Should We Abandon the t-Test in the Analysis of Gene Expression Microarray Data: A Comparison of Variance Modeling Strategies

High-throughput post-genomic studies are now routinely and promisingly investigated in biological and biomedical research. The main statistical approach to select genes differentially expressed between two groups is to apply a t-test, which is subject of criticism in the literature. Numerous alterna...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 5; no. 9; p. e12336
Main Authors Jeanmougin, Marine, de Reynies, Aurelien, Marisa, Laetitia, Paccard, Caroline, Nuel, Gregory, Guedj, Mickael
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 03.09.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-throughput post-genomic studies are now routinely and promisingly investigated in biological and biomedical research. The main statistical approach to select genes differentially expressed between two groups is to apply a t-test, which is subject of criticism in the literature. Numerous alternatives have been developed based on different and innovative variance modeling strategies. However, a critical issue is that selecting a different test usually leads to a different gene list. In this context and given the current tendency to apply the t-test, identifying the most efficient approach in practice remains crucial. To provide elements to answer, we conduct a comparison of eight tests representative of variance modeling strategies in gene expression data: Welch's t-test, ANOVA [1], Wilcoxon's test, SAM [2], RVM [3], limma [4], VarMixt [5] and SMVar [6]. Our comparison process relies on four steps (gene list analysis, simulations, spike-in data and re-sampling) to formulate comprehensive and robust conclusions about test performance, in terms of statistical power, false-positive rate, execution time and ease of use. Our results raise concerns about the ability of some methods to control the expected number of false positives at a desirable level. Besides, two tests (limma and VarMixt) show significant improvement compared to the t-test, in particular to deal with small sample sizes. In addition limma presents several practical advantages, so we advocate its application to analyze gene expression data.
AbstractList High-throughput post-genomic studies are now routinely and promisingly investigated in biological and biomedical research. The main statistical approach to select genes differentially expressed between two groups is to apply a t-test, which is subject of criticism in the literature. Numerous alternatives have been developed based on different and innovative variance modeling strategies. However, a critical issue is that selecting a different test usually leads to a different gene list. In this context and given the current tendency to apply the t-test, identifying the most efficient approach in practice remains crucial. To provide elements to answer, we conduct a comparison of eight tests representative of variance modeling strategies in gene expression data: Welch's t-test, ANOVA [1], Wilcoxon's test, SAM [2], RVM [3], limma [4], VarMixt [5] and SMVar [6]. Our comparison process relies on four steps (gene list analysis, simulations, spike-in data and re-sampling) to formulate comprehensive and robust conclusions about test performance, in terms of statistical power, false-positive rate, execution time and ease of use. Our results raise concerns about the ability of some methods to control the expected number of false positives at a desirable level. Besides, two tests (limma and VarMixt) show significant improvement compared to the t-test, in particular to deal with small sample sizes. In addition limma presents several practical advantages, so we advocate its application to analyze gene expression data.High-throughput post-genomic studies are now routinely and promisingly investigated in biological and biomedical research. The main statistical approach to select genes differentially expressed between two groups is to apply a t-test, which is subject of criticism in the literature. Numerous alternatives have been developed based on different and innovative variance modeling strategies. However, a critical issue is that selecting a different test usually leads to a different gene list. In this context and given the current tendency to apply the t-test, identifying the most efficient approach in practice remains crucial. To provide elements to answer, we conduct a comparison of eight tests representative of variance modeling strategies in gene expression data: Welch's t-test, ANOVA [1], Wilcoxon's test, SAM [2], RVM [3], limma [4], VarMixt [5] and SMVar [6]. Our comparison process relies on four steps (gene list analysis, simulations, spike-in data and re-sampling) to formulate comprehensive and robust conclusions about test performance, in terms of statistical power, false-positive rate, execution time and ease of use. Our results raise concerns about the ability of some methods to control the expected number of false positives at a desirable level. Besides, two tests (limma and VarMixt) show significant improvement compared to the t-test, in particular to deal with small sample sizes. In addition limma presents several practical advantages, so we advocate its application to analyze gene expression data.
High-throughput post-genomic studies are now routinely and promisingly investigated in biological and biomedical research. The main statistical approach to select genes differentially expressed between two groups is to apply a t -test, which is subject of criticism in the literature. Numerous alternatives have been developed based on different and innovative variance modeling strategies. However, a critical issue is that selecting a different test usually leads to a different gene list. In this context and given the current tendency to apply the t -test, identifying the most efficient approach in practice remains crucial. To provide elements to answer, we conduct a comparison of eight tests representative of variance modeling strategies in gene expression data: Welch's t -test, ANOVA [1] , Wilcoxon's test, SAM [2] , RVM [3] , limma [4] , VarMixt [5] and SMVar [6] . Our comparison process relies on four steps (gene list analysis, simulations, spike-in data and re-sampling) to formulate comprehensive and robust conclusions about test performance, in terms of statistical power, false-positive rate, execution time and ease of use. Our results raise concerns about the ability of some methods to control the expected number of false positives at a desirable level. Besides, two tests (limma and VarMixt) show significant improvement compared to the t -test, in particular to deal with small sample sizes. In addition limma presents several practical advantages, so we advocate its application to analyze gene expression data.
High-throughput post-genomic studies are now routinely and promisingly investigated in biological and biomedical research. The main statistical approach to select genes differentially expressed between two groups is to apply a t-test, which is subject of criticism in the literature. Numerous alternatives have been developed based on different and innovative variance modeling strategies. However, a critical issue is that selecting a different test usually leads to a different gene list. In this context and given the current tendency to apply the t-test, identifying the most efficient approach in practice remains crucial. To provide elements to answer, we conduct a comparison of eight tests representative of variance modeling strategies in gene expression data: Welch's t-test, ANOVA [1], Wilcoxon's test, SAM [2], RVM [3], limma [4], VarMixt [5] and SMVar [6]. Our comparison process relies on four steps (gene list analysis, simulations, spike-in data and re-sampling) to formulate comprehensive and robust conclusions about test performance, in terms of statistical power, false-positive rate, execution time and ease of use. Our results raise concerns about the ability of some methods to control the expected number of false positives at a desirable level. Besides, two tests (limma and VarMixt) show significant improvement compared to the t-test, in particular to deal with small sample sizes. In addition limma presents several practical advantages, so we advocate its application to analyze gene expression data.
Audience Academic
Author de Reynies, Aurelien
Nuel, Gregory
Jeanmougin, Marine
Paccard, Caroline
Marisa, Laetitia
Guedj, Mickael
AuthorAffiliation 2 Department of Biostatistics, Pharnext, Paris, France
1 Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, Paris, France
University of Michigan, United States of America
4 Statistics and Genome Laboratory UMR CNRS 8071, University of Evry, Evry, France
3 Department of Applied Mathematics (MAP5) UMR CNRS 8145, Paris Descartes University, Paris, France
AuthorAffiliation_xml – name: 2 Department of Biostatistics, Pharnext, Paris, France
– name: 4 Statistics and Genome Laboratory UMR CNRS 8071, University of Evry, Evry, France
– name: University of Michigan, United States of America
– name: 3 Department of Applied Mathematics (MAP5) UMR CNRS 8145, Paris Descartes University, Paris, France
– name: 1 Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, Paris, France
Author_xml – sequence: 1
  givenname: Marine
  surname: Jeanmougin
  fullname: Jeanmougin, Marine
– sequence: 2
  givenname: Aurelien
  surname: de Reynies
  fullname: de Reynies, Aurelien
– sequence: 3
  givenname: Laetitia
  surname: Marisa
  fullname: Marisa, Laetitia
– sequence: 4
  givenname: Caroline
  surname: Paccard
  fullname: Paccard, Caroline
– sequence: 5
  givenname: Gregory
  surname: Nuel
  fullname: Nuel, Gregory
– sequence: 6
  givenname: Mickael
  surname: Guedj
  fullname: Guedj, Mickael
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20838429$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00539115$$DView record in HAL
BookMark eNqNk01v1DAQhiNURNuFf4DAEhKoh138Ecd2D0irUtpKRZVoKUfLcSa7rrLxYidVe-C_47DbqltVgHJIMn7eGfmdmd1sq_UtZNlrgieECfLxyvehNc1kmcITjAllrHiW7RDF6LigmG09-N7OdmO8wpgzWRQvsm2KJZM5VTvZr_O575sK_QA0LU1b-RZ1c0Dd-AJih9zqb5rq3EYXka_REbSADm-WAWJ0if7qbPAmBHOLPpvO7KMpOvCLpQkuptMkuEyfprWAvvoKGtfO0HkXTAczB_Fl9rw2TYRX6_co-_7l8OLgeHx6dnRyMD0dW6FwN84VEGJ5AVAbpozExighLJW1LXNWiqJUEnghK8xopWhOK4ILDoJiZWsmOBtlb1d5l42Peu1c1IQqKhlnyadRdrIiKm-u9DK4hQm32hun_wR8mGkTOmcb0Kwk0gCxlSh5ToqytKYSqipqKWxdgky5Pq2r9eUCKgttunCzkXTzpHVzPfPXmirGaOrjKNtbJZg_kh1PT_UQGzqpCOHXJLEf1sWC_9mnpumFixaaxrTg-6gVz7lQUuX_JAXnRCheDOS7R-TTlq2pmUmuuLb26TJ2yKmnuUiTxqQQiZo8QaWngoWzaXZrl-Ibgr0NQWI6uOlmpo9Rn5x_-3_27HKTff-AnYNpunn0Td-lKY6b4JuH7btvwN3SJCBfAWnyYwxQ3yME62E37-zSw27q9W4m2f4jmXWdGconR1zzd_Fv8Tc-Gw
CitedBy_id crossref_primary_10_18632_oncotarget_14391
crossref_primary_10_3233_JAD_220120
crossref_primary_10_1177_1099800416629209
crossref_primary_10_1371_journal_pone_0141452
crossref_primary_10_1371_journal_ppat_1003098
crossref_primary_10_1016_j_compbiolchem_2017_08_012
crossref_primary_10_1261_rna_060525_116
crossref_primary_10_1016_j_gene_2012_09_101
crossref_primary_10_1093_cvr_cvt164
crossref_primary_10_3390_ijms25189808
crossref_primary_10_1016_j_lwt_2017_06_051
crossref_primary_10_1007_s12031_014_0329_0
crossref_primary_10_1017_S0967199412000299
crossref_primary_10_1186_s12918_015_0243_2
crossref_primary_10_1016_j_compbiomed_2024_108434
crossref_primary_10_1016_j_transproceed_2016_04_023
crossref_primary_10_1186_s13040_020_00217_8
crossref_primary_10_1186_1471_2164_15_659
crossref_primary_10_1073_pnas_1613417113
crossref_primary_10_1186_s13059_017_1372_2
crossref_primary_10_3390_microarrays3040340
crossref_primary_10_1371_journal_pone_0269126
crossref_primary_10_1016_j_chembiol_2019_03_002
crossref_primary_10_1074_jbc_M115_644146
crossref_primary_10_3390_metabo11090627
crossref_primary_10_1371_journal_pone_0020041
crossref_primary_10_1371_journal_pone_0028320
crossref_primary_10_1371_journal_pone_0179364
crossref_primary_10_1016_j_compbiomed_2022_106413
crossref_primary_10_1016_j_compbiomed_2022_106133
crossref_primary_10_1109_JPROC_2016_2607121
crossref_primary_10_1038_s41598_017_06511_6
crossref_primary_10_1038_s41598_020_62664_x
crossref_primary_10_1093_bib_bbs046
crossref_primary_10_1142_S0219720016500220
crossref_primary_10_1021_acs_jproteome_9b00496
crossref_primary_10_1038_ni_2244
crossref_primary_10_1186_1756_0381_6_9
crossref_primary_10_1371_journal_pgen_1006952
crossref_primary_10_1016_j_cmpb_2019_04_008
crossref_primary_10_1186_1752_0509_8_S4_S5
crossref_primary_10_6000_1929_6029_2017_06_01_1
crossref_primary_10_1016_j_cmpb_2021_106418
crossref_primary_10_4137_CIN_S30563
crossref_primary_10_1111_j_1755_148X_2012_01025_x
crossref_primary_10_1016_j_fcij_2017_07_004
crossref_primary_10_1186_s12859_016_1393_y
crossref_primary_10_1371_journal_pone_0062456
crossref_primary_10_1371_journal_pone_0217027
crossref_primary_10_1038_ncomms4775
crossref_primary_10_1186_1471_2350_15_29
crossref_primary_10_1016_j_ygeno_2013_02_012
crossref_primary_10_1371_journal_pone_0118198
crossref_primary_10_3389_fimmu_2023_1254948
crossref_primary_10_7717_peerj_1360
crossref_primary_10_1145_2188379_2188381
crossref_primary_10_1016_j_imlet_2016_08_011
crossref_primary_10_2217_pgs_14_3
crossref_primary_10_1016_j_jnutbio_2018_04_015
crossref_primary_10_1038_s41388_019_0914_3
crossref_primary_10_3389_fpsyt_2017_00271
crossref_primary_10_1049_iet_syb_2018_0012
crossref_primary_10_1093_nar_gkab827
crossref_primary_10_1515_sagmb_2015_0072
crossref_primary_10_1214_16_AOAS920
crossref_primary_10_1093_bib_bbac529
crossref_primary_10_1038_s41598_023_31537_4
crossref_primary_10_1016_j_taap_2024_116865
crossref_primary_10_3945_ajcn_110_008896
crossref_primary_10_1371_journal_pone_0020924
crossref_primary_10_3389_fpsyt_2023_1077415
crossref_primary_10_1161_CIRCRESAHA_119_316386
crossref_primary_10_1038_ncomms8953
crossref_primary_10_1371_journal_pone_0060175
crossref_primary_10_3390_cancers14215369
crossref_primary_10_1111_jgh_14529
crossref_primary_10_1186_s13073_021_00864_4
crossref_primary_10_1517_17460441_2011_557659
crossref_primary_10_1016_j_ygeno_2018_04_004
crossref_primary_10_1007_s40009_023_01301_3
crossref_primary_10_1016_j_atherosclerosis_2013_09_031
crossref_primary_10_1371_journal_pone_0055791
crossref_primary_10_1109_TCBB_2013_147
crossref_primary_10_3892_ol_2017_7508
crossref_primary_10_1371_journal_pone_0038650
crossref_primary_10_1016_j_sciaf_2023_e02012
crossref_primary_10_1371_journal_pgen_1004338
crossref_primary_10_3233_JAD_140075
crossref_primary_10_1093_bioinformatics_btz189
crossref_primary_10_3389_fimmu_2020_578505
crossref_primary_10_2174_1574893614666181126110008
crossref_primary_10_1016_j_compbiomed_2023_106867
crossref_primary_10_1016_j_toxlet_2012_12_005
crossref_primary_10_1371_journal_pone_0128845
crossref_primary_10_1371_journal_pone_0072669
crossref_primary_10_1186_1471_2164_14_911
crossref_primary_10_1186_1471_2105_14_S9_S1
Cites_doi 10.1182/blood-2004-10-3900
10.1007/s10142-002-0066-2
10.1073/pnas.091062498
10.1186/1471-2105-7-359
10.1089/10665270050514954
10.1093/nar/gkn430
10.1111/j.2517-6161.1995.tb02031.x
10.1002/em.20290
10.1038/onc.2008.251
10.1186/1471-2105-8-230
10.1111/1541-0420.00016
10.1017/S0016672307008646
10.1093/bioinformatics/bti217
10.1093/bioinformatics/bti023
10.1093/bioinformatics/btp444
10.1182/blood-2006-06-028969
10.1093/bioinformatics/btg345
10.1038/nrg1749
10.1073/pnas.0932692100
10.1073/pnas.1530509100
10.1093/bioinformatics/btg264
10.1093/jnci/95.1.14
10.1038/415530a
10.1186/1471-2164-9-S1-S13
10.1002/hep.21467
10.1186/1471-2105-10-45
10.1002/sim.2109
10.1371/journal.pmed.0040090
10.2202/1544-6115.1027
10.1093/bioinformatics/bti665
ContentType Journal Article
Copyright COPYRIGHT 2010 Public Library of Science
2010 Jeanmougin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Jeanmougin et al. 2010
Copyright_xml – notice: COPYRIGHT 2010 Public Library of Science
– notice: 2010 Jeanmougin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Jeanmougin et al. 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
1XC
VOOES
5PM
DOA
DOI 10.1371/journal.pone.0012336
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic





Agricultural Science Database
MEDLINE
Genetics Abstracts

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Statistics
Mathematics
DocumentTitleAlternate Should We Abandon the t-Test?
EISSN 1932-6203
ExternalDocumentID 1292835319
oai_doaj_org_article_3b18ae1cd7b5416bbcad79d6f87cfbe8
PMC2933223
oai_HAL_hal_00539115v1
2898386351
A473863877
20838429
10_1371_journal_pone_0012336
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPNFZ
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
RIG
RNS
RPM
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
1XC
PV9
RZL
VOOES
5PM
PUEGO
AAPBV
ABPTK
ID FETCH-LOGICAL-c790t-49e11c56eefa39a80aa977c28fcb43b76b98e568d032d9242d1065e7209cf3753
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Oct 01 00:11:43 EDT 2023
Wed Aug 27 00:22:57 EDT 2025
Thu Aug 21 18:12:51 EDT 2025
Fri May 09 12:24:09 EDT 2025
Fri Jul 11 03:09:54 EDT 2025
Fri Jul 11 07:05:48 EDT 2025
Fri Jul 25 10:38:58 EDT 2025
Tue Jun 17 21:21:08 EDT 2025
Tue Jun 10 20:50:56 EDT 2025
Fri Jun 27 04:55:17 EDT 2025
Fri Jun 27 05:09:10 EDT 2025
Thu May 22 21:20:41 EDT 2025
Mon Jul 21 06:02:08 EDT 2025
Tue Jul 01 01:38:34 EDT 2025
Thu Apr 24 22:55:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c790t-49e11c56eefa39a80aa977c28fcb43b76b98e568d032d9242d1065e7209cf3753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Conceived and designed the experiments: MJ GN MG. Performed the experiments: MJ. Analyzed the data: MJ MG. Wrote the paper: MJ MG. Implemented tools in R: MJ, AdR. Significantly contributed to the paper: AdR, LM, CP, GN.
ORCID 0000-0001-6239-4357
0000-0001-9910-2354
0000-0001-5529-7217
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0012336
PMID 20838429
PQID 1292835319
PQPubID 1436336
PageCount e12336
ParticipantIDs plos_journals_1292835319
doaj_primary_oai_doaj_org_article_3b18ae1cd7b5416bbcad79d6f87cfbe8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2933223
hal_primary_oai_HAL_hal_00539115v1
proquest_miscellaneous_954579894
proquest_miscellaneous_755179564
proquest_journals_1292835319
gale_infotracmisc_A473863877
gale_infotracacademiconefile_A473863877
gale_incontextgauss_ISR_A473863877
gale_incontextgauss_IOV_A473863877
gale_healthsolutions_A473863877
pubmed_primary_20838429
crossref_primary_10_1371_journal_pone_0012336
crossref_citationtrail_10_1371_journal_pone_0012336
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-03
PublicationDateYYYYMMDD 2010-09-03
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2010
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References L Van 't Veer (ref8) 2002; 415
F Jaffrezic (ref6) 2007; 89
N Jain (ref22) 2003; 19
P Delmar (ref5) 2005; 21
P Bertheau (ref30) 2007; 4
M Pirooznia (ref16) 2008; 9
D Allison (ref9) 2006; 7
T Mary-Huard (ref15) 2006
D Chessel (ref25) 2004; 4
B Wu (ref32) 2005; 21
X Huang (ref23) 2002; 2
V Tusher (ref2) 2001; 98
R Simon (ref11) 2003; 95
D Rickman (ref28) 2008; 27
C Murie (ref12) 2009; 10
G Wright (ref3) 2003; 19
Y Benjamini (ref31) 1995; 57
C Yauk (ref17) 2007; 48
L Lamant (ref26) 2007; 109
S Dudoit (ref13) 2002
J Soulier (ref29) 2005; 106
G Marot (ref14) 2009; 25
M McCall (ref20) 2008; 36
M Sullivan Pepe (ref19) 2003; 59
I Jeffery (ref18) 2006; 7
JD Storey (ref21) 2003; 100
T Sorlie (ref7) 2003; 100
L Zhou (ref10) 2005; 21
S Boyault (ref27) 2007; 45
G Smyth (ref4) 2004; 3
M Kerr (ref1) 2000; 7
C Kooperberg (ref24) 2005; 24
S Zhang (ref33) 2007; 8
17603887 - BMC Bioinformatics. 2007;8:230
15598833 - Bioinformatics. 2005 Apr 15;21(8):1565-71
12762450 - Biometrics. 2003 Mar;59(1):133-42
15774621 - Blood. 2005 Jul 1;106(1):274-86
17187432 - Hepatology. 2007 Jan;45(1):42-52
16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3
17077326 - Blood. 2007 Mar 1;109(5):2156-64
12185460 - Funct Integr Genomics. 2002 Aug;2(3):126-33
17517156 - Genet Res. 2007 Feb;89(1):19-25
16159924 - Bioinformatics. 2005 Nov 1;21(21):3983-9
11823860 - Nature. 2002 Jan 31;415(6871):530-6
15889452 - Stat Med. 2005 Aug 15;24(15):2281-98
17370338 - Environ Mol Mutagen. 2007 Jun;48(5):380-94
19192265 - BMC Bioinformatics. 2009;10:45
12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5
17388661 - PLoS Med. 2007 Mar;4(3):e90
18679425 - Oncogene. 2008 Nov 20;27(51):6607-22
14555628 - Bioinformatics. 2003 Oct 12;19(15):1945-51
12829800 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8418-23
11382364 - J Comput Biol. 2000;7(6):819-37
11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21
18676452 - Nucleic Acids Res. 2008 Oct;36(17):e108
14668230 - Bioinformatics. 2003 Dec 12;19(18):2448-55
16369572 - Nat Rev Genet. 2006 Jan;7(1):55-65
16872483 - BMC Bioinformatics. 2006;7:359
12509396 - J Natl Cancer Inst. 2003 Jan 1;95(1):14-8
15374871 - Bioinformatics. 2005 Feb 15;21(4):502-8
19628502 - Bioinformatics. 2009 Oct 15;25(20):2692-9
18366602 - BMC Genomics. 2008;9 Suppl 1:S13
References_xml – volume: 106
  start-page: 274
  year: 2005
  ident: ref29
  article-title: HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL).
  publication-title: Blood
  doi: 10.1182/blood-2004-10-3900
– volume: 2
  year: 2002
  ident: ref23
  article-title: Comparing three methods for variance estimation with duplicated high density oligonucleotide arrays.
  publication-title: Functional and Integrative Genomics
  doi: 10.1007/s10142-002-0066-2
– volume: 98
  start-page: 5116
  year: 2001
  ident: ref2
  article-title: Significance analysis of microarrays applied to the ionizing radiation response.
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.091062498
– year: 2002
  ident: ref13
  article-title: Multiple hypothesis testing in microarray experiments. UC Berkeley Division of Biostatistics Working Paper Series.
– volume: 4
  start-page: 5
  year: 2004
  ident: ref25
  article-title: The ade4 package - I : One-table methods.
  publication-title: R News
– volume: 7
  start-page: 359
  year: 2006
  ident: ref18
  article-title: Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data.
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-359
– volume: 7
  start-page: 819
  year: 2000
  ident: ref1
  article-title: Analysis of variance for gene expression microarray data.
  publication-title: Journal of Computational Biology
  doi: 10.1089/10665270050514954
– volume: 36
  start-page: e108
  year: 2008
  ident: ref20
  article-title: Consolidated strategy for the analysis of microarray spike-in data.
  publication-title: Nucleic Acids Research Advance
  doi: 10.1093/nar/gkn430
– volume: 57
  start-page: 289
  year: 1995
  ident: ref31
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing.
  publication-title: Journal of the Royal Statistical Society Series B (Methodological)
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 48
  start-page: 380
  year: 2007
  ident: ref17
  article-title: Review of the literature examining the correlation among dna microarray technologies.
  publication-title: Environmental and Molecular Mutagenesis
  doi: 10.1002/em.20290
– volume: 27
  start-page: 6607
  year: 2008
  ident: ref28
  article-title: Prediction of future metastasis and molecular characterization of head and neck squamous-cell carcinoma based on transcriptome and genome analysis by microarrays.
  publication-title: Oncogene
  doi: 10.1038/onc.2008.251
– volume: 8
  start-page: 230
  year: 2007
  ident: ref33
  article-title: A comprehensive evaluation of SAM, the SAM R-package and a simple modification to improve its performance.
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-230
– volume: 59
  start-page: 133
  year: 2003
  ident: ref19
  article-title: Selecting differentially expressed genes from microarray experiments.
  publication-title: Biometrics
  doi: 10.1111/1541-0420.00016
– volume: 89
  start-page: 19
  year: 2007
  ident: ref6
  article-title: A structural mixed model for variances in differential gene expression studies.
  publication-title: Genetics Research
  doi: 10.1017/S0016672307008646
– volume: 21
  start-page: 1565
  year: 2005
  ident: ref32
  article-title: Differential gene expression detection using penalized linear regression models: the improved SAM statistics.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti217
– volume: 21
  start-page: 502
  year: 2005
  ident: ref5
  article-title: Varmixt: efficient variance modelling for the differential analysis of replicated gene expression data.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti023
– volume: 25
  start-page: 2692
  year: 2009
  ident: ref14
  article-title: Moderated effect size and P-value combinations for microarray meta-analyses.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp444
– volume: 109
  start-page: 2156
  year: 2007
  ident: ref26
  article-title: Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes.
  publication-title: Blood
  doi: 10.1182/blood-2006-06-028969
– volume: 19
  start-page: 2448
  year: 2003
  ident: ref3
  article-title: A random variance model for detection of differential gene expression in small microarray experiments.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg345
– volume: 7
  start-page: 55
  year: 2006
  ident: ref9
  article-title: Microarray data analysis: from disarray to consolidation and consensus.
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg1749
– volume: 100
  start-page: 8418
  year: 2003
  ident: ref7
  article-title: Repeated observation of breast tumor subtypes in independent gene expression data sets.
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0932692100
– volume: 100
  start-page: 9440
  year: 2003
  ident: ref21
  article-title: Statistical significance for genomewide studies.
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1530509100
– volume: 19
  start-page: 1945
  year: 2003
  ident: ref22
  article-title: Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg264
– volume: 95
  start-page: 14
  year: 2003
  ident: ref11
  article-title: Pitfalls in the use of dna microarray data for diagnostic and prognostic classification.
  publication-title: Journal of the National Cancer Institute
  doi: 10.1093/jnci/95.1.14
– volume: 415
  start-page: 530
  year: 2002
  ident: ref8
  article-title: Gene expression profiling predicts clinical outcome of breast cancer.
  publication-title: Nature
  doi: 10.1038/415530a
– volume: 9
  start-page: S13
  year: 2008
  ident: ref16
  article-title: A comparative study of different machine learning methods on microarray gene expression data.
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-S1-S13
– year: 2006
  ident: ref15
– volume: 45
  year: 2007
  ident: ref27
  article-title: Transcriptome classification of hcc is related to gene alterations and to new therapeutic targets.
  publication-title: Hepatology
  doi: 10.1002/hep.21467
– volume: 10
  start-page: 45
  year: 2009
  ident: ref12
  article-title: Comparison of small n statistical tests of differential expression applied to microarrays.
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-45
– volume: 24
  start-page: 2281
  year: 2005
  ident: ref24
  article-title: Significance testing for small microarray experiments.
  publication-title: Statistics in medicine
  doi: 10.1002/sim.2109
– volume: 4
  start-page: e90
  year: 2007
  ident: ref30
  article-title: Exquisite sensitivity of TP53 mutant and basal breast cancers to a dose-dense epirubicin-cyclophosphamide regimen.
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0040090
– volume: 3
  year: 2004
  ident: ref4
  article-title: Linear models and empirical bayes methods for assessing differential expression in microarray experiments.
  publication-title: Statistical applications in genetics and molecular biology
  doi: 10.2202/1544-6115.1027
– volume: 21
  start-page: 3983
  year: 2005
  ident: ref10
  article-title: An expression index for Affymetrix GeneChips based on the generalized logarithm.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti665
– reference: 11382364 - J Comput Biol. 2000;7(6):819-37
– reference: 15889452 - Stat Med. 2005 Aug 15;24(15):2281-98
– reference: 15598833 - Bioinformatics. 2005 Apr 15;21(8):1565-71
– reference: 17187432 - Hepatology. 2007 Jan;45(1):42-52
– reference: 12185460 - Funct Integr Genomics. 2002 Aug;2(3):126-33
– reference: 17077326 - Blood. 2007 Mar 1;109(5):2156-64
– reference: 15774621 - Blood. 2005 Jul 1;106(1):274-86
– reference: 14555628 - Bioinformatics. 2003 Oct 12;19(15):1945-51
– reference: 16872483 - BMC Bioinformatics. 2006;7:359
– reference: 18679425 - Oncogene. 2008 Nov 20;27(51):6607-22
– reference: 14668230 - Bioinformatics. 2003 Dec 12;19(18):2448-55
– reference: 17370338 - Environ Mol Mutagen. 2007 Jun;48(5):380-94
– reference: 17603887 - BMC Bioinformatics. 2007;8:230
– reference: 19192265 - BMC Bioinformatics. 2009;10:45
– reference: 16159924 - Bioinformatics. 2005 Nov 1;21(21):3983-9
– reference: 11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21
– reference: 11823860 - Nature. 2002 Jan 31;415(6871):530-6
– reference: 12509396 - J Natl Cancer Inst. 2003 Jan 1;95(1):14-8
– reference: 16369572 - Nat Rev Genet. 2006 Jan;7(1):55-65
– reference: 15374871 - Bioinformatics. 2005 Feb 15;21(4):502-8
– reference: 19628502 - Bioinformatics. 2009 Oct 15;25(20):2692-9
– reference: 12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5
– reference: 17517156 - Genet Res. 2007 Feb;89(1):19-25
– reference: 12829800 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8418-23
– reference: 18366602 - BMC Genomics. 2008;9 Suppl 1:S13
– reference: 17388661 - PLoS Med. 2007 Mar;4(3):e90
– reference: 12762450 - Biometrics. 2003 Mar;59(1):133-42
– reference: 16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3
– reference: 18676452 - Nucleic Acids Res. 2008 Oct;36(17):e108
SSID ssj0053866
Score 2.3591342
Snippet High-throughput post-genomic studies are now routinely and promisingly investigated in biological and biomedical research. The main statistical approach to...
SourceID plos
doaj
pubmedcentral
hal
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e12336
SubjectTerms Analysis of Variance
Applied mathematics
Bioinformatics
Breast cancer
Cancer
Comparative analysis
Computer Simulation
Control methods
Data processing
DNA microarrays
Gene expression
Gene Expression Profiling - statistics & numerical data
Genes
Genetics and Genomics/Bioinformatics
Genetics and Genomics/Gene Expression
Genomes
Genomics
Head & neck cancer
Leukemia
Lymphoma
Mathematics
Mathematics/Statistics
Metastasis
Modelling
Models, Statistical
Molecular Biology/Bioinformatics
Oligonucleotide Array Sequence Analysis - statistics & numerical data
Power
Probability
Statistics
Student's t-test
Studies
Variance
Variance analysis
SummonAdditionalLinks – databaseName: DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgT1wQ5dVAAQshAYe0SRzbCbcFUS2Ih0Qp6s2yHadbqWRXm7TAgf_OTOwNG1RUDtx2k8l67RnPfKOMvyHkSSXqrExzE5c8cXHO8CWhAyCn88xVXNeVJ3t-_0HMDvO3R_xoo9UX1oR5emC_cHvMpIV2qa2k4QAejLG6kiUMUUhbG9cf84WYt06mvA-GXSxEOCjHZLoX9LK7XDRut4cRPSXz70DU8_UPXvnqHIsiJ8vTRXsR8PyzfnIjIO3fINcDkqRTP4MtcsU1N8lW2KstfRYIpZ_fIj8P5tjImn5zVBuN7TsowD7axQAzO3riv-nATkIXNQWjctR9DzWyDf2KVXt6tdI_KFaUvqCa2qF_IT5wDh_RfGjfWAeiIW27NQfFbXK4__rzq1kc2i7EVpZJF-elS1PLhXO1ZqUuEq0BJNqsqK3JmZHClIXjoqgSllWQvmUVpJXcSVCDrRmkP3fIpIGF3iZUuERUDiBxIgwWshbc6hwSTpNK8CQyjwhb60DZwEmOrTFOVf-iTUJu4hdToeZU0FxE4uGppefkuET-Jap3kEVG7f4C2JkKdqYus7OIPELjUP546uAX1DTHtqmskDIij3sJZNVosGznWJ-1rXrz8cs_CB18Ggk9DUL1ApbD6nBUAuaEbF0jyZ2RJPgGOx5tjouxMfHZ9J3Ca7hJINDx8zQi22jp66VrFUBAZOED5ww_v7b-i2_T4TaOjPV6jVuctUpypH7jIv-7SAnYXSL9f0Tu-u00_M8M8oICgFJE5GijjSYyvtOczHtudECvEKLYvf-h8vvkmq8VKeOE7ZBJtzpzDwCCduZh721-AXkbhz8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbocukF0fJooICFkIBD2iRO7IQLWkqrBVGQ6IO9WbbjdCtVybLZRXDgvzOTOGmDyuO2G0_i-DHjb-LxN4Q8y3kRZWGs_SwJrB8z3CS0AORUHNk8UUXekj0ffuSTk_j9NJm6D261C6vsbGJjqPPK4DfyXViXkBoMZszr-Vcfs0bh7qpLobFGbiJ1GYZ0iWnvcIEuc-6OyzER7rrR2ZlXpd1pwERDzHy5HDWs_b1tXpthaORoflHV18HP36MoryxLB7fJLYcn6bidABvkhi03yYbT2Jq-cLTSLzfJOuLKlpb5Dvl5NMPc1vSLpWOtMKMHBSRIl_4xVE7P238dYQmtCorPofvfXdhsSQ8xkE8tFuoHfauW6hUd070-pSHecAo_cUZRzLaGZ95pR4Rr67vk5GD_eG_iu0wMvhFZsPTjzIahSbi1hWKZSgOlADeaKC2MjpkWXGepTXiaByzKwaOLcvA0EyuiIDMFA4_oHhmV0OtbhHIb8NwCSg64xtjWNDEqBh9UhwKMi4g9wroBkcbRlGO2jAvZ7L0JcFfanpU4jNINo0f8_q55S9PxD_k3ONa9LJJsNxeqxZl0OiuZDlNlQ5MLnQBu1dqoXGQwu1NhCm1TjzzBmSLbE6u9qZDjGDOpslQIjzxtJJBoo8RInjO1qmv57tPpfwgdfR4IPXdCRQXdYZQ7PQFtQgKvgeT2QBLMhRnWNsPOuNLwyfiDxGuoMbD2Jd9Cj2zhtO-6rpaX2geP71Th-mLaF2PNGMJX2mpVS5EgG1zC4z-LZADnBWYE8Mj9Vrf694zAVUgBO3lEDLRu0JBhSXk-a-jSAdDCqsUe_P3FH5L1NjAk8wO2TUbLxco-Ary51I8bo_ILGIB_aA
  priority: 102
  providerName: ProQuest
Title Should We Abandon the t-Test in the Analysis of Gene Expression Microarray Data: A Comparison of Variance Modeling Strategies
URI https://www.ncbi.nlm.nih.gov/pubmed/20838429
https://www.proquest.com/docview/1292835319
https://www.proquest.com/docview/755179564
https://www.proquest.com/docview/954579894
https://hal.science/hal-00539115
https://pubmed.ncbi.nlm.nih.gov/PMC2933223
https://doaj.org/article/3b18ae1cd7b5416bbcad79d6f87cfbe8
http://dx.doi.org/10.1371/journal.pone.0012336
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gUeEBsfC4xiISTgIVUSJ3GChFBXWgqiA23r6JtlJ846qUpL06LtAf527vLFgjqxF6uNz3H9ceef6_PvCHkZ-4kT2q4yQ8_SpsvwkFADkJOuo2NPJnFB9jw68odj9_PEm2yRKmZr2YHZxq0dxpMaL2edyx9X70Hh3-VRG7hdFeos5qnu5CCB-dtkB9Ymjqo6cutzBdDu_PQSUYvpOxYrL9Pd9BakCgaMErg5Av27buX0_rUR356iD2VrMZtnm3Dqv-6W19avwX1yrwSetFvMlF2ypdM9cndUs7Zme2S3VPSMvi7ZqN88IL9OphgFm37XtKskxv6gUISuzFOonV4U3ypqEzpPKBal_cvSwTalI3T5k8ulvKIf5Eq-pV3aq4MfYoEz-Ihzj2JcNrwdTyvKXJ09JONB_7Q3NMuYDWbEQ2tluqG27cjztU4kC2VgSQkIM3KCJFIuU9xXYaA9P4gt5sSw93Ni2JN6mjtWGCUM9k6PSCuFEdgn1NeWH2vA05av0As28CLpwm5V2RzMEHcNwqoREVFJaI5xNWYiP6XjsLEpulbgkIpySA1i1qUWBaHHf-QPcbBrWaTjzh_Ml-ei1G7BlB1IbUcxVx4gXKUiGfMQ9CDgUaJ0YJDnOFVEcbe1Niqi62LMVRZwbpAXuQRScqTo83Mu11kmPn09u4XQyXFD6FUplMyhOyJZ3rOANiHVV0PyoCEJhiVq1jbFzrjW8GH3i8BnqEmwSno_bYPs47yvui4TgB-Rwg8sO7y-0oXN2bTOxprR2S_V83UmuIe8cZ7v3iwSAvDnGDvAII8L5ap_Z6WwBuENtWs0pJmTXkxzYnWAvrC-sSe3afhTcqdwJAlNix2Q1mq51s8An65Um2zzCYc06NmYDj62yc5h_-jbcTv_x6edmyRMf_f_AN78kTs
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGeWAviI3LAoNZCAQ8ZMvdCRJCZRe1rB0S60bfjO0466QpKU0L7IG_xG_knNy2oHF52Vsbn8Sxfa7x8XcIeRYHiRPZnjQj39Km5-ImoQZHTniOjn2RxCXY8_Ag6B1578f-eIn8rM_CYFplrRMLRR1nCr-Rb4FdQmgw4Ji30y8mVo3C3dW6hEbJFvv6_BuEbPmb_g6s73PH2dsdbffMqqqAqVhkzU0v0rat_EDrRLiRCC0hwAdSTpgo6bmSBTIKtR-EseU6MUQnTgxRk6-ZY0UqcRlWiQCVfxMMr4USxcZNgAe6Iwiq43kus7cqbticZqneLJyXAgj6wvwVVQIaW3BjgqmYnelZll_l7v6etXnJDO7dIbcr_5V2S4ZbIUs6XSUrlYbI6csKxvrVKllGP7aEgb5LfhxOsJY2_aRpVwqsIELB86RzcwSd09PyXw2QQrOE4nPo7vcqTTelQ0wcFLOZOKc7Yi5e0y7dbkoo4g3H8BM5mGJ1NzxjT2vgXZ3fI0fXskb3SSeFWV8jNNBWEGvwyq1AYi5t6CvhQcwrbQbKjHkGcesF4aqCRcfqHGe82OtjEB6VM8txGXm1jAYxm7umJSzIP-jf4Vo3tAjqXVzIZie80hHclXYotK1iJn3wk6VUImYRSFPIVCJ1aJAN5BRenpBtVBPveli51Q0ZM8jTggKBPVLMHDoRizzn_Q_H_0F0-LFF9KIiSjKYDiWq0xowJgQMa1GutyhBPal2bxOcjEsD73UHHK-hxICt9b_aBllDtq-nLucX0g6Pr0Xh6mbaNGPPmDKY6myRc-Yj-pwfeH8miSB8YFiBwCAPStlq3tOB0CQEX80grCV1rYG0W9LTSQHPDg40WEn34d9ffIPc6o2GAz7oH-w_IstlUkpkWu466cxnC_0YfN25fFIoGEo-X7dG-wXtWrtz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKkVAviJalgUItBAIO6WR3goTQ0GnV0gVE15uxHadTqUqGyQzQA3-MX8d7iZM2qCyX3mbilzi23xo_f4-QZ2mUeYkbSDsJHW0HPm4SanDkRODpNBRZWoM97-xGGwfB--PweIb8bM7CYFploxMrRZ0WCr-R98AuITQYcEwvM2kRHwfrb0dfbKwghTutTTmNmkW29Pk3CN_KN5sDWOvnnre-tr-6YZsKA7ZiiTOxg0S7rgojrTPhJyJ2hAB_SHlxpmTgSxbJJNZhFKeO76UQqXgpRFChZp6TqMxnWDEC1P9N5ocuyhg7boM90CNRZI7q-cztGc5YGRW5XqkcmQoU-sIUVhUDWrtwY4hpmbOjs6K8yvX9PYPzkklcv0NuG1-W9mvmmyczOl8g80ZblPSlgbR-tUDm0KetIaHvkh97Q6yrTY807UuB1UQoeKF0Yu9D5_S0_teApdAio_gcuvbdpOzmdAeTCMV4LM7pQEzEa9qnq205RbzhEH4iN1Os9Ibn7WkDwqvLe-TgWtboPpnNYdYXCY20E6UaPHQnkphXG4dKBBD_SpeBYmOBRfxmQbgyEOlYqeOMV_t-DEKlemY5LiM3y2gRu71rVEOE_IP-Ha51S4sA39WFYnzCjb7gvnRjoV2VMhmCzyylEilLQLJipjKpY4ssI6fw-rRsq6Z4P8Aqrn7MmEWeVhQI8pGjuJyIaVnyzQ-H_0G096lD9MIQZQVMhxLm5AaMCcHDOpRLHUpQVarb2xAn49LAN_rbHK-hxIDdDb-6FllEtm-mruQXkg-Pb0Th6mbaNmPPmD6Y62JachYiEl0YBX8mSSCUYFiNwCIPatlq39ODMCUGv80irCN1nYF0W_LTYQXVDs40WEz_4d9ffJncAl3Gtzd3tx6RuTo_JbEdf4nMTsZT_Rjc3ol8UukXSj5ft0L7BenIv6k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Should+We+Abandon+the+t-Test+in+the+Analysis+of+Gene+Expression+Microarray+Data%3A+A+Comparison+of+Variance+Modeling+Strategies&rft.jtitle=PloS+one&rft.au=Jeanmougin%2C+Marine&rft.au=de+Reynies%2C+Aur%C3%A9lien&rft.au=Marisa%2C+Laetitia&rft.au=Paccard%2C+Caroline&rft.date=2010-09-03&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=5&rft_id=info:doi/10.1371%2Fjournal.pone.0012336&rft_id=info%3Apmid%2F20838429&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_00539115v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon