Identifying and characterizing the most significant β-glucosidase of the novel species Aspergillus saccharolyticus
The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the main β-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion e...
Saved in:
Published in | Canadian journal of microbiology Vol. 58; no. 9; pp. 1035 - 1046 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Ottawa, ON
NRC Research Press
01.09.2012
National Research Council of Canada |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the main β-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high β-glucosidase activity and only 1 visible band on an SDS–PAGE gel. Mass spectrometry analysis of this band gave peptide matches to β-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger, respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested β-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other β-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-β-d-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50 °C, and at 60 °C it had a half-life of approximately 6 h. |
---|---|
AbstractList | The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the main β-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high β-glucosidase activity and only 1 visible band on an SDS–PAGE gel. Mass spectrometry analysis of this band gave peptide matches to β-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger , respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested β-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other β-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-β-d-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50 °C, and at 60 °C it had a half-life of approximately 6 h. The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the main β-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high β-glucosidase activity and only 1 visible band on an SDS-PAGE gel. Mass spectrometry analysis of this band gave peptide matches to β-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger, respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested P-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other β-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-β-D-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50°C, and at 60°C it had a half-life of approximately 6 h. The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in beta-glucosidase activity. In this present work, the main beta-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high beta-glucosidase activity and only 1 visible band on an SDS-PAGE gel. Mass spectrometry analysis of this band gave peptide matches to beta-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger, respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested beta-glucosidase activity with preserved retaining mechanism anda wider catalytic pocket compared with other beta-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-beta-D-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50 degrees C, and at 60 degrees C it had a half-life of approximately 6 h. The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the main β-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high β-glucosidase activity and only 1 visible band on an SDS-PAGE gel. Mass spectrometry analysis of this band gave peptide matches to β-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger, respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested P-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other β-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-β-D-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50°C, and at 60°C it had a half-life of approximately 6 h. Key words: β-glucosidase, Aspergillus saccharolyticus, enzyme characterization, thermostability, biomass hydrolysis. Une espece de champignon decouverte recemment, Aspergillus saccharolyticus,s'avere produire un bouillon de culture riche en activite β-glucosidase. Dans ce travail, la β-glucosidase d A. saccharolyticus principalement responsable de l'activite hydrolytique a ete identifiee, isolee et caracterisee. Une chromatographie par echange d'ions a ete utilisee pour fractionner le bouillon de culture, generant des fractions qui possedaient une forte activite β-glucosidase et qui produisaient une seule bande visible sur SDS-PAGE. L'analyse de cette bande par spectrometrie de masse a mis en evidence des correspondances avec les peptides des β-glucosidases d aspergillus. En utilisant une approche par PCR a l'aide d'amorces degenerees et une marche genomique, une sequence de 2919 pb codant un peptide de 860 acides amines, BGL1, a ete determinee. BGL1 d'A. saccharolyticus possedait une identite de 91 % avec BGL1 d'Aspergillus aculeatus et 82 % avec BGL1 d'Aspergillus niger, qui appartiennent toutes deux a la famille de glycoside hydrolases 3. Des etudes de modelisation d'homologie ont suggere une activite β-glucosidase dont le mecanisme de retention est preserve et une poche catalytique plus large comparativement a d autres β-glucosidases. Le gene bgl1 a ete exprime de facon heterologue chez Trichoderma reesei QM6a, et le produit a ete purifie et caracterise par des etudes de cinetique enzymatique. Cette enzyme peut hydrolyser le cellobiose, le pNPG et les cellodextrines. Cette enzyme a montre une bonne thermostabilite, etant stable a 50°C et ayant une demi-vie d'environ 6 h a 60°C. Mots-cles : β-glucosidase, Aspergillus saccharolyticus, caracterisation d'enzyme, thermostabilite, hydrolyse de la biomasse. The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the main β-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high β-glucosidase activity and only 1 visible band on an SDS–PAGE gel. Mass spectrometry analysis of this band gave peptide matches to β-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger , respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested β-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other β-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-β- d -glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50 °C, and at 60 °C it had a half-life of approximately 6 h. The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in beta -glucosidase activity. In this present work, the main beta -glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high beta -glucosidase activity and only 1 visible band on an SDS-PAGE gel. Mass spectrometry analysis of this band gave peptide matches to beta -glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger, respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested beta -glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other beta -glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl- beta -d-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50 degree C, and at 60 degree C it had a half-life of approximately 6 h.Original Abstract: Une espece de champignon decouverte recemment, Aspergillus saccharolyticus, s'avere produire un bouillon de culture riche en activite beta -glucosidase. Dans ce travail, la beta -glucosidase d'A. saccharolyticus principalement responsable de l'activite hydrolytique a ete identifiee, isolee et caracterisee. Une chromatographie par echange d'ions a ete utilisee pour fractionner le bouillon de culture, generant des fractions qui possedaient une forte activite beta -glucosidase et qui produisaient une seule bande visible sur SDS-PAGE. L'analyse de cette bande par spectrometrie de masse a mis en evidence des correspondances avec les peptides des beta -glucosidases d'aspergillus. En utilisant une approche par PCR a l'aide d'amorces degenerees et une marche genomique, une sequence de 2919 pb codant un peptide de 860 acides amines, BGL1, a ete determinee. BGL1 d'A. saccharolyticus possedait une identite de 91 % avec BGL1 d'Aspergillus aculeatus et 82 % avec BGL1 d'Aspergillus niger, qui appartiennent toutes deux a la famille de glycoside hydrolases 3. Des etudes de modelisation d'homologie ont suggere une activite beta -glucosidase dont le mecanisme de retention est preserve et une poche catalytique plus large comparativement a d'autres beta -glucosidases. Le gene bgl1 a ete exprime de facon heterologue chez Trichoderma reesei QM6a, et le produit a ete purifie et caracterise par des etudes de cinetique enzymatique. Cette enzyme peut hydrolyser le cellobiose, le pNPG et les cellodextrines. Cette enzyme a montre une bonne thermostabilite, etant stable a 50 degree C et ayant une demi-vie d'environ 6 h a 60 degree C. The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the main β-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high β-glucosidase activity and only 1 visible band on an SDS–PAGE gel. Mass spectrometry analysis of this band gave peptide matches to β-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger, respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested β-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other β-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-β-d-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50 °C, and at 60 °C it had a half-life of approximately 6 h. The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the main β-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high β-glucosidase activity and only 1 visible band on an SDS-PAGE gel. Mass spectrometry analysis of this band gave peptide matches to β-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger , respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested β-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other β-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-β-d-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50 °C, and at 60 °C it had a half-life of approximately 6 h.The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the main β-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high β-glucosidase activity and only 1 visible band on an SDS-PAGE gel. Mass spectrometry analysis of this band gave peptide matches to β-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger , respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested β-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other β-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-β-d-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50 °C, and at 60 °C it had a half-life of approximately 6 h. The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in beta-glucosidase activity. In this present work, the main beta-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high beta-glucosidase activity and only 1 visible band on an SDS-PAGE gel. Mass spectrometry analysis of this band gave peptide matches to beta-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger, respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested beta-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other beta-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-beta-D-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50 degrees C, and at 60 degrees C it had a half-life of approximately 6 h. |
Abstract_FL | Une espèce de champignon découverte récemment,
Aspergillus saccharolyticus
, s’avère produire un bouillon de culture riche en activité β-glucosidase. Dans ce travail, la β-glucosidase d’A. saccharolyticus principalement responsable de l’activité hydrolytique a été identifiée, isolée et caractérisée. Une chromatographie par échange d’ions a été utilisée pour fractionner le bouillon de culture, générant des fractions qui possèdaient une forte activité β-glucosidase et qui produisaient une seule bande visible sur SDS–PAGE. L’analyse de cette bande par spectrométrie de masse a mis en évidence des correspondances avec les peptides des β-glucosidases d’aspergillus. En utilisant une approche par PCR à l’aide d’amorces dégénérées et une marche génomique, une séquence de 2919 pb codant un peptide de 860 acides aminés, BGL1, a été déterminée. BGL1 d’A. saccharolyticus possédait une identité de 91 % avec BGL1 d’
Aspergillus aculeatus
et 82 % avec BGL1 d’
Aspergillus niger
, qui appartiennent toutes deux à la famille de glycoside hydrolases 3. Des études de modélisation d’homologie ont suggéré une activité β-glucosidase dont le mécanisme de rétention est préservé et une poche catalytique plus large comparativement à d’autres β-glucosidases. Le gène bgl1 a été exprimé de façon hétérologue chez
Trichoderma reesei
QM6a, et le produit a été purifié et caractérisé par des études de cinétique enzymatique. Cette enzyme peut hydrolyser le cellobiose, le pNPG et les cellodextrines. Cette enzyme a montré une bonne thermostabilité, étant stable à 50 °C et ayant une demi-vie d’environ 6 h à 60 °C. |
Audience | Academic |
Author | Bruno, Kenneth S Culley, David E Lübeck, Mette Sørensen, Annette Ubhayasekera, Wimal Ahring, Birgitte K Lübeck, Peter S |
Author_xml | – sequence: 1 fullname: Sørensen, Annette – sequence: 2 fullname: Ahring, Birgitte K – sequence: 3 fullname: Lübeck, Mette – sequence: 4 fullname: Ubhayasekera, Wimal – sequence: 5 fullname: Bruno, Kenneth S – sequence: 6 fullname: Culley, David E – sequence: 7 fullname: Lübeck, Peter S |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26384738$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22906186$$D View this record in MEDLINE/PubMed https://lup.lub.lu.se/record/3146811$$DView record from Swedish Publication Index oai:portal.research.lu.se:publications/91e8e1b5-a2ac-4e60-ac0d-b873888baad0$$DView record from Swedish Publication Index |
BookMark | eNqVk9tu1DAQhiNURA9wwQtABEICiW2dOLGdy1XFoVIFEqXX1sQZp0beOLUdSnksHoRnwtvdnqSCiiIrI_vzPzOeme1sY3ADZtnTguwWBW32zkpSlDPC2YNsq6gEmdGS1xs37M1sO4RvhBSEVuxRtlmWDWGFYFtZOOhwiEafm6HPYehydQIeVERvfi634gnmCxdiHkw_GG0UDDH__WvW20m5YDoImDt9gQ3uO9o8jKgMhnyeDN8ba6eQB1BLWWfPo1FTeJw91GADPln_d7Lj9---7n-cHX7-cLA_P5wp3pA4U7rFhouy5mVFa4ZFy3QNZQvJEByIqJWoudIaNa15ozuulWCEV8h1S9uW7mSw0g1nOE6tHL1ZgD-XDowcnY9gpceA4NWJtJMMKBNlU4rRuCHIpkCRnNYSSlCyQkYkKNLJVnAqhGgBOpJ8HP7Vh53GtNq19j3lXq_kRu9OJwxRLkxQaC0M6KYgC0FoURFB74FWtEl1ZuU9UEKZEKRgLKEvV2gPFqUZtIupHZa4nFNSC8pTAIl6cQelRnMqb0K7d0Dp63BhVOpgbdL-LdU3ty4kJuKP2MMUgjw4-vIf7Kfb7LN1-lO7wO6qRpdTkIBXawCCAqs9DMqEa45RUaUiJW5vxSnvQvCopTLxoltSZsamd5TLeZQX8yjTPF6HeXXjUvQu9u2KHby66st_4c9XuAYnofcp4OOjdMrSmJclryr6B0s6SyY |
CODEN | CJMIAZ |
CitedBy_id | crossref_primary_10_1016_j_ibiod_2014_05_011 crossref_primary_10_1016_j_gene_2018_11_092 crossref_primary_10_1016_j_ijbiomac_2021_02_154 crossref_primary_10_1016_j_algal_2020_102036 crossref_primary_10_15302_J_FASE_2016127 crossref_primary_10_3390_biom9060220 crossref_primary_10_3390_biom3030612 crossref_primary_10_1080_10826068_2019_1599397 crossref_primary_10_1002_bab_2097 crossref_primary_10_1007_s00253_016_7927_4 crossref_primary_10_1088_1755_1315_166_1_012026 crossref_primary_10_1038_s41588_018_0246_1 crossref_primary_10_1016_j_ijbiomac_2018_01_020 |
Cites_doi | 10.1038/nbt1282 10.1007/s11274-006-9146-0 10.1107/S0907444901007697 10.1021/pr070355i 10.1016/S0141-0229(98)00133-1 10.1007/s00253-009-2181-7 10.1016/j.jmb.2010.01.072 10.1016/j.gene.2006.06.002 10.1093/nar/gkp885 10.1002/j.1460-2075.1986.tb04288.x 10.1093/nar/28.1.235 10.1016/S0734-9750(97)00006-2 10.1093/nar/25.17.3389 10.1002/prot.20730 10.1007/BF02712670 10.1016/S1087-1845(02)00524-8 10.1074/jbc.275.7.4973 10.1080/07388550290789568 10.1107/S0108767390010224 10.1016/0959-440X(94)90271-2 10.1016/0960-8524(92)90128-K 10.1007/10_2007_066 10.1093/protein/10.1.1 10.1021/jf9702499 10.1016/j.pep.2004.08.006 10.1007/BF00321118 10.1016/0378-1119(87)90164-8 10.1023/A:1011948405581 10.1042/bj2800309 10.1107/S0021889891004399 10.1023/B:JOPC.0000016254.58189.2a 10.1128/AEM.64.10.3607-3614.1998 10.1016/0378-1119(83)90191-9 10.1093/nar/gkh045 10.1139/m77-020 10.1007/BF00058833 10.1016/0378-1119(96)00179-5 10.1093/nar/22.22.4673 10.1111/j.1574-6976.1994.tb00033.x 10.1074/jbc.M307188200 10.1021/jf000434d 10.1134/S0006297909050137 10.1093/nar/gkg524 10.1271/bbb.61.965 10.1016/j.jmb.2004.05.028 10.1007/s00253-009-1861-7 10.1016/j.fgb.2008.09.010 10.1128/IAI.00008-08 10.1016/0141-0229(82)90084-9 10.1016/j.bbapap.2006.03.009 10.1099/ijs.0.029884-0 10.1002/pmic.200300771 10.1016/0378-1119(87)90110-7 10.1139/w11-052 10.1007/s00253-009-2395-8 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS COPYRIGHT 2012 NRC Research Press |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2012 NRC Research Press |
CorporateAuthor | MAX IV-laboratoriet Lunds universitet Lund University MAX IV Laboratory |
CorporateAuthor_xml | – name: MAX IV Laboratory – name: Lund University – name: MAX IV-laboratoriet – name: Lunds universitet |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM ISN ISR 7X8 M7N 7S9 L.6 ADTPV AOWAS D95 |
DOI | 10.1139/w2012-076 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic SwePub SwePub Articles SWEPUB Lunds universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1480-3275 |
EndPage | 1046 |
ExternalDocumentID | oai_portal_research_lu_se_publications_91e8e1b5_a2ac_4e60_ac0d_b873888baad0 oai_lup_lub_lu_se_91e8e1b5_a2ac_4e60_ac0d_b873888baad0 A305837031 22906186 26384738 10_1139_w2012_076 w2012-076 US201600122744 |
Genre | Physiology, metabolism, and enzymology Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Denmark United States |
GeographicLocations_xml | – name: Denmark – name: United States |
GroupedDBID | --- -~X .55 00T 0R~ 29B 2QL 2XV 36B 3O- 3V. 4.4 4IJ 53G 5GY 5RE 5RP 6J9 7RV 7X2 7X7 88A 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FQ 8G5 A8Z AAIKC AAMNW ABCQX ABDBF ABEFU ABJNI ABPTK ABTAH ABUWG ACGFO ACGFS ACGOD ACNCT ACPRK ADBBV AEGXH AENEX AEQTP AFFNX AFKRA AFRAH AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS APEBS ATCPS AZQEC BBNVY BCR BENPR BHPHI BKEYQ BKSAR BLC BPHCQ BVXVI CAG CCPQU COF CS3 D1J D8U DU5 DWQXO EAD EAP EAS EBC EBD EBS ECC EDH EJD EMB EMK EMOBN EPL EST ESTFP ESX EX3 F5P FBQ FYUFA GNUQQ GUQSH HCIFZ HMCUK HZ~ H~9 IAG IAO ICQ IEA IEP IHR INH INR IPNFZ ISN ISR ITC L7B LK8 M0K M0L M1P M2O M2P M2Q M3C M3G M7P ML0 MM. MV1 MVM NAPCQ NEJ NMEPN NRXXU NYCZX O9- OHT ONR OVD P2P PCBAR PQQKQ PRG PROAC PSQYO PV9 QF4 QM4 QN7 QO4 QRP RIG RRCRK RRP RZL S10 SV3 TEORI TN5 TUS U5U UKHRP VQG WH7 WOW X7M YZZ ZCG ZGI ZY4 - 08R 0R 1AW 55 AALRV ABFLS ACVYA ADKZR AJYGW BBAFP HZ MBDVC PADUT PQEST PQUKI PRINS X XHC AAHBH AAYXX ACUHS ADXHL AEUYN ALIPV CITATION IGS PHGZM PHGZT IQODW PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM PKN 7X8 M7N 7S9 L.6 ADTPV AOWAS D95 |
ID | FETCH-LOGICAL-c790t-cfbe97825724356e1b6f5a2ba1b687a085c857cffef3579fd7fc86074e7fb3bb3 |
ISSN | 1480-3275 0008-4166 |
IngestDate | Thu Aug 21 07:00:15 EDT 2025 Thu Jul 03 05:34:01 EDT 2025 Fri Jul 11 06:43:02 EDT 2025 Fri Jul 11 04:59:35 EDT 2025 Thu Jul 10 22:51:19 EDT 2025 Wed Mar 19 00:34:12 EDT 2025 Tue Jun 10 15:32:52 EDT 2025 Sat Mar 08 18:39:11 EST 2025 Wed Mar 05 04:46:36 EST 2025 Wed Mar 05 05:27:54 EST 2025 Wed Feb 19 01:48:58 EST 2025 Mon Jul 21 09:14:53 EDT 2025 Tue Jul 01 04:27:58 EDT 2025 Thu Apr 24 22:59:45 EDT 2025 Wed Nov 11 00:33:14 EST 2020 Wed Dec 27 19:08:38 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | 4-α-Glucanotransferase Enzyme Transferases Glycosyltransferases Biomass Fungi Glycosylases Hydrolysis Aspergillus β-Glucosidase Glycosidases Hydrolases Hexosyltransferases Fungi Imperfecti |
Language | English |
License | http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c790t-cfbe97825724356e1b6f5a2ba1b687a085c857cffef3579fd7fc86074e7fb3bb3 |
Notes | http://dx.doi.org/10.1139/w2012-076 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 22906186 |
PQID | 1036880166 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_91e8e1b5_a2ac_4e60_ac0d_b873888baad0 crossref_citationtrail_10_1139_w2012_076 proquest_miscellaneous_1036880166 gale_infotracmisc_A305837031 crossref_primary_10_1139_w2012_076 fao_agris_US201600122744 gale_infotraccpiq_305837031 gale_incontextgauss_ISR_A305837031 gale_infotracacademiconefile_A305837031 proquest_miscellaneous_1439229620 gale_incontextgauss_ISN_A305837031 proquest_miscellaneous_1803140830 pubmed_primary_22906186 swepub_primary_oai_lup_lub_lu_se_91e8e1b5_a2ac_4e60_ac0d_b873888baad0 pascalfrancis_primary_26384738 nrcresearch_primary_10_1139_w2012_076 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-01 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Ottawa, ON |
PublicationPlace_xml | – name: Ottawa, ON – name: Canada |
PublicationTitle | Canadian journal of microbiology |
PublicationTitleAlternate | Can J Microbiol |
PublicationYear | 2012 |
Publisher | NRC Research Press National Research Council of Canada |
Publisher_xml | – name: NRC Research Press – name: National Research Council of Canada |
References | refg47/ref47 refg40/ref40 refg18/ref18 refg22/ref22 refg36/ref36 refg51/ref51 refg11/ref11 refg25/ref25 refg6/ref6 refg15/ref15 refg29/ref29 refg43/ref43 refg26/ref26 refg14/ref14 refg5/ref5 refg54/ref54 refg57/ref57 refg37/ref37 refg19/ref19 Henrissat B. (refg20/ref20) 1991; 280 refg21/ref21 refg7/ref7 refg4/ref4 refg46/ref46 refg48/ref48 refg1/ref1 refg32/ref32 refg35/ref35 refg59/ref59 refg61/ref61 refg53/ref53 refg42/ref42 refg24/ref24 refg16/ref16 refg50/ref50 refg13/ref13 refg27/ref27 refg56/ref56 Riou C. (refg45/ref45) 1998; 64 refg38/ref38 refg31/ref31 refg9/ref9 refg34/ref34 refg52/ref52 refg8/ref8 Schuster E. (refg49/ref49) 2002; 59 refg60/ref60 refg2/ref2 refg23/ref23 refg17/ref17 refg30/ref30 refg12/ref12 refg28/ref28 refg41/ref41 refg55/ref55 Chothia C. (refg10/ref10) 1986; 5 refg39/ref39 refg3/ref3 refg44/ref44 refg58/ref58 refg33/ref33 |
References_xml | – ident: refg40/ref40 doi: 10.1038/nbt1282 – ident: refg44/ref44 doi: 10.1007/s11274-006-9146-0 – ident: refg19/ref19 doi: 10.1107/S0907444901007697 – ident: refg28/ref28 doi: 10.1021/pr070355i – ident: refg15/ref15 doi: 10.1016/S0141-0229(98)00133-1 – ident: refg33/ref33 doi: 10.1007/s00253-009-2181-7 – ident: refg42/ref42 doi: 10.1016/j.jmb.2010.01.072 – ident: refg18/ref18 doi: 10.1016/j.gene.2006.06.002 – ident: refg51/ref51 doi: 10.1093/nar/gkp885 – volume: 5 start-page: 823 issue: 4 year: 1986 ident: refg10/ref10 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1986.tb04288.x – ident: refg5/ref5 doi: 10.1093/nar/28.1.235 – ident: refg6/ref6 doi: 10.1016/S0734-9750(97)00006-2 – ident: refg1/ref1 doi: 10.1093/nar/25.17.3389 – ident: refg26/ref26 doi: 10.1002/prot.20730 – ident: refg14/ref14 doi: 10.1007/BF02712670 – ident: refg30/ref30 – ident: refg9/ref9 doi: 10.1016/S1087-1845(02)00524-8 – ident: refg12/ref12 doi: 10.1074/jbc.275.7.4973 – ident: refg7/ref7 doi: 10.1080/07388550290789568 – ident: refg24/ref24 doi: 10.1107/S0108767390010224 – ident: refg29/ref29 – ident: refg35/ref35 doi: 10.1016/0959-440X(94)90271-2 – ident: refg11/ref11 doi: 10.1016/0960-8524(92)90128-K – ident: refg36/ref36 doi: 10.1007/10_2007_066 – ident: refg38/ref38 doi: 10.1093/protein/10.1.1 – ident: refg61/ref61 doi: 10.1021/jf9702499 – volume: 59 start-page: 426 issue: 4 year: 2002 ident: refg49/ref49 publication-title: Appl. Microbiol. Biotechnol. – ident: refg48/ref48 – ident: refg37/ref37 doi: 10.1016/j.pep.2004.08.006 – ident: refg17/ref17 doi: 10.1007/BF00321118 – ident: refg43/ref43 doi: 10.1016/0378-1119(87)90164-8 – ident: refg22/ref22 doi: 10.1023/A:1011948405581 – volume: 280 start-page: 309 issue: 2 year: 1991 ident: refg20/ref20 publication-title: Biochem. J. doi: 10.1042/bj2800309 – ident: refg32/ref32 doi: 10.1107/S0021889891004399 – ident: refg50/ref50 doi: 10.1023/B:JOPC.0000016254.58189.2a – volume: 64 start-page: 3607 issue: 10 year: 1998 ident: refg45/ref45 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.64.10.3607-3614.1998 – ident: refg56/ref56 doi: 10.1016/0378-1119(83)90191-9 – ident: refg4/ref4 doi: 10.1093/nar/gkh045 – ident: refg54/ref54 doi: 10.1139/m77-020 – ident: refg58/ref58 doi: 10.1007/BF00058833 – ident: refg27/ref27 doi: 10.1016/0378-1119(96)00179-5 – ident: refg55/ref55 doi: 10.1093/nar/22.22.4673 – ident: refg2/ref2 doi: 10.1111/j.1574-6976.1994.tb00033.x – ident: refg16/ref16 – ident: refg21/ref21 doi: 10.1074/jbc.M307188200 – ident: refg13/ref13 doi: 10.1021/jf000434d – ident: refg31/ref31 doi: 10.1134/S0006297909050137 – ident: refg46/ref46 doi: 10.1093/nar/gkg524 – ident: refg60/ref60 doi: 10.1271/bbb.61.965 – ident: refg3/ref3 doi: 10.1016/j.jmb.2004.05.028 – ident: refg25/ref25 doi: 10.1007/s00253-009-1861-7 – ident: refg57/ref57 doi: 10.1016/j.fgb.2008.09.010 – ident: refg39/ref39 doi: 10.1128/IAI.00008-08 – ident: refg59/ref59 doi: 10.1016/0141-0229(82)90084-9 – ident: refg34/ref34 doi: 10.1016/j.bbapap.2006.03.009 – ident: refg52/ref52 doi: 10.1099/ijs.0.029884-0 – ident: refg8/ref8 doi: 10.1002/pmic.200300771 – ident: refg41/ref41 doi: 10.1016/0378-1119(87)90110-7 – ident: refg47/ref47 – ident: refg53/ref53 doi: 10.1139/w11-052 – ident: refg23/ref23 doi: 10.1007/s00253-009-2395-8 |
SSID | ssj0010346 |
Score | 2.0891817 |
Snippet | The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the... The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the... The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in beta -glucosidase activity. In this present work,... The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in beta-glucosidase activity. In this present work,... |
SourceID | swepub proquest gale pubmed pascalfrancis crossref nrcresearch fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1035 |
SubjectTerms | Amino Acid Sequence amino acids Aspergillus Aspergillus - enzymology Aspergillus - genetics Aspergillus aculeatus Aspergillus niger Aspergillus saccharolyticus beta-glucosidase beta-Glucosidase - chemistry beta-Glucosidase - genetics beta-Glucosidase - metabolism Biological and medical sciences biomass hydrolysis caractérisation d’enzyme cellobiose Cellobiose - metabolism Cellulose - analogs & derivatives Cellulose - metabolism culture media Dextrins - metabolism Enzymatic analysis enzyme characterization enzyme kinetics Fundamental and applied biological sciences. Psychology fungi Fysik genes Genetic aspects Glycosidases glycosides Half-Life Hydrogen-Ion Concentration hydrolyse de la biomasse Hydrolysis Hypocrea jecorina Identification and classification ion exchange chromatography Kinetics mass spectrometry Microbiology Miscellaneous Models, Molecular Molecular Sequence Data Mycology Natural Sciences Naturvetenskap Observations Physical Sciences polyacrylamide gel electrophoresis polymerase chain reaction polypeptides Properties Protein Structure, Tertiary Sequence Alignment Temperature thermal stability thermostability thermostabilité Trichoderma - genetics Trichoderma reesei β-glucosidase |
Title | Identifying and characterizing the most significant β-glucosidase of the novel species Aspergillus saccharolyticus |
URI | http://www.nrcresearchpress.com/doi/abs/10.1139/w2012-076 https://www.ncbi.nlm.nih.gov/pubmed/22906186 https://www.proquest.com/docview/1036880166 https://www.proquest.com/docview/1439229620 https://www.proquest.com/docview/1803140830 https://lup.lub.lu.se/record/3146811 oai:portal.research.lu.se:publications/91e8e1b5-a2ac-4e60-ac0d-b873888baad0 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfGJiR4QPzf2JgCYgJpCrT56zyuY9NAsIdtFRMvlu3aW0WXlKYBbd-Ar8MH4TNxF6eJM8o0eGhUJRc7yf1yPjt3vyPkRYcmytdKu7HqRm4gReRyKagb6K6MKFehlCXb53601w_eH4fHCws_rKilYipey4u5eSX_o1XYB3rFLNl_0GzdKOyA_6Bf2IKGYXstHZssW5OpVOan1ezLF7MsqLMsn25ikAaGBHGkF93e2eh5Vaj6cMDzOkwgzb6p0SamXsLsGfQ2VpOT4WhU5Js5l9h0NjpHqo7cdmhrdgOLguJs2LA71Ss42USl1WrPFqYCTRusnU6qwiq9IfQIR5q11w8FaL802B_tU_rilJ_DpX9RZZkksG1n1bOqFjAwEiSxFzD2D7brKMNW3Imx1wCbrqnLMrPXIbVwmVjGt9sxzCd_jgo-kqp-Mp3Hl5i3DfkvmD2kAcKM_CUPZhxgMpe2em97u0tNOQyT9TW7pIqmCtp-U7fccm5uaJ7VA_3tdCIr-qZTjL_lObyC2tROmTe5ucRcW3o7R3fJnWqa4mwZzN0jCyq9T26awqXnD0huIc8B5Dlt5DkAJweR51jIc379tFHnZLoUK1HnVKhzLNQ5l1D3kPR3d46299yqfIcr46QzdaUWKgEHNIw98Mkj1RWRDrknOPyhMQdfX9IwlhoshR_GiR7EWtIIXFoVa-EL4T8ii2mWqmXiDOB83_eDMAF3VEKz0vdFrMHdFDHW9Fghr2bPncmK2x5LrIxYOcf1E_YdVcRARSvkeS06NoQu84SWQXmMn8BAy_qHHtIw4jfoOAjgfNQoQ-6UFIOzTniR5-zd4T5rQPRXoYOW0MtKSGdwsZJXCTFwy8jJ1pJcbUnK8fArs46utY7C-CBbJ29Y2LvqntdbqKwlPRiig9inK-TZDKYM-8DozFRlRQ5t-RH4AfBSXCEDMx_PSyKvc4UMxWIaMCkEmcfmPWiuAutSdCn0sGNejPoIEuSPijH8BPxYrljSVRTgFjLucckCFXUYl50BExRug1LB-QB6-DynHbPmweqnZdobW19QrtX4k2urdpXcamziGlmcTgr1FKY5U7FeGaDfQq9ZjA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+and+characterizing+the+most+significant+%CE%B2-glucosidase+of+the+novel+species+Aspergillus+saccharolyticus&rft.jtitle=Canadian+journal+of+microbiology&rft.au=Sorensen%2C+Annette&rft.au=Ahring%2C+Birgitte+K&rft.au=Lubeck%2C+Mette&rft.au=Ubhayasekera%2C+Wimal&rft.date=2012-09-01&rft.pub=NRC+Research+Press&rft.issn=0008-4166&rft.volume=58&rft.issue=9&rft.spage=1035&rft_id=info:doi/10.1139%2FW2012-076&rft.externalDocID=A305837031 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1480-3275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1480-3275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1480-3275&client=summon |