Promotion of Reprogramming to Ground State Pluripotency by Signal Inhibition
Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than othe...
Saved in:
Published in | PLoS biology Vol. 6; no. 10; p. e253 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.10.2008
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency--including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras--were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1-2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and Klf4 are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon. |
---|---|
AbstractList | Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency--including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras--were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1-2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and KIM are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon. Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency--including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras--were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1-2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and Klf4 are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon. Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency--including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras--were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1-2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and Klf4 are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon. Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency--including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras--were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1-2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and KIM are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon. doi:10.1371/journal.pbio.0060253 Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency—including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras—were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1–2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and Klf4 are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon. Induced reprogramming of stem cells proceeds in two phases via an intermediate that is undifferentiated but not pluripotent. Inhibition of mitogen-activated protein kinase signaling converts this intermediate transitional state to authentic pluripotency. Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency--including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras--were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1-2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and Klf4 are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon.Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency--including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras--were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1-2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and Klf4 are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon. Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency-including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras-were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1-2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and Klf4 are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon. Author Summary Development of an organism proceeds irreversibly from embryo to adult, with cells differentiating progressively towards specialised final phenotypes. Now, following the pioneering discovery of induced pluripotency by Shinya Yamanaka, it has become possible to reverse developmental time: we can reprogramme an adult cell back to the naive state of pluripotency found in the early embryo. Induction of pluripotency is an extraordinary phenomenon but is currently poorly understood and inefficient. We investigated stem cells from the mouse brain and found that they reprogrammed faster than other cell types. However, the reprogrammed brain cells arrested on the verge of full pluripotency and did not gain some essential properties of induced pluripotency. Guided by the rationale of reversing a development process, we explored the effect of blocking the signal that initiates loss of pluripotency and entry into differentiation in the embryo. We used a chemical inhibitor of this signal in combination with stimulation of a second pathway known to promote maintenance of pluripotency. This simple treatment allowed the partly converted neural stem cells to complete the transition efficiently and become indistinguishable from embryonic stem cells. Therefore, incompletely reprogrammed cells, which have previously been dismissed as useless by-products of attempts to generate pluripotent stem cells, in fact provide the fastest, most reliable, and most efficient route to obtaining authentic induced pluripotent cells. Induced reprogramming of stem cells proceeds in two phases via an intermediate that is undifferentiated but not pluripotent. Inhibition of mitogen-activated protein kinase signaling converts this intermediate transitional state to authentic pluripotency. |
Audience | Academic |
Author | Silva, Jose Nichols, Jennifer Smith, Austin Barrandon, Ornella Kawaguchi, Jitsutaro Theunissen, Thorold W |
AuthorAffiliation | Baylor College of Medicine, United States of America 2 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom 3 Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom 1 Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom |
AuthorAffiliation_xml | – name: Baylor College of Medicine, United States of America – name: 3 Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom – name: 1 Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom – name: 2 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom |
Author_xml | – sequence: 1 givenname: Jose surname: Silva fullname: Silva, Jose – sequence: 2 givenname: Ornella surname: Barrandon fullname: Barrandon, Ornella – sequence: 3 givenname: Jennifer surname: Nichols fullname: Nichols, Jennifer – sequence: 4 givenname: Jitsutaro surname: Kawaguchi fullname: Kawaguchi, Jitsutaro – sequence: 5 givenname: Thorold W surname: Theunissen fullname: Theunissen, Thorold W – sequence: 6 givenname: Austin surname: Smith fullname: Smith, Austin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18942890$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk11v0zAYhSM0xLbCP0AQCQmJixZ_xLG9C6RpglGpYtMK3FqOY2euErvYCaL_HnfNYJ0mPpQLR_Zzju3X5z3ODpx3OsueQzCDmMK3Kz8EJ9vZurJ-BkAJEMGPsiNICjKljJGDO_-H2XGMKwAQ4og9yQ4h4wViHBxli8vgO99b73Jv8iu9Dr4Jsuusa_Le5-fBD67Ol73sdX7ZDsGufa-d2uTVJl_aJh0gn7trW9mtxdPssZFt1M_GcZJ9-fD-89nH6eLifH52upgqykE_rWoCS1pQSQBnEqgaFkWlJdPcEERrU7G0yAzCQFKqa4N5WVc1w9BIoqkq8SR7ufNdtz6KsRBRwHQ7hBGGJBHzHVF7uRLrYDsZNsJLK24mfGiEDL1VrRYsbWAkNggVuNBEc1xDSDHjrCgrrurk9W7cbag6XSvt-iDbPdP9FWevReO_C0QoKJLrJHs9GgT_bdCxF52NSretdNoPUZScYsgw-CsIOSkZvAFf3QMfLsJINTLd0zrj0_HU1lKcopQFgBlFiZo9QKWv1p1VKXPGpvk9wZs9QWJ6_aNv5BCjmC-v_oP99O_sxdd99sXdN_n1GLfBTkCxA1TwMQZtfiNAbPvntmJi2z9i7J8kO7knUzZlP2U7FcW2fxb_BHtXH6I |
CitedBy_id | crossref_primary_10_1038_mt_2010_287 crossref_primary_10_1074_jbc_M111_256164 crossref_primary_10_1371_journal_pgen_1003112 crossref_primary_10_4061_2011_685271 crossref_primary_10_1016_j_stem_2009_12_001 crossref_primary_10_1128_MCB_05372_11 crossref_primary_10_1101_gad_1963910 crossref_primary_10_1095_biolreprod_111_096792 crossref_primary_10_1089_cell_2023_0100 crossref_primary_10_1016_j_theriogenology_2012_05_030 crossref_primary_10_1098_rstb_2011_0003 crossref_primary_10_1530_REP_09_0024 crossref_primary_10_1002_stem_1330 crossref_primary_10_1016_j_bbrc_2011_11_111 crossref_primary_10_1016_j_molcel_2013_01_016 crossref_primary_10_1007_s00018_012_1174_3 crossref_primary_10_1016_j_scr_2014_03_002 crossref_primary_10_1002_stem_1219 crossref_primary_10_1111_ctr_13573 crossref_primary_10_1242_jcs_263811 crossref_primary_10_1089_ars_2010_3814 crossref_primary_10_4252_wjsc_v8_i8_251 crossref_primary_10_1242_dmm_039321 crossref_primary_10_1002_stem_1216 crossref_primary_10_1016_j_stemcr_2017_05_020 crossref_primary_10_1016_j_xpro_2024_102934 crossref_primary_10_1089_scd_2012_0600 crossref_primary_10_1002_jcp_30362 crossref_primary_10_3389_fcell_2015_00002 crossref_primary_10_1101_gad_1811609 crossref_primary_10_1016_j_tcb_2013_09_011 crossref_primary_10_1016_j_mod_2011_03_001 crossref_primary_10_1038_onc_2012_237 crossref_primary_10_1371_journal_pbio_3000221 crossref_primary_10_1186_s13287_019_1373_z crossref_primary_10_1016_j_gde_2014_08_002 crossref_primary_10_1089_scd_2013_0326 crossref_primary_10_1089_scd_2022_0283 crossref_primary_10_1261_rna_043745_113 crossref_primary_10_1002_1873_3468_12572 crossref_primary_10_1002_term_3143 crossref_primary_10_1101_gad_16997911 crossref_primary_10_1016_j_stem_2010_08_005 crossref_primary_10_1186_s12959_020_00240_z crossref_primary_10_1128_MCB_00692_13 crossref_primary_10_1002_stem_1230 crossref_primary_10_1371_journal_pone_0055856 crossref_primary_10_1016_j_scr_2017_09_001 crossref_primary_10_1016_j_cbpc_2014_02_003 crossref_primary_10_1038_s41467_017_01329_2 crossref_primary_10_1089_ten_teb_2011_0264 crossref_primary_10_1016_j_stem_2009_05_015 crossref_primary_10_1016_j_diff_2014_05_003 crossref_primary_10_1002_stem_2209 crossref_primary_10_1089_cell_2015_0013 crossref_primary_10_1016_j_isci_2021_102153 crossref_primary_10_1007_s13577_021_00592_2 crossref_primary_10_3724_SP_J_1005_2011_00307 crossref_primary_10_1242_jcs_054783 crossref_primary_10_1016_j_yexcr_2019_111645 crossref_primary_10_1242_jcs_124925 crossref_primary_10_1016_j_stemcr_2013_12_010 crossref_primary_10_1038_s41586_024_08462_1 crossref_primary_10_1016_j_stem_2016_03_013 crossref_primary_10_1016_j_stemcr_2019_02_010 crossref_primary_10_1016_j_stemcr_2019_10_009 crossref_primary_10_1016_j_compbiolchem_2011_05_002 crossref_primary_10_1007_s12015_009_9077_x crossref_primary_10_1016_j_scr_2018_02_012 crossref_primary_10_1089_scd_2017_0282 crossref_primary_10_1016_j_stemcr_2019_02_006 crossref_primary_10_1074_jbc_M109_008938 crossref_primary_10_1016_j_stemcr_2016_02_004 crossref_primary_10_1007_s00335_020_09849_x crossref_primary_10_1016_j_cell_2009_03_034 crossref_primary_10_1038_nprot_2014_030 crossref_primary_10_1371_journal_pone_0050081 crossref_primary_10_1002_biot_201200040 crossref_primary_10_1007_s13238_012_2078_6 crossref_primary_10_1016_j_gde_2013_06_002 crossref_primary_10_1016_j_gde_2013_06_003 crossref_primary_10_1073_pnas_1219181110 crossref_primary_10_1371_journal_pone_0030234 crossref_primary_10_1016_j_stem_2008_11_008 crossref_primary_10_1073_pnas_0903860106 crossref_primary_10_3390_cancers15204997 crossref_primary_10_1089_cell_2012_0039 crossref_primary_10_1016_j_celrep_2014_12_028 crossref_primary_10_1021_acs_biochem_4c00427 crossref_primary_10_1098_rstb_2012_0292 crossref_primary_10_1038_s41467_022_34431_1 crossref_primary_10_1038_s41420_023_01533_8 crossref_primary_10_1371_journal_pone_0063265 crossref_primary_10_1038_ng_2807 crossref_primary_10_1089_scd_2011_0075 crossref_primary_10_1038_nrg2955 crossref_primary_10_1002_dvg_20806 crossref_primary_10_3390_cells12081192 crossref_primary_10_1002_stem_1775 crossref_primary_10_1038_cr_2010_142 crossref_primary_10_1016_j_stem_2021_08_012 crossref_primary_10_1038_onc_2012_285 crossref_primary_10_1016_j_stemcr_2015_09_001 crossref_primary_10_1007_s00018_012_1182_3 crossref_primary_10_1038_s41598_019_50817_6 crossref_primary_10_18632_oncotarget_26235 crossref_primary_10_1016_j_coisb_2021_100364 crossref_primary_10_1038_ncomms2059 crossref_primary_10_1038_onc_2013_196 crossref_primary_10_1371_journal_pgen_1005551 crossref_primary_10_1038_nbt_1554 crossref_primary_10_1111_cpr_12150 crossref_primary_10_1002_ange_201206691 crossref_primary_10_1002_stem_1447 crossref_primary_10_4161_cc_20207 crossref_primary_10_1016_j_ncrna_2018_04_001 crossref_primary_10_3390_cells10082049 crossref_primary_10_1074_jbc_M111_324368 crossref_primary_10_3390_genes9020101 crossref_primary_10_1186_s13072_023_00514_6 crossref_primary_10_1089_cell_2011_0078 crossref_primary_10_1016_j_stemcr_2014_08_003 crossref_primary_10_1073_pnas_1009582107 crossref_primary_10_3390_genes9020109 crossref_primary_10_1152_physrev_00040_2010 crossref_primary_10_1002_wdev_206 crossref_primary_10_1111_j_1751_2824_2009_01280_x crossref_primary_10_1016_j_stemcr_2017_04_001 crossref_primary_10_1002_cpsc_85 crossref_primary_10_1007_s13238_011_1107_1 crossref_primary_10_1038_nbt_1667 crossref_primary_10_1016_j_stemcr_2023_11_010 crossref_primary_10_1038_nrg2937 crossref_primary_10_4161_epi_26025 crossref_primary_10_1016_j_celrep_2016_09_046 crossref_primary_10_1038_srep30903 crossref_primary_10_1002_anie_201206691 crossref_primary_10_1002_stem_717 crossref_primary_10_1142_S1568558609000102 crossref_primary_10_1038_ncb2768 crossref_primary_10_1371_journal_pgen_1003994 crossref_primary_10_1016_j_stemcr_2016_01_009 crossref_primary_10_1096_fj_09_148973 crossref_primary_10_1002_stem_1627 crossref_primary_10_2478_v10052_010_0009_3 crossref_primary_10_1089_cell_2014_0029 crossref_primary_10_1089_scd_2011_0042 crossref_primary_10_1155_2014_208067 crossref_primary_10_1016_j_ymeth_2018_09_004 crossref_primary_10_1038_nbt_1732 crossref_primary_10_1016_j_stemcr_2013_03_004 crossref_primary_10_1038_ncb2765 crossref_primary_10_1073_pnas_1100893108 crossref_primary_10_1371_journal_pone_0163244 crossref_primary_10_5483_BMBRep_2009_42_2_072 crossref_primary_10_1371_journal_pone_0039088 crossref_primary_10_1038_nature11925 crossref_primary_10_1586_epr_12_30 crossref_primary_10_1016_j_stemcr_2017_03_023 crossref_primary_10_1242_bio_024505 crossref_primary_10_1371_journal_pone_0006724 crossref_primary_10_1016_j_stem_2019_07_009 crossref_primary_10_1089_scd_2020_0084 crossref_primary_10_1242_jcs_232223 crossref_primary_10_1016_j_tcb_2015_12_003 crossref_primary_10_1089_cell_2016_0044 crossref_primary_10_1016_j_biomaterials_2014_05_015 crossref_primary_10_1021_acsami_7b12914 crossref_primary_10_1517_14712598_2010_496775 crossref_primary_10_1126_science_1239278 crossref_primary_10_1262_jrd_2014_081 crossref_primary_10_1371_journal_pone_0174122 crossref_primary_10_1007_s00432_010_0955_z crossref_primary_10_1016_j_stem_2014_09_015 crossref_primary_10_1016_j_semcdb_2014_09_012 crossref_primary_10_1161_CIRCULATIONAHA_109_865154 crossref_primary_10_3390_ijms20082026 crossref_primary_10_1016_j_stem_2013_04_019 crossref_primary_10_1007_s13238_019_0629_9 crossref_primary_10_3724_SP_J_1206_2010_00333 crossref_primary_10_1002_mrd_22789 crossref_primary_10_1242_dev_202649 crossref_primary_10_1262_jrd_2012_008 crossref_primary_10_1016_j_fertnstert_2008_12_034 crossref_primary_10_1242_dev_050831 crossref_primary_10_1002_mrd_22797 crossref_primary_10_1038_cr_2012_175 crossref_primary_10_1002_biot_201100361 crossref_primary_10_1016_j_celrep_2017_01_055 crossref_primary_10_1016_j_stemcr_2018_05_008 crossref_primary_10_1517_14712598_2011_558837 crossref_primary_10_1002_bit_25336 crossref_primary_10_1142_S1568558610000148 crossref_primary_10_1038_ncomms1165 crossref_primary_10_1371_journal_pone_0085089 crossref_primary_10_1007_s00018_012_1139_6 crossref_primary_10_1002_jcp_22450 crossref_primary_10_1586_ehm_09_56 crossref_primary_10_1016_j_biomaterials_2016_12_006 crossref_primary_10_1098_rstb_2009_0149 crossref_primary_10_1093_jmcb_mjad075 crossref_primary_10_1016_j_jbc_2023_102996 crossref_primary_10_1038_nature08735 crossref_primary_10_1089_dna_2013_2095 crossref_primary_10_1089_ten_teb_2014_0141 crossref_primary_10_1007_s00018_018_2748_5 crossref_primary_10_1016_j_chembiol_2016_07_007 crossref_primary_10_1038_labinvest_2014_132 crossref_primary_10_1093_nar_gku836 crossref_primary_10_2217_rme_15_79 crossref_primary_10_1089_zeb_2010_0684 crossref_primary_10_1517_14712590903455989 crossref_primary_10_1016_j_chembiol_2013_09_016 crossref_primary_10_1016_j_gde_2011_01_008 crossref_primary_10_1038_s41467_020_18900_z crossref_primary_10_1038_msb_2013_49 crossref_primary_10_1007_s40139_013_0014_y crossref_primary_10_1038_aps_2013_73 crossref_primary_10_1002_stem_2960 crossref_primary_10_1242_dev_108910 crossref_primary_10_1007_s11427_010_0020_9 crossref_primary_10_1262_jrd_10_178A crossref_primary_10_1089_cell_2014_0061 crossref_primary_10_1186_scrt3 crossref_primary_10_1038_cr_2012_157 crossref_primary_10_1186_s12864_019_5438_2 crossref_primary_10_3724_SP_J_1206_2008_00794 crossref_primary_10_1007_s43032_020_00343_y crossref_primary_10_1002_anie_201004284 crossref_primary_10_1038_cr_2014_165 crossref_primary_10_32604_biocell_2021_014441 crossref_primary_10_1002_stem_752 crossref_primary_10_1038_cr_2011_108 crossref_primary_10_1371_journal_pone_0105309 crossref_primary_10_1002_jcp_25947 crossref_primary_10_1021_pr100355k crossref_primary_10_1371_journal_pone_0048704 crossref_primary_10_1016_j_stem_2015_01_015 crossref_primary_10_1242_jcs_095968 crossref_primary_10_1038_labinvest_2011_85 crossref_primary_10_1016_j_stemcr_2018_04_019 crossref_primary_10_1089_scd_2014_0020 crossref_primary_10_4252_wjsc_v12_i1_25 crossref_primary_10_1038_cr_2012_143 crossref_primary_10_1089_cell_2016_0008 crossref_primary_10_1371_journal_pone_0102171 crossref_primary_10_1016_j_celrep_2023_113308 crossref_primary_10_1089_cell_2021_0001 crossref_primary_10_1038_nchembio_1552 crossref_primary_10_1242_dmm_049517 crossref_primary_10_1016_j_stem_2009_09_012 crossref_primary_10_1155_2022_6337532 crossref_primary_10_1146_annurev_cellbio_100913_013116 crossref_primary_10_1016_j_scr_2016_12_020 crossref_primary_10_1016_j_stem_2013_05_012 crossref_primary_10_1007_s12265_010_9250_2 crossref_primary_10_1161_CIRCRESAHA_111_256149 crossref_primary_10_1007_s11515_016_1413_3 crossref_primary_10_1038_cr_2011_28 crossref_primary_10_1111_cpr_13090 crossref_primary_10_1038_nprot_2015_114 crossref_primary_10_1089_scd_2014_0278 crossref_primary_10_1242_dev_068775 crossref_primary_10_1002_dvg_22821 crossref_primary_10_1016_j_celrep_2023_112566 crossref_primary_10_1016_j_cub_2011_09_024 crossref_primary_10_1016_j_ydbio_2020_04_004 crossref_primary_10_1186_s13287_016_0369_1 crossref_primary_10_2139_ssrn_4065282 crossref_primary_10_1089_scd_2011_0344 crossref_primary_10_1002_cbic_201100597 crossref_primary_10_1371_journal_pone_0279409 crossref_primary_10_1016_j_stem_2018_05_001 crossref_primary_10_1111_acel_12889 crossref_primary_10_1002_dvg_20614 crossref_primary_10_1002_stem_1604 crossref_primary_10_1016_j_celrep_2014_10_049 crossref_primary_10_1016_j_expneurol_2012_01_004 crossref_primary_10_1073_pnas_1502855112 crossref_primary_10_1134_S1062360411060038 crossref_primary_10_1155_2016_9451492 crossref_primary_10_1038_aps_2013_21 crossref_primary_10_1242_dev_202936 crossref_primary_10_1016_j_theriogenology_2020_01_051 crossref_primary_10_1038_s41467_024_45053_0 crossref_primary_10_1038_s41401_024_01313_9 crossref_primary_10_1158_0008_5472_CAN_15_1742 crossref_primary_10_1016_j_stemcr_2016_09_012 crossref_primary_10_1073_pnas_1409933111 crossref_primary_10_1186_s13287_016_0357_5 crossref_primary_10_1038_nature08534 crossref_primary_10_1073_pnas_1208533109 crossref_primary_10_1089_cell_2016_0020 crossref_primary_10_1016_j_stem_2015_09_011 crossref_primary_10_1371_journal_pone_0011238 crossref_primary_10_1161_ATVBAHA_111_230938 crossref_primary_10_1089_rej_2013_1455 crossref_primary_10_1039_C9AN00771G crossref_primary_10_1002_stem_2928 crossref_primary_10_1155_2015_471076 crossref_primary_10_4161_epi_28600 crossref_primary_10_1007_s10522_009_9213_7 crossref_primary_10_1038_ncb3442 crossref_primary_10_1371_journal_pbio_1001099 crossref_primary_10_3389_fgene_2014_00160 crossref_primary_10_1038_emboj_2012_117 crossref_primary_10_1371_journal_pone_0158046 crossref_primary_10_1038_nature12749 crossref_primary_10_3389_fphy_2022_1052106 crossref_primary_10_1073_pnas_1103113108 crossref_primary_10_1134_S1062360413010050 crossref_primary_10_1016_j_celrep_2014_08_011 crossref_primary_10_1002_stem_673 crossref_primary_10_1073_pnas_0904825106 crossref_primary_10_1242_dev_038893 crossref_primary_10_1038_mt_2015_28 crossref_primary_10_1517_13543776_2016_1118058 crossref_primary_10_1261_rna_2664111 crossref_primary_10_1002_emmm_201000065 crossref_primary_10_1038_nature09342 crossref_primary_10_1016_j_stemcr_2016_07_022 crossref_primary_10_1530_REP_15_0338 crossref_primary_10_1089_scd_2016_0091 crossref_primary_10_1371_journal_pone_0083769 crossref_primary_10_1016_j_xpro_2021_100494 crossref_primary_10_1074_jbc_M114_609016 crossref_primary_10_1016_j_stemcr_2013_08_005 crossref_primary_10_1038_s41588_023_01426_7 crossref_primary_10_1007_s00246_009_9450_1 crossref_primary_10_1242_dev_085654 crossref_primary_10_1038_s42255_019_0082_3 crossref_primary_10_1155_2016_1816525 crossref_primary_10_3923_javaa_2012_2110_2115 crossref_primary_10_15252_embr_201642402 crossref_primary_10_18632_oncotarget_20698 crossref_primary_10_3727_096368916X690502 crossref_primary_10_1089_scd_2015_0333 crossref_primary_10_1093_nar_gkx817 crossref_primary_10_1002_stem_456 crossref_primary_10_1093_jas_skad137 crossref_primary_10_1002_ar_21457 crossref_primary_10_2209_tdcpublication_2021_0042 crossref_primary_10_1016_j_yexcr_2017_07_002 crossref_primary_10_32708_uutfd_801247 crossref_primary_10_1042_BJ20102152 crossref_primary_10_1002_stem_1926 crossref_primary_10_1007_s12015_017_9782_9 crossref_primary_10_1007_s12015_022_10390_4 crossref_primary_10_1155_2016_8394960 crossref_primary_10_1371_journal_pone_0021367 crossref_primary_10_1038_s41598_018_32116_8 crossref_primary_10_1016_j_cell_2009_07_039 crossref_primary_10_1038_nmeth_3142 crossref_primary_10_1155_2015_270428 crossref_primary_10_1242_dev_050427 crossref_primary_10_1016_j_cub_2010_11_074 crossref_primary_10_1101_gr_271312_120 crossref_primary_10_1242_dev_030957 crossref_primary_10_1016_j_celrep_2019_04_056 crossref_primary_10_1016_j_stem_2009_07_003 crossref_primary_10_1073_pnas_1220200110 crossref_primary_10_1111_gtc_12519 crossref_primary_10_12688_wellcomeopenres_18034_1 crossref_primary_10_1002_stem_3092 crossref_primary_10_1002_stem_685 crossref_primary_10_1089_scd_2012_0181 crossref_primary_10_1242_dev_040758 crossref_primary_10_1371_journal_pone_0007076 crossref_primary_10_1016_j_cell_2011_05_019 crossref_primary_10_1038_cddis_2014_205 crossref_primary_10_1002_stem_1918 crossref_primary_10_1016_j_csbj_2020_08_026 crossref_primary_10_1016_j_stem_2014_04_019 crossref_primary_10_1186_2045_9769_1_7 crossref_primary_10_1007_s12015_019_09931_1 crossref_primary_10_1002_jcp_25212 crossref_primary_10_1016_j_molcel_2017_04_018 crossref_primary_10_1016_j_stem_2010_04_014 crossref_primary_10_1242_dev_200845 crossref_primary_10_3109_08880018_2012_708707 crossref_primary_10_1093_bmb_ldp011 crossref_primary_10_3389_fcell_2019_00020 crossref_primary_10_1371_journal_pone_0024501 crossref_primary_10_1038_onc_2012_614 crossref_primary_10_3736_jintegrmed2013039 crossref_primary_10_1371_journal_pone_0127739 crossref_primary_10_1002_bies_202400108 crossref_primary_10_1242_dmm_009696 crossref_primary_10_1016_j_stemcr_2018_12_018 crossref_primary_10_1002_stem_240 crossref_primary_10_3390_biom13101555 crossref_primary_10_1038_ncb2965 crossref_primary_10_1016_j_celrep_2024_114887 crossref_primary_10_1016_j_stem_2013_08_002 crossref_primary_10_1038_emboj_2011_96 crossref_primary_10_1038_ng_2491 crossref_primary_10_1242_dev_096982 crossref_primary_10_1016_j_soc_2019_02_005 crossref_primary_10_1073_pnas_1017402108 crossref_primary_10_1142_S1568558609000138 crossref_primary_10_1371_journal_pone_0138620 crossref_primary_10_1530_REP_14_0410 crossref_primary_10_1002_smll_201804576 crossref_primary_10_1089_scd_2012_0481 crossref_primary_10_1089_cell_2013_0041 crossref_primary_10_1016_j_stem_2018_03_005 crossref_primary_10_1002_stem_466 crossref_primary_10_1016_j_stemcr_2014_04_001 crossref_primary_10_23868_gc121458 crossref_primary_10_1016_j_yexcr_2011_05_017 crossref_primary_10_1111_jpi_12047 crossref_primary_10_1016_j_biomaterials_2012_03_061 crossref_primary_10_1242_dev_137075 crossref_primary_10_1016_j_semcdb_2021_06_021 crossref_primary_10_12688_wellcomeopenres_15250_1 crossref_primary_10_1007_s00018_017_2586_x crossref_primary_10_1038_nature09496 crossref_primary_10_1007_s10577_013_9358_8 crossref_primary_10_1007_s12015_018_9861_6 crossref_primary_10_1074_jbc_M110_131995 crossref_primary_10_1038_ncomms7188 crossref_primary_10_1095_biolreprod_115_134254 crossref_primary_10_1111_gtc_12702 crossref_primary_10_1016_j_stem_2014_05_002 crossref_primary_10_1002_stem_495 crossref_primary_10_3390_ijms221910489 crossref_primary_10_1016_j_copbio_2009_09_005 crossref_primary_10_1093_nar_gkv430 crossref_primary_10_1016_j_yexcr_2013_09_014 crossref_primary_10_1089_cell_2018_0064 crossref_primary_10_1242_jcs_113019 crossref_primary_10_1016_j_bbrc_2022_10_085 crossref_primary_10_1038_ncb2742 crossref_primary_10_1093_molehr_gap101 crossref_primary_10_1007_s00441_010_1085_2 crossref_primary_10_1007_s12015_010_9170_1 crossref_primary_10_1525_bio_2010_60_4_6 crossref_primary_10_1016_j_arr_2010_03_001 crossref_primary_10_1038_nrendo_2009_18 crossref_primary_10_1002_stem_124 crossref_primary_10_1242_dev_130344 crossref_primary_10_1038_nrg3473 crossref_primary_10_1161_CIRCULATIONAHA_109_881433 crossref_primary_10_1016_j_biomaterials_2021_121268 crossref_primary_10_1186_1756_8935_7_11 crossref_primary_10_1071_RD19272 crossref_primary_10_1039_C7TB00351J crossref_primary_10_1016_j_devcel_2023_09_013 crossref_primary_10_1016_j_trsl_2013_01_001 crossref_primary_10_1016_j_cell_2008_12_007 crossref_primary_10_1016_j_colsurfb_2012_05_014 crossref_primary_10_1038_s41467_023_36914_1 crossref_primary_10_1111_jcmm_12805 crossref_primary_10_1038_nrm2550 crossref_primary_10_1111_j_1474_9726_2011_00722_x crossref_primary_10_1007_s11427_009_0092_6 crossref_primary_10_4014_jmb_2208_08042 crossref_primary_10_1016_j_molcel_2014_08_014 crossref_primary_10_1089_scd_2010_0440 crossref_primary_10_1111_j_1600_0625_2011_01282_x crossref_primary_10_1016_j_scr_2010_01_001 crossref_primary_10_1002_stem_282 crossref_primary_10_1002_stem_2261 crossref_primary_10_1186_s13619_015_0024_9 crossref_primary_10_1089_cell_2013_0087 crossref_primary_10_1007_s10815_011_9552_6 crossref_primary_10_1095_biolreprod_112_103390 crossref_primary_10_1016_j_addr_2020_08_007 crossref_primary_10_1016_j_ccell_2018_01_007 crossref_primary_10_1073_pnas_2414865121 crossref_primary_10_1016_j_stem_2010_06_022 crossref_primary_10_1089_cell_2009_0103 crossref_primary_10_2217_epi_11_15 crossref_primary_10_1002_jcb_22536 crossref_primary_10_1038_leu_2016_154 crossref_primary_10_1038_s42003_021_02322_8 crossref_primary_10_1002_rmb2_12333 crossref_primary_10_1016_j_ceb_2010_04_011 crossref_primary_10_3390_cells12091338 crossref_primary_10_1016_j_stemcr_2021_05_016 crossref_primary_10_1038_nature12561 crossref_primary_10_1002_ange_201004284 crossref_primary_10_1016_j_biomaterials_2022_121939 crossref_primary_10_1016_j_stemcr_2017_07_002 crossref_primary_10_1098_rsfs_2013_0068 crossref_primary_10_1096_fj_09_139477 crossref_primary_10_1002_stem_2284 crossref_primary_10_1016_j_biomaterials_2011_11_049 crossref_primary_10_1016_j_stem_2009_11_006 crossref_primary_10_1093_molehr_gaq059 crossref_primary_10_1111_j_1365_2796_2009_02157_x crossref_primary_10_1002_stem_1070 crossref_primary_10_1093_biolre_ioy256 crossref_primary_10_1111_j_1440_169X_2010_01169_x crossref_primary_10_3892_etm_2016_3707 crossref_primary_10_1038_nature08180 crossref_primary_10_1371_journal_pgen_1003292 crossref_primary_10_1098_rstb_2011_0051 crossref_primary_10_3389_fbioe_2022_799152 crossref_primary_10_1093_intimm_dxac050 crossref_primary_10_1155_2021_8818356 crossref_primary_10_1242_dev_067702 crossref_primary_10_1016_j_tcb_2013_04_004 crossref_primary_10_1074_jbc_M110_139436 crossref_primary_10_1016_j_stem_2009_11_003 crossref_primary_10_1051_medsci_20092510798 crossref_primary_10_5604_01_3001_0009_3643 crossref_primary_10_1007_s12015_019_09935_x crossref_primary_10_1089_scd_2015_0159 crossref_primary_10_1242_dev_052753 crossref_primary_10_1002_stem_1384 crossref_primary_10_1051_medsci_2011274014 crossref_primary_10_3389_fcell_2024_1410177 crossref_primary_10_1089_ten_teb_2017_0415 crossref_primary_10_1093_stmcls_sxac050 crossref_primary_10_1016_j_arr_2010_06_002 crossref_primary_10_1038_ncomms7008 crossref_primary_10_1139_o11_064 crossref_primary_10_1111_j_1582_4934_2010_01213_x crossref_primary_10_2492_inflammregen_28_510 crossref_primary_10_1155_2017_7160419 crossref_primary_10_1371_journal_pone_0038119 crossref_primary_10_7717_peerj_5840 crossref_primary_10_1038_s41598_023_38341_0 crossref_primary_10_3390_ph4060848 crossref_primary_10_3390_ijms252111745 crossref_primary_10_1002_stem_1374 crossref_primary_10_1016_j_gde_2017_06_009 crossref_primary_10_1016_j_genrep_2019_100404 crossref_primary_10_1016_j_scr_2010_09_004 crossref_primary_10_1016_j_stem_2009_03_005 crossref_primary_10_1038_srep17691 crossref_primary_10_1101_gr_278003_123 crossref_primary_10_1038_ncomms1822 crossref_primary_10_1016_j_stem_2009_03_002 crossref_primary_10_1016_j_stem_2014_03_001 crossref_primary_10_1089_scd_2010_0130 crossref_primary_10_2174_1574888X16666210714152730 crossref_primary_10_1016_j_stem_2019_03_010 crossref_primary_10_1038_nrm_2016_8 crossref_primary_10_1038_labinvest_2017_56 crossref_primary_10_1038_srep39654 crossref_primary_10_1051_jbio_2013016 crossref_primary_10_1186_s13059_015_0733_y crossref_primary_10_1038_mt_2014_4 crossref_primary_10_1038_nature11044 crossref_primary_10_1074_jbc_C110_150599 crossref_primary_10_15252_embj_2018100003 crossref_primary_10_1038_s41598_017_06569_2 crossref_primary_10_1134_S1990519X12020095 crossref_primary_10_1016_j_tcb_2013_11_010 crossref_primary_10_1007_s13238_013_2089_y crossref_primary_10_1016_j_bbrc_2012_12_148 crossref_primary_10_3389_fimmu_2023_1264609 crossref_primary_10_1242_dev_020867 crossref_primary_10_1074_jbc_M113_536037 crossref_primary_10_1242_dev_155218 crossref_primary_10_1002_stem_39 crossref_primary_10_1089_scd_2010_0343 crossref_primary_10_1016_j_cell_2009_01_001 crossref_primary_10_1038_mt_2013_60 crossref_primary_10_1038_srep40894 crossref_primary_10_1097_MOH_0b013e328339f2ee crossref_primary_10_1016_j_gde_2014_09_006 crossref_primary_10_1242_jcs_259379 crossref_primary_10_1186_1756_8935_4_17 crossref_primary_10_1002_stem_3345 crossref_primary_10_1016_j_stem_2015_04_001 crossref_primary_10_1002_stem_1272 crossref_primary_10_1097_MOT_0b013e3283337196 crossref_primary_10_1016_j_celrep_2014_07_002 crossref_primary_10_1098_rstb_2011_0006 crossref_primary_10_1186_scrt447 crossref_primary_10_1016_j_isci_2020_101646 crossref_primary_10_1080_15384101_2018_1489180 crossref_primary_10_1016_j_scr_2015_09_004 crossref_primary_10_3390_ijms17020226 crossref_primary_10_1016_j_stemcr_2022_05_009 crossref_primary_10_1038_505622a crossref_primary_10_1007_s12035_014_9084_z crossref_primary_10_1089_scd_2010_0353 crossref_primary_10_18585_inabj_v3i2_138 crossref_primary_10_1016_j_ceb_2012_12_004 crossref_primary_10_1002_emmm_200900035 crossref_primary_10_1016_j_gpb_2019_06_003 crossref_primary_10_2217_epi_2016_0032 crossref_primary_10_1016_j_cell_2017_05_016 crossref_primary_10_1016_j_stem_2009_04_015 crossref_primary_10_1038_ncomms11124 crossref_primary_10_1038_s41556_018_0047_x crossref_primary_10_1242_dev_049130 |
Cites_doi | 1754-2189(2007)002[3081:IOPSCF]2.0.CO;2 1476-4687(1988)336[0684:MLIFMT]2.0.CO;2 0092-8674(2006)126[0663:IOPSCF]2.0.CO;2 1476-4687(2008)454[0049:DDRTIG]2.0.CO;2 1095-564X(1999)210[0030:SOSAES]2.0.CO;2 0092-8674(2007)131[0861:IOPSCF]2.0.CO;2 0092-8674(2008)132[0532:CP]2.0.CO;2 0092-8674(2008)133[0250:DROTDM]2.0.CO;2 0092-8674(2003)115[0281:BIOIPS]2.0.CO;2 0092-8674(1983)034[1053:ROXIFM]2.0.CO;2 0092-8674(1998)095[0379:FOPSCI]2.0.CO;2 1047-3211(2006)001[0112:ANSNCF]2.0.CO;2 1476-4687(2008)453[0519:TGSOES]2.0.CO;2 1476-4687(1988)336[0688:IOPESC]2.0.CO;2 1087-0156(2007)025[0117:DROGUF]2.0.CO;2 0006-3363(2003)068[0222:RLOOAP]2.0.CO;2 1545-7885(2005)003[e283.:NSSOAM]2.0.CO;2 1044-7431(2008)038[0393:FGFIAN]2.0.CO;2 0193-4511(2007)318[1917:IPSCLD]2.0.CO;2 1066-5099(2006)024[2007:REFSCN]2.0.CO;2 1534-5807(2003)004[0481:EOHHMO]2.0.CO;2 0076-6879(2003)365[0327:DCFNCA]2.0.CO;2 0969-7128(2000)007[1063:PAEASS]2.0.CO;2 1471-2970(2003)358[1397:GOESC]2.0.CO;2 1476-4687(2006)441[0997:NPTOPA]2.0.CO;2 1476-4687(2007)448[0196:NCLFME]2.0.CO;2 1476-4687(2007)448[0313:GOGIPS]2.0.CO;2 1087-0156(2008)026[0101:GOIPSC]2.0.CO;2 0214-6282(1997)041[0235:ROTBOE]2.0.CO;2 1095-564X(1994)166[0259:OTFIDE]2.0.CO;2 1476-4687(2007)448[0191:DOPESC]2.0.CO;2 1476-4687(2007)448[0318:IVROFI]2.0.CO;2 1476-4687(2008)454[0646:PSCIFA]2.0.CO;2 1476-4687(2002)416[0545:CPBSF]2.0.CO;2 1011-6370(1996)122[0881:GREOOS]2.0.CO;2 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2008 Public Library of Science 2008 Silva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, et al. (2008) Promotion of Reprogramming to Ground State Pluripotency by Signal Inhibition. PLoS Biol 6(10): e253. doi:10.1371/journal.pbio.0060253 2008 Silva et al. 2008 |
Copyright_xml | – notice: COPYRIGHT 2008 Public Library of Science – notice: 2008 Silva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, et al. (2008) Promotion of Reprogramming to Ground State Pluripotency by Signal Inhibition. PLoS Biol 6(10): e253. doi:10.1371/journal.pbio.0060253 – notice: 2008 Silva et al. 2008 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 3V. 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY RC3 7X8 5PM DOA CZG |
DOI | 10.1371/journal.pbio.0060253 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals PLoS Biology |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | MAP Kinase Block Induces Pluripotency |
EISSN | 1545-7885 |
EndPage | e253 |
ExternalDocumentID | 1292232315 oai_doaj_org_article_8df3fa3f22434e5e93d117389846b9cd PMC2570424 2897991221 A202203872 18942890 10_1371_journal_pbio_0060253 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council – fundername: Wellcome Trust – fundername: Medical Research Council grantid: G9806702 |
GroupedDBID | --- 123 29O 2WC 36B 53G 5VS 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AFXKF AHMBA AKRSQ ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBS EJD EMB EMK EMOBN EPL ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IGS IHR IOV IPNFZ ISE ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PATMY PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PYCSY QN7 RIG RNS RPM SJN SV3 TR2 TUS UKHRP WOW XSB YZZ ~8M CGR CUY CVF ECM EIF NPM PMFND 3V. 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 PUEGO 5PM AAPBV ABPTK AGJBV CZG M~E ZA5 |
ID | FETCH-LOGICAL-c790t-bd516747a5098a0cd144bea8e9f527dfb87478f230a77edf396dbd831fa5e7c63 |
IEDL.DBID | M48 |
ISSN | 1545-7885 1544-9173 |
IngestDate | Sun Oct 01 00:20:27 EDT 2023 Wed Aug 27 01:27:31 EDT 2025 Thu Aug 21 14:34:29 EDT 2025 Sun Aug 24 03:37:04 EDT 2025 Fri Jul 11 15:31:38 EDT 2025 Fri Jul 25 10:36:59 EDT 2025 Tue Jun 17 22:03:26 EDT 2025 Tue Jun 10 21:02:00 EDT 2025 Fri Jun 27 05:31:31 EDT 2025 Fri Jun 27 05:31:15 EDT 2025 Fri Jun 27 05:30:01 EDT 2025 Fri May 30 10:59:22 EDT 2025 Tue Jul 01 01:24:20 EDT 2025 Thu Apr 24 22:53:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Brain Nuclear Reprogramming Signal Transduction Neurons Cells, Cultured In Situ Hybridization, Fluorescence Reverse Transcriptase Polymerase Chain Reaction Blotting, Northern Animals Flow Cytometry Pluripotent Stem Cells Fluorescent Antibody Technique Female Mice |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c790t-bd516747a5098a0cd144bea8e9f527dfb87478f230a77edf396dbd831fa5e7c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pbio.0060253 |
PMID | 18942890 |
PQID | 1292232315 |
PQPubID | 1436341 |
PageCount | 11 |
ParticipantIDs | plos_journals_1292232315 doaj_primary_oai_doaj_org_article_8df3fa3f22434e5e93d117389846b9cd pubmedcentral_primary_oai_pubmedcentral_nih_gov_2570424 proquest_miscellaneous_69731830 proquest_miscellaneous_19568130 proquest_journals_1292232315 gale_infotracmisc_A202203872 gale_infotracacademiconefile_A202203872 gale_incontextgauss_ISR_A202203872 gale_incontextgauss_ISN_A202203872 gale_incontextgauss_IOV_A202203872 pubmed_primary_18942890 crossref_primary_10_1371_journal_pbio_0060253 crossref_citationtrail_10_1371_journal_pbio_0060253 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-10-01 |
PublicationDateYYYYMMDD | 2008-10-01 |
PublicationDate_xml | – month: 10 year: 2008 text: 2008-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PLoS biology |
PublicationTitleAlternate | PLoS Biol |
PublicationYear | 2008 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | Blelloch (journal-pbio-0060253-b009) 2006; 24 Nichols (journal-pbio-0060253-b035) 1998; 95 Williams (journal-pbio-0060253-b023) 1988; 336 Nakagawa (journal-pbio-0060253-b026) 2008; 26 Kim (journal-pbio-0060253-b028) 2008; 454 Burdon (journal-pbio-0060253-b033) 1999; 210 Meissner (journal-pbio-0060253-b014) 2007; 25 Ying (journal-pbio-0060253-b024) 2003; 115 Mikkelsen (journal-pbio-0060253-b031) 2008; 454 Silva (journal-pbio-0060253-b010) 2006; 441 Takagi (journal-pbio-0060253-b015) 1983; 34 Pollard (journal-pbio-0060253-b008) 2006; 1 Buehr (journal-pbio-0060253-b025) 2003; 68 Takahashi (journal-pbio-0060253-b002) 2006; 126 Hanna (journal-pbio-0060253-b005) 2008; 133 Smith (journal-pbio-0060253-b022) 1988; 336 Ying (journal-pbio-0060253-b037) 2003; 365 Silva (journal-pbio-0060253-b016) 2003; 4 Yu (journal-pbio-0060253-b027) 2007; 318 Buehr (journal-pbio-0060253-b034) 2003; 358 Silva (journal-pbio-0060253-b021) 2008; 132 Palmieri (journal-pbio-0060253-b018) 1994; 166 Takahashi (journal-pbio-0060253-b012) 2007; 2 Tesar (journal-pbio-0060253-b020) 2007; 448 Eminli (journal-pbio-0060253-b030) 2008 Wernig (journal-pbio-0060253-b029) 2007; 448 Ying (journal-pbio-0060253-b013) 2002; 416 Okita (journal-pbio-0060253-b001) 2007; 448 Brons (journal-pbio-0060253-b019) 2007; 448 Takahashi (journal-pbio-0060253-b004) 2007; 131 Morita (journal-pbio-0060253-b036) 2000; 7 Pollard (journal-pbio-0060253-b007) 2008; 38 Gardner (journal-pbio-0060253-b032) 1997; 41 Yeom (journal-pbio-0060253-b017) 1996; 122 Conti (journal-pbio-0060253-b006) 2005; 3 Ying (journal-pbio-0060253-b011) 2008; 453 Aoi (journal-pbio-0060253-b003) 2008 20076693 - PLoS Biol. 2008 Oct;6(10):e275. doi: 10.1371/journal.pbio.0060275. |
References_xml | – volume: 2 start-page: 3081 issn: 1754-2189 year: 2007 ident: journal-pbio-0060253-b012 publication-title: Nat Protoc doi: 1754-2189(2007)002[3081:IOPSCF]2.0.CO;2 – volume: 336 start-page: 684 issn: 1476-4687 year: 1988 ident: journal-pbio-0060253-b023 publication-title: Nature doi: 1476-4687(1988)336[0684:MLIFMT]2.0.CO;2 – volume: 126 start-page: 663 issn: 0092-8674 year: 2006 ident: journal-pbio-0060253-b002 publication-title: Cell doi: 0092-8674(2006)126[0663:IOPSCF]2.0.CO;2 – volume: 454 start-page: 49 issn: 1476-4687 year: 2008 ident: journal-pbio-0060253-b031 publication-title: Nature doi: 1476-4687(2008)454[0049:DDRTIG]2.0.CO;2 – volume: 210 start-page: 30 issn: 1095-564X year: 1999 ident: journal-pbio-0060253-b033 publication-title: Dev Biol doi: 1095-564X(1999)210[0030:SOSAES]2.0.CO;2 – volume: 131 start-page: 861 issn: 0092-8674 year: 2007 ident: journal-pbio-0060253-b004 publication-title: Cell doi: 0092-8674(2007)131[0861:IOPSCF]2.0.CO;2 – volume: 132 start-page: 532 issn: 0092-8674 year: 2008 ident: journal-pbio-0060253-b021 publication-title: Cell doi: 0092-8674(2008)132[0532:CP]2.0.CO;2 – volume: 133 start-page: 250 issn: 0092-8674 year: 2008 ident: journal-pbio-0060253-b005 publication-title: Cell doi: 0092-8674(2008)133[0250:DROTDM]2.0.CO;2 – year: 2008 ident: journal-pbio-0060253-b003 publication-title: Science – volume: 115 start-page: 281 issn: 0092-8674 year: 2003 ident: journal-pbio-0060253-b024 publication-title: Cell doi: 0092-8674(2003)115[0281:BIOIPS]2.0.CO;2 – volume: 34 start-page: 1053 issn: 0092-8674 year: 1983 ident: journal-pbio-0060253-b015 publication-title: Cell doi: 0092-8674(1983)034[1053:ROXIFM]2.0.CO;2 – volume: 95 start-page: 379 issn: 0092-8674 year: 1998 ident: journal-pbio-0060253-b035 publication-title: Cell doi: 0092-8674(1998)095[0379:FOPSCI]2.0.CO;2 – volume: 1 start-page: 112 issn: 1047-3211 year: 2006 ident: journal-pbio-0060253-b008 publication-title: Cerebral Cortex 16 Supp doi: 1047-3211(2006)001[0112:ANSNCF]2.0.CO;2 – volume: 453 start-page: 519 issn: 1476-4687 year: 2008 ident: journal-pbio-0060253-b011 publication-title: Nature doi: 1476-4687(2008)453[0519:TGSOES]2.0.CO;2 – volume: 336 start-page: 688 issn: 1476-4687 year: 1988 ident: journal-pbio-0060253-b022 publication-title: Nature doi: 1476-4687(1988)336[0688:IOPESC]2.0.CO;2 – volume: 25 start-page: 117 issn: 1087-0156 year: 2007 ident: journal-pbio-0060253-b014 publication-title: Nat Biotechnol doi: 1087-0156(2007)025[0117:DROGUF]2.0.CO;2 – volume: 68 start-page: 222 issn: 0006-3363 year: 2003 ident: journal-pbio-0060253-b025 publication-title: Biol Reprod doi: 0006-3363(2003)068[0222:RLOOAP]2.0.CO;2 – year: 2008 ident: journal-pbio-0060253-b030 publication-title: Stem Cells – volume: 3 issn: 1545-7885 year: 2005 ident: journal-pbio-0060253-b006 publication-title: PLoS Biol doi: 1545-7885(2005)003[e283.:NSSOAM]2.0.CO;2 – volume: 38 start-page: 393 issn: 1044-7431 year: 2008 ident: journal-pbio-0060253-b007 publication-title: Mol Cell Neurosci doi: 1044-7431(2008)038[0393:FGFIAN]2.0.CO;2 – volume: 318 start-page: 1917 issn: 0193-4511 year: 2007 ident: journal-pbio-0060253-b027 publication-title: Science doi: 0193-4511(2007)318[1917:IPSCLD]2.0.CO;2 – volume: 24 start-page: 2007 issn: 1066-5099 year: 2006 ident: journal-pbio-0060253-b009 publication-title: Stem Cells doi: 1066-5099(2006)024[2007:REFSCN]2.0.CO;2 – volume: 4 start-page: 481 issn: 1534-5807 year: 2003 ident: journal-pbio-0060253-b016 publication-title: Dev Cell doi: 1534-5807(2003)004[0481:EOHHMO]2.0.CO;2 – volume: 365 start-page: 327 issn: 0076-6879 year: 2003 ident: journal-pbio-0060253-b037 publication-title: Methods Enzymol doi: 0076-6879(2003)365[0327:DCFNCA]2.0.CO;2 – volume: 7 start-page: 1063 issn: 0969-7128 year: 2000 ident: journal-pbio-0060253-b036 publication-title: Gene Ther doi: 0969-7128(2000)007[1063:PAEASS]2.0.CO;2 – volume: 358 start-page: 1397 issn: 1471-2970 year: 2003 ident: journal-pbio-0060253-b034 publication-title: Phil Trans R Soc B doi: 1471-2970(2003)358[1397:GOESC]2.0.CO;2 – volume: 441 start-page: 997 issn: 1476-4687 year: 2006 ident: journal-pbio-0060253-b010 publication-title: Nature doi: 1476-4687(2006)441[0997:NPTOPA]2.0.CO;2 – volume: 448 start-page: 196 issn: 1476-4687 year: 2007 ident: journal-pbio-0060253-b020 publication-title: Nature doi: 1476-4687(2007)448[0196:NCLFME]2.0.CO;2 – volume: 448 start-page: 313 issn: 1476-4687 year: 2007 ident: journal-pbio-0060253-b001 publication-title: Nature doi: 1476-4687(2007)448[0313:GOGIPS]2.0.CO;2 – volume: 26 start-page: 101 issn: 1087-0156 year: 2008 ident: journal-pbio-0060253-b026 publication-title: Nat Biotechnol doi: 1087-0156(2008)026[0101:GOIPSC]2.0.CO;2 – volume: 41 start-page: 235 issn: 0214-6282 year: 1997 ident: journal-pbio-0060253-b032 publication-title: Int J Dev Biol doi: 0214-6282(1997)041[0235:ROTBOE]2.0.CO;2 – volume: 166 start-page: 259 issn: 1095-564X year: 1994 ident: journal-pbio-0060253-b018 publication-title: Dev Biol doi: 1095-564X(1994)166[0259:OTFIDE]2.0.CO;2 – volume: 448 start-page: 191 issn: 1476-4687 year: 2007 ident: journal-pbio-0060253-b019 publication-title: Nature doi: 1476-4687(2007)448[0191:DOPESC]2.0.CO;2 – volume: 448 start-page: 318 issn: 1476-4687 year: 2007 ident: journal-pbio-0060253-b029 publication-title: Nature doi: 1476-4687(2007)448[0318:IVROFI]2.0.CO;2 – volume: 454 start-page: 646 issn: 1476-4687 year: 2008 ident: journal-pbio-0060253-b028 publication-title: Nature doi: 1476-4687(2008)454[0646:PSCIFA]2.0.CO;2 – volume: 416 start-page: 545 issn: 1476-4687 year: 2002 ident: journal-pbio-0060253-b013 publication-title: Nature doi: 1476-4687(2002)416[0545:CPBSF]2.0.CO;2 – volume: 122 start-page: 881 issn: 1011-6370 year: 1996 ident: journal-pbio-0060253-b017 publication-title: Development doi: 1011-6370(1996)122[0881:GREOOS]2.0.CO;2 – reference: 20076693 - PLoS Biol. 2008 Oct;6(10):e275. doi: 10.1371/journal.pbio.0060275. |
SSID | ssj0022928 |
Score | 2.4994848 |
Snippet | Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs... Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e253 |
SubjectTerms | Animals Blotting, Northern Brain - cytology Brain - metabolism Brain research Cell Biology Cells, Cultured Cellular Reprogramming - genetics Cellular Reprogramming - physiology Councils Developmental Biology Efficiency Epigenetics Female Flow Cytometry Fluorescent Antibody Technique In Situ Hybridization, Fluorescence Kinases Kruppel-Like Factor 4 Leukemia Mice Neurons - cytology Neurons - metabolism Pluripotent Stem Cells - cytology Pluripotent Stem Cells - metabolism Proteins Reverse Transcriptase Polymerase Chain Reaction Signal Transduction - genetics Signal Transduction - physiology Stem cells |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQSkhcEFCgC4VaCIlT6MZ24vhYEFWpSkFAUW-WP9uVlmTV3T3sv-9MnCwNalUOXOMXS5kZe2aUmTeEvHU4cbHM88wzIzIRfcgsC2DLwtrohBHSYKPwl5Py8FQcnRVn10Z9YU1YogdOgturfOTR8AiuhotQBMV9nktws-A4rXIeb1_weX0y1aVaTLVTVZFqBo6z5F3THJf5Xqej93M7bbCqC5w-Hzillrt_c0OP5rNmcVP4-XcV5TW3dPCIPOziSbqfvuMxuRfqJ-R-mjC53iLH31K5XVPTJlJksGzLsX6Dw6LLhmJPR-1p21VE57MV3CANBtFratcUSztg62l9MbVtYddTcnrw6efHw6wboJA5qSbLzPoCmwykgaigMhPnIXuywVRBxYJJH22F7PkRshAjZQBBq9JbX_E8miJIV_JnZFQ3ddgmVBomHMudV5APKu6szb2zE-WMiwa2HRPeS1C7jl0ch1zMdPvLTEKWkQSiUe66k_uYZJu35old4w78B1TOBovc2O0DsBjdWYy-y2LG5A2qViP7RY3lNedmtVjoz19_6X2Gjce8kuw20I-TfwF9H4DedaDYgERAYKnvAeSK1FsD5M4ACQfdDZa30RZ7wSw0hGoQ3EGAXsCbvX3evLy7WcZNsa6uDs0KMNgtCmHM7YgSZ5tViHiezP2Poiol8Df1mMjBQRhoZ7hSTy9aBnMcnSiYePE_1PmSPGA9R3G-Q0bLy1V4BYHi0r5u74QrXu5mDA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLagCImXifsKAyyExFNYEztx8oQGYtoQjIkx1DfL165SicvSPvTfc07itgRtwGt9bKXn4vPZPhdCXhnsuFikaWIzxRPurUt05kCXudbecMWFwkThzyfF0Tn_OM7H8cKtiWGV6z2x3ahtMHhHvg9-CTwZoJH87fxngl2j8HU1ttC4SW5h6TLUajHeHrhgSpsKl3MORi1YTJ1jIt2Pknoz19OAsV3g-lnPNbUV_Df79GA-C81VIPTPWMrfnNPhXbITUSU96NTgHrnh6vvkdtdncvWAfDrtgu5CTYOngLm7oKwf4LboIlC8f6otbXEnPZ0tYR8JCKVXVK_o2XSCSx_XF1Pdhnc9JOeHH769P0piG4XEiGq0SLTNMdVAKMAGpRoZC2co7VTpKp9nwnpdYg19D2cRJYSznlWF1bZkqVe5E6Zgj8igDrXbJVSojJssNbaCU2HFjNapNXpUGWW8gmWHhK05KE2sMY6tLmayfTgTcNboGCKR7zLyfUiSzax5V2PjH_TvUDgbWqyQ3f4QLicyGpws4Y94xTxAFMZd7ipmU1CBsgLApStjh-QlilZiDYwag2wmatk08vjLd3mQYfoxK0V2HdHZyf8Qfe0RvY5EPgBHgGFd9gPwFQtw9Sj3epRg7qY3vIu6uGZMI7eGATPX-nn18IvNMC6K0XW1C0ugwZxRADPXUxTY4axEisedum8FVVYcH6uHRPQMoSed_kg9vWjrmGMDRZ7xJ3__7KfkTrauQZzukcHicumeARBc6Oettf8CM81c3A priority: 102 providerName: ProQuest |
Title | Promotion of Reprogramming to Ground State Pluripotency by Signal Inhibition |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18942890 https://www.proquest.com/docview/1292232315 https://www.proquest.com/docview/19568130 https://www.proquest.com/docview/69731830 https://pubmed.ncbi.nlm.nih.gov/PMC2570424 https://doaj.org/article/8df3fa3f22434e5e93d117389846b9cd http://dx.doi.org/10.1371/journal.pbio.0060253 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2Tki8THyvMEqEkHjK1NhOHT8gtKFNG7BSNor2Fvmzq1SS0g-J_vfc5aMQ1ArESx7is6Xcne2f47v7EfLKIONiL4pCSxUPubcu1NSBL3OtveGKC4WJwpf93vmQv7-Jb3ZIzdlaKXC-8WiHfFLD2eTox_fVW5jwbwrWBhHVnY6mepxjnBZs42yX7MHeJJDT4JKv7xUolQXbKpaggWkuWJVMt20ULCmaSI6XcY19qyjvv17EW9NJPt-EUP8MtPxt5zq7R_YryBkclz5yn-y47AG5U5JQrh6Sj4MyIi_PgtwHAMjLiK1vsKcFizzAn1OZDQpQGgwmS1hkcsTZq0CvguvxCIe-yG7Huoj9ekSGZ6df3p2HFcdCaITsLkJtY8xDEAqAQ6K6xsIBSzuVOOljKqzXCRbY93BQUUI465nsWW0TFnkVO2F67DFpZXnmDkggFOWGRsZKODJKZrSOrNFdaZTxCoZtE1ZrMDVVAXLkwZikxa2agINIqZAUTZBWJmiTcN1rWhbg-Iv8CRpnLYvls4sX-WyUVrMxTeBDvGIe8AvjLnaS2Qi8IZGAxrQ0tk1eomlTLJCRYQTOSC3n8_Ti09f0mGJuMksE3SZ03f8XoauG0OtKyOegEVBYmRoBesXqXA3Jw4YkrAWm0XyAvlgrZp4CmgP8Bxg-hp61f25ufrFuxkEx9C5z-RJkMKEUkM52iR7SnyUo8aR091-GqiZPm4jGRGhYp9mSjW-LIufIrsgpf_rfPZ-Ru7SuXRwdktZitnTPAUAudIfsihvRIXsnp_3BVaf4DQPPD5-TTrFa_AQh1HRx |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VIAQviLuBQi0E4sk03l177QeEylElNA0VPZQ3s2caKdihSYTyp_iNzPhIMGqBl75mxytnZnbmG-8chLzQOHExCgLfUMl97oz1FbWgy1wpp7nkQmKh8MEg6p7wT8NwuEF-1rUwmFZZ28TCUJtc4zfyHfBL4MkAjYRvp999nBqFt6v1CI1SLfbt8geEbLM3vQ8g35eU7n08ft_1q6kCvhZJZ-4rE2LmvZDgKmPZ0QZCCmVlbBMXUmGcirGlvANoLoWwxrEkMsrELHAytEJHDPa9Rq6D4-1gsCeG6wAPXrEovQs5ByMiWFWqx0SwU2nG66ka55hLBlCDNVxhMTFg5Rda00k-uwj0_pm7-Zsz3LtDblco1tst1e4u2bDZPXKjnGu5vE_6h2WSX555ufMA45dJYN_ATXrz3MPvXZnxCpzrHU4WYLdyhO5LTy29o_EIt-5lZ2NVpJM9ICdXwuCHpJXlmd0knpCUaxpok0AUmjCtVGC06iRaaidh2zZhNQdTXfU0x9Eak7S4qBMQ25QMSZHvacX3NvFXT03Lnh7_oH-HwlnRYkfu4of8fJRWBzyN4Y84yRxAIsZtaBNmAlCBOAGApxJt2uQ5ijbFnhsZJvWM5GI2S3ufT9NdiuXOLBb0MqKjwf8QfWkQvaqIXA4cAYaV1RbAV2z41aDcalCCedGN5U3UxZoxs3R9EOHJWj8vXt5eLeOmmM2X2XwBNFijCuDpcooIJ6rFSPGoVPe1oOKE4-V4m4jGQWhIp7mSjc-Kvuk4sJFT_vjvr71NbnaPD_ppvzfYf0Ju0br_cbBFWvPzhX0KIHSunhUn3yNfr9rU_ALvyJp1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVCAuiHcDhVoIxMkk9q699gGhljZqaAlRS1Fvyz7TSMEOTSKUv8avY8aPFKMWuPSaHa-cmdmZb7zzIOSlxomLcRD4JpTMZ85YX4UWdJkp5TSTjEssFP44iPdP2IfT6HSN_KxrYTCtsraJhaE2ucZv5B3wS-DJAI1EHVelRQx3e--m332cIIU3rfU4jVJFDuzyB4Rvs7f9XZD1qzDs7X1-v-9XEwZ8zdPu3Fcmwix8LsFtJrKrDYQXysrEpi4KuXEqwfbyDmC65NwaR9PYKJPQwMnIch1T2PcGWecYFbXI-s7eYHi0CvfghYtCvIgxMCmcVoV7lAedSk_eTNU4x8wyAB604RiL-QErL9GaTvLZZRD4z0zO31xj7y65U2Fab7tUwntkzWb3yc1yyuXyATkclil_eeblzgPEX6aEfQOn6c1zD79-ZcYrUK83nCzAiuUI5JeeWnrH4xFu3c_OxqpILntITq6FxY9IK8szu0E8LkOmw0CbFGLSlGqlAqNVN9VSOwnbtgmtOSh01eEcB21MRHFtxyHSKRkikO-i4nub-KunpmWHj3_Q76BwVrTYn7v4IT8fieq4iwT-iJPUAUCizEY2pSYAFUhSgHsq1aZNXqBoBXbgyFCXR3Ixm4n-py9iO8TiZ5rw8Cqi48H_EB01iF5XRC4HjgDDytoL4Cu2_2pQbjYowdjoxvIG6mLNmJm4OJbwZK2fly9vrZZxU8zty2y-ABqsWAUodTVFjPPVEqR4XKr7haCSlOFVeZvwxkFoSKe5ko3Pii7qOL6RhezJ3197i9wCMyMO-4ODp-R2WDdDDjZJa36-sM8Akc7V8-roe-TrdVubXyoxoBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Promotion+of+Reprogramming+to+Ground+State+Pluripotency+by+Signal+Inhibition&rft.jtitle=PLoS+biology&rft.au=Silva%2C+Jose&rft.au=Barrandon%2C+Ornella&rft.au=Nichols%2C+Jennifer&rft.au=Kawaguchi%2C+Jitsutaro&rft.date=2008-10-01&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.eissn=1545-7885&rft.volume=6&rft.issue=10&rft_id=info:doi/10.1371%2Fjournal.pbio.0060253&rft_id=info%3Apmid%2F18942890&rft.externalDocID=PMC2570424 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon |