Application of Artificial Neural Network Methods to Anatolian Plate Earthquake Magnitude and Location Prediction

Same-region earthquakes usually have a pattern that is difficult to identify clearly. Therefore, time series analysis methods have been proposed for earthquake prediction. Our work attempts to predict three earthquake parameters in the Anatolian Peninsula using pure artificial neural network methods...

Full description

Saved in:
Bibliographic Details
Published inJournal of Engineering Technology and Applied Sciences Vol. 9; no. 2; pp. 47 - 62
Main Authors Emeç, Murat, Özcanhan, Mehmet Hilal
Format Journal Article
LanguageEnglish
Published 30.08.2024
Online AccessGet full text

Cover

Loading…
Abstract Same-region earthquakes usually have a pattern that is difficult to identify clearly. Therefore, time series analysis methods have been proposed for earthquake prediction. Our work attempts to predict three earthquake parameters in the Anatolian Peninsula using pure artificial neural network methods. An optimized BP-NN model and optimally hyper-parameterized LSTM Model have been designed to predict earthquake magnitude, latitude, and longitude. The two models are compared with previous works for their prediction performances using four well-accepted metrics: mean squared error, mean absolute error, median absolute error, and standard deviation. The time, depth, sun, and moon distances to Earth were identified as the most contributing factors in earthquake occurrence through analysis by five different feature extraction algorithms. The date harmed the prediction accuracy. The LSTM model outperformed the BP-NN Model in magnitude prediction with 0.062 MSE. Latitude predictions of both methods were satisfactory and close. However, BP-NN had lower error rates in latitude prediction. However, longitude prediction errors were significant in both models. Therefore, our designs did not successfully predict the exact location of the earthquakes. However, multi-variate, stacked LSTM models are promising in predicting Anatolian Peninsula earthquake magnitudes, but future work is necessary for location and timing predictions.
AbstractList Same-region earthquakes usually have a pattern that is difficult to identify clearly. Therefore, time series analysis methods have been proposed for earthquake prediction. Our work attempts to predict three earthquake parameters in the Anatolian Peninsula using pure artificial neural network methods. An optimized BP-NN model and optimally hyper-parameterized LSTM Model have been designed to predict earthquake magnitude, latitude, and longitude. The two models are compared with previous works for their prediction performances using four well-accepted metrics: mean squared error, mean absolute error, median absolute error, and standard deviation. The time, depth, sun, and moon distances to Earth were identified as the most contributing factors in earthquake occurrence through analysis by five different feature extraction algorithms. The date harmed the prediction accuracy. The LSTM model outperformed the BP-NN Model in magnitude prediction with 0.062 MSE. Latitude predictions of both methods were satisfactory and close. However, BP-NN had lower error rates in latitude prediction. However, longitude prediction errors were significant in both models. Therefore, our designs did not successfully predict the exact location of the earthquakes. However, multi-variate, stacked LSTM models are promising in predicting Anatolian Peninsula earthquake magnitudes, but future work is necessary for location and timing predictions.
Author Emeç, Murat
Özcanhan, Mehmet Hilal
Author_xml – sequence: 1
  givenname: Murat
  orcidid: 0000-0002-9407-1728
  surname: Emeç
  fullname: Emeç, Murat
– sequence: 2
  givenname: Mehmet Hilal
  orcidid: 0000-0002-5619-6722
  surname: Özcanhan
  fullname: Özcanhan, Mehmet Hilal
BookMark eNpNkD1PwzAURS1UJErpyuw_kGLHcT7GqCpQqYUO3aMX55maBjvYjhD_nlI6MN2je6U7nFsysc4iIfecLQSrBH94xwhhwUVRZCW_ItNUZmXCRMUn__iGzEMwLRNc8jKTfEqGehh6oyAaZ6nTtPbRaKMM9PQFR3-O-OX8kW4xHlwXaHS0thBdb8DSXQ8R6Qp8PHyOcES6hTdr4tghBdvRjbs87zx2Rv3iHbnW0AecX3JG9o-r_fI52bw-rZf1JlFFxZM2FRIUKyVmKW9L7FCnghVayFPNhS6r0yYk5ohpBgIhV3kOrFWtVpipSszI4u9WeReCR90M3nyA_244a87GmrOx5mJM_ADoc2PF
Cites_doi 10.1109/CCDC.2016.7531576
10.1117/12.2192683
10.1016/B978-0-08-051433-8.50017-3
10.1007/978-3-319-19644-2_33
10.4236/cs.2016.711294
10.28991/cej-2016-00000008
10.1007/s00500-016-2158-2
10.1109/LGRS.2021.3107998
10.1109/ICASSP.2013.6638947
10.1103/PhysRevE.58.1494
10.1016/j.cageo.2014.12.002
10.1016/j.eswa.2011.05.043
10.4236/ojer.2016.53013
10.1785/0220200021
10.1117/12.2203657
10.1029/96JB03736
10.2478/jaiscr-2019-0006
10.5194/nhess-15-1061-2015
10.1016/j.epsl.2006.05.038
10.1038/267121a0
10.1016/j.eswa.2010.05.050
10.1007/s10844-014-0316-5
10.1016/j.asr.2016.05.046
10.1371/journal.pone.0146101
10.1109/TETC.2017.2699169
10.1109/TPAMI.2008.137
10.1016/j.knosys.2016.02.014
10.1007/s12652-019-01398-9
10.1016/S0167-8655(03)00005-9
10.1142/S0129065707000890
10.1134/S1019331615020069
10.1038/s41598-019-45748-1
10.1063/1.4941201
10.1109/DSAA.2015.7344872
10.1162/neco_a_01199
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.30931/jetas.1377481
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2548-0391
EndPage 62
ExternalDocumentID 10_30931_jetas_1377481
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CITATION
EN8
ID FETCH-LOGICAL-c791-b235ac085e421b8edef2307f355ac13f8908535e6ee24a3ea6c66a0bcbfce4c93
ISSN 2548-0391
IngestDate Tue Jul 01 02:24:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c791-b235ac085e421b8edef2307f355ac13f8908535e6ee24a3ea6c66a0bcbfce4c93
ORCID 0000-0002-5619-6722
0000-0002-9407-1728
OpenAccessLink https://doi.org/10.30931/jetas.1377481
PageCount 16
ParticipantIDs crossref_primary_10_30931_jetas_1377481
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-30
PublicationDateYYYYMMDD 2024-08-30
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-30
  day: 30
PublicationDecade 2020
PublicationTitle Journal of Engineering Technology and Applied Sciences
PublicationYear 2024
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref6
  doi: 10.1109/CCDC.2016.7531576
– ident: ref11
  doi: 10.1117/12.2192683
– ident: ref35
  doi: 10.1016/B978-0-08-051433-8.50017-3
– ident: ref8
  doi: 10.1007/978-3-319-19644-2_33
– ident: ref24
  doi: 10.4236/cs.2016.711294
– ident: ref5
  doi: 10.28991/cej-2016-00000008
– ident: ref7
  doi: 10.1007/s00500-016-2158-2
– ident: ref28
  doi: 10.1109/LGRS.2021.3107998
– ident: ref37
  doi: 10.1109/ICASSP.2013.6638947
– ident: ref10
  doi: 10.1103/PhysRevE.58.1494
– ident: ref17
  doi: 10.1016/j.cageo.2014.12.002
– ident: ref22
  doi: 10.1016/j.eswa.2011.05.043
– ident: ref41
– ident: ref14
  doi: 10.4236/ojer.2016.53013
– ident: ref26
  doi: 10.1785/0220200021
– ident: ref15
  doi: 10.1117/12.2203657
– ident: ref31
  doi: 10.1029/96JB03736
– ident: ref39
  doi: 10.2478/jaiscr-2019-0006
– ident: ref16
  doi: 10.5194/nhess-15-1061-2015
– ident: ref32
– ident: ref23
  doi: 10.1109/CCDC.2016.7531576
– ident: ref29
  doi: 10.1016/j.epsl.2006.05.038
– ident: ref9
  doi: 10.1038/267121a0
– ident: ref34
– ident: ref30
– ident: ref3
  doi: 10.4236/cs.2016.711294
– ident: ref19
  doi: 10.1016/j.eswa.2010.05.050
– ident: ref21
  doi: 10.1007/s10844-014-0316-5
– ident: ref12
  doi: 10.1016/j.asr.2016.05.046
– ident: ref4
  doi: 10.1371/journal.pone.0146101
– ident: ref2
  doi: 10.1109/TETC.2017.2699169
– ident: ref36
  doi: 10.1109/TPAMI.2008.137
– ident: ref18
  doi: 10.1016/j.knosys.2016.02.014
– ident: ref25
  doi: 10.1007/s12652-019-01398-9
– ident: ref33
  doi: 10.1016/S0167-8655(03)00005-9
– ident: ref20
  doi: 10.1142/S0129065707000890
– ident: ref1
  doi: 10.1134/S1019331615020069
– ident: ref27
  doi: 10.1038/s41598-019-45748-1
– ident: ref13
  doi: 10.1063/1.4941201
– ident: ref38
  doi: 10.1109/DSAA.2015.7344872
– ident: ref40
  doi: 10.1162/neco_a_01199
SSID ssib031518451
ssib048876987
Score 2.2668705
Snippet Same-region earthquakes usually have a pattern that is difficult to identify clearly. Therefore, time series analysis methods have been proposed for earthquake...
SourceID crossref
SourceType Index Database
StartPage 47
Title Application of Artificial Neural Network Methods to Anatolian Plate Earthquake Magnitude and Location Prediction
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCFgHiLR-QOFRZNonjxscKFVWIoj0UaW-VHxMVsdvuVullD_wN_u6Ox04clh4WLmnlNqPE82n8eWY8w9h7JG2ycFWZCZNXmdCVzXRuZeajgi4H5cBQtc9vcv5dfDmvzkej34OspX1rTuzNwXMl_6NVHEO9-lOy_6DZXigO4HfUL15Rw3i9l46nKfpMjHJHiT_eB-5rbtAHJXmPF9Qnmoo5TDe4zSbfxtkF8szxDOWur_f6p29C5FOJ9i5EFL5uo-SznQ_m9Ar8m8kOahoOXPUkpCO50YQkAn8JFKKfkEMWn7XPvvHDSt6gxtfBN7uA9SW04_mPizgd0UdRCHK6niZThrtQf5Av9OU6gQNj0RarAeSKgV0NVTnjCh3M913b70O6ZPzBl6D0hRRFnadVrovs31n8-pRE3AyRhBXdv4r3P2APC9x_eAO6-DXrDFWJNKkWKZyKRnAiFTVj7N8qFAglkR__eKQBARowmeUxexwVx6cBT0_YCDZP2dUAS3zb8IQlHrDEI5Z4xBJvt7zHEics8YQl3mOJIwx4hyWesPSMLT_Plp_mWezGkdmJyjNTlJW2SNBBFLmpwUHjzxA0yFe1zcumVvhbWYEEKIQuQUsrpT411jQWhFXlc3a02W7gBeNS5ErXVWMUziIuKQaEc5VxeePcxJb2JfvQzdDqKtRcWR1Wz6t7__M1e5SA-YYdtbs9vEU62Zp3pNpbmxt5Xw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Artificial+Neural+Network+Methods+to+Anatolian+Plate+Earthquake+Magnitude+and+Location+Prediction&rft.jtitle=Journal+of+Engineering+Technology+and+Applied+Sciences&rft.au=Eme%C3%A7%2C+Murat&rft.au=%C3%96zcanhan%2C+Mehmet+Hilal&rft.date=2024-08-30&rft.issn=2548-0391&rft.eissn=2548-0391&rft.volume=9&rft.issue=2&rft.spage=47&rft.epage=62&rft_id=info:doi/10.30931%2Fjetas.1377481&rft.externalDBID=n%2Fa&rft.externalDocID=10_30931_jetas_1377481
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2548-0391&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2548-0391&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2548-0391&client=summon