7J6Pp2Xmv_IDTKy3MTwvDhNY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGEYIXxH2FwQwC8ZQtseMkfkCosI2OXkCjQ30LTuKMSiUpTSq0v8QDv5FznDQjaIK97LX-HKc-x-cSnwshzwVwCfeCyFJ2yixXRiAH09i1_Aj0mYoC15WY7zwae_1j9_1UTDfIr3UuDIZVrmWiEdRJHuM38l2HOxy0NYjc14vvFnaNwtvVdQuNii0G-vQHuGzFq8M9oO8Lxg72J2_7Vt1VwIp9yUoL1hcyBTXHvADUs8u0DcIncqIAVJVgmGyZ2MrlsXJcHTMtXV97QvsBXjClicvhuVfIVVC8Njp7_rRx8LgIqmYuQnDL59KuU_W47-zWnLGzALbAyASw1FlLFZqOAY1e6CzmeXGe0ft37OYfyvDgFrlZW7G0V7HdbbKhszvkWtXX8vQu-TmE9WieUrAu6d64R0ca-GFeGiNZL0Fx0tH-xKHYNwTkFO3zgaR98IiX3wzQcAtVJf0Yv6MTE6tOsT52QVWW0CNMJW4adeEyMJ_5dIKdCs6mlzmtK7eDS1HQWQavq6JZki-KWQFvZj7wqHvk-FLId590sjzTm4T6SQLuWhxJrW3XS9MAcJ5IkghsxkizoEv4mj5hXFdMx8Yd89BcA_rgOVXbHSJVw5qqXWI1sxZVxZD_4N8g6Rss1vs2P-TLk7AWHyEX2hUx2HJKgU0FNqEnhQJbLYmlclKWdsk2Mk5YJc82UivscYehEyx5lzwzCKz5kWFQ0YlaFUV4-OHzBUCfxhcBHbVAL2tQmsOexarO9oCdx4JjLeRWCwniLW4Nb-JZWG9dEZ4JApi5Ph_nDz9thvGhGE2Y6XwFGIZWsZABYB5Ux6nZfvAwMNgWRvzWQWvRpz2Szb6auuxcYD1j-fDfr7VNrvcno2E4PBwPHpEb8DdZldu6RTrlcqUfg5FbRk-MZKHky2WLst_FGrW3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviO8VBjMIxFNoY8dJ_IBQR1taupaqdGhvwUmcUakkpWmF9i_xJ_DXcZevETTBXvZanxPXd_7dXXwfhLwQICXcdn1DtSNmWNIHHIwCy3B80GfKdy1LYr7zeGIPjq0PJ-Jkh_wqc2EwrLLExAyowyTAb-Qtk5sctDVAbisqwiKm3f7b1XcDO0jhTWvZTiMXkZE--wHuW_pm2AVev2Ss35u_GxhFhwEjcCTbGLAWISNQecx2QVVbTLcBiHzTd0FtCYaJl2FbWTxQpqUDpqXlaFtox8XLpii0ODz3Gtl10CtqkN3D3mQ6K_UAF27e2kUIbjhctovEPe6YrUJOXq9ASDBOAex2VlOMWf-ASks0VsskvcgE_juS8w_V2L9NbhU2Le3kQniH7Oj4Lrmed7k8u0d-HsH7aBJRsDVpd9KhYw3SsdxkJrNegxql497cpNhFBFCLDvhI0gH4x-tvGWEmO1Rt6DR4T-dZ5DrFatkpVXFIZ5hYXLXtwtfAfObQOfYtOJ--SWhRxx0cjJQuYliu8hdhskoXKaws-9yj7pPjK2HgA9KIk1jvEeqEIThvgS-1blt2FLlAZ4sw9MGC9DVzm4SX_PGCon46tvFYetmloAN-VL7dHnLVK7jaJEY1a5XXD_kP_SGyvqLF6t_ZD8n61CvAxONCWyIAy04psLDAQrSlUGC5hYFUZsSiJjlAwfHyVNoKw7wONxm6xJI3yfOMAiuAxHiWTtU2Tb3hx8-XIPo0uQzRrEb0qiCKEtizQBW5H7DzWH6sRrlfowSwC2rDe3gWyq1LvXNYgJnl-bh4-Fk1jA_F2MJYJ1ugYWgjC-kCzcP8OFXbD_4Ght7CiFM7aDX-1EfixdesSjsXWN1YPvr3sg7IDYAx72g4GT0mN-FfsjzRdZ80NuutfgIW78Z_WkALJV-uGs1-AwbWu1I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loss+of+the+DNA+methyltransferase+MET1+induces+H3K9+hypermethylation+at+PcG+target+genes+and+redistribution+of+H3K27+trimethylation+to+transposons+in+Arabidopsis+thaliana&rft.jtitle=PLoS+genetics&rft.au=Deleris%2C+Angelique&rft.au=Stroud%2C+Hume&rft.au=Bernatavichute%2C+Yana&rft.au=Johnson%2C+Elizabeth&rft.date=2012-11-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=8&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.pgen.1003062&rft.externalDocID=A312014993 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |