Promotion of Reprogramming to Ground State Pluripotency by Signal Inhibition

Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than othe...

Full description

Saved in:
Bibliographic Details
Published inPLoS biology Vol. 6; no. 10; p. e253
Main Authors Silva, Jose, Barrandon, Ornella, Nichols, Jennifer, Kawaguchi, Jitsutaro, Theunissen, Thorold W, Smith, Austin
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.10.2008
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency--including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras--were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1-2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and Klf4 are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon.
AbstractList Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency--including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras--were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1-2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and KIM are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon.
  Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency--including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras--were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1-2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and Klf4 are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon.
Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency--including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras--were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1-2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and Klf4 are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon.
Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency--including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras--were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1-2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and KIM are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon. doi:10.1371/journal.pbio.0060253
Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency—including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras—were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1–2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and Klf4 are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon. Induced reprogramming of stem cells proceeds in two phases via an intermediate that is undifferentiated but not pluripotent. Inhibition of mitogen-activated protein kinase signaling converts this intermediate transitional state to authentic pluripotency.
Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency--including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras--were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1-2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and Klf4 are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon.Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency--including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras--were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1-2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and Klf4 are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon.
Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency-including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras-were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1-2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and Klf4 are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon. Author Summary Development of an organism proceeds irreversibly from embryo to adult, with cells differentiating progressively towards specialised final phenotypes. Now, following the pioneering discovery of induced pluripotency by Shinya Yamanaka, it has become possible to reverse developmental time: we can reprogramme an adult cell back to the naive state of pluripotency found in the early embryo. Induction of pluripotency is an extraordinary phenomenon but is currently poorly understood and inefficient. We investigated stem cells from the mouse brain and found that they reprogrammed faster than other cell types. However, the reprogrammed brain cells arrested on the verge of full pluripotency and did not gain some essential properties of induced pluripotency. Guided by the rationale of reversing a development process, we explored the effect of blocking the signal that initiates loss of pluripotency and entry into differentiation in the embryo. We used a chemical inhibitor of this signal in combination with stimulation of a second pathway known to promote maintenance of pluripotency. This simple treatment allowed the partly converted neural stem cells to complete the transition efficiently and become indistinguishable from embryonic stem cells. Therefore, incompletely reprogrammed cells, which have previously been dismissed as useless by-products of attempts to generate pluripotent stem cells, in fact provide the fastest, most reliable, and most efficient route to obtaining authentic induced pluripotent cells. Induced reprogramming of stem cells proceeds in two phases via an intermediate that is undifferentiated but not pluripotent. Inhibition of mitogen-activated protein kinase signaling converts this intermediate transitional state to authentic pluripotency.
Audience Academic
Author Silva, Jose
Nichols, Jennifer
Smith, Austin
Barrandon, Ornella
Kawaguchi, Jitsutaro
Theunissen, Thorold W
AuthorAffiliation Baylor College of Medicine, United States of America
2 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
3 Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
1 Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
AuthorAffiliation_xml – name: Baylor College of Medicine, United States of America
– name: 3 Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
– name: 1 Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
– name: 2 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
Author_xml – sequence: 1
  givenname: Jose
  surname: Silva
  fullname: Silva, Jose
– sequence: 2
  givenname: Ornella
  surname: Barrandon
  fullname: Barrandon, Ornella
– sequence: 3
  givenname: Jennifer
  surname: Nichols
  fullname: Nichols, Jennifer
– sequence: 4
  givenname: Jitsutaro
  surname: Kawaguchi
  fullname: Kawaguchi, Jitsutaro
– sequence: 5
  givenname: Thorold W
  surname: Theunissen
  fullname: Theunissen, Thorold W
– sequence: 6
  givenname: Austin
  surname: Smith
  fullname: Smith, Austin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18942890$$D View this record in MEDLINE/PubMed
BookMark eNqVk11v0zAYhSM0xLbCP0AQCQmJixZ_xLG9C6RpglGpYtMK3FqOY2euErvYCaL_HnfNYJ0mPpQLR_Zzju3X5z3ODpx3OsueQzCDmMK3Kz8EJ9vZurJ-BkAJEMGPsiNICjKljJGDO_-H2XGMKwAQ4og9yQ4h4wViHBxli8vgO99b73Jv8iu9Dr4Jsuusa_Le5-fBD67Ol73sdX7ZDsGufa-d2uTVJl_aJh0gn7trW9mtxdPssZFt1M_GcZJ9-fD-89nH6eLifH52upgqykE_rWoCS1pQSQBnEqgaFkWlJdPcEERrU7G0yAzCQFKqa4N5WVc1w9BIoqkq8SR7ufNdtz6KsRBRwHQ7hBGGJBHzHVF7uRLrYDsZNsJLK24mfGiEDL1VrRYsbWAkNggVuNBEc1xDSDHjrCgrrurk9W7cbag6XSvt-iDbPdP9FWevReO_C0QoKJLrJHs9GgT_bdCxF52NSretdNoPUZScYsgw-CsIOSkZvAFf3QMfLsJINTLd0zrj0_HU1lKcopQFgBlFiZo9QKWv1p1VKXPGpvk9wZs9QWJ6_aNv5BCjmC-v_oP99O_sxdd99sXdN_n1GLfBTkCxA1TwMQZtfiNAbPvntmJi2z9i7J8kO7knUzZlP2U7FcW2fxb_BHtXH6I
CitedBy_id crossref_primary_10_1038_mt_2010_287
crossref_primary_10_1074_jbc_M111_256164
crossref_primary_10_1371_journal_pgen_1003112
crossref_primary_10_4061_2011_685271
crossref_primary_10_1016_j_stem_2009_12_001
crossref_primary_10_1128_MCB_05372_11
crossref_primary_10_1101_gad_1963910
crossref_primary_10_1095_biolreprod_111_096792
crossref_primary_10_1089_cell_2023_0100
crossref_primary_10_1016_j_theriogenology_2012_05_030
crossref_primary_10_1098_rstb_2011_0003
crossref_primary_10_1530_REP_09_0024
crossref_primary_10_1002_stem_1330
crossref_primary_10_1016_j_bbrc_2011_11_111
crossref_primary_10_1016_j_molcel_2013_01_016
crossref_primary_10_1007_s00018_012_1174_3
crossref_primary_10_1016_j_scr_2014_03_002
crossref_primary_10_1002_stem_1219
crossref_primary_10_1111_ctr_13573
crossref_primary_10_1242_jcs_263811
crossref_primary_10_1089_ars_2010_3814
crossref_primary_10_4252_wjsc_v8_i8_251
crossref_primary_10_1242_dmm_039321
crossref_primary_10_1002_stem_1216
crossref_primary_10_1016_j_stemcr_2017_05_020
crossref_primary_10_1016_j_xpro_2024_102934
crossref_primary_10_1089_scd_2012_0600
crossref_primary_10_1002_jcp_30362
crossref_primary_10_3389_fcell_2015_00002
crossref_primary_10_1101_gad_1811609
crossref_primary_10_1016_j_tcb_2013_09_011
crossref_primary_10_1016_j_mod_2011_03_001
crossref_primary_10_1038_onc_2012_237
crossref_primary_10_1371_journal_pbio_3000221
crossref_primary_10_1186_s13287_019_1373_z
crossref_primary_10_1016_j_gde_2014_08_002
crossref_primary_10_1089_scd_2013_0326
crossref_primary_10_1089_scd_2022_0283
crossref_primary_10_1261_rna_043745_113
crossref_primary_10_1002_1873_3468_12572
crossref_primary_10_1002_term_3143
crossref_primary_10_1101_gad_16997911
crossref_primary_10_1016_j_stem_2010_08_005
crossref_primary_10_1186_s12959_020_00240_z
crossref_primary_10_1128_MCB_00692_13
crossref_primary_10_1002_stem_1230
crossref_primary_10_1371_journal_pone_0055856
crossref_primary_10_1016_j_scr_2017_09_001
crossref_primary_10_1016_j_cbpc_2014_02_003
crossref_primary_10_1038_s41467_017_01329_2
crossref_primary_10_1089_ten_teb_2011_0264
crossref_primary_10_1016_j_stem_2009_05_015
crossref_primary_10_1016_j_diff_2014_05_003
crossref_primary_10_1002_stem_2209
crossref_primary_10_1089_cell_2015_0013
crossref_primary_10_1016_j_isci_2021_102153
crossref_primary_10_1007_s13577_021_00592_2
crossref_primary_10_3724_SP_J_1005_2011_00307
crossref_primary_10_1242_jcs_054783
crossref_primary_10_1016_j_yexcr_2019_111645
crossref_primary_10_1242_jcs_124925
crossref_primary_10_1016_j_stemcr_2013_12_010
crossref_primary_10_1038_s41586_024_08462_1
crossref_primary_10_1016_j_stem_2016_03_013
crossref_primary_10_1016_j_stemcr_2019_02_010
crossref_primary_10_1016_j_stemcr_2019_10_009
crossref_primary_10_1016_j_compbiolchem_2011_05_002
crossref_primary_10_1007_s12015_009_9077_x
crossref_primary_10_1016_j_scr_2018_02_012
crossref_primary_10_1089_scd_2017_0282
crossref_primary_10_1016_j_stemcr_2019_02_006
crossref_primary_10_1074_jbc_M109_008938
crossref_primary_10_1016_j_stemcr_2016_02_004
crossref_primary_10_1007_s00335_020_09849_x
crossref_primary_10_1016_j_cell_2009_03_034
crossref_primary_10_1038_nprot_2014_030
crossref_primary_10_1371_journal_pone_0050081
crossref_primary_10_1002_biot_201200040
crossref_primary_10_1007_s13238_012_2078_6
crossref_primary_10_1016_j_gde_2013_06_002
crossref_primary_10_1016_j_gde_2013_06_003
crossref_primary_10_1073_pnas_1219181110
crossref_primary_10_1371_journal_pone_0030234
crossref_primary_10_1016_j_stem_2008_11_008
crossref_primary_10_1073_pnas_0903860106
crossref_primary_10_3390_cancers15204997
crossref_primary_10_1089_cell_2012_0039
crossref_primary_10_1016_j_celrep_2014_12_028
crossref_primary_10_1021_acs_biochem_4c00427
crossref_primary_10_1098_rstb_2012_0292
crossref_primary_10_1038_s41467_022_34431_1
crossref_primary_10_1038_s41420_023_01533_8
crossref_primary_10_1371_journal_pone_0063265
crossref_primary_10_1038_ng_2807
crossref_primary_10_1089_scd_2011_0075
crossref_primary_10_1038_nrg2955
crossref_primary_10_1002_dvg_20806
crossref_primary_10_3390_cells12081192
crossref_primary_10_1002_stem_1775
crossref_primary_10_1038_cr_2010_142
crossref_primary_10_1016_j_stem_2021_08_012
crossref_primary_10_1038_onc_2012_285
crossref_primary_10_1016_j_stemcr_2015_09_001
crossref_primary_10_1007_s00018_012_1182_3
crossref_primary_10_1038_s41598_019_50817_6
crossref_primary_10_18632_oncotarget_26235
crossref_primary_10_1016_j_coisb_2021_100364
crossref_primary_10_1038_ncomms2059
crossref_primary_10_1038_onc_2013_196
crossref_primary_10_1371_journal_pgen_1005551
crossref_primary_10_1038_nbt_1554
crossref_primary_10_1111_cpr_12150
crossref_primary_10_1002_ange_201206691
crossref_primary_10_1002_stem_1447
crossref_primary_10_4161_cc_20207
crossref_primary_10_1016_j_ncrna_2018_04_001
crossref_primary_10_3390_cells10082049
crossref_primary_10_1074_jbc_M111_324368
crossref_primary_10_3390_genes9020101
crossref_primary_10_1186_s13072_023_00514_6
crossref_primary_10_1089_cell_2011_0078
crossref_primary_10_1016_j_stemcr_2014_08_003
crossref_primary_10_1073_pnas_1009582107
crossref_primary_10_3390_genes9020109
crossref_primary_10_1152_physrev_00040_2010
crossref_primary_10_1002_wdev_206
crossref_primary_10_1111_j_1751_2824_2009_01280_x
crossref_primary_10_1016_j_stemcr_2017_04_001
crossref_primary_10_1002_cpsc_85
crossref_primary_10_1007_s13238_011_1107_1
crossref_primary_10_1038_nbt_1667
crossref_primary_10_1016_j_stemcr_2023_11_010
crossref_primary_10_1038_nrg2937
crossref_primary_10_4161_epi_26025
crossref_primary_10_1016_j_celrep_2016_09_046
crossref_primary_10_1038_srep30903
crossref_primary_10_1002_anie_201206691
crossref_primary_10_1002_stem_717
crossref_primary_10_1142_S1568558609000102
crossref_primary_10_1038_ncb2768
crossref_primary_10_1371_journal_pgen_1003994
crossref_primary_10_1016_j_stemcr_2016_01_009
crossref_primary_10_1096_fj_09_148973
crossref_primary_10_1002_stem_1627
crossref_primary_10_2478_v10052_010_0009_3
crossref_primary_10_1089_cell_2014_0029
crossref_primary_10_1089_scd_2011_0042
crossref_primary_10_1155_2014_208067
crossref_primary_10_1016_j_ymeth_2018_09_004
crossref_primary_10_1038_nbt_1732
crossref_primary_10_1016_j_stemcr_2013_03_004
crossref_primary_10_1038_ncb2765
crossref_primary_10_1073_pnas_1100893108
crossref_primary_10_1371_journal_pone_0163244
crossref_primary_10_5483_BMBRep_2009_42_2_072
crossref_primary_10_1371_journal_pone_0039088
crossref_primary_10_1038_nature11925
crossref_primary_10_1586_epr_12_30
crossref_primary_10_1016_j_stemcr_2017_03_023
crossref_primary_10_1242_bio_024505
crossref_primary_10_1371_journal_pone_0006724
crossref_primary_10_1016_j_stem_2019_07_009
crossref_primary_10_1089_scd_2020_0084
crossref_primary_10_1242_jcs_232223
crossref_primary_10_1016_j_tcb_2015_12_003
crossref_primary_10_1089_cell_2016_0044
crossref_primary_10_1016_j_biomaterials_2014_05_015
crossref_primary_10_1021_acsami_7b12914
crossref_primary_10_1517_14712598_2010_496775
crossref_primary_10_1126_science_1239278
crossref_primary_10_1262_jrd_2014_081
crossref_primary_10_1371_journal_pone_0174122
crossref_primary_10_1007_s00432_010_0955_z
crossref_primary_10_1016_j_stem_2014_09_015
crossref_primary_10_1016_j_semcdb_2014_09_012
crossref_primary_10_1161_CIRCULATIONAHA_109_865154
crossref_primary_10_3390_ijms20082026
crossref_primary_10_1016_j_stem_2013_04_019
crossref_primary_10_1007_s13238_019_0629_9
crossref_primary_10_3724_SP_J_1206_2010_00333
crossref_primary_10_1002_mrd_22789
crossref_primary_10_1242_dev_202649
crossref_primary_10_1262_jrd_2012_008
crossref_primary_10_1016_j_fertnstert_2008_12_034
crossref_primary_10_1242_dev_050831
crossref_primary_10_1002_mrd_22797
crossref_primary_10_1038_cr_2012_175
crossref_primary_10_1002_biot_201100361
crossref_primary_10_1016_j_celrep_2017_01_055
crossref_primary_10_1016_j_stemcr_2018_05_008
crossref_primary_10_1517_14712598_2011_558837
crossref_primary_10_1002_bit_25336
crossref_primary_10_1142_S1568558610000148
crossref_primary_10_1038_ncomms1165
crossref_primary_10_1371_journal_pone_0085089
crossref_primary_10_1007_s00018_012_1139_6
crossref_primary_10_1002_jcp_22450
crossref_primary_10_1586_ehm_09_56
crossref_primary_10_1016_j_biomaterials_2016_12_006
crossref_primary_10_1098_rstb_2009_0149
crossref_primary_10_1093_jmcb_mjad075
crossref_primary_10_1016_j_jbc_2023_102996
crossref_primary_10_1038_nature08735
crossref_primary_10_1089_dna_2013_2095
crossref_primary_10_1089_ten_teb_2014_0141
crossref_primary_10_1007_s00018_018_2748_5
crossref_primary_10_1016_j_chembiol_2016_07_007
crossref_primary_10_1038_labinvest_2014_132
crossref_primary_10_1093_nar_gku836
crossref_primary_10_2217_rme_15_79
crossref_primary_10_1089_zeb_2010_0684
crossref_primary_10_1517_14712590903455989
crossref_primary_10_1016_j_chembiol_2013_09_016
crossref_primary_10_1016_j_gde_2011_01_008
crossref_primary_10_1038_s41467_020_18900_z
crossref_primary_10_1038_msb_2013_49
crossref_primary_10_1007_s40139_013_0014_y
crossref_primary_10_1038_aps_2013_73
crossref_primary_10_1002_stem_2960
crossref_primary_10_1242_dev_108910
crossref_primary_10_1007_s11427_010_0020_9
crossref_primary_10_1262_jrd_10_178A
crossref_primary_10_1089_cell_2014_0061
crossref_primary_10_1186_scrt3
crossref_primary_10_1038_cr_2012_157
crossref_primary_10_1186_s12864_019_5438_2
crossref_primary_10_3724_SP_J_1206_2008_00794
crossref_primary_10_1007_s43032_020_00343_y
crossref_primary_10_1002_anie_201004284
crossref_primary_10_1038_cr_2014_165
crossref_primary_10_32604_biocell_2021_014441
crossref_primary_10_1002_stem_752
crossref_primary_10_1038_cr_2011_108
crossref_primary_10_1371_journal_pone_0105309
crossref_primary_10_1002_jcp_25947
crossref_primary_10_1021_pr100355k
crossref_primary_10_1371_journal_pone_0048704
crossref_primary_10_1016_j_stem_2015_01_015
crossref_primary_10_1242_jcs_095968
crossref_primary_10_1038_labinvest_2011_85
crossref_primary_10_1016_j_stemcr_2018_04_019
crossref_primary_10_1089_scd_2014_0020
crossref_primary_10_4252_wjsc_v12_i1_25
crossref_primary_10_1038_cr_2012_143
crossref_primary_10_1089_cell_2016_0008
crossref_primary_10_1371_journal_pone_0102171
crossref_primary_10_1016_j_celrep_2023_113308
crossref_primary_10_1089_cell_2021_0001
crossref_primary_10_1038_nchembio_1552
crossref_primary_10_1242_dmm_049517
crossref_primary_10_1016_j_stem_2009_09_012
crossref_primary_10_1155_2022_6337532
crossref_primary_10_1146_annurev_cellbio_100913_013116
crossref_primary_10_1016_j_scr_2016_12_020
crossref_primary_10_1016_j_stem_2013_05_012
crossref_primary_10_1007_s12265_010_9250_2
crossref_primary_10_1161_CIRCRESAHA_111_256149
crossref_primary_10_1007_s11515_016_1413_3
crossref_primary_10_1038_cr_2011_28
crossref_primary_10_1111_cpr_13090
crossref_primary_10_1038_nprot_2015_114
crossref_primary_10_1089_scd_2014_0278
crossref_primary_10_1242_dev_068775
crossref_primary_10_1002_dvg_22821
crossref_primary_10_1016_j_celrep_2023_112566
crossref_primary_10_1016_j_cub_2011_09_024
crossref_primary_10_1016_j_ydbio_2020_04_004
crossref_primary_10_1186_s13287_016_0369_1
crossref_primary_10_2139_ssrn_4065282
crossref_primary_10_1089_scd_2011_0344
crossref_primary_10_1002_cbic_201100597
crossref_primary_10_1371_journal_pone_0279409
crossref_primary_10_1016_j_stem_2018_05_001
crossref_primary_10_1111_acel_12889
crossref_primary_10_1002_dvg_20614
crossref_primary_10_1002_stem_1604
crossref_primary_10_1016_j_celrep_2014_10_049
crossref_primary_10_1016_j_expneurol_2012_01_004
crossref_primary_10_1073_pnas_1502855112
crossref_primary_10_1134_S1062360411060038
crossref_primary_10_1155_2016_9451492
crossref_primary_10_1038_aps_2013_21
crossref_primary_10_1242_dev_202936
crossref_primary_10_1016_j_theriogenology_2020_01_051
crossref_primary_10_1038_s41467_024_45053_0
crossref_primary_10_1038_s41401_024_01313_9
crossref_primary_10_1158_0008_5472_CAN_15_1742
crossref_primary_10_1016_j_stemcr_2016_09_012
crossref_primary_10_1073_pnas_1409933111
crossref_primary_10_1186_s13287_016_0357_5
crossref_primary_10_1038_nature08534
crossref_primary_10_1073_pnas_1208533109
crossref_primary_10_1089_cell_2016_0020
crossref_primary_10_1016_j_stem_2015_09_011
crossref_primary_10_1371_journal_pone_0011238
crossref_primary_10_1161_ATVBAHA_111_230938
crossref_primary_10_1089_rej_2013_1455
crossref_primary_10_1039_C9AN00771G
crossref_primary_10_1002_stem_2928
crossref_primary_10_1155_2015_471076
crossref_primary_10_4161_epi_28600
crossref_primary_10_1007_s10522_009_9213_7
crossref_primary_10_1038_ncb3442
crossref_primary_10_1371_journal_pbio_1001099
crossref_primary_10_3389_fgene_2014_00160
crossref_primary_10_1038_emboj_2012_117
crossref_primary_10_1371_journal_pone_0158046
crossref_primary_10_1038_nature12749
crossref_primary_10_3389_fphy_2022_1052106
crossref_primary_10_1073_pnas_1103113108
crossref_primary_10_1134_S1062360413010050
crossref_primary_10_1016_j_celrep_2014_08_011
crossref_primary_10_1002_stem_673
crossref_primary_10_1073_pnas_0904825106
crossref_primary_10_1242_dev_038893
crossref_primary_10_1038_mt_2015_28
crossref_primary_10_1517_13543776_2016_1118058
crossref_primary_10_1261_rna_2664111
crossref_primary_10_1002_emmm_201000065
crossref_primary_10_1038_nature09342
crossref_primary_10_1016_j_stemcr_2016_07_022
crossref_primary_10_1530_REP_15_0338
crossref_primary_10_1089_scd_2016_0091
crossref_primary_10_1371_journal_pone_0083769
crossref_primary_10_1016_j_xpro_2021_100494
crossref_primary_10_1074_jbc_M114_609016
crossref_primary_10_1016_j_stemcr_2013_08_005
crossref_primary_10_1038_s41588_023_01426_7
crossref_primary_10_1007_s00246_009_9450_1
crossref_primary_10_1242_dev_085654
crossref_primary_10_1038_s42255_019_0082_3
crossref_primary_10_1155_2016_1816525
crossref_primary_10_3923_javaa_2012_2110_2115
crossref_primary_10_15252_embr_201642402
crossref_primary_10_18632_oncotarget_20698
crossref_primary_10_3727_096368916X690502
crossref_primary_10_1089_scd_2015_0333
crossref_primary_10_1093_nar_gkx817
crossref_primary_10_1002_stem_456
crossref_primary_10_1093_jas_skad137
crossref_primary_10_1002_ar_21457
crossref_primary_10_2209_tdcpublication_2021_0042
crossref_primary_10_1016_j_yexcr_2017_07_002
crossref_primary_10_32708_uutfd_801247
crossref_primary_10_1042_BJ20102152
crossref_primary_10_1002_stem_1926
crossref_primary_10_1007_s12015_017_9782_9
crossref_primary_10_1007_s12015_022_10390_4
crossref_primary_10_1155_2016_8394960
crossref_primary_10_1371_journal_pone_0021367
crossref_primary_10_1038_s41598_018_32116_8
crossref_primary_10_1016_j_cell_2009_07_039
crossref_primary_10_1038_nmeth_3142
crossref_primary_10_1155_2015_270428
crossref_primary_10_1242_dev_050427
crossref_primary_10_1016_j_cub_2010_11_074
crossref_primary_10_1101_gr_271312_120
crossref_primary_10_1242_dev_030957
crossref_primary_10_1016_j_celrep_2019_04_056
crossref_primary_10_1016_j_stem_2009_07_003
crossref_primary_10_1073_pnas_1220200110
crossref_primary_10_1111_gtc_12519
crossref_primary_10_12688_wellcomeopenres_18034_1
crossref_primary_10_1002_stem_3092
crossref_primary_10_1002_stem_685
crossref_primary_10_1089_scd_2012_0181
crossref_primary_10_1242_dev_040758
crossref_primary_10_1371_journal_pone_0007076
crossref_primary_10_1016_j_cell_2011_05_019
crossref_primary_10_1038_cddis_2014_205
crossref_primary_10_1002_stem_1918
crossref_primary_10_1016_j_csbj_2020_08_026
crossref_primary_10_1016_j_stem_2014_04_019
crossref_primary_10_1186_2045_9769_1_7
crossref_primary_10_1007_s12015_019_09931_1
crossref_primary_10_1002_jcp_25212
crossref_primary_10_1016_j_molcel_2017_04_018
crossref_primary_10_1016_j_stem_2010_04_014
crossref_primary_10_1242_dev_200845
crossref_primary_10_3109_08880018_2012_708707
crossref_primary_10_1093_bmb_ldp011
crossref_primary_10_3389_fcell_2019_00020
crossref_primary_10_1371_journal_pone_0024501
crossref_primary_10_1038_onc_2012_614
crossref_primary_10_3736_jintegrmed2013039
crossref_primary_10_1371_journal_pone_0127739
crossref_primary_10_1002_bies_202400108
crossref_primary_10_1242_dmm_009696
crossref_primary_10_1016_j_stemcr_2018_12_018
crossref_primary_10_1002_stem_240
crossref_primary_10_3390_biom13101555
crossref_primary_10_1038_ncb2965
crossref_primary_10_1016_j_celrep_2024_114887
crossref_primary_10_1016_j_stem_2013_08_002
crossref_primary_10_1038_emboj_2011_96
crossref_primary_10_1038_ng_2491
crossref_primary_10_1242_dev_096982
crossref_primary_10_1016_j_soc_2019_02_005
crossref_primary_10_1073_pnas_1017402108
crossref_primary_10_1142_S1568558609000138
crossref_primary_10_1371_journal_pone_0138620
crossref_primary_10_1530_REP_14_0410
crossref_primary_10_1002_smll_201804576
crossref_primary_10_1089_scd_2012_0481
crossref_primary_10_1089_cell_2013_0041
crossref_primary_10_1016_j_stem_2018_03_005
crossref_primary_10_1002_stem_466
crossref_primary_10_1016_j_stemcr_2014_04_001
crossref_primary_10_23868_gc121458
crossref_primary_10_1016_j_yexcr_2011_05_017
crossref_primary_10_1111_jpi_12047
crossref_primary_10_1016_j_biomaterials_2012_03_061
crossref_primary_10_1242_dev_137075
crossref_primary_10_1016_j_semcdb_2021_06_021
crossref_primary_10_12688_wellcomeopenres_15250_1
crossref_primary_10_1007_s00018_017_2586_x
crossref_primary_10_1038_nature09496
crossref_primary_10_1007_s10577_013_9358_8
crossref_primary_10_1007_s12015_018_9861_6
crossref_primary_10_1074_jbc_M110_131995
crossref_primary_10_1038_ncomms7188
crossref_primary_10_1095_biolreprod_115_134254
crossref_primary_10_1111_gtc_12702
crossref_primary_10_1016_j_stem_2014_05_002
crossref_primary_10_1002_stem_495
crossref_primary_10_3390_ijms221910489
crossref_primary_10_1016_j_copbio_2009_09_005
crossref_primary_10_1093_nar_gkv430
crossref_primary_10_1016_j_yexcr_2013_09_014
crossref_primary_10_1089_cell_2018_0064
crossref_primary_10_1242_jcs_113019
crossref_primary_10_1016_j_bbrc_2022_10_085
crossref_primary_10_1038_ncb2742
crossref_primary_10_1093_molehr_gap101
crossref_primary_10_1007_s00441_010_1085_2
crossref_primary_10_1007_s12015_010_9170_1
crossref_primary_10_1525_bio_2010_60_4_6
crossref_primary_10_1016_j_arr_2010_03_001
crossref_primary_10_1038_nrendo_2009_18
crossref_primary_10_1002_stem_124
crossref_primary_10_1242_dev_130344
crossref_primary_10_1038_nrg3473
crossref_primary_10_1161_CIRCULATIONAHA_109_881433
crossref_primary_10_1016_j_biomaterials_2021_121268
crossref_primary_10_1186_1756_8935_7_11
crossref_primary_10_1071_RD19272
crossref_primary_10_1039_C7TB00351J
crossref_primary_10_1016_j_devcel_2023_09_013
crossref_primary_10_1016_j_trsl_2013_01_001
crossref_primary_10_1016_j_cell_2008_12_007
crossref_primary_10_1016_j_colsurfb_2012_05_014
crossref_primary_10_1038_s41467_023_36914_1
crossref_primary_10_1111_jcmm_12805
crossref_primary_10_1038_nrm2550
crossref_primary_10_1111_j_1474_9726_2011_00722_x
crossref_primary_10_1007_s11427_009_0092_6
crossref_primary_10_4014_jmb_2208_08042
crossref_primary_10_1016_j_molcel_2014_08_014
crossref_primary_10_1089_scd_2010_0440
crossref_primary_10_1111_j_1600_0625_2011_01282_x
crossref_primary_10_1016_j_scr_2010_01_001
crossref_primary_10_1002_stem_282
crossref_primary_10_1002_stem_2261
crossref_primary_10_1186_s13619_015_0024_9
crossref_primary_10_1089_cell_2013_0087
crossref_primary_10_1007_s10815_011_9552_6
crossref_primary_10_1095_biolreprod_112_103390
crossref_primary_10_1016_j_addr_2020_08_007
crossref_primary_10_1016_j_ccell_2018_01_007
crossref_primary_10_1073_pnas_2414865121
crossref_primary_10_1016_j_stem_2010_06_022
crossref_primary_10_1089_cell_2009_0103
crossref_primary_10_2217_epi_11_15
crossref_primary_10_1002_jcb_22536
crossref_primary_10_1038_leu_2016_154
crossref_primary_10_1038_s42003_021_02322_8
crossref_primary_10_1002_rmb2_12333
crossref_primary_10_1016_j_ceb_2010_04_011
crossref_primary_10_3390_cells12091338
crossref_primary_10_1016_j_stemcr_2021_05_016
crossref_primary_10_1038_nature12561
crossref_primary_10_1002_ange_201004284
crossref_primary_10_1016_j_biomaterials_2022_121939
crossref_primary_10_1016_j_stemcr_2017_07_002
crossref_primary_10_1098_rsfs_2013_0068
crossref_primary_10_1096_fj_09_139477
crossref_primary_10_1002_stem_2284
crossref_primary_10_1016_j_biomaterials_2011_11_049
crossref_primary_10_1016_j_stem_2009_11_006
crossref_primary_10_1093_molehr_gaq059
crossref_primary_10_1111_j_1365_2796_2009_02157_x
crossref_primary_10_1002_stem_1070
crossref_primary_10_1093_biolre_ioy256
crossref_primary_10_1111_j_1440_169X_2010_01169_x
crossref_primary_10_3892_etm_2016_3707
crossref_primary_10_1038_nature08180
crossref_primary_10_1371_journal_pgen_1003292
crossref_primary_10_1098_rstb_2011_0051
crossref_primary_10_3389_fbioe_2022_799152
crossref_primary_10_1093_intimm_dxac050
crossref_primary_10_1155_2021_8818356
crossref_primary_10_1242_dev_067702
crossref_primary_10_1016_j_tcb_2013_04_004
crossref_primary_10_1074_jbc_M110_139436
crossref_primary_10_1016_j_stem_2009_11_003
crossref_primary_10_1051_medsci_20092510798
crossref_primary_10_5604_01_3001_0009_3643
crossref_primary_10_1007_s12015_019_09935_x
crossref_primary_10_1089_scd_2015_0159
crossref_primary_10_1242_dev_052753
crossref_primary_10_1002_stem_1384
crossref_primary_10_1051_medsci_2011274014
crossref_primary_10_3389_fcell_2024_1410177
crossref_primary_10_1089_ten_teb_2017_0415
crossref_primary_10_1093_stmcls_sxac050
crossref_primary_10_1016_j_arr_2010_06_002
crossref_primary_10_1038_ncomms7008
crossref_primary_10_1139_o11_064
crossref_primary_10_1111_j_1582_4934_2010_01213_x
crossref_primary_10_2492_inflammregen_28_510
crossref_primary_10_1155_2017_7160419
crossref_primary_10_1371_journal_pone_0038119
crossref_primary_10_7717_peerj_5840
crossref_primary_10_1038_s41598_023_38341_0
crossref_primary_10_3390_ph4060848
crossref_primary_10_3390_ijms252111745
crossref_primary_10_1002_stem_1374
crossref_primary_10_1016_j_gde_2017_06_009
crossref_primary_10_1016_j_genrep_2019_100404
crossref_primary_10_1016_j_scr_2010_09_004
crossref_primary_10_1016_j_stem_2009_03_005
crossref_primary_10_1038_srep17691
crossref_primary_10_1101_gr_278003_123
crossref_primary_10_1038_ncomms1822
crossref_primary_10_1016_j_stem_2009_03_002
crossref_primary_10_1016_j_stem_2014_03_001
crossref_primary_10_1089_scd_2010_0130
crossref_primary_10_2174_1574888X16666210714152730
crossref_primary_10_1016_j_stem_2019_03_010
crossref_primary_10_1038_nrm_2016_8
crossref_primary_10_1038_labinvest_2017_56
crossref_primary_10_1038_srep39654
crossref_primary_10_1051_jbio_2013016
crossref_primary_10_1186_s13059_015_0733_y
crossref_primary_10_1038_mt_2014_4
crossref_primary_10_1038_nature11044
crossref_primary_10_1074_jbc_C110_150599
crossref_primary_10_15252_embj_2018100003
crossref_primary_10_1038_s41598_017_06569_2
crossref_primary_10_1134_S1990519X12020095
crossref_primary_10_1016_j_tcb_2013_11_010
crossref_primary_10_1007_s13238_013_2089_y
crossref_primary_10_1016_j_bbrc_2012_12_148
crossref_primary_10_3389_fimmu_2023_1264609
crossref_primary_10_1242_dev_020867
crossref_primary_10_1074_jbc_M113_536037
crossref_primary_10_1242_dev_155218
crossref_primary_10_1002_stem_39
crossref_primary_10_1089_scd_2010_0343
crossref_primary_10_1016_j_cell_2009_01_001
crossref_primary_10_1038_mt_2013_60
crossref_primary_10_1038_srep40894
crossref_primary_10_1097_MOH_0b013e328339f2ee
crossref_primary_10_1016_j_gde_2014_09_006
crossref_primary_10_1242_jcs_259379
crossref_primary_10_1186_1756_8935_4_17
crossref_primary_10_1002_stem_3345
crossref_primary_10_1016_j_stem_2015_04_001
crossref_primary_10_1002_stem_1272
crossref_primary_10_1097_MOT_0b013e3283337196
crossref_primary_10_1016_j_celrep_2014_07_002
crossref_primary_10_1098_rstb_2011_0006
crossref_primary_10_1186_scrt447
crossref_primary_10_1016_j_isci_2020_101646
crossref_primary_10_1080_15384101_2018_1489180
crossref_primary_10_1016_j_scr_2015_09_004
crossref_primary_10_3390_ijms17020226
crossref_primary_10_1016_j_stemcr_2022_05_009
crossref_primary_10_1038_505622a
crossref_primary_10_1007_s12035_014_9084_z
crossref_primary_10_1089_scd_2010_0353
crossref_primary_10_18585_inabj_v3i2_138
crossref_primary_10_1016_j_ceb_2012_12_004
crossref_primary_10_1002_emmm_200900035
crossref_primary_10_1016_j_gpb_2019_06_003
crossref_primary_10_2217_epi_2016_0032
crossref_primary_10_1016_j_cell_2017_05_016
crossref_primary_10_1016_j_stem_2009_04_015
crossref_primary_10_1038_ncomms11124
crossref_primary_10_1038_s41556_018_0047_x
crossref_primary_10_1242_dev_049130
Cites_doi 1754-2189(2007)002[3081:IOPSCF]2.0.CO;2
1476-4687(1988)336[0684:MLIFMT]2.0.CO;2
0092-8674(2006)126[0663:IOPSCF]2.0.CO;2
1476-4687(2008)454[0049:DDRTIG]2.0.CO;2
1095-564X(1999)210[0030:SOSAES]2.0.CO;2
0092-8674(2007)131[0861:IOPSCF]2.0.CO;2
0092-8674(2008)132[0532:CP]2.0.CO;2
0092-8674(2008)133[0250:DROTDM]2.0.CO;2
0092-8674(2003)115[0281:BIOIPS]2.0.CO;2
0092-8674(1983)034[1053:ROXIFM]2.0.CO;2
0092-8674(1998)095[0379:FOPSCI]2.0.CO;2
1047-3211(2006)001[0112:ANSNCF]2.0.CO;2
1476-4687(2008)453[0519:TGSOES]2.0.CO;2
1476-4687(1988)336[0688:IOPESC]2.0.CO;2
1087-0156(2007)025[0117:DROGUF]2.0.CO;2
0006-3363(2003)068[0222:RLOOAP]2.0.CO;2
1545-7885(2005)003[e283.:NSSOAM]2.0.CO;2
1044-7431(2008)038[0393:FGFIAN]2.0.CO;2
0193-4511(2007)318[1917:IPSCLD]2.0.CO;2
1066-5099(2006)024[2007:REFSCN]2.0.CO;2
1534-5807(2003)004[0481:EOHHMO]2.0.CO;2
0076-6879(2003)365[0327:DCFNCA]2.0.CO;2
0969-7128(2000)007[1063:PAEASS]2.0.CO;2
1471-2970(2003)358[1397:GOESC]2.0.CO;2
1476-4687(2006)441[0997:NPTOPA]2.0.CO;2
1476-4687(2007)448[0196:NCLFME]2.0.CO;2
1476-4687(2007)448[0313:GOGIPS]2.0.CO;2
1087-0156(2008)026[0101:GOIPSC]2.0.CO;2
0214-6282(1997)041[0235:ROTBOE]2.0.CO;2
1095-564X(1994)166[0259:OTFIDE]2.0.CO;2
1476-4687(2007)448[0191:DOPESC]2.0.CO;2
1476-4687(2007)448[0318:IVROFI]2.0.CO;2
1476-4687(2008)454[0646:PSCIFA]2.0.CO;2
1476-4687(2002)416[0545:CPBSF]2.0.CO;2
1011-6370(1996)122[0881:GREOOS]2.0.CO;2
ContentType Journal Article
Copyright COPYRIGHT 2008 Public Library of Science
2008 Silva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, et al. (2008) Promotion of Reprogramming to Ground State Pluripotency by Signal Inhibition. PLoS Biol 6(10): e253. doi:10.1371/journal.pbio.0060253
2008 Silva et al. 2008
Copyright_xml – notice: COPYRIGHT 2008 Public Library of Science
– notice: 2008 Silva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, et al. (2008) Promotion of Reprogramming to Ground State Pluripotency by Signal Inhibition. PLoS Biol 6(10): e253. doi:10.1371/journal.pbio.0060253
– notice: 2008 Silva et al. 2008
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
3V.
7QG
7QL
7SN
7SS
7T5
7TK
7TM
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
RC3
7X8
5PM
DOA
CZG
DOI 10.1371/journal.pbio.0060253
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
PLoS Biology
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList







Publicly Available Content Database
MEDLINE - Academic
Genetics Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate MAP Kinase Block Induces Pluripotency
EISSN 1545-7885
EndPage e253
ExternalDocumentID 1292232315
oai_doaj_org_article_8df3fa3f22434e5e93d117389846b9cd
PMC2570424
2897991221
A202203872
18942890
10_1371_journal_pbio_0060253
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
– fundername: Wellcome Trust
– fundername: Medical Research Council
  grantid: G9806702
GroupedDBID ---
123
29O
2WC
36B
53G
5VS
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AFXKF
AHMBA
AKRSQ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBS
EJD
EMB
EMK
EMOBN
EPL
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IGS
IHR
IOV
IPNFZ
ISE
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PATMY
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PYCSY
QN7
RIG
RNS
RPM
SJN
SV3
TR2
TUS
UKHRP
WOW
XSB
YZZ
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QG
7QL
7SN
7SS
7T5
7TK
7TM
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
AAPBV
ABPTK
AGJBV
CZG
M~E
ZA5
ID FETCH-LOGICAL-c790t-bd516747a5098a0cd144bea8e9f527dfb87478f230a77edf396dbd831fa5e7c63
IEDL.DBID M48
ISSN 1545-7885
1544-9173
IngestDate Sun Oct 01 00:20:27 EDT 2023
Wed Aug 27 01:27:31 EDT 2025
Thu Aug 21 14:34:29 EDT 2025
Sun Aug 24 03:37:04 EDT 2025
Fri Jul 11 15:31:38 EDT 2025
Fri Jul 25 10:36:59 EDT 2025
Tue Jun 17 22:03:26 EDT 2025
Tue Jun 10 21:02:00 EDT 2025
Fri Jun 27 05:31:31 EDT 2025
Fri Jun 27 05:31:15 EDT 2025
Fri Jun 27 05:30:01 EDT 2025
Fri May 30 10:59:22 EDT 2025
Tue Jul 01 01:24:20 EDT 2025
Thu Apr 24 22:53:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Brain
Nuclear Reprogramming
Signal Transduction
Neurons
Cells, Cultured
In Situ Hybridization, Fluorescence
Reverse Transcriptase Polymerase Chain Reaction
Blotting, Northern
Animals
Flow Cytometry
Pluripotent Stem Cells
Fluorescent Antibody Technique
Female
Mice
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c790t-bd516747a5098a0cd144bea8e9f527dfb87478f230a77edf396dbd831fa5e7c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pbio.0060253
PMID 18942890
PQID 1292232315
PQPubID 1436341
PageCount 11
ParticipantIDs plos_journals_1292232315
doaj_primary_oai_doaj_org_article_8df3fa3f22434e5e93d117389846b9cd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2570424
proquest_miscellaneous_69731830
proquest_miscellaneous_19568130
proquest_journals_1292232315
gale_infotracmisc_A202203872
gale_infotracacademiconefile_A202203872
gale_incontextgauss_ISR_A202203872
gale_incontextgauss_ISN_A202203872
gale_incontextgauss_IOV_A202203872
pubmed_primary_18942890
crossref_primary_10_1371_journal_pbio_0060253
crossref_citationtrail_10_1371_journal_pbio_0060253
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-10-01
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-10-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PLoS biology
PublicationTitleAlternate PLoS Biol
PublicationYear 2008
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References Blelloch (journal-pbio-0060253-b009) 2006; 24
Nichols (journal-pbio-0060253-b035) 1998; 95
Williams (journal-pbio-0060253-b023) 1988; 336
Nakagawa (journal-pbio-0060253-b026) 2008; 26
Kim (journal-pbio-0060253-b028) 2008; 454
Burdon (journal-pbio-0060253-b033) 1999; 210
Meissner (journal-pbio-0060253-b014) 2007; 25
Ying (journal-pbio-0060253-b024) 2003; 115
Mikkelsen (journal-pbio-0060253-b031) 2008; 454
Silva (journal-pbio-0060253-b010) 2006; 441
Takagi (journal-pbio-0060253-b015) 1983; 34
Pollard (journal-pbio-0060253-b008) 2006; 1
Buehr (journal-pbio-0060253-b025) 2003; 68
Takahashi (journal-pbio-0060253-b002) 2006; 126
Hanna (journal-pbio-0060253-b005) 2008; 133
Smith (journal-pbio-0060253-b022) 1988; 336
Ying (journal-pbio-0060253-b037) 2003; 365
Silva (journal-pbio-0060253-b016) 2003; 4
Yu (journal-pbio-0060253-b027) 2007; 318
Buehr (journal-pbio-0060253-b034) 2003; 358
Silva (journal-pbio-0060253-b021) 2008; 132
Palmieri (journal-pbio-0060253-b018) 1994; 166
Takahashi (journal-pbio-0060253-b012) 2007; 2
Tesar (journal-pbio-0060253-b020) 2007; 448
Eminli (journal-pbio-0060253-b030) 2008
Wernig (journal-pbio-0060253-b029) 2007; 448
Ying (journal-pbio-0060253-b013) 2002; 416
Okita (journal-pbio-0060253-b001) 2007; 448
Brons (journal-pbio-0060253-b019) 2007; 448
Takahashi (journal-pbio-0060253-b004) 2007; 131
Morita (journal-pbio-0060253-b036) 2000; 7
Pollard (journal-pbio-0060253-b007) 2008; 38
Gardner (journal-pbio-0060253-b032) 1997; 41
Yeom (journal-pbio-0060253-b017) 1996; 122
Conti (journal-pbio-0060253-b006) 2005; 3
Ying (journal-pbio-0060253-b011) 2008; 453
Aoi (journal-pbio-0060253-b003) 2008
20076693 - PLoS Biol. 2008 Oct;6(10):e275. doi: 10.1371/journal.pbio.0060275.
References_xml – volume: 2
  start-page: 3081
  issn: 1754-2189
  year: 2007
  ident: journal-pbio-0060253-b012
  publication-title: Nat Protoc
  doi: 1754-2189(2007)002[3081:IOPSCF]2.0.CO;2
– volume: 336
  start-page: 684
  issn: 1476-4687
  year: 1988
  ident: journal-pbio-0060253-b023
  publication-title: Nature
  doi: 1476-4687(1988)336[0684:MLIFMT]2.0.CO;2
– volume: 126
  start-page: 663
  issn: 0092-8674
  year: 2006
  ident: journal-pbio-0060253-b002
  publication-title: Cell
  doi: 0092-8674(2006)126[0663:IOPSCF]2.0.CO;2
– volume: 454
  start-page: 49
  issn: 1476-4687
  year: 2008
  ident: journal-pbio-0060253-b031
  publication-title: Nature
  doi: 1476-4687(2008)454[0049:DDRTIG]2.0.CO;2
– volume: 210
  start-page: 30
  issn: 1095-564X
  year: 1999
  ident: journal-pbio-0060253-b033
  publication-title: Dev Biol
  doi: 1095-564X(1999)210[0030:SOSAES]2.0.CO;2
– volume: 131
  start-page: 861
  issn: 0092-8674
  year: 2007
  ident: journal-pbio-0060253-b004
  publication-title: Cell
  doi: 0092-8674(2007)131[0861:IOPSCF]2.0.CO;2
– volume: 132
  start-page: 532
  issn: 0092-8674
  year: 2008
  ident: journal-pbio-0060253-b021
  publication-title: Cell
  doi: 0092-8674(2008)132[0532:CP]2.0.CO;2
– volume: 133
  start-page: 250
  issn: 0092-8674
  year: 2008
  ident: journal-pbio-0060253-b005
  publication-title: Cell
  doi: 0092-8674(2008)133[0250:DROTDM]2.0.CO;2
– year: 2008
  ident: journal-pbio-0060253-b003
  publication-title: Science
– volume: 115
  start-page: 281
  issn: 0092-8674
  year: 2003
  ident: journal-pbio-0060253-b024
  publication-title: Cell
  doi: 0092-8674(2003)115[0281:BIOIPS]2.0.CO;2
– volume: 34
  start-page: 1053
  issn: 0092-8674
  year: 1983
  ident: journal-pbio-0060253-b015
  publication-title: Cell
  doi: 0092-8674(1983)034[1053:ROXIFM]2.0.CO;2
– volume: 95
  start-page: 379
  issn: 0092-8674
  year: 1998
  ident: journal-pbio-0060253-b035
  publication-title: Cell
  doi: 0092-8674(1998)095[0379:FOPSCI]2.0.CO;2
– volume: 1
  start-page: 112
  issn: 1047-3211
  year: 2006
  ident: journal-pbio-0060253-b008
  publication-title: Cerebral Cortex 16 Supp
  doi: 1047-3211(2006)001[0112:ANSNCF]2.0.CO;2
– volume: 453
  start-page: 519
  issn: 1476-4687
  year: 2008
  ident: journal-pbio-0060253-b011
  publication-title: Nature
  doi: 1476-4687(2008)453[0519:TGSOES]2.0.CO;2
– volume: 336
  start-page: 688
  issn: 1476-4687
  year: 1988
  ident: journal-pbio-0060253-b022
  publication-title: Nature
  doi: 1476-4687(1988)336[0688:IOPESC]2.0.CO;2
– volume: 25
  start-page: 117
  issn: 1087-0156
  year: 2007
  ident: journal-pbio-0060253-b014
  publication-title: Nat Biotechnol
  doi: 1087-0156(2007)025[0117:DROGUF]2.0.CO;2
– volume: 68
  start-page: 222
  issn: 0006-3363
  year: 2003
  ident: journal-pbio-0060253-b025
  publication-title: Biol Reprod
  doi: 0006-3363(2003)068[0222:RLOOAP]2.0.CO;2
– year: 2008
  ident: journal-pbio-0060253-b030
  publication-title: Stem Cells
– volume: 3
  issn: 1545-7885
  year: 2005
  ident: journal-pbio-0060253-b006
  publication-title: PLoS Biol
  doi: 1545-7885(2005)003[e283.:NSSOAM]2.0.CO;2
– volume: 38
  start-page: 393
  issn: 1044-7431
  year: 2008
  ident: journal-pbio-0060253-b007
  publication-title: Mol Cell Neurosci
  doi: 1044-7431(2008)038[0393:FGFIAN]2.0.CO;2
– volume: 318
  start-page: 1917
  issn: 0193-4511
  year: 2007
  ident: journal-pbio-0060253-b027
  publication-title: Science
  doi: 0193-4511(2007)318[1917:IPSCLD]2.0.CO;2
– volume: 24
  start-page: 2007
  issn: 1066-5099
  year: 2006
  ident: journal-pbio-0060253-b009
  publication-title: Stem Cells
  doi: 1066-5099(2006)024[2007:REFSCN]2.0.CO;2
– volume: 4
  start-page: 481
  issn: 1534-5807
  year: 2003
  ident: journal-pbio-0060253-b016
  publication-title: Dev Cell
  doi: 1534-5807(2003)004[0481:EOHHMO]2.0.CO;2
– volume: 365
  start-page: 327
  issn: 0076-6879
  year: 2003
  ident: journal-pbio-0060253-b037
  publication-title: Methods Enzymol
  doi: 0076-6879(2003)365[0327:DCFNCA]2.0.CO;2
– volume: 7
  start-page: 1063
  issn: 0969-7128
  year: 2000
  ident: journal-pbio-0060253-b036
  publication-title: Gene Ther
  doi: 0969-7128(2000)007[1063:PAEASS]2.0.CO;2
– volume: 358
  start-page: 1397
  issn: 1471-2970
  year: 2003
  ident: journal-pbio-0060253-b034
  publication-title: Phil Trans R Soc B
  doi: 1471-2970(2003)358[1397:GOESC]2.0.CO;2
– volume: 441
  start-page: 997
  issn: 1476-4687
  year: 2006
  ident: journal-pbio-0060253-b010
  publication-title: Nature
  doi: 1476-4687(2006)441[0997:NPTOPA]2.0.CO;2
– volume: 448
  start-page: 196
  issn: 1476-4687
  year: 2007
  ident: journal-pbio-0060253-b020
  publication-title: Nature
  doi: 1476-4687(2007)448[0196:NCLFME]2.0.CO;2
– volume: 448
  start-page: 313
  issn: 1476-4687
  year: 2007
  ident: journal-pbio-0060253-b001
  publication-title: Nature
  doi: 1476-4687(2007)448[0313:GOGIPS]2.0.CO;2
– volume: 26
  start-page: 101
  issn: 1087-0156
  year: 2008
  ident: journal-pbio-0060253-b026
  publication-title: Nat Biotechnol
  doi: 1087-0156(2008)026[0101:GOIPSC]2.0.CO;2
– volume: 41
  start-page: 235
  issn: 0214-6282
  year: 1997
  ident: journal-pbio-0060253-b032
  publication-title: Int J Dev Biol
  doi: 0214-6282(1997)041[0235:ROTBOE]2.0.CO;2
– volume: 166
  start-page: 259
  issn: 1095-564X
  year: 1994
  ident: journal-pbio-0060253-b018
  publication-title: Dev Biol
  doi: 1095-564X(1994)166[0259:OTFIDE]2.0.CO;2
– volume: 448
  start-page: 191
  issn: 1476-4687
  year: 2007
  ident: journal-pbio-0060253-b019
  publication-title: Nature
  doi: 1476-4687(2007)448[0191:DOPESC]2.0.CO;2
– volume: 448
  start-page: 318
  issn: 1476-4687
  year: 2007
  ident: journal-pbio-0060253-b029
  publication-title: Nature
  doi: 1476-4687(2007)448[0318:IVROFI]2.0.CO;2
– volume: 454
  start-page: 646
  issn: 1476-4687
  year: 2008
  ident: journal-pbio-0060253-b028
  publication-title: Nature
  doi: 1476-4687(2008)454[0646:PSCIFA]2.0.CO;2
– volume: 416
  start-page: 545
  issn: 1476-4687
  year: 2002
  ident: journal-pbio-0060253-b013
  publication-title: Nature
  doi: 1476-4687(2002)416[0545:CPBSF]2.0.CO;2
– volume: 122
  start-page: 881
  issn: 1011-6370
  year: 1996
  ident: journal-pbio-0060253-b017
  publication-title: Development
  doi: 1011-6370(1996)122[0881:GREOOS]2.0.CO;2
– reference: 20076693 - PLoS Biol. 2008 Oct;6(10):e275. doi: 10.1371/journal.pbio.0060275.
SSID ssj0022928
Score 2.4994848
Snippet Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs...
  Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e253
SubjectTerms Animals
Blotting, Northern
Brain - cytology
Brain - metabolism
Brain research
Cell Biology
Cells, Cultured
Cellular Reprogramming - genetics
Cellular Reprogramming - physiology
Councils
Developmental Biology
Efficiency
Epigenetics
Female
Flow Cytometry
Fluorescent Antibody Technique
In Situ Hybridization, Fluorescence
Kinases
Kruppel-Like Factor 4
Leukemia
Mice
Neurons - cytology
Neurons - metabolism
Pluripotent Stem Cells - cytology
Pluripotent Stem Cells - metabolism
Proteins
Reverse Transcriptase Polymerase Chain Reaction
Signal Transduction - genetics
Signal Transduction - physiology
Stem cells
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQSkhcEFCgC4VaCIlT6MZ24vhYEFWpSkFAUW-WP9uVlmTV3T3sv-9MnCwNalUOXOMXS5kZe2aUmTeEvHU4cbHM88wzIzIRfcgsC2DLwtrohBHSYKPwl5Py8FQcnRVn10Z9YU1YogdOgturfOTR8AiuhotQBMV9nktws-A4rXIeb1_weX0y1aVaTLVTVZFqBo6z5F3THJf5Xqej93M7bbCqC5w-Hzillrt_c0OP5rNmcVP4-XcV5TW3dPCIPOziSbqfvuMxuRfqJ-R-mjC53iLH31K5XVPTJlJksGzLsX6Dw6LLhmJPR-1p21VE57MV3CANBtFratcUSztg62l9MbVtYddTcnrw6efHw6wboJA5qSbLzPoCmwykgaigMhPnIXuywVRBxYJJH22F7PkRshAjZQBBq9JbX_E8miJIV_JnZFQ3ddgmVBomHMudV5APKu6szb2zE-WMiwa2HRPeS1C7jl0ch1zMdPvLTEKWkQSiUe66k_uYZJu35old4w78B1TOBovc2O0DsBjdWYy-y2LG5A2qViP7RY3lNedmtVjoz19_6X2Gjce8kuw20I-TfwF9H4DedaDYgERAYKnvAeSK1FsD5M4ACQfdDZa30RZ7wSw0hGoQ3EGAXsCbvX3evLy7WcZNsa6uDs0KMNgtCmHM7YgSZ5tViHiezP2Poiol8Df1mMjBQRhoZ7hSTy9aBnMcnSiYePE_1PmSPGA9R3G-Q0bLy1V4BYHi0r5u74QrXu5mDA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLagCImXifsKAyyExFNYEztx8oQGYtoQjIkx1DfL165SicvSPvTfc07itgRtwGt9bKXn4vPZPhdCXhnsuFikaWIzxRPurUt05kCXudbecMWFwkThzyfF0Tn_OM7H8cKtiWGV6z2x3ahtMHhHvg9-CTwZoJH87fxngl2j8HU1ttC4SW5h6TLUajHeHrhgSpsKl3MORi1YTJ1jIt2Pknoz19OAsV3g-lnPNbUV_Df79GA-C81VIPTPWMrfnNPhXbITUSU96NTgHrnh6vvkdtdncvWAfDrtgu5CTYOngLm7oKwf4LboIlC8f6otbXEnPZ0tYR8JCKVXVK_o2XSCSx_XF1Pdhnc9JOeHH769P0piG4XEiGq0SLTNMdVAKMAGpRoZC2co7VTpKp9nwnpdYg19D2cRJYSznlWF1bZkqVe5E6Zgj8igDrXbJVSojJssNbaCU2HFjNapNXpUGWW8gmWHhK05KE2sMY6tLmayfTgTcNboGCKR7zLyfUiSzax5V2PjH_TvUDgbWqyQ3f4QLicyGpws4Y94xTxAFMZd7ipmU1CBsgLApStjh-QlilZiDYwag2wmatk08vjLd3mQYfoxK0V2HdHZyf8Qfe0RvY5EPgBHgGFd9gPwFQtw9Sj3epRg7qY3vIu6uGZMI7eGATPX-nn18IvNMC6K0XW1C0ugwZxRADPXUxTY4axEisedum8FVVYcH6uHRPQMoSed_kg9vWjrmGMDRZ7xJ3__7KfkTrauQZzukcHicumeARBc6Oettf8CM81c3A
  priority: 102
  providerName: ProQuest
Title Promotion of Reprogramming to Ground State Pluripotency by Signal Inhibition
URI https://www.ncbi.nlm.nih.gov/pubmed/18942890
https://www.proquest.com/docview/1292232315
https://www.proquest.com/docview/19568130
https://www.proquest.com/docview/69731830
https://pubmed.ncbi.nlm.nih.gov/PMC2570424
https://doaj.org/article/8df3fa3f22434e5e93d117389846b9cd
http://dx.doi.org/10.1371/journal.pbio.0060253
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2Tki8THyvMEqEkHjK1NhOHT8gtKFNG7BSNor2Fvmzq1SS0g-J_vfc5aMQ1ArESx7is6Xcne2f47v7EfLKIONiL4pCSxUPubcu1NSBL3OtveGKC4WJwpf93vmQv7-Jb3ZIzdlaKXC-8WiHfFLD2eTox_fVW5jwbwrWBhHVnY6mepxjnBZs42yX7MHeJJDT4JKv7xUolQXbKpaggWkuWJVMt20ULCmaSI6XcY19qyjvv17EW9NJPt-EUP8MtPxt5zq7R_YryBkclz5yn-y47AG5U5JQrh6Sj4MyIi_PgtwHAMjLiK1vsKcFizzAn1OZDQpQGgwmS1hkcsTZq0CvguvxCIe-yG7Huoj9ekSGZ6df3p2HFcdCaITsLkJtY8xDEAqAQ6K6xsIBSzuVOOljKqzXCRbY93BQUUI465nsWW0TFnkVO2F67DFpZXnmDkggFOWGRsZKODJKZrSOrNFdaZTxCoZtE1ZrMDVVAXLkwZikxa2agINIqZAUTZBWJmiTcN1rWhbg-Iv8CRpnLYvls4sX-WyUVrMxTeBDvGIe8AvjLnaS2Qi8IZGAxrQ0tk1eomlTLJCRYQTOSC3n8_Ti09f0mGJuMksE3SZ03f8XoauG0OtKyOegEVBYmRoBesXqXA3Jw4YkrAWm0XyAvlgrZp4CmgP8Bxg-hp61f25ufrFuxkEx9C5z-RJkMKEUkM52iR7SnyUo8aR091-GqiZPm4jGRGhYp9mSjW-LIufIrsgpf_rfPZ-Ru7SuXRwdktZitnTPAUAudIfsihvRIXsnp_3BVaf4DQPPD5-TTrFa_AQh1HRx
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VIAQviLuBQi0E4sk03l177QeEylElNA0VPZQ3s2caKdihSYTyp_iNzPhIMGqBl75mxytnZnbmG-8chLzQOHExCgLfUMl97oz1FbWgy1wpp7nkQmKh8MEg6p7wT8NwuEF-1rUwmFZZ28TCUJtc4zfyHfBL4MkAjYRvp999nBqFt6v1CI1SLfbt8geEbLM3vQ8g35eU7n08ft_1q6kCvhZJZ-4rE2LmvZDgKmPZ0QZCCmVlbBMXUmGcirGlvANoLoWwxrEkMsrELHAytEJHDPa9Rq6D4-1gsCeG6wAPXrEovQs5ByMiWFWqx0SwU2nG66ka55hLBlCDNVxhMTFg5Rda00k-uwj0_pm7-Zsz3LtDblco1tst1e4u2bDZPXKjnGu5vE_6h2WSX555ufMA45dJYN_ATXrz3MPvXZnxCpzrHU4WYLdyhO5LTy29o_EIt-5lZ2NVpJM9ICdXwuCHpJXlmd0knpCUaxpok0AUmjCtVGC06iRaaidh2zZhNQdTXfU0x9Eak7S4qBMQ25QMSZHvacX3NvFXT03Lnh7_oH-HwlnRYkfu4of8fJRWBzyN4Y84yRxAIsZtaBNmAlCBOAGApxJt2uQ5ijbFnhsZJvWM5GI2S3ufT9NdiuXOLBb0MqKjwf8QfWkQvaqIXA4cAYaV1RbAV2z41aDcalCCedGN5U3UxZoxs3R9EOHJWj8vXt5eLeOmmM2X2XwBNFijCuDpcooIJ6rFSPGoVPe1oOKE4-V4m4jGQWhIp7mSjc-Kvuk4sJFT_vjvr71NbnaPD_ppvzfYf0Ju0br_cbBFWvPzhX0KIHSunhUn3yNfr9rU_ALvyJp1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVCAuiHcDhVoIxMkk9q699gGhljZqaAlRS1Fvyz7TSMEOTSKUv8avY8aPFKMWuPSaHa-cmdmZb7zzIOSlxomLcRD4JpTMZ85YX4UWdJkp5TSTjEssFP44iPdP2IfT6HSN_KxrYTCtsraJhaE2ucZv5B3wS-DJAI1EHVelRQx3e--m332cIIU3rfU4jVJFDuzyB4Rvs7f9XZD1qzDs7X1-v-9XEwZ8zdPu3Fcmwix8LsFtJrKrDYQXysrEpi4KuXEqwfbyDmC65NwaR9PYKJPQwMnIch1T2PcGWecYFbXI-s7eYHi0CvfghYtCvIgxMCmcVoV7lAedSk_eTNU4x8wyAB604RiL-QErL9GaTvLZZRD4z0zO31xj7y65U2Fab7tUwntkzWb3yc1yyuXyATkclil_eeblzgPEX6aEfQOn6c1zD79-ZcYrUK83nCzAiuUI5JeeWnrH4xFu3c_OxqpILntITq6FxY9IK8szu0E8LkOmw0CbFGLSlGqlAqNVN9VSOwnbtgmtOSh01eEcB21MRHFtxyHSKRkikO-i4nub-KunpmWHj3_Q76BwVrTYn7v4IT8fieq4iwT-iJPUAUCizEY2pSYAFUhSgHsq1aZNXqBoBXbgyFCXR3Ixm4n-py9iO8TiZ5rw8Cqi48H_EB01iF5XRC4HjgDDytoL4Cu2_2pQbjYowdjoxvIG6mLNmJm4OJbwZK2fly9vrZZxU8zty2y-ABqsWAUodTVFjPPVEqR4XKr7haCSlOFVeZvwxkFoSKe5ko3Pii7qOL6RhezJ3197i9wCMyMO-4ODp-R2WDdDDjZJa36-sM8Akc7V8-roe-TrdVubXyoxoBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Promotion+of+Reprogramming+to+Ground+State+Pluripotency+by+Signal+Inhibition&rft.jtitle=PLoS+biology&rft.au=Silva%2C+Jose&rft.au=Barrandon%2C+Ornella&rft.au=Nichols%2C+Jennifer&rft.au=Kawaguchi%2C+Jitsutaro&rft.date=2008-10-01&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.eissn=1545-7885&rft.volume=6&rft.issue=10&rft_id=info:doi/10.1371%2Fjournal.pbio.0060253&rft_id=info%3Apmid%2F18942890&rft.externalDocID=PMC2570424
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon