Identifying and characterizing the most significant β-glucosidase of the novel species Aspergillus saccharolyticus

The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the main β-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion e...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of microbiology Vol. 58; no. 9; pp. 1035 - 1046
Main Authors Sørensen, Annette, Ahring, Birgitte K, Lübeck, Mette, Ubhayasekera, Wimal, Bruno, Kenneth S, Culley, David E, Lübeck, Peter S
Format Journal Article
LanguageEnglish
Published Ottawa, ON NRC Research Press 01.09.2012
National Research Council of Canada
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the main β-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high β-glucosidase activity and only 1 visible band on an SDS–PAGE gel. Mass spectrometry analysis of this band gave peptide matches to β-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger, respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested β-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other β-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-β-d-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50 °C, and at 60 °C it had a half-life of approximately 6 h.
AbstractList The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the main β-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high β-glucosidase activity and only 1 visible band on an SDS–PAGE gel. Mass spectrometry analysis of this band gave peptide matches to β-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger , respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested β-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other β-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-β-d-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50 °C, and at 60 °C it had a half-life of approximately 6 h.
The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the main β-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high β-glucosidase activity and only 1 visible band on an SDS-PAGE gel. Mass spectrometry analysis of this band gave peptide matches to β-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger, respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested P-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other β-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-β-D-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50°C, and at 60°C it had a half-life of approximately 6 h.
The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in beta-glucosidase activity. In this present work, the main beta-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high beta-glucosidase activity and only 1 visible band on an SDS-PAGE gel. Mass spectrometry analysis of this band gave peptide matches to beta-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger, respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested beta-glucosidase activity with preserved retaining mechanism anda wider catalytic pocket compared with other beta-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-beta-D-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50 degrees C, and at 60 degrees C it had a half-life of approximately 6 h.
The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the main β-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high β-glucosidase activity and only 1 visible band on an SDS-PAGE gel. Mass spectrometry analysis of this band gave peptide matches to β-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger, respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested P-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other β-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-β-D-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50°C, and at 60°C it had a half-life of approximately 6 h. Key words: β-glucosidase, Aspergillus saccharolyticus, enzyme characterization, thermostability, biomass hydrolysis. Une espece de champignon decouverte recemment, Aspergillus saccharolyticus,s'avere produire un bouillon de culture riche en activite β-glucosidase. Dans ce travail, la β-glucosidase d A. saccharolyticus principalement responsable de l'activite hydrolytique a ete identifiee, isolee et caracterisee. Une chromatographie par echange d'ions a ete utilisee pour fractionner le bouillon de culture, generant des fractions qui possedaient une forte activite β-glucosidase et qui produisaient une seule bande visible sur SDS-PAGE. L'analyse de cette bande par spectrometrie de masse a mis en evidence des correspondances avec les peptides des β-glucosidases d aspergillus. En utilisant une approche par PCR a l'aide d'amorces degenerees et une marche genomique, une sequence de 2919 pb codant un peptide de 860 acides amines, BGL1, a ete determinee. BGL1 d'A. saccharolyticus possedait une identite de 91 % avec BGL1 d'Aspergillus aculeatus et 82 % avec BGL1 d'Aspergillus niger, qui appartiennent toutes deux a la famille de glycoside hydrolases 3. Des etudes de modelisation d'homologie ont suggere une activite β-glucosidase dont le mecanisme de retention est preserve et une poche catalytique plus large comparativement a d autres β-glucosidases. Le gene bgl1 a ete exprime de facon heterologue chez Trichoderma reesei QM6a, et le produit a ete purifie et caracterise par des etudes de cinetique enzymatique. Cette enzyme peut hydrolyser le cellobiose, le pNPG et les cellodextrines. Cette enzyme a montre une bonne thermostabilite, etant stable a 50°C et ayant une demi-vie d'environ 6 h a 60°C. Mots-cles : β-glucosidase, Aspergillus saccharolyticus, caracterisation d'enzyme, thermostabilite, hydrolyse de la biomasse.
The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the main β-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high β-glucosidase activity and only 1 visible band on an SDS–PAGE gel. Mass spectrometry analysis of this band gave peptide matches to β-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger , respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested β-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other β-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-β- d -glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50 °C, and at 60 °C it had a half-life of approximately 6 h.
The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in beta -glucosidase activity. In this present work, the main beta -glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high beta -glucosidase activity and only 1 visible band on an SDS-PAGE gel. Mass spectrometry analysis of this band gave peptide matches to beta -glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger, respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested beta -glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other beta -glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl- beta -d-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50 degree C, and at 60 degree C it had a half-life of approximately 6 h.Original Abstract: Une espece de champignon decouverte recemment, Aspergillus saccharolyticus, s'avere produire un bouillon de culture riche en activite beta -glucosidase. Dans ce travail, la beta -glucosidase d'A. saccharolyticus principalement responsable de l'activite hydrolytique a ete identifiee, isolee et caracterisee. Une chromatographie par echange d'ions a ete utilisee pour fractionner le bouillon de culture, generant des fractions qui possedaient une forte activite beta -glucosidase et qui produisaient une seule bande visible sur SDS-PAGE. L'analyse de cette bande par spectrometrie de masse a mis en evidence des correspondances avec les peptides des beta -glucosidases d'aspergillus. En utilisant une approche par PCR a l'aide d'amorces degenerees et une marche genomique, une sequence de 2919 pb codant un peptide de 860 acides amines, BGL1, a ete determinee. BGL1 d'A. saccharolyticus possedait une identite de 91 % avec BGL1 d'Aspergillus aculeatus et 82 % avec BGL1 d'Aspergillus niger, qui appartiennent toutes deux a la famille de glycoside hydrolases 3. Des etudes de modelisation d'homologie ont suggere une activite beta -glucosidase dont le mecanisme de retention est preserve et une poche catalytique plus large comparativement a d'autres beta -glucosidases. Le gene bgl1 a ete exprime de facon heterologue chez Trichoderma reesei QM6a, et le produit a ete purifie et caracterise par des etudes de cinetique enzymatique. Cette enzyme peut hydrolyser le cellobiose, le pNPG et les cellodextrines. Cette enzyme a montre une bonne thermostabilite, etant stable a 50 degree C et ayant une demi-vie d'environ 6 h a 60 degree C.
The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the main β-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high β-glucosidase activity and only 1 visible band on an SDS–PAGE gel. Mass spectrometry analysis of this band gave peptide matches to β-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger, respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested β-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other β-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-β-d-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50 °C, and at 60 °C it had a half-life of approximately 6 h.
The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the main β-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high β-glucosidase activity and only 1 visible band on an SDS-PAGE gel. Mass spectrometry analysis of this band gave peptide matches to β-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger , respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested β-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other β-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-β-d-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50 °C, and at 60 °C it had a half-life of approximately 6 h.The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the main β-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high β-glucosidase activity and only 1 visible band on an SDS-PAGE gel. Mass spectrometry analysis of this band gave peptide matches to β-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger , respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested β-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other β-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-β-d-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50 °C, and at 60 °C it had a half-life of approximately 6 h.
The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in beta-glucosidase activity. In this present work, the main beta-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high beta-glucosidase activity and only 1 visible band on an SDS-PAGE gel. Mass spectrometry analysis of this band gave peptide matches to beta-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger, respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested beta-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other beta-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-beta-D-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50 degrees C, and at 60 degrees C it had a half-life of approximately 6 h.
Abstract_FL Une espèce de champignon découverte récemment, Aspergillus saccharolyticus , s’avère produire un bouillon de culture riche en activité β-glucosidase. Dans ce travail, la β-glucosidase d’A. saccharolyticus principalement responsable de l’activité hydrolytique a été identifiée, isolée et caractérisée. Une chromatographie par échange d’ions a été utilisée pour fractionner le bouillon de culture, générant des fractions qui possèdaient une forte activité β-glucosidase et qui produisaient une seule bande visible sur SDS–PAGE. L’analyse de cette bande par spectrométrie de masse a mis en évidence des correspondances avec les peptides des β-glucosidases d’aspergillus. En utilisant une approche par PCR à l’aide d’amorces dégénérées et une marche génomique, une séquence de 2919 pb codant un peptide de 860 acides aminés, BGL1, a été déterminée. BGL1 d’A. saccharolyticus possédait une identité de 91 % avec BGL1 d’ Aspergillus aculeatus et 82 % avec BGL1 d’ Aspergillus niger , qui appartiennent toutes deux à la famille de glycoside hydrolases 3. Des études de modélisation d’homologie ont suggéré une activité β-glucosidase dont le mécanisme de rétention est préservé et une poche catalytique plus large comparativement à d’autres β-glucosidases. Le gène bgl1 a été exprimé de façon hétérologue chez Trichoderma reesei QM6a, et le produit a été purifié et caractérisé par des études de cinétique enzymatique. Cette enzyme peut hydrolyser le cellobiose, le pNPG et les cellodextrines. Cette enzyme a montré une bonne thermostabilité, étant stable à 50 °C et ayant une demi-vie d’environ 6 h à 60 °C.
Audience Academic
Author Bruno, Kenneth S
Culley, David E
Lübeck, Mette
Sørensen, Annette
Ubhayasekera, Wimal
Ahring, Birgitte K
Lübeck, Peter S
Author_xml – sequence: 1
  fullname: Sørensen, Annette
– sequence: 2
  fullname: Ahring, Birgitte K
– sequence: 3
  fullname: Lübeck, Mette
– sequence: 4
  fullname: Ubhayasekera, Wimal
– sequence: 5
  fullname: Bruno, Kenneth S
– sequence: 6
  fullname: Culley, David E
– sequence: 7
  fullname: Lübeck, Peter S
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26384738$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22906186$$D View this record in MEDLINE/PubMed
https://lup.lub.lu.se/record/3146811$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/91e8e1b5-a2ac-4e60-ac0d-b873888baad0$$DView record from Swedish Publication Index
BookMark eNqVk9tu1DAQhiNURA9wwQtABEICiW2dOLGdy1XFoVIFEqXX1sQZp0beOLUdSnksHoRnwtvdnqSCiiIrI_vzPzOeme1sY3ADZtnTguwWBW32zkpSlDPC2YNsq6gEmdGS1xs37M1sO4RvhBSEVuxRtlmWDWGFYFtZOOhwiEafm6HPYehydQIeVERvfi634gnmCxdiHkw_GG0UDDH__WvW20m5YDoImDt9gQ3uO9o8jKgMhnyeDN8ba6eQB1BLWWfPo1FTeJw91GADPln_d7Lj9---7n-cHX7-cLA_P5wp3pA4U7rFhouy5mVFa4ZFy3QNZQvJEByIqJWoudIaNa15ozuulWCEV8h1S9uW7mSw0g1nOE6tHL1ZgD-XDowcnY9gpceA4NWJtJMMKBNlU4rRuCHIpkCRnNYSSlCyQkYkKNLJVnAqhGgBOpJ8HP7Vh53GtNq19j3lXq_kRu9OJwxRLkxQaC0M6KYgC0FoURFB74FWtEl1ZuU9UEKZEKRgLKEvV2gPFqUZtIupHZa4nFNSC8pTAIl6cQelRnMqb0K7d0Dp63BhVOpgbdL-LdU3ty4kJuKP2MMUgjw4-vIf7Kfb7LN1-lO7wO6qRpdTkIBXawCCAqs9DMqEa45RUaUiJW5vxSnvQvCopTLxoltSZsamd5TLeZQX8yjTPF6HeXXjUvQu9u2KHby66st_4c9XuAYnofcp4OOjdMrSmJclryr6B0s6SyY
CODEN CJMIAZ
CitedBy_id crossref_primary_10_1016_j_ibiod_2014_05_011
crossref_primary_10_1016_j_gene_2018_11_092
crossref_primary_10_1016_j_ijbiomac_2021_02_154
crossref_primary_10_1016_j_algal_2020_102036
crossref_primary_10_15302_J_FASE_2016127
crossref_primary_10_3390_biom9060220
crossref_primary_10_3390_biom3030612
crossref_primary_10_1080_10826068_2019_1599397
crossref_primary_10_1002_bab_2097
crossref_primary_10_1007_s00253_016_7927_4
crossref_primary_10_1088_1755_1315_166_1_012026
crossref_primary_10_1038_s41588_018_0246_1
crossref_primary_10_1016_j_ijbiomac_2018_01_020
Cites_doi 10.1038/nbt1282
10.1007/s11274-006-9146-0
10.1107/S0907444901007697
10.1021/pr070355i
10.1016/S0141-0229(98)00133-1
10.1007/s00253-009-2181-7
10.1016/j.jmb.2010.01.072
10.1016/j.gene.2006.06.002
10.1093/nar/gkp885
10.1002/j.1460-2075.1986.tb04288.x
10.1093/nar/28.1.235
10.1016/S0734-9750(97)00006-2
10.1093/nar/25.17.3389
10.1002/prot.20730
10.1007/BF02712670
10.1016/S1087-1845(02)00524-8
10.1074/jbc.275.7.4973
10.1080/07388550290789568
10.1107/S0108767390010224
10.1016/0959-440X(94)90271-2
10.1016/0960-8524(92)90128-K
10.1007/10_2007_066
10.1093/protein/10.1.1
10.1021/jf9702499
10.1016/j.pep.2004.08.006
10.1007/BF00321118
10.1016/0378-1119(87)90164-8
10.1023/A:1011948405581
10.1042/bj2800309
10.1107/S0021889891004399
10.1023/B:JOPC.0000016254.58189.2a
10.1128/AEM.64.10.3607-3614.1998
10.1016/0378-1119(83)90191-9
10.1093/nar/gkh045
10.1139/m77-020
10.1007/BF00058833
10.1016/0378-1119(96)00179-5
10.1093/nar/22.22.4673
10.1111/j.1574-6976.1994.tb00033.x
10.1074/jbc.M307188200
10.1021/jf000434d
10.1134/S0006297909050137
10.1093/nar/gkg524
10.1271/bbb.61.965
10.1016/j.jmb.2004.05.028
10.1007/s00253-009-1861-7
10.1016/j.fgb.2008.09.010
10.1128/IAI.00008-08
10.1016/0141-0229(82)90084-9
10.1016/j.bbapap.2006.03.009
10.1099/ijs.0.029884-0
10.1002/pmic.200300771
10.1016/0378-1119(87)90110-7
10.1139/w11-052
10.1007/s00253-009-2395-8
ContentType Journal Article
Copyright 2015 INIST-CNRS
COPYRIGHT 2012 NRC Research Press
Copyright_xml – notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2012 NRC Research Press
CorporateAuthor MAX IV-laboratoriet
Lunds universitet
Lund University
MAX IV Laboratory
CorporateAuthor_xml – name: MAX IV Laboratory
– name: Lund University
– name: MAX IV-laboratoriet
– name: Lunds universitet
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
M7N
7S9
L.6
ADTPV
AOWAS
D95
DOI 10.1139/w2012-076
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef







Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1480-3275
EndPage 1046
ExternalDocumentID oai_portal_research_lu_se_publications_91e8e1b5_a2ac_4e60_ac0d_b873888baad0
oai_lup_lub_lu_se_91e8e1b5_a2ac_4e60_ac0d_b873888baad0
A305837031
22906186
26384738
10_1139_w2012_076
w2012-076
US201600122744
Genre Physiology, metabolism, and enzymology
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Denmark
United States
GeographicLocations_xml – name: Denmark
– name: United States
GroupedDBID ---
-~X
.55
00T
0R~
29B
2QL
2XV
36B
3O-
3V.
4.4
4IJ
53G
5GY
5RE
5RP
6J9
7RV
7X2
7X7
88A
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FQ
8G5
A8Z
AAIKC
AAMNW
ABCQX
ABDBF
ABEFU
ABJNI
ABPTK
ABTAH
ABUWG
ACGFO
ACGFS
ACGOD
ACNCT
ACPRK
ADBBV
AEGXH
AENEX
AEQTP
AFFNX
AFKRA
AFRAH
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
APEBS
ATCPS
AZQEC
BBNVY
BCR
BENPR
BHPHI
BKEYQ
BKSAR
BLC
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
D1J
D8U
DU5
DWQXO
EAD
EAP
EAS
EBC
EBD
EBS
ECC
EDH
EJD
EMB
EMK
EMOBN
EPL
EST
ESTFP
ESX
EX3
F5P
FBQ
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HZ~
H~9
IAG
IAO
ICQ
IEA
IEP
IHR
INH
INR
IPNFZ
ISN
ISR
ITC
L7B
LK8
M0K
M0L
M1P
M2O
M2P
M2Q
M3C
M3G
M7P
ML0
MM.
MV1
MVM
NAPCQ
NEJ
NMEPN
NRXXU
NYCZX
O9-
OHT
ONR
OVD
P2P
PCBAR
PQQKQ
PRG
PROAC
PSQYO
PV9
QF4
QM4
QN7
QO4
QRP
RIG
RRCRK
RRP
RZL
S10
SV3
TEORI
TN5
TUS
U5U
UKHRP
VQG
WH7
WOW
X7M
YZZ
ZCG
ZGI
ZY4
-
08R
0R
1AW
55
AALRV
ABFLS
ACVYA
ADKZR
AJYGW
BBAFP
HZ
MBDVC
PADUT
PQEST
PQUKI
PRINS
X
XHC
AAHBH
AAYXX
ACUHS
ADXHL
AEUYN
ALIPV
CITATION
IGS
PHGZM
PHGZT
IQODW
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
M7N
7S9
L.6
ADTPV
AOWAS
D95
ID FETCH-LOGICAL-c790t-cfbe97825724356e1b6f5a2ba1b687a085c857cffef3579fd7fc86074e7fb3bb3
ISSN 1480-3275
0008-4166
IngestDate Thu Aug 21 07:00:15 EDT 2025
Thu Jul 03 05:34:01 EDT 2025
Fri Jul 11 06:43:02 EDT 2025
Fri Jul 11 04:59:35 EDT 2025
Thu Jul 10 22:51:19 EDT 2025
Wed Mar 19 00:34:12 EDT 2025
Tue Jun 10 15:32:52 EDT 2025
Sat Mar 08 18:39:11 EST 2025
Wed Mar 05 04:46:36 EST 2025
Wed Mar 05 05:27:54 EST 2025
Wed Feb 19 01:48:58 EST 2025
Mon Jul 21 09:14:53 EDT 2025
Tue Jul 01 04:27:58 EDT 2025
Thu Apr 24 22:59:45 EDT 2025
Wed Nov 11 00:33:14 EST 2020
Wed Dec 27 19:08:38 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords 4-α-Glucanotransferase
Enzyme
Transferases
Glycosyltransferases
Biomass
Fungi
Glycosylases
Hydrolysis
Aspergillus
β-Glucosidase
Glycosidases
Hydrolases
Hexosyltransferases
Fungi Imperfecti
Language English
License http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c790t-cfbe97825724356e1b6f5a2ba1b687a085c857cffef3579fd7fc86074e7fb3bb3
Notes http://dx.doi.org/10.1139/w2012-076
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 22906186
PQID 1036880166
PQPubID 23479
PageCount 12
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_91e8e1b5_a2ac_4e60_ac0d_b873888baad0
crossref_citationtrail_10_1139_w2012_076
proquest_miscellaneous_1036880166
gale_infotracmisc_A305837031
crossref_primary_10_1139_w2012_076
fao_agris_US201600122744
gale_infotraccpiq_305837031
gale_incontextgauss_ISR_A305837031
gale_infotracacademiconefile_A305837031
proquest_miscellaneous_1439229620
gale_incontextgauss_ISN_A305837031
proquest_miscellaneous_1803140830
pubmed_primary_22906186
swepub_primary_oai_lup_lub_lu_se_91e8e1b5_a2ac_4e60_ac0d_b873888baad0
pascalfrancis_primary_26384738
nrcresearch_primary_10_1139_w2012_076
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-01
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Ottawa, ON
PublicationPlace_xml – name: Ottawa, ON
– name: Canada
PublicationTitle Canadian journal of microbiology
PublicationTitleAlternate Can J Microbiol
PublicationYear 2012
Publisher NRC Research Press
National Research Council of Canada
Publisher_xml – name: NRC Research Press
– name: National Research Council of Canada
References refg47/ref47
refg40/ref40
refg18/ref18
refg22/ref22
refg36/ref36
refg51/ref51
refg11/ref11
refg25/ref25
refg6/ref6
refg15/ref15
refg29/ref29
refg43/ref43
refg26/ref26
refg14/ref14
refg5/ref5
refg54/ref54
refg57/ref57
refg37/ref37
refg19/ref19
Henrissat B. (refg20/ref20) 1991; 280
refg21/ref21
refg7/ref7
refg4/ref4
refg46/ref46
refg48/ref48
refg1/ref1
refg32/ref32
refg35/ref35
refg59/ref59
refg61/ref61
refg53/ref53
refg42/ref42
refg24/ref24
refg16/ref16
refg50/ref50
refg13/ref13
refg27/ref27
refg56/ref56
Riou C. (refg45/ref45) 1998; 64
refg38/ref38
refg31/ref31
refg9/ref9
refg34/ref34
refg52/ref52
refg8/ref8
Schuster E. (refg49/ref49) 2002; 59
refg60/ref60
refg2/ref2
refg23/ref23
refg17/ref17
refg30/ref30
refg12/ref12
refg28/ref28
refg41/ref41
refg55/ref55
Chothia C. (refg10/ref10) 1986; 5
refg39/ref39
refg3/ref3
refg44/ref44
refg58/ref58
refg33/ref33
References_xml – ident: refg40/ref40
  doi: 10.1038/nbt1282
– ident: refg44/ref44
  doi: 10.1007/s11274-006-9146-0
– ident: refg19/ref19
  doi: 10.1107/S0907444901007697
– ident: refg28/ref28
  doi: 10.1021/pr070355i
– ident: refg15/ref15
  doi: 10.1016/S0141-0229(98)00133-1
– ident: refg33/ref33
  doi: 10.1007/s00253-009-2181-7
– ident: refg42/ref42
  doi: 10.1016/j.jmb.2010.01.072
– ident: refg18/ref18
  doi: 10.1016/j.gene.2006.06.002
– ident: refg51/ref51
  doi: 10.1093/nar/gkp885
– volume: 5
  start-page: 823
  issue: 4
  year: 1986
  ident: refg10/ref10
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1986.tb04288.x
– ident: refg5/ref5
  doi: 10.1093/nar/28.1.235
– ident: refg6/ref6
  doi: 10.1016/S0734-9750(97)00006-2
– ident: refg1/ref1
  doi: 10.1093/nar/25.17.3389
– ident: refg26/ref26
  doi: 10.1002/prot.20730
– ident: refg14/ref14
  doi: 10.1007/BF02712670
– ident: refg30/ref30
– ident: refg9/ref9
  doi: 10.1016/S1087-1845(02)00524-8
– ident: refg12/ref12
  doi: 10.1074/jbc.275.7.4973
– ident: refg7/ref7
  doi: 10.1080/07388550290789568
– ident: refg24/ref24
  doi: 10.1107/S0108767390010224
– ident: refg29/ref29
– ident: refg35/ref35
  doi: 10.1016/0959-440X(94)90271-2
– ident: refg11/ref11
  doi: 10.1016/0960-8524(92)90128-K
– ident: refg36/ref36
  doi: 10.1007/10_2007_066
– ident: refg38/ref38
  doi: 10.1093/protein/10.1.1
– ident: refg61/ref61
  doi: 10.1021/jf9702499
– volume: 59
  start-page: 426
  issue: 4
  year: 2002
  ident: refg49/ref49
  publication-title: Appl. Microbiol. Biotechnol.
– ident: refg48/ref48
– ident: refg37/ref37
  doi: 10.1016/j.pep.2004.08.006
– ident: refg17/ref17
  doi: 10.1007/BF00321118
– ident: refg43/ref43
  doi: 10.1016/0378-1119(87)90164-8
– ident: refg22/ref22
  doi: 10.1023/A:1011948405581
– volume: 280
  start-page: 309
  issue: 2
  year: 1991
  ident: refg20/ref20
  publication-title: Biochem. J.
  doi: 10.1042/bj2800309
– ident: refg32/ref32
  doi: 10.1107/S0021889891004399
– ident: refg50/ref50
  doi: 10.1023/B:JOPC.0000016254.58189.2a
– volume: 64
  start-page: 3607
  issue: 10
  year: 1998
  ident: refg45/ref45
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.64.10.3607-3614.1998
– ident: refg56/ref56
  doi: 10.1016/0378-1119(83)90191-9
– ident: refg4/ref4
  doi: 10.1093/nar/gkh045
– ident: refg54/ref54
  doi: 10.1139/m77-020
– ident: refg58/ref58
  doi: 10.1007/BF00058833
– ident: refg27/ref27
  doi: 10.1016/0378-1119(96)00179-5
– ident: refg55/ref55
  doi: 10.1093/nar/22.22.4673
– ident: refg2/ref2
  doi: 10.1111/j.1574-6976.1994.tb00033.x
– ident: refg16/ref16
– ident: refg21/ref21
  doi: 10.1074/jbc.M307188200
– ident: refg13/ref13
  doi: 10.1021/jf000434d
– ident: refg31/ref31
  doi: 10.1134/S0006297909050137
– ident: refg46/ref46
  doi: 10.1093/nar/gkg524
– ident: refg60/ref60
  doi: 10.1271/bbb.61.965
– ident: refg3/ref3
  doi: 10.1016/j.jmb.2004.05.028
– ident: refg25/ref25
  doi: 10.1007/s00253-009-1861-7
– ident: refg57/ref57
  doi: 10.1016/j.fgb.2008.09.010
– ident: refg39/ref39
  doi: 10.1128/IAI.00008-08
– ident: refg59/ref59
  doi: 10.1016/0141-0229(82)90084-9
– ident: refg34/ref34
  doi: 10.1016/j.bbapap.2006.03.009
– ident: refg52/ref52
  doi: 10.1099/ijs.0.029884-0
– ident: refg8/ref8
  doi: 10.1002/pmic.200300771
– ident: refg41/ref41
  doi: 10.1016/0378-1119(87)90110-7
– ident: refg47/ref47
– ident: refg53/ref53
  doi: 10.1139/w11-052
– ident: refg23/ref23
  doi: 10.1007/s00253-009-2395-8
SSID ssj0010346
Score 2.0891817
Snippet The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the...
The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the...
The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in beta -glucosidase activity. In this present work,...
The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in beta-glucosidase activity. In this present work,...
SourceID swepub
proquest
gale
pubmed
pascalfrancis
crossref
nrcresearch
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1035
SubjectTerms Amino Acid Sequence
amino acids
Aspergillus
Aspergillus - enzymology
Aspergillus - genetics
Aspergillus aculeatus
Aspergillus niger
Aspergillus saccharolyticus
beta-glucosidase
beta-Glucosidase - chemistry
beta-Glucosidase - genetics
beta-Glucosidase - metabolism
Biological and medical sciences
biomass hydrolysis
caractérisation d’enzyme
cellobiose
Cellobiose - metabolism
Cellulose - analogs & derivatives
Cellulose - metabolism
culture media
Dextrins - metabolism
Enzymatic analysis
enzyme characterization
enzyme kinetics
Fundamental and applied biological sciences. Psychology
fungi
Fysik
genes
Genetic aspects
Glycosidases
glycosides
Half-Life
Hydrogen-Ion Concentration
hydrolyse de la biomasse
Hydrolysis
Hypocrea jecorina
Identification and classification
ion exchange chromatography
Kinetics
mass spectrometry
Microbiology
Miscellaneous
Models, Molecular
Molecular Sequence Data
Mycology
Natural Sciences
Naturvetenskap
Observations
Physical Sciences
polyacrylamide gel electrophoresis
polymerase chain reaction
polypeptides
Properties
Protein Structure, Tertiary
Sequence Alignment
Temperature
thermal stability
thermostability
thermostabilité
Trichoderma - genetics
Trichoderma reesei
β-glucosidase
Title Identifying and characterizing the most significant β-glucosidase of the novel species Aspergillus saccharolyticus
URI http://www.nrcresearchpress.com/doi/abs/10.1139/w2012-076
https://www.ncbi.nlm.nih.gov/pubmed/22906186
https://www.proquest.com/docview/1036880166
https://www.proquest.com/docview/1439229620
https://www.proquest.com/docview/1803140830
https://lup.lub.lu.se/record/3146811
oai:portal.research.lu.se:publications/91e8e1b5-a2ac-4e60-ac0d-b873888baad0
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfGJiR4QPzf2JgCYgJpCrT56zyuY9NAsIdtFRMvlu3aW0WXlKYBbd-Ar8MH4TNxF6eJM8o0eGhUJRc7yf1yPjt3vyPkRYcmytdKu7HqRm4gReRyKagb6K6MKFehlCXb53601w_eH4fHCws_rKilYipey4u5eSX_o1XYB3rFLNl_0GzdKOyA_6Bf2IKGYXstHZssW5OpVOan1ezLF7MsqLMsn25ikAaGBHGkF93e2eh5Vaj6cMDzOkwgzb6p0SamXsLsGfQ2VpOT4WhU5Js5l9h0NjpHqo7cdmhrdgOLguJs2LA71Ss42USl1WrPFqYCTRusnU6qwiq9IfQIR5q11w8FaL802B_tU_rilJ_DpX9RZZkksG1n1bOqFjAwEiSxFzD2D7brKMNW3Imx1wCbrqnLMrPXIbVwmVjGt9sxzCd_jgo-kqp-Mp3Hl5i3DfkvmD2kAcKM_CUPZhxgMpe2em97u0tNOQyT9TW7pIqmCtp-U7fccm5uaJ7VA_3tdCIr-qZTjL_lObyC2tROmTe5ucRcW3o7R3fJnWqa4mwZzN0jCyq9T26awqXnD0huIc8B5Dlt5DkAJweR51jIc379tFHnZLoUK1HnVKhzLNQ5l1D3kPR3d46299yqfIcr46QzdaUWKgEHNIw98Mkj1RWRDrknOPyhMQdfX9IwlhoshR_GiR7EWtIIXFoVa-EL4T8ii2mWqmXiDOB83_eDMAF3VEKz0vdFrMHdFDHW9Fghr2bPncmK2x5LrIxYOcf1E_YdVcRARSvkeS06NoQu84SWQXmMn8BAy_qHHtIw4jfoOAjgfNQoQ-6UFIOzTniR5-zd4T5rQPRXoYOW0MtKSGdwsZJXCTFwy8jJ1pJcbUnK8fArs46utY7C-CBbJ29Y2LvqntdbqKwlPRiig9inK-TZDKYM-8DozFRlRQ5t-RH4AfBSXCEDMx_PSyKvc4UMxWIaMCkEmcfmPWiuAutSdCn0sGNejPoIEuSPijH8BPxYrljSVRTgFjLucckCFXUYl50BExRug1LB-QB6-DynHbPmweqnZdobW19QrtX4k2urdpXcamziGlmcTgr1FKY5U7FeGaDfQq9ZjA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+and+characterizing+the+most+significant+%CE%B2-glucosidase+of+the+novel+species+Aspergillus+saccharolyticus&rft.jtitle=Canadian+journal+of+microbiology&rft.au=Sorensen%2C+Annette&rft.au=Ahring%2C+Birgitte+K&rft.au=Lubeck%2C+Mette&rft.au=Ubhayasekera%2C+Wimal&rft.date=2012-09-01&rft.pub=NRC+Research+Press&rft.issn=0008-4166&rft.volume=58&rft.issue=9&rft.spage=1035&rft_id=info:doi/10.1139%2FW2012-076&rft.externalDocID=A305837031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1480-3275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1480-3275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1480-3275&client=summon