Application of Artificial Neural Network Methods to Anatolian Plate Earthquake Magnitude and Location Prediction
Same-region earthquakes usually have a pattern that is difficult to identify clearly. Therefore, time series analysis methods have been proposed for earthquake prediction. Our work attempts to predict three earthquake parameters in the Anatolian Peninsula using pure artificial neural network methods...
Saved in:
Published in | Journal of Engineering Technology and Applied Sciences Vol. 9; no. 2; pp. 47 - 62 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
30.08.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | Same-region earthquakes usually have a pattern that is difficult to identify clearly. Therefore, time series analysis methods have been proposed for earthquake prediction. Our work attempts to predict three earthquake parameters in the Anatolian Peninsula using pure artificial neural network methods. An optimized BP-NN model and optimally hyper-parameterized LSTM Model have been designed to predict earthquake magnitude, latitude, and longitude. The two models are compared with previous works for their prediction performances using four well-accepted metrics: mean squared error, mean absolute error, median absolute error, and standard deviation. The time, depth, sun, and moon distances to Earth were identified as the most contributing factors in earthquake occurrence through analysis by five different feature extraction algorithms. The date harmed the prediction accuracy. The LSTM model outperformed the BP-NN Model in magnitude prediction with 0.062 MSE. Latitude predictions of both methods were satisfactory and close. However, BP-NN had lower error rates in latitude prediction. However, longitude prediction errors were significant in both models. Therefore, our designs did not successfully predict the exact location of the earthquakes. However, multi-variate, stacked LSTM models are promising in predicting Anatolian Peninsula earthquake magnitudes, but future work is necessary for location and timing predictions. |
---|---|
AbstractList | Same-region earthquakes usually have a pattern that is difficult to identify clearly. Therefore, time series analysis methods have been proposed for earthquake prediction. Our work attempts to predict three earthquake parameters in the Anatolian Peninsula using pure artificial neural network methods. An optimized BP-NN model and optimally hyper-parameterized LSTM Model have been designed to predict earthquake magnitude, latitude, and longitude. The two models are compared with previous works for their prediction performances using four well-accepted metrics: mean squared error, mean absolute error, median absolute error, and standard deviation. The time, depth, sun, and moon distances to Earth were identified as the most contributing factors in earthquake occurrence through analysis by five different feature extraction algorithms. The date harmed the prediction accuracy. The LSTM model outperformed the BP-NN Model in magnitude prediction with 0.062 MSE. Latitude predictions of both methods were satisfactory and close. However, BP-NN had lower error rates in latitude prediction. However, longitude prediction errors were significant in both models. Therefore, our designs did not successfully predict the exact location of the earthquakes. However, multi-variate, stacked LSTM models are promising in predicting Anatolian Peninsula earthquake magnitudes, but future work is necessary for location and timing predictions. |
Author | Emeç, Murat Özcanhan, Mehmet Hilal |
Author_xml | – sequence: 1 givenname: Murat orcidid: 0000-0002-9407-1728 surname: Emeç fullname: Emeç, Murat – sequence: 2 givenname: Mehmet Hilal orcidid: 0000-0002-5619-6722 surname: Özcanhan fullname: Özcanhan, Mehmet Hilal |
BookMark | eNpNkD1PwzAURS1UJErpyuw_kGLHcT7GqCpQqYUO3aMX55maBjvYjhD_nlI6MN2je6U7nFsysc4iIfecLQSrBH94xwhhwUVRZCW_ItNUZmXCRMUn__iGzEMwLRNc8jKTfEqGehh6oyAaZ6nTtPbRaKMM9PQFR3-O-OX8kW4xHlwXaHS0thBdb8DSXQ8R6Qp8PHyOcES6hTdr4tghBdvRjbs87zx2Rv3iHbnW0AecX3JG9o-r_fI52bw-rZf1JlFFxZM2FRIUKyVmKW9L7FCnghVayFPNhS6r0yYk5ohpBgIhV3kOrFWtVpipSszI4u9WeReCR90M3nyA_244a87GmrOx5mJM_ADoc2PF |
Cites_doi | 10.1109/CCDC.2016.7531576 10.1117/12.2192683 10.1016/B978-0-08-051433-8.50017-3 10.1007/978-3-319-19644-2_33 10.4236/cs.2016.711294 10.28991/cej-2016-00000008 10.1007/s00500-016-2158-2 10.1109/LGRS.2021.3107998 10.1109/ICASSP.2013.6638947 10.1103/PhysRevE.58.1494 10.1016/j.cageo.2014.12.002 10.1016/j.eswa.2011.05.043 10.4236/ojer.2016.53013 10.1785/0220200021 10.1117/12.2203657 10.1029/96JB03736 10.2478/jaiscr-2019-0006 10.5194/nhess-15-1061-2015 10.1016/j.epsl.2006.05.038 10.1038/267121a0 10.1016/j.eswa.2010.05.050 10.1007/s10844-014-0316-5 10.1016/j.asr.2016.05.046 10.1371/journal.pone.0146101 10.1109/TETC.2017.2699169 10.1109/TPAMI.2008.137 10.1016/j.knosys.2016.02.014 10.1007/s12652-019-01398-9 10.1016/S0167-8655(03)00005-9 10.1142/S0129065707000890 10.1134/S1019331615020069 10.1038/s41598-019-45748-1 10.1063/1.4941201 10.1109/DSAA.2015.7344872 10.1162/neco_a_01199 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.30931/jetas.1377481 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2548-0391 |
EndPage | 62 |
ExternalDocumentID | 10_30931_jetas_1377481 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS ARCSS CITATION EN8 |
ID | FETCH-LOGICAL-c791-b235ac085e421b8edef2307f355ac13f8908535e6ee24a3ea6c66a0bcbfce4c93 |
ISSN | 2548-0391 |
IngestDate | Tue Jul 01 02:24:48 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c791-b235ac085e421b8edef2307f355ac13f8908535e6ee24a3ea6c66a0bcbfce4c93 |
ORCID | 0000-0002-5619-6722 0000-0002-9407-1728 |
OpenAccessLink | https://doi.org/10.30931/jetas.1377481 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_30931_jetas_1377481 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-30 |
PublicationDateYYYYMMDD | 2024-08-30 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Engineering Technology and Applied Sciences |
PublicationYear | 2024 |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref6 doi: 10.1109/CCDC.2016.7531576 – ident: ref11 doi: 10.1117/12.2192683 – ident: ref35 doi: 10.1016/B978-0-08-051433-8.50017-3 – ident: ref8 doi: 10.1007/978-3-319-19644-2_33 – ident: ref24 doi: 10.4236/cs.2016.711294 – ident: ref5 doi: 10.28991/cej-2016-00000008 – ident: ref7 doi: 10.1007/s00500-016-2158-2 – ident: ref28 doi: 10.1109/LGRS.2021.3107998 – ident: ref37 doi: 10.1109/ICASSP.2013.6638947 – ident: ref10 doi: 10.1103/PhysRevE.58.1494 – ident: ref17 doi: 10.1016/j.cageo.2014.12.002 – ident: ref22 doi: 10.1016/j.eswa.2011.05.043 – ident: ref41 – ident: ref14 doi: 10.4236/ojer.2016.53013 – ident: ref26 doi: 10.1785/0220200021 – ident: ref15 doi: 10.1117/12.2203657 – ident: ref31 doi: 10.1029/96JB03736 – ident: ref39 doi: 10.2478/jaiscr-2019-0006 – ident: ref16 doi: 10.5194/nhess-15-1061-2015 – ident: ref32 – ident: ref23 doi: 10.1109/CCDC.2016.7531576 – ident: ref29 doi: 10.1016/j.epsl.2006.05.038 – ident: ref9 doi: 10.1038/267121a0 – ident: ref34 – ident: ref30 – ident: ref3 doi: 10.4236/cs.2016.711294 – ident: ref19 doi: 10.1016/j.eswa.2010.05.050 – ident: ref21 doi: 10.1007/s10844-014-0316-5 – ident: ref12 doi: 10.1016/j.asr.2016.05.046 – ident: ref4 doi: 10.1371/journal.pone.0146101 – ident: ref2 doi: 10.1109/TETC.2017.2699169 – ident: ref36 doi: 10.1109/TPAMI.2008.137 – ident: ref18 doi: 10.1016/j.knosys.2016.02.014 – ident: ref25 doi: 10.1007/s12652-019-01398-9 – ident: ref33 doi: 10.1016/S0167-8655(03)00005-9 – ident: ref20 doi: 10.1142/S0129065707000890 – ident: ref1 doi: 10.1134/S1019331615020069 – ident: ref27 doi: 10.1038/s41598-019-45748-1 – ident: ref13 doi: 10.1063/1.4941201 – ident: ref38 doi: 10.1109/DSAA.2015.7344872 – ident: ref40 doi: 10.1162/neco_a_01199 |
SSID | ssib031518451 ssib048876987 |
Score | 2.2668705 |
Snippet | Same-region earthquakes usually have a pattern that is difficult to identify clearly. Therefore, time series analysis methods have been proposed for earthquake... |
SourceID | crossref |
SourceType | Index Database |
StartPage | 47 |
Title | Application of Artificial Neural Network Methods to Anatolian Plate Earthquake Magnitude and Location Prediction |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCFgHiLR-QOFRZNonjxscKFVWIoj0UaW-VHxMVsdvuVullD_wN_u6Ox04clh4WLmnlNqPE82n8eWY8w9h7JG2ycFWZCZNXmdCVzXRuZeajgi4H5cBQtc9vcv5dfDmvzkej34OspX1rTuzNwXMl_6NVHEO9-lOy_6DZXigO4HfUL15Rw3i9l46nKfpMjHJHiT_eB-5rbtAHJXmPF9Qnmoo5TDe4zSbfxtkF8szxDOWur_f6p29C5FOJ9i5EFL5uo-SznQ_m9Ar8m8kOahoOXPUkpCO50YQkAn8JFKKfkEMWn7XPvvHDSt6gxtfBN7uA9SW04_mPizgd0UdRCHK6niZThrtQf5Av9OU6gQNj0RarAeSKgV0NVTnjCh3M913b70O6ZPzBl6D0hRRFnadVrovs31n8-pRE3AyRhBXdv4r3P2APC9x_eAO6-DXrDFWJNKkWKZyKRnAiFTVj7N8qFAglkR__eKQBARowmeUxexwVx6cBT0_YCDZP2dUAS3zb8IQlHrDEI5Z4xBJvt7zHEics8YQl3mOJIwx4hyWesPSMLT_Plp_mWezGkdmJyjNTlJW2SNBBFLmpwUHjzxA0yFe1zcumVvhbWYEEKIQuQUsrpT411jQWhFXlc3a02W7gBeNS5ErXVWMUziIuKQaEc5VxeePcxJb2JfvQzdDqKtRcWR1Wz6t7__M1e5SA-YYdtbs9vEU62Zp3pNpbmxt5Xw |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Artificial+Neural+Network+Methods+to+Anatolian+Plate+Earthquake+Magnitude+and+Location+Prediction&rft.jtitle=Journal+of+Engineering+Technology+and+Applied+Sciences&rft.au=Eme%C3%A7%2C+Murat&rft.au=%C3%96zcanhan%2C+Mehmet+Hilal&rft.date=2024-08-30&rft.issn=2548-0391&rft.eissn=2548-0391&rft.volume=9&rft.issue=2&rft.spage=47&rft.epage=62&rft_id=info:doi/10.30931%2Fjetas.1377481&rft.externalDBID=n%2Fa&rft.externalDocID=10_30931_jetas_1377481 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2548-0391&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2548-0391&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2548-0391&client=summon |