Loss of the DNA Methyltransferase MET1 Induces H3K9 Hypermethylation at PcG Target Genes and Redistribution of H3K27 Trimethylation to Transposons in Arabidopsis thaliana

Dimethylation of histone H3 lysine 9 (H3K9m2) and trimethylation of histone H3 lysine 27 (H3K27m3) are two hallmarks of transcriptional repression in many organisms. In Arabidopsis thaliana, H3K27m3 is targeted by Polycomb Group (PcG) proteins and is associated with silent protein-coding genes, whil...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 8; no. 11; p. e1003062
Main Authors Deleris, Angelique, Stroud, Hume, Bernatavichute, Yana, Johnson, Elizabeth, Klein, Gregor, Schubert, Daniel, Jacobsen, Steven E.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.11.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dimethylation of histone H3 lysine 9 (H3K9m2) and trimethylation of histone H3 lysine 27 (H3K27m3) are two hallmarks of transcriptional repression in many organisms. In Arabidopsis thaliana, H3K27m3 is targeted by Polycomb Group (PcG) proteins and is associated with silent protein-coding genes, while H3K9m2 is correlated with DNA methylation and is associated with transposons and repetitive sequences. Recently, ectopic genic DNA methylation in the CHG context (where H is any base except G) has been observed in globally DNA hypomethylated mutants such as met1, but neither the nature of the hypermethylated loci nor the biological significance of this epigenetic phenomenon have been investigated. Here, we generated high-resolution, genome-wide maps of both H3K9m2 and H3K27m3 in wild-type and met1 plants, which we integrated with transcriptional data, to explore the relationships between these two marks. We found that ectopic H3K9m2 observed in met1 can be due to defects in IBM1-mediated H3K9m2 demethylation at some sites, but most importantly targets H3K27m3-marked genes, suggesting an interplay between these two silencing marks. Furthermore, H3K9m2/DNA-hypermethylation at these PcG targets in met1 is coupled with a decrease in H3K27m3 marks, whereas CG/H3K9m2 hypomethylated transposons become ectopically H3K27m3 hypermethylated. Our results bear interesting similarities with cancer cells, which show global losses of DNA methylation but ectopic hypermethylation of genes previously marked by H3K27m3.
AbstractList   Dimethylation of histone H3 lysine 9 (H3K9m2) and trimethylation of histone H3 lysine 27 (H3K27m3) are two hallmarks of transcriptional repression in many organisms. In Arabidopsis thaliana, H3K27m3 is targeted by Polycomb Group (PcG) proteins and is associated with silent protein-coding genes, while H3K9m2 is correlated with DNA methylation and is associated with transposons and repetitive sequences. Recently, ectopic genic DNA methylation in the CHG context (where H is any base except G) has been observed in globally DNA hypomethylated mutants such as met1, but neither the nature of the hypermethylated loci nor the biological significance of this epigenetic phenomenon have been investigated. Here, we generated high-resolution, genome-wide maps of both H3K9m2 and H3K27m3 in wild-type and met1 plants, which we integrated with transcriptional data, to explore the relationships between these two marks. We found that ectopic H3K9m2 observed in met1 can be due to defects in IBM1-mediated H3K9m2 demethylation at some sites, but most importantly targets H3K27m3-marked genes, suggesting an interplay between these two silencing marks. Furthermore, H3K9m2/DNA-hypermethylation at these PcG targets in met1 is coupled with a decrease in H3K27m3 marks, whereas CG/H3K9m2 hypomethylated transposons become ectopically H3K27m3 hypermethylated. Our results bear interesting similarities with cancer cells, which show global losses of DNA methylation but ectopic hypermethylation of genes previously marked by H3K27m3.
Dimethylation of histone H3 lysine 9 (H3K9m2) and trimethylation of histone H3 lysine 27 (H3K27m3) are two hallmarks of transcriptional repression in many organisms. In Arabidopsis thaliana, H3K27m3 is targeted by Polycomb Group (PcG) proteins and is associated with silent protein-coding genes, while H3K9m2 is correlated with DNA methylation and is associated with transposons and repetitive sequences. Recently, ectopic genic DNA methylation in the CHG context (where H is any base except G) has been observed in globally DNA hypomethylated mutants such as met1, but neither the nature of the hypermethylated loci nor the biological significance of this epigenetic phenomenon have been investigated. Here, we generated high-resolution, genome-wide maps of both H3K9m2 and H3K27m3 in wild-type and met1 plants, which we integrated with transcriptional data, to explore the relationships between these two marks. We found that ectopic H3K9m2 observed in met1 can be due to defects in IBM1-mediated H3K9m2 demethylation at some sites, but most importantly targets H3K27m3-marked genes, suggesting an interplay between these two silencing marks. Furthermore, H3K9m2/DNA-hypermethylation at these PcG targets in met1 is coupled with a decrease in H3K27m3 marks, whereas CG/H3K9m2 hypomethylated transposons become ectopically H3K27m3 hypermethylated. Our results bear interesting similarities with cancer cells, which show global losses of DNA methylation but ectopic hypermethylation of genes previously marked by H3K27m3.
Dimethylation of histone H3 lysine 9 (H3K9m2) and trimethylation of histone H3 lysine 27 (H3K27m3) are two hallmarks of transcriptional repression in many organisms. In Arabidopsis thaliana, H3K27m3 is targeted by Polycomb Group (PcG) proteins and is associated with silent protein-coding genes, while H3K9m2 is correlated with DNA methylation and is associated with transposons and repetitive sequences. Recently, ectopic genic DNA methylation in the CHG context (where H is any base except G) has been observed in globally DNA hypomethylated mutants such as met1, but neither the nature of the hypermethylated loci nor the biological significance of this epigenetic phenomenon have been investigated. Here, we generated high-resolution, genome-wide maps of both H3K9m2 and H3K27m3 in wild-type and met1 plants, which we integrated with transcriptional data, to explore the relationships between these two marks. We found that ectopic H3K9m2 observed in met1 can be due to defects in IBM1-mediated H3K9m2 demethylation at some sites, but most importantly targets H3K27m3-marked genes, suggesting an interplay between these two silencing marks. Furthermore, H3K9m2/DNA-hypermethylation at these PcG targets in met1 is coupled with a decrease in H3K27m3 marks, whereas CG/H3K9m2 hypomethylated transposons become ectopically H3K27m3 hypermethylated. Our results bear interesting similarities with cancer cells, which show global losses of DNA methylation but ectopic hypermethylation of genes previously marked by H3K27m3.Dimethylation of histone H3 lysine 9 (H3K9m2) and trimethylation of histone H3 lysine 27 (H3K27m3) are two hallmarks of transcriptional repression in many organisms. In Arabidopsis thaliana, H3K27m3 is targeted by Polycomb Group (PcG) proteins and is associated with silent protein-coding genes, while H3K9m2 is correlated with DNA methylation and is associated with transposons and repetitive sequences. Recently, ectopic genic DNA methylation in the CHG context (where H is any base except G) has been observed in globally DNA hypomethylated mutants such as met1, but neither the nature of the hypermethylated loci nor the biological significance of this epigenetic phenomenon have been investigated. Here, we generated high-resolution, genome-wide maps of both H3K9m2 and H3K27m3 in wild-type and met1 plants, which we integrated with transcriptional data, to explore the relationships between these two marks. We found that ectopic H3K9m2 observed in met1 can be due to defects in IBM1-mediated H3K9m2 demethylation at some sites, but most importantly targets H3K27m3-marked genes, suggesting an interplay between these two silencing marks. Furthermore, H3K9m2/DNA-hypermethylation at these PcG targets in met1 is coupled with a decrease in H3K27m3 marks, whereas CG/H3K9m2 hypomethylated transposons become ectopically H3K27m3 hypermethylated. Our results bear interesting similarities with cancer cells, which show global losses of DNA methylation but ectopic hypermethylation of genes previously marked by H3K27m3.
Dimethylation of histone H3 lysine 9 (H3K9m2) and trimethylation of histone H3 lysine 27 (H3K27m3) are two hallmarks of transcriptional repression in many organisms. In Arabidopsis thaliana , H3K27m3 is targeted by Polycomb Group (PcG) proteins and is associated with silent protein-coding genes, while H3K9m2 is correlated with DNA methylation and is associated with transposons and repetitive sequences. Recently, ectopic genic DNA methylation in the CHG context (where H is any base except G) has been observed in globally DNA hypomethylated mutants such as met1 , but neither the nature of the hypermethylated loci nor the biological significance of this epigenetic phenomenon have been investigated. Here, we generated high-resolution, genome-wide maps of both H3K9m2 and H3K27m3 in wild-type and met1 plants, which we integrated with transcriptional data, to explore the relationships between these two marks. We found that ectopic H3K9m2 observed in met1 can be due to defects in IBM1-mediated H3K9m2 demethylation at some sites, but most importantly targets H3K27m3-marked genes, suggesting an interplay between these two silencing marks. Furthermore, H3K9m2/DNA-hypermethylation at these PcG targets in met1 is coupled with a decrease in H3K27m3 marks, whereas CG/H3K9m2 hypomethylated transposons become ectopically H3K27m3 hypermethylated. Our results bear interesting similarities with cancer cells, which show global losses of DNA methylation but ectopic hypermethylation of genes previously marked by H3K27m3. In plants and animals, repetitive DNA sequences and transposable elements are marked with DNA methylation, which is associated with methylation on lysine 9 of histone 3 (H3K9) and silencing. On the other hand, protein-coding genes, in particular the ones involved in differentiation processes, are targeted by Polycomb Group (PcG) proteins, which results in trimethylation of H3K27—another hallmark of transcriptional repression. These two systems of silencing are thought to be independent, but in this study we reveal an interplay between them. In the model plant Arabidopsis we show that, in a globally DNA–hypomethylated mutant, H3K27m3 marks can now be found at repeats and transposons; this is associated with a decrease of H3K27m3 at PcG targets, with some of them becoming targets of DNA and H3K9 methylation. Our data suggest that H3K27m3 prevents ectopic DNA/H3K9 methylation at cryptic DNA methylation targets, which could provide a novel significance for this mark with regard to genome integrity. In addition, this study reveals interesting similarities with cancer cells, which show global losses of DNA methylation but ectopic hypermethylation of genes previously marked by H3K27m3, and suggests the potential of Arabidopsis as a system for understanding mammalian developmental and cancer biology.
Audience Academic
Author Bernatavichute, Yana
Klein, Gregor
Johnson, Elizabeth
Schubert, Daniel
Deleris, Angelique
Stroud, Hume
Jacobsen, Steven E.
AuthorAffiliation University of Cambridge, United Kingdom
2 Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
4 Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
3 Institute of Genetics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
1 Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
AuthorAffiliation_xml – name: 2 Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
– name: 3 Institute of Genetics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
– name: 1 Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
– name: University of Cambridge, United Kingdom
– name: 4 Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
Author_xml – sequence: 1
  givenname: Angelique
  surname: Deleris
  fullname: Deleris, Angelique
– sequence: 2
  givenname: Hume
  surname: Stroud
  fullname: Stroud, Hume
– sequence: 3
  givenname: Yana
  surname: Bernatavichute
  fullname: Bernatavichute, Yana
– sequence: 4
  givenname: Elizabeth
  surname: Johnson
  fullname: Johnson, Elizabeth
– sequence: 5
  givenname: Gregor
  surname: Klein
  fullname: Klein, Gregor
– sequence: 6
  givenname: Daniel
  surname: Schubert
  fullname: Schubert, Daniel
– sequence: 7
  givenname: Steven E.
  surname: Jacobsen
  fullname: Jacobsen, Steven E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23209430$$D View this record in MEDLINE/PubMed
BookMark eNqVk1tv0zAUxyM0xC7wDRBYQkLw0OJrEvOAVI2xVeyCRuHVcp2T1lNqF9tF7CvxKXG7bmqnCYHykOjk9_-fi332ix3nHRTFc4L7hFXk3ZVfBKe7_nwCrk8wZrikj4o9IgTrVRzznY3v3WI_xqvMiFpWT4pdyiiWnOG94vepjxH5FqUpoI_nA3QGaXrdpaBdbCHoCOjsaETQ0DULAxGdsM8SnVzPIcxWoE7WO6QT-mKO0UiHCSR0DC6T2jXoEhobU7DjxQrLabKeVmgU7KY8-RzJCec-eheRdWgQ9Ng2fh5tzJXpzmqnnxaPW91FeLZ-HxTfPh2NDk96pxfHw8PBac9UkqbeuOZCtoRKWtYlk5wCBm3GZFyXJREUl4I3WHNmNOFgKEheQSmgqkVN67bh7KB4eeM773xU6zFHRRhhAgvCcCaGN0Tj9ZWa52Z0uFZeW7UK-DBROiRrOlBMABeGUqo15RTTupRCC0IbIzVpaZu9PqyzLcYzaAy4PPtuy3T7j7NTNfE_s3M-dCqzwZu1QfA_FhCTmtlooOu0A7_IdefklAlZL-t-dQ99uLs1NdG5Aetan_OapakaMEIx4VKyTPUfoPLTwMyafFVbm-Nbgrdbgswk-JUmehGjGn69_A_2_N_Zi-_b7OsNdgq6S9Pou9XtjNvgi81TuTuO28XJAL8BTMgLFKC9QwhWy_28Ha1a7qda72eWvb8nMzatliBPz3Z_F_8BSxg-Ug
CitedBy_id crossref_primary_10_1186_s12864_017_3542_8
crossref_primary_10_1016_j_gde_2016_11_001
crossref_primary_10_1111_nph_13540
crossref_primary_10_1371_journal_pgen_1008093
crossref_primary_10_1016_j_tig_2017_01_006
crossref_primary_10_1093_gbe_evu040
crossref_primary_10_1093_nar_gkae690
crossref_primary_10_1371_journal_pone_0085383
crossref_primary_10_3389_fpls_2021_705249
crossref_primary_10_1016_j_tig_2021_06_003
crossref_primary_10_1007_s00299_014_1645_0
crossref_primary_10_1016_j_chemosphere_2019_04_076
crossref_primary_10_1073_pnas_2023347118
crossref_primary_10_1101_gr_155879_113
crossref_primary_10_1080_21541264_2020_1803031
crossref_primary_10_1186_s13059_022_02768_x
crossref_primary_10_1093_mp_ssu079
crossref_primary_10_3390_cancers15153838
crossref_primary_10_1038_s42003_023_05501_x
crossref_primary_10_1073_pnas_2010003118
crossref_primary_10_3389_fpls_2015_01161
crossref_primary_10_1016_j_cub_2019_12_015
crossref_primary_10_1146_annurev_genet_072920_015534
crossref_primary_10_1007_s12298_023_01390_w
crossref_primary_10_1073_pnas_1807796115
crossref_primary_10_1093_plcell_koac219
crossref_primary_10_3748_wjg_v21_i47_13268
crossref_primary_10_1016_j_celrep_2023_112894
crossref_primary_10_1093_plphys_kiac459
crossref_primary_10_3389_fpls_2014_00780
crossref_primary_10_1093_jxb_erz435
crossref_primary_10_1016_j_cub_2020_10_098
crossref_primary_10_1038_s41556_021_00658_1
crossref_primary_10_1266_ggs_21_00041
crossref_primary_10_1186_s12915_022_01436_7
crossref_primary_10_1016_j_cell_2018_06_044
crossref_primary_10_1073_pnas_2104445118
crossref_primary_10_1016_j_celrep_2014_04_012
crossref_primary_10_7554_eLife_72676
crossref_primary_10_1101_gad_270876_115
crossref_primary_10_1371_journal_pone_0158936
crossref_primary_10_1101_gad_332924_119
crossref_primary_10_1038_s41467_022_28468_5
crossref_primary_10_1073_pnas_1716300115
crossref_primary_10_1146_annurev_phyto_080615_100308
crossref_primary_10_1007_s10142_020_00756_7
crossref_primary_10_1016_j_pbi_2023_102419
crossref_primary_10_1111_tpj_12828
crossref_primary_10_1038_s41467_020_16951_w
crossref_primary_10_3390_epigenomes6010003
crossref_primary_10_1016_j_bbagrm_2016_08_009
crossref_primary_10_3389_fpls_2015_00130
crossref_primary_10_15252_embj_201593534
crossref_primary_10_1101_gad_269902_115
crossref_primary_10_1007_s11738_017_2427_4
crossref_primary_10_1073_pnas_1316009110
crossref_primary_10_1186_s13059_022_02750_7
crossref_primary_10_3390_cells11162501
crossref_primary_10_1101_gad_320796_118
crossref_primary_10_1105_tpc_114_130120
crossref_primary_10_1186_s13059_022_02833_5
crossref_primary_10_1002_bies_201300130
crossref_primary_10_1111_tpj_12519
crossref_primary_10_1007_s11103_013_0165_6
crossref_primary_10_1093_plcell_koab284
crossref_primary_10_1101_gr_227116_117
crossref_primary_10_1186_s13059_024_03466_6
crossref_primary_10_1242_dev_201989
crossref_primary_10_1186_s13072_015_0033_5
crossref_primary_10_1038_nrg_2017_45
crossref_primary_10_1371_journal_pgen_1003717
crossref_primary_10_1007_s12374_017_0053_8
crossref_primary_10_1186_s13059_017_1313_0
crossref_primary_10_3389_fpls_2017_00607
crossref_primary_10_7554_eLife_58533
crossref_primary_10_1093_jxb_erx409
crossref_primary_10_1073_pnas_1600672113
crossref_primary_10_1101_gr_194555_115
crossref_primary_10_1073_pnas_1511377112
crossref_primary_10_1007_s00438_015_1149_9
crossref_primary_10_1073_pnas_1618224114
crossref_primary_10_1371_journal_pgen_1006014
crossref_primary_10_1016_j_molcel_2014_07_008
crossref_primary_10_3390_cells10112952
crossref_primary_10_1002_wdev_342
crossref_primary_10_1093_nar_gkad610
crossref_primary_10_1038_nsmb_2735
crossref_primary_10_1016_j_molcel_2019_10_011
crossref_primary_10_1093_jxb_ert410
crossref_primary_10_1093_jxb_erw486
crossref_primary_10_1186_s13059_016_0967_3
crossref_primary_10_26508_lsa_202000848
crossref_primary_10_1038_ncomms3301
crossref_primary_10_1371_journal_pgen_1005154
crossref_primary_10_15252_embj_201798482
crossref_primary_10_1186_s13059_024_03163_4
crossref_primary_10_3390_genes11060638
crossref_primary_10_1186_s12870_014_0293_4
crossref_primary_10_1101_gr_182238_114
crossref_primary_10_7554_eLife_31216
crossref_primary_10_1038_nplants_2016_145
crossref_primary_10_1534_genetics_117_300103
crossref_primary_10_1016_j_pbi_2019_02_008
crossref_primary_10_1371_journal_pgen_1005142
crossref_primary_10_1371_journal_pgen_1005660
crossref_primary_10_1042_BST20200192
crossref_primary_10_7554_eLife_64593
crossref_primary_10_15252_embj_201695602
crossref_primary_10_3389_fgene_2022_760690
crossref_primary_10_1093_bib_bbz039
crossref_primary_10_1146_annurev_arplant_043014_115627
crossref_primary_10_1186_s13072_021_00395_7
crossref_primary_10_1101_gr_277353_122
crossref_primary_10_1073_pnas_2210844119
Cites_doi 10.1093/emboj/cdf657
10.1016/j.cell.2007.07.007
10.1126/science.1063127
10.1371/journal.pgen.1001152
10.1126/science.277.5329.1100
10.1016/j.gde.2007.08.011
10.1038/ng1929
10.1016/j.cell.2008.03.029
10.1038/ng1972
10.1038/ng1950
10.1038/ng1941
10.1016/j.tig.2009.09.013
10.1104/pp.111.186445
10.1371/journal.pbio.0050129
10.1038/emboj.2009.59
10.1371/journal.pgen.0030086
10.1016/j.cub.2005.01.008
10.1016/S0960-9822(00)00324-9
10.1038/emboj.2011.399
10.1101/gr.131169.111
10.1038/nature06745
10.1016/j.gde.2007.09.004
10.1371/journal.pgen.1000145
10.1016/S1097-2765(05)00090-0
10.1038/nature08618
10.1101/gad.1667808
10.1101/gr.080861.108
10.1126/science.1172417
10.1038/emboj.2010.227
10.1023/A:1010636222327
10.1016/j.cub.2007.01.009
10.1016/j.cell.2006.08.003
10.1371/journal.pbio.0060194
10.1038/sj.emboj.7600743
10.1038/nrg2719
10.1371/journal.pone.0003156
10.1101/gr.125872.111
10.1126/science.1150987
10.1038/ng1138
10.1038/emboj.2012.141
10.1038/nrg1601
10.1073/pnas.1432939100
ContentType Journal Article
Copyright COPYRIGHT 2012 Public Library of Science
2012 Deleris et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Deleris A, Stroud H, Bernatavichute Y, Johnson E, Klein G, et al. (2012) Loss of the DNA Methyltransferase MET1 Induces H3K9 Hypermethylation at PcG Target Genes and Redistribution of H3K27 Trimethylation to Transposons in Arabidopsis thaliana. PLoS Genet 8(11): e1003062. doi:10.1371/journal.pgen.1003062
2012 Deleris et al 2012 Deleris et al
Copyright_xml – notice: COPYRIGHT 2012 Public Library of Science
– notice: 2012 Deleris et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Deleris A, Stroud H, Bernatavichute Y, Johnson E, Klein G, et al. (2012) Loss of the DNA Methyltransferase MET1 Induces H3K9 Hypermethylation at PcG Target Genes and Redistribution of H3K27 Trimethylation to Transposons in Arabidopsis thaliana. PLoS Genet 8(11): e1003062. doi:10.1371/journal.pgen.1003062
– notice: 2012 Deleris et al 2012 Deleris et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
3V.
7QP
7QR
7SS
7TK
7TM
7TO
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1003062
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate H3K27m3 and Ectopic H3K9/DNA Methylation in met1 Mutant
EISSN 1553-7404
ExternalDocumentID 1313505130
oai_doaj_org_article_35e45c222aa242028695a512dc9a1f2f
PMC3510029
2904936331
A312014993
23209430
10_1371_journal_pgen_1003062
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations France
GeographicLocations_xml – name: France
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM60398
– fundername: NIGMS NIH HHS
  grantid: R37 GM060398
– fundername: Howard Hughes Medical Institute
– fundername: NIGMS NIH HHS
  grantid: R01 GM060398
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QF4
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
PV9
RIG
RZL
WOQ
PMFND
3V.
7QP
7QR
7SS
7TK
7TM
7TO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c792t-b8459f12926863942e0eacb1b8661520654d0a43ca14ec2e947e65e785828fd43
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Sun Oct 01 00:20:28 EDT 2023
Wed Aug 27 01:31:31 EDT 2025
Thu Aug 21 17:27:26 EDT 2025
Mon Jul 21 10:47:37 EDT 2025
Fri Jul 25 12:26:13 EDT 2025
Tue Jun 17 21:50:31 EDT 2025
Tue Jun 10 20:14:03 EDT 2025
Fri Jun 27 03:54:31 EDT 2025
Fri Jun 27 03:51:03 EDT 2025
Fri Jun 27 04:58:59 EDT 2025
Thu May 22 21:22:05 EDT 2025
Tue Aug 05 11:41:57 EDT 2025
Tue Jul 01 00:25:58 EDT 2025
Thu Apr 24 23:06:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c792t-b8459f12926863942e0eacb1b8661520654d0a43ca14ec2e947e65e785828fd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceived and designed the experiments: AD HS SEJ. Performed the experiments: AD HS YB EJ. Analyzed the data: AD HS. Contributed reagents/materials/analysis tools: AD HS SEJ GK DS. Wrote the paper: AD.
The authors have declared that no competing interests exist.
Current address: Environmental and Evolutionary Genomics Section, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1003062
PMID 23209430
PQID 1313505130
PQPubID 1436339
ParticipantIDs plos_journals_1313505130
doaj_primary_oai_doaj_org_article_35e45c222aa242028695a512dc9a1f2f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3510029
proquest_miscellaneous_1222235980
proquest_journals_1313505130
gale_infotracmisc_A312014993
gale_infotracacademiconefile_A312014993
gale_incontextgauss_ISR_A312014993
gale_incontextgauss_ISN_A312014993
gale_incontextgauss_IOV_A312014993
gale_healthsolutions_A312014993
pubmed_primary_23209430
crossref_primary_10_1371_journal_pgen_1003062
crossref_citationtrail_10_1371_journal_pgen_1003062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-01
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2012
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References X Zhang (ref17) 2006; 126
H Saze (ref43) 2003; 34
S Swiezewski (ref36) 2009; 462
H Easwaran (ref42) 2012; 22
A Miura (ref20) 2009; 28
TF Hsieh (ref41) 2009; 324
F Turck (ref3) 2007; 3
R Lister (ref16) 2008; 133
MD Lynch (ref33) 2012; 31
O Mathieu (ref25) 2007; 130
M Widschwendter (ref29) 2007; 39
WJ Soppe (ref12) 2002; 21
JH Huh (ref40) 2007; 17
JA Law (ref8) 2010; 11
AM Lindroth (ref34) 2008; 4
H Saze (ref21) 2008; 319
JE Ohm (ref30) 2007; 39
SE Jacobsen (ref23) 1997; 277
FM Pauler (ref26) 2009; 19
JB Heo (ref37) 2010; 331
Y Schlesinger (ref31) 2007; 39
IR Henderson (ref14) 2008; 22
SW Chan (ref32) 2005; 6
RK Tran (ref19) 2005; 15
GC Hon (ref35) 2011; 22
D Zilberman (ref18) 2007; 39
C Baroux (ref39) 2007; 17
SJ Cokus (ref15) 2008; 452
PE Jullien (ref38) 2008; 6
WJ Soppe (ref13) 2000; 6
T Jenuwein (ref1) 2001; 293
M Rigal (ref28); 31
M Tariq (ref10) 2003; 100
X Zhang (ref4) 2007; 5
F Roudier (ref2) 2009; 25
N Kishimoto (ref27) 2001; 46
I Weinhofer (ref7) 2010; 6
O Mathieu (ref6) 2005; 24
SE Jacobsen (ref24) 2000; 10
S Inagaki (ref22) 2010; 29
S Holec (ref5) 2011; 158
LM Johnson (ref11) 2007; 17
YV Bernatavichute (ref9) 2008; 3
References_xml – volume: 21
  start-page: 6549
  year: 2002
  ident: ref12
  article-title: DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis
  publication-title: EMBO J
  doi: 10.1093/emboj/cdf657
– volume: 130
  start-page: 851
  year: 2007
  ident: ref25
  article-title: Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation
  publication-title: Cell
  doi: 10.1016/j.cell.2007.07.007
– volume: 293
  start-page: 1074
  year: 2001
  ident: ref1
  article-title: Translating the histone code
  publication-title: Science
  doi: 10.1126/science.1063127
– volume: 6
  start-page: e1001152
  year: 2010
  ident: ref7
  article-title: H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1001152
– volume: 277
  start-page: 1100
  year: 1997
  ident: ref23
  article-title: Hypermethylated SUPERMAN epigenetic alleles in arabidopsis
  publication-title: Science
  doi: 10.1126/science.277.5329.1100
– volume: 17
  start-page: 480
  year: 2007
  ident: ref40
  article-title: Endosperm gene imprinting and seed development
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2007.08.011
– volume: 39
  start-page: 61
  year: 2007
  ident: ref18
  article-title: Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription
  publication-title: Nat Genet
  doi: 10.1038/ng1929
– volume: 133
  start-page: 523
  year: 2008
  ident: ref16
  article-title: Highly integrated single-base resolution maps of the epigenome in Arabidopsis
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.029
– volume: 39
  start-page: 237
  year: 2007
  ident: ref30
  article-title: A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing
  publication-title: Nat Genet
  doi: 10.1038/ng1972
– volume: 39
  start-page: 232
  year: 2007
  ident: ref31
  article-title: Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer
  publication-title: Nat Genet
  doi: 10.1038/ng1950
– volume: 39
  start-page: 157
  year: 2007
  ident: ref29
  article-title: Epigenetic stem cell signature in cancer
  publication-title: Nat Genet
  doi: 10.1038/ng1941
– volume: 25
  start-page: 511
  year: 2009
  ident: ref2
  article-title: Chromatin indexing in Arabidopsis: an epigenomic tale of tails and more
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2009.09.013
– volume: 158
  start-page: 35
  year: 2011
  ident: ref5
  article-title: Polycomb group complexes mediate developmental transitions in plants
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.186445
– volume: 5
  start-page: e129
  year: 2007
  ident: ref4
  article-title: Whole-Genome Analysis of Histone H3 Lysine 27 Trimethylation in Arabidopsis
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0050129
– volume: 28
  start-page: 1078
  year: 2009
  ident: ref20
  article-title: An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites
  publication-title: EMBO J
  doi: 10.1038/emboj.2009.59
– volume: 3
  start-page: e86
  year: 2007
  ident: ref3
  article-title: Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0030086
– volume: 15
  start-page: 154
  year: 2005
  ident: ref19
  article-title: DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2005.01.008
– volume: 10
  start-page: 179
  year: 2000
  ident: ref24
  article-title: Ectopic hypermethylation of flower-specific genes in Arabidopsis
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(00)00324-9
– volume: 31
  start-page: 317
  year: 2012
  ident: ref33
  article-title: An interspecies analysis reveals a key role for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment
  publication-title: EMBO J
  doi: 10.1038/emboj.2011.399
– volume: 22
  start-page: 837
  year: 2012
  ident: ref42
  article-title: A DNA hypermethylation module for the stem/progenitor cell signature of cancer
  publication-title: Genome Res
  doi: 10.1101/gr.131169.111
– volume: 452
  start-page: 215
  year: 2008
  ident: ref15
  article-title: Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning
  publication-title: Nature
  doi: 10.1038/nature06745
– volume: 17
  start-page: 473
  year: 2007
  ident: ref39
  article-title: Chromatin modification and remodeling during early seed development
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2007.09.004
– volume: 4
  start-page: e1000145
  year: 2008
  ident: ref34
  article-title: Antagonism between DNA and H3K27 methylation at the imprinted Rasgrf1 locus
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000145
– volume: 6
  start-page: 791
  year: 2000
  ident: ref13
  article-title: The Late Flowering Phenotype of fwa Mutants Is Caused by Gain-of- Function Epigenetic Alleles of a Homeodomain Gene
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(05)00090-0
– volume: 462
  start-page: 799
  year: 2009
  ident: ref36
  article-title: Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target
  publication-title: Nature
  doi: 10.1038/nature08618
– volume: 22
  start-page: 1597
  year: 2008
  ident: ref14
  article-title: Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading
  publication-title: Genes Dev
  doi: 10.1101/gad.1667808
– volume: 19
  start-page: 221
  year: 2009
  ident: ref26
  article-title: H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome
  publication-title: Genome Res
  doi: 10.1101/gr.080861.108
– volume: 324
  start-page: 1451
  year: 2009
  ident: ref41
  article-title: Genome-wide demethylation of Arabidopsis endosperm
  publication-title: Science
  doi: 10.1126/science.1172417
– volume: 29
  start-page: 3496
  year: 2010
  ident: ref22
  article-title: Autocatalytic differentiation of epigenetic modifications within the Arabidopsis genome
  publication-title: EMBO J
  doi: 10.1038/emboj.2010.227
– volume: 46
  start-page: 171
  year: 2001
  ident: ref27
  article-title: Site specificity of the Arabidopsis MET1 DNA methyltransferase demonstrated through hypermethylation of the SUPERMAN locus
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1010636222327
– volume: 17
  start-page: 379
  year: 2007
  ident: ref11
  article-title: The SRA Methyl-Cytosine-Binding Domain Links DNA and Histone Methylation
  publication-title: Current Biology
  doi: 10.1016/j.cub.2007.01.009
– volume: 126
  start-page: 1189
  year: 2006
  ident: ref17
  article-title: Genome-wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis
  publication-title: Cell
  doi: 10.1016/j.cell.2006.08.003
– volume: 6
  start-page: e194
  year: 2008
  ident: ref38
  article-title: Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0060194
– volume: 24
  start-page: 2783
  year: 2005
  ident: ref6
  article-title: Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in Arabidopsis
  publication-title: Embo J
  doi: 10.1038/sj.emboj.7600743
– volume: 11
  start-page: 204
  year: 2010
  ident: ref8
  article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2719
– volume: 3
  start-page: e3156
  year: 2008
  ident: ref9
  article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003156
– volume: 22
  start-page: 246
  year: 2011
  ident: ref35
  article-title: Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer
  publication-title: Genome Res
  doi: 10.1101/gr.125872.111
– volume: 319
  start-page: 462
  year: 2008
  ident: ref21
  article-title: Control of genic DNA methylation by a jmjC domain-containing protein in Arabidopsis thaliana
  publication-title: Science
  doi: 10.1126/science.1150987
– volume: 34
  start-page: 65
  year: 2003
  ident: ref43
  article-title: Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis
  publication-title: Nat Genet
  doi: 10.1038/ng1138
– volume: 31
  start-page: 2981
  ident: ref28
  article-title: DNA methylation in an intron of the IBM1 histone demethylase gene stabilizes chromatin modification patterns
  publication-title: EMBO J
  doi: 10.1038/emboj.2012.141
– volume: 6
  start-page: 351
  year: 2005
  ident: ref32
  article-title: Gardening the genome: DNA methylation in Arabidopsis thaliana
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1601
– volume: 331
  start-page: 76
  year: 2010
  ident: ref37
  article-title: Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA
  publication-title: Science
– volume: 100
  start-page: 8823
  year: 2003
  ident: ref10
  article-title: Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1432939100
SSID ssj0035897
Score 2.434608
Snippet Dimethylation of histone H3 lysine 9 (H3K9m2) and trimethylation of histone H3 lysine 27 (H3K27m3) are two hallmarks of transcriptional repression in many...
  Dimethylation of histone H3 lysine 9 (H3K9m2) and trimethylation of histone H3 lysine 27 (H3K27m3) are two hallmarks of transcriptional repression in many...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1003062
SubjectTerms Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biology
Deoxyribonucleic acid
DNA
DNA (Cytosine-5-)-Methyltransferases - genetics
DNA (Cytosine-5-)-Methyltransferases - metabolism
DNA Methylation
DNA Transposable Elements - genetics
Epigenesis, Genetic
Gene expression
Gene Expression Regulation, Plant
Genes
Genetic aspects
Genetics
Health aspects
Heterochromatin - genetics
Histone-Lysine N-Methyltransferase
Histones - genetics
Interspersed Repetitive Sequences
Jumonji Domain-Containing Histone Demethylases - genetics
Jumonji Domain-Containing Histone Demethylases - metabolism
Lysine - genetics
Methylation
Methyltransferases
Physiological aspects
Plant genetics
Polycomb-Group Proteins - genetics
Polycomb-Group Proteins - metabolism
Proteins
Transposons
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hSEhcEO-mFFgQEifTeNdre48BWsKjAUGLerPW9rqNFNlR7Bz6l_iVfON1TI0qtQeu2W9jZ2Y98008D8ZeK5wSGcapZyaF8AKdwg4WWeBFKfyZSeMg0FTvfDQPZyfB51N1emnUF-WEufbATnD7UtlAZfBixsCbwBuGWhl4qTzTxi9EQdYXPm8bTDkbLFXsxqooJb0IYX1XNCcjf7_T0dsVFEQ5AuDMYuCU2t79vYUerZZVfRX9_DeL8pJbOrzH7nZ8kk_d77jPbtnyAbvtJkxePGS_v-J6vCo4eB7_MJ9ymhh9sWxaumrXcGH86ODY5zTBAxaDz-QXzc8Rm64dsNUbNw3_nn3kLmucn5F55KbM-ZqKevuRWXQZ7BcRb2hmwN_tTcUb10Md5L7mixK3a9JFXq3qRY07a_9qMY_YyeHB8fuZ141n8LJIi8aDIpUuwBdEGIPnBMJOYMVTP43h85WgqtV8YgKZGT-wmbA6iGyobBTTm7oiD-RjNiqr0u4wHuU5Aqcs1dYiXi-KGLhQ5XkK9pZaEY-Z3Oonybre5TRCY5m0L-QixDBO3AlpNem0OmZev2vlendcg39Hqu-x1Hm7_QDnMenOY3LdeRyzF3RwElfG2tuPZCp9QeGolmP2qkVQ942S0nvOzKauk0_fft0A9HN-E9CPAehNByoqyCwzXd0FJE-tvwbIvQEShiYbLO_Qs7AVXQ1B-hIEGiwIO7fPx9XLL_tl-lLK6ytttQFGED9VOgbmiXucevGD61PaK1aiwYM20M9wpVyctx3SpaLOwnr3fyj0KbsDAQhXf7rHRs16Y5-BiDbp89bm_AEc1YOE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagCIkL4r2FBQxC4hS28SOJT6jALuXRgpYu6i1yHGepVJLSpAf-Er-SGcfNErSCvdafm8Rjj7-x50HIMwmzhEdJFuhRwQKhMtCDhRFBnMF-prNECIXxztNZNDkR7xdy4Q_cau9WudOJTlHnlcEz8oOQhxx2a1C5L9c_AqwahbervoTGZXIFU5fhrI4XncHFZdIWV5GSBzEY9z50jsfhgZfUizWICT0FgDmz3tbkMvh3enqwXlX1eST0b1_KPzanoxvkumeVdNxOg5vkki1vkattncmft8mvj_A8WhUU2B59MxvTqQX5rBpHWu0GNjI6PZyHFOt4gN6gE_5B0QlYqJvvDuikR3VDP5u3dO58xynmq66pLnN6jKG9XeEsfAz0ZzGdY-WAs-5NRX0mdaD4NV2W8Lo6W-bVul7W8GbuwEXfISdHh_PXk8AXaQhMrFgTgDilKoA1sCgBtiOYHYEuz8IsgZ1fMoxdzUdacKNDYQ2zSsQ2kjZO8L6uyAW_SwZlVdo9QuM8B_PJZMpasNqLIgFcJPM8Aw6XWZYMCd_JJzU-gzkW0lil7louBkumHe4UpZp6qQ5J0PVatxk8_oN_haLvsJh_2_1QbU5Tv5xTLq2QBriV1sBxgKNFSmrgTrlROixYMSSPceKkbTBrp0XSMQ8ZGqWKD8lTh8AcHCU6-ZzqbV2n7z59vQDoy-wioOMe6LkHFRWMmdE--gJGHhOA9ZD7PSSoG9Nr3sO1sBu6Oj1bmNBztz7Ob37SNeOfondfaastYBiyVKkSwNxrl1M3_MD40fkVWuLeQuvJp99SLr-5POlcYn5hdf_fr_WAXINPY2186T4ZNJutfQhEs8keOW3yGxQsesw
  priority: 102
  providerName: ProQuest
Title Loss of the DNA Methyltransferase MET1 Induces H3K9 Hypermethylation at PcG Target Genes and Redistribution of H3K27 Trimethylation to Transposons in Arabidopsis thaliana
URI https://www.ncbi.nlm.nih.gov/pubmed/23209430
https://www.proquest.com/docview/1313505130
https://www.proquest.com/docview/1222235980
https://pubmed.ncbi.nlm.nih.gov/PMC3510029
https://doaj.org/article/35e45c222aa242028695a512dc9a1f2f
http://dx.doi.org/10.1371/journal.pgen.1003062
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJyReJr5XGMUgJJ4yNf6o4weEOugoHy3TWFHfIidxtkpVUpJUov8SfyV3SRoIKrC3qv45H3f2-Xex746QFxJGCR94gWP6MXOEDsAOxqFwVADrmQk8ITTGO0-mg_FMfJjL-R7Z1mytBZjvdO2wntQsWx5__7Z5DRP-VVm1QbnbTscrEDnu-gMLBqO8D2uTwpoGE9HsK3DpVeVWpOSOAne_Dqb721Vai1WZ07-x3J3VMs130dI_T1f-tlyd3iYHNc-kw2pg3CF7NrlLblaVJzf3yI9PcD-axhT4H307HVKsJL1ZFiWNtRksbXQyunApeOyg-5yO-UdNr8BnzSpgqU9qCnoWvqPVaXJ6iWaTmiSiGQb7NqW08DbQnylaYC2BX92LlBZVbnUg_TncCx7XBIsoXeWLHJ6s_ARj7pPZ6ejizdipyzY4odKscEDBUsfAI9jAA_4jmO2DdQ_cwAMuIBlGs0Z9I3hoXGFDZrVQdiCt8nAHL44Ef0A6SZrYQ0JVFIFDFQbaWvDj49gD3EBGUQCsLrDM6xK-1Y8f1jnNsbTG0i836hT4NpW4fdSqX2u1S5ym16rK6fEf_AmqvsFiRu7yjzS79OsJ7nNphQyBbRkDrAdY20BLA2wqCrVxYxZ3yVMcOH4V3trYFX_IXYZuquZd8rxEYFaOBI_9XJp1nvvvP3-9BujL9Dqg8xboZQ2KU5BZaOp4DJA8pgRrIY9aSDBAYav5EOfCVnQ5CNLlQKyBHUHP7fzY3fysacaL4nm_xKZrwDDkrVJ7gHlYTadG_OAD4HFYaFGtidbST7slWVyVmdO5xIzD-tG_X-gxuQW_WBVxekQ6Rba2T4B6FkGP3FBz1SP7J6Pp2Xmv_IDTKy3MTwvDhNY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGEYIXxH2FwQwC8ZQtseMkfkCosI2OXkCjQ30LTuKMSiUpTSq0v8QDv5FznDQjaIK97LX-HKc-x-cSnwshzwVwCfeCyFJ2yixXRiAH09i1_Aj0mYoC15WY7zwae_1j9_1UTDfIr3UuDIZVrmWiEdRJHuM38l2HOxy0NYjc14vvFnaNwtvVdQuNii0G-vQHuGzFq8M9oO8Lxg72J2_7Vt1VwIp9yUoL1hcyBTXHvADUs8u0DcIncqIAVJVgmGyZ2MrlsXJcHTMtXV97QvsBXjClicvhuVfIVVC8Njp7_rRx8LgIqmYuQnDL59KuU_W47-zWnLGzALbAyASw1FlLFZqOAY1e6CzmeXGe0ft37OYfyvDgFrlZW7G0V7HdbbKhszvkWtXX8vQu-TmE9WieUrAu6d64R0ca-GFeGiNZL0Fx0tH-xKHYNwTkFO3zgaR98IiX3wzQcAtVJf0Yv6MTE6tOsT52QVWW0CNMJW4adeEyMJ_5dIKdCs6mlzmtK7eDS1HQWQavq6JZki-KWQFvZj7wqHvk-FLId590sjzTm4T6SQLuWhxJrW3XS9MAcJ5IkghsxkizoEv4mj5hXFdMx8Yd89BcA_rgOVXbHSJVw5qqXWI1sxZVxZD_4N8g6Rss1vs2P-TLk7AWHyEX2hUx2HJKgU0FNqEnhQJbLYmlclKWdsk2Mk5YJc82UivscYehEyx5lzwzCKz5kWFQ0YlaFUV4-OHzBUCfxhcBHbVAL2tQmsOexarO9oCdx4JjLeRWCwniLW4Nb-JZWG9dEZ4JApi5Ph_nDz9thvGhGE2Y6XwFGIZWsZABYB5Ux6nZfvAwMNgWRvzWQWvRpz2Szb6auuxcYD1j-fDfr7VNrvcno2E4PBwPHpEb8DdZldu6RTrlcqUfg5FbRk-MZKHky2WLst_FGrW3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviO8VBjMIxFNoY8dJ_IBQR1taupaqdGhvwUmcUakkpWmF9i_xJ_DXcZevETTBXvZanxPXd_7dXXwfhLwQICXcdn1DtSNmWNIHHIwCy3B80GfKdy1LYr7zeGIPjq0PJ-Jkh_wqc2EwrLLExAyowyTAb-Qtk5sctDVAbisqwiKm3f7b1XcDO0jhTWvZTiMXkZE--wHuW_pm2AVev2Ss35u_GxhFhwEjcCTbGLAWISNQecx2QVVbTLcBiHzTd0FtCYaJl2FbWTxQpqUDpqXlaFtox8XLpii0ODz3Gtl10CtqkN3D3mQ6K_UAF27e2kUIbjhctovEPe6YrUJOXq9ASDBOAex2VlOMWf-ASks0VsskvcgE_juS8w_V2L9NbhU2Le3kQniH7Oj4Lrmed7k8u0d-HsH7aBJRsDVpd9KhYw3SsdxkJrNegxql497cpNhFBFCLDvhI0gH4x-tvGWEmO1Rt6DR4T-dZ5DrFatkpVXFIZ5hYXLXtwtfAfObQOfYtOJ--SWhRxx0cjJQuYliu8hdhskoXKaws-9yj7pPjK2HgA9KIk1jvEeqEIThvgS-1blt2FLlAZ4sw9MGC9DVzm4SX_PGCon46tvFYetmloAN-VL7dHnLVK7jaJEY1a5XXD_kP_SGyvqLF6t_ZD8n61CvAxONCWyIAy04psLDAQrSlUGC5hYFUZsSiJjlAwfHyVNoKw7wONxm6xJI3yfOMAiuAxHiWTtU2Tb3hx8-XIPo0uQzRrEb0qiCKEtizQBW5H7DzWH6sRrlfowSwC2rDe3gWyq1LvXNYgJnl-bh4-Fk1jA_F2MJYJ1ugYWgjC-kCzcP8OFXbD_4Ght7CiFM7aDX-1EfixdesSjsXWN1YPvr3sg7IDYAx72g4GT0mN-FfsjzRdZ80NuutfgIW78Z_WkALJV-uGs1-AwbWu1I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loss+of+the+DNA+methyltransferase+MET1+induces+H3K9+hypermethylation+at+PcG+target+genes+and+redistribution+of+H3K27+trimethylation+to+transposons+in+Arabidopsis+thaliana&rft.jtitle=PLoS+genetics&rft.au=Deleris%2C+Angelique&rft.au=Stroud%2C+Hume&rft.au=Bernatavichute%2C+Yana&rft.au=Johnson%2C+Elizabeth&rft.date=2012-11-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=8&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.pgen.1003062&rft.externalDocID=A312014993
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon