Should We Abandon the t-Test in the Analysis of Gene Expression Microarray Data: A Comparison of Variance Modeling Strategies
High-throughput post-genomic studies are now routinely and promisingly investigated in biological and biomedical research. The main statistical approach to select genes differentially expressed between two groups is to apply a t-test, which is subject of criticism in the literature. Numerous alterna...
Saved in:
Published in | PloS one Vol. 5; no. 9; p. e12336 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
03.09.2010
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High-throughput post-genomic studies are now routinely and promisingly investigated in biological and biomedical research. The main statistical approach to select genes differentially expressed between two groups is to apply a t-test, which is subject of criticism in the literature. Numerous alternatives have been developed based on different and innovative variance modeling strategies. However, a critical issue is that selecting a different test usually leads to a different gene list. In this context and given the current tendency to apply the t-test, identifying the most efficient approach in practice remains crucial. To provide elements to answer, we conduct a comparison of eight tests representative of variance modeling strategies in gene expression data: Welch's t-test, ANOVA [1], Wilcoxon's test, SAM [2], RVM [3], limma [4], VarMixt [5] and SMVar [6]. Our comparison process relies on four steps (gene list analysis, simulations, spike-in data and re-sampling) to formulate comprehensive and robust conclusions about test performance, in terms of statistical power, false-positive rate, execution time and ease of use. Our results raise concerns about the ability of some methods to control the expected number of false positives at a desirable level. Besides, two tests (limma and VarMixt) show significant improvement compared to the t-test, in particular to deal with small sample sizes. In addition limma presents several practical advantages, so we advocate its application to analyze gene expression data. |
---|---|
AbstractList | High-throughput post-genomic studies are now routinely and promisingly investigated in biological and biomedical research. The main statistical approach to select genes differentially expressed between two groups is to apply a t-test, which is subject of criticism in the literature. Numerous alternatives have been developed based on different and innovative variance modeling strategies. However, a critical issue is that selecting a different test usually leads to a different gene list. In this context and given the current tendency to apply the t-test, identifying the most efficient approach in practice remains crucial. To provide elements to answer, we conduct a comparison of eight tests representative of variance modeling strategies in gene expression data: Welch's t-test, ANOVA [1], Wilcoxon's test, SAM [2], RVM [3], limma [4], VarMixt [5] and SMVar [6]. Our comparison process relies on four steps (gene list analysis, simulations, spike-in data and re-sampling) to formulate comprehensive and robust conclusions about test performance, in terms of statistical power, false-positive rate, execution time and ease of use. Our results raise concerns about the ability of some methods to control the expected number of false positives at a desirable level. Besides, two tests (limma and VarMixt) show significant improvement compared to the t-test, in particular to deal with small sample sizes. In addition limma presents several practical advantages, so we advocate its application to analyze gene expression data.High-throughput post-genomic studies are now routinely and promisingly investigated in biological and biomedical research. The main statistical approach to select genes differentially expressed between two groups is to apply a t-test, which is subject of criticism in the literature. Numerous alternatives have been developed based on different and innovative variance modeling strategies. However, a critical issue is that selecting a different test usually leads to a different gene list. In this context and given the current tendency to apply the t-test, identifying the most efficient approach in practice remains crucial. To provide elements to answer, we conduct a comparison of eight tests representative of variance modeling strategies in gene expression data: Welch's t-test, ANOVA [1], Wilcoxon's test, SAM [2], RVM [3], limma [4], VarMixt [5] and SMVar [6]. Our comparison process relies on four steps (gene list analysis, simulations, spike-in data and re-sampling) to formulate comprehensive and robust conclusions about test performance, in terms of statistical power, false-positive rate, execution time and ease of use. Our results raise concerns about the ability of some methods to control the expected number of false positives at a desirable level. Besides, two tests (limma and VarMixt) show significant improvement compared to the t-test, in particular to deal with small sample sizes. In addition limma presents several practical advantages, so we advocate its application to analyze gene expression data. High-throughput post-genomic studies are now routinely and promisingly investigated in biological and biomedical research. The main statistical approach to select genes differentially expressed between two groups is to apply a t -test, which is subject of criticism in the literature. Numerous alternatives have been developed based on different and innovative variance modeling strategies. However, a critical issue is that selecting a different test usually leads to a different gene list. In this context and given the current tendency to apply the t -test, identifying the most efficient approach in practice remains crucial. To provide elements to answer, we conduct a comparison of eight tests representative of variance modeling strategies in gene expression data: Welch's t -test, ANOVA [1] , Wilcoxon's test, SAM [2] , RVM [3] , limma [4] , VarMixt [5] and SMVar [6] . Our comparison process relies on four steps (gene list analysis, simulations, spike-in data and re-sampling) to formulate comprehensive and robust conclusions about test performance, in terms of statistical power, false-positive rate, execution time and ease of use. Our results raise concerns about the ability of some methods to control the expected number of false positives at a desirable level. Besides, two tests (limma and VarMixt) show significant improvement compared to the t -test, in particular to deal with small sample sizes. In addition limma presents several practical advantages, so we advocate its application to analyze gene expression data. High-throughput post-genomic studies are now routinely and promisingly investigated in biological and biomedical research. The main statistical approach to select genes differentially expressed between two groups is to apply a t-test, which is subject of criticism in the literature. Numerous alternatives have been developed based on different and innovative variance modeling strategies. However, a critical issue is that selecting a different test usually leads to a different gene list. In this context and given the current tendency to apply the t-test, identifying the most efficient approach in practice remains crucial. To provide elements to answer, we conduct a comparison of eight tests representative of variance modeling strategies in gene expression data: Welch's t-test, ANOVA [1], Wilcoxon's test, SAM [2], RVM [3], limma [4], VarMixt [5] and SMVar [6]. Our comparison process relies on four steps (gene list analysis, simulations, spike-in data and re-sampling) to formulate comprehensive and robust conclusions about test performance, in terms of statistical power, false-positive rate, execution time and ease of use. Our results raise concerns about the ability of some methods to control the expected number of false positives at a desirable level. Besides, two tests (limma and VarMixt) show significant improvement compared to the t-test, in particular to deal with small sample sizes. In addition limma presents several practical advantages, so we advocate its application to analyze gene expression data. |
Audience | Academic |
Author | de Reynies, Aurelien Nuel, Gregory Jeanmougin, Marine Paccard, Caroline Marisa, Laetitia Guedj, Mickael |
AuthorAffiliation | 2 Department of Biostatistics, Pharnext, Paris, France 1 Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, Paris, France University of Michigan, United States of America 4 Statistics and Genome Laboratory UMR CNRS 8071, University of Evry, Evry, France 3 Department of Applied Mathematics (MAP5) UMR CNRS 8145, Paris Descartes University, Paris, France |
AuthorAffiliation_xml | – name: 2 Department of Biostatistics, Pharnext, Paris, France – name: 4 Statistics and Genome Laboratory UMR CNRS 8071, University of Evry, Evry, France – name: University of Michigan, United States of America – name: 3 Department of Applied Mathematics (MAP5) UMR CNRS 8145, Paris Descartes University, Paris, France – name: 1 Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, Paris, France |
Author_xml | – sequence: 1 givenname: Marine surname: Jeanmougin fullname: Jeanmougin, Marine – sequence: 2 givenname: Aurelien surname: de Reynies fullname: de Reynies, Aurelien – sequence: 3 givenname: Laetitia surname: Marisa fullname: Marisa, Laetitia – sequence: 4 givenname: Caroline surname: Paccard fullname: Paccard, Caroline – sequence: 5 givenname: Gregory surname: Nuel fullname: Nuel, Gregory – sequence: 6 givenname: Mickael surname: Guedj fullname: Guedj, Mickael |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20838429$$D View this record in MEDLINE/PubMed https://hal.science/hal-00539115$$DView record in HAL |
BookMark | eNqNk01v1DAQhiNURNuFf4DAEhKoh138Ecd2D0irUtpKRZVoKUfLcSa7rrLxYidVe-C_47DbqltVgHJIMn7eGfmdmd1sq_UtZNlrgieECfLxyvehNc1kmcITjAllrHiW7RDF6LigmG09-N7OdmO8wpgzWRQvsm2KJZM5VTvZr_O575sK_QA0LU1b-RZ1c0Dd-AJih9zqb5rq3EYXka_REbSADm-WAWJ0if7qbPAmBHOLPpvO7KMpOvCLpQkuptMkuEyfprWAvvoKGtfO0HkXTAczB_Fl9rw2TYRX6_co-_7l8OLgeHx6dnRyMD0dW6FwN84VEGJ5AVAbpozExighLJW1LXNWiqJUEnghK8xopWhOK4ILDoJiZWsmOBtlb1d5l42Peu1c1IQqKhlnyadRdrIiKm-u9DK4hQm32hun_wR8mGkTOmcb0Kwk0gCxlSh5ToqytKYSqipqKWxdgky5Pq2r9eUCKgttunCzkXTzpHVzPfPXmirGaOrjKNtbJZg_kh1PT_UQGzqpCOHXJLEf1sWC_9mnpumFixaaxrTg-6gVz7lQUuX_JAXnRCheDOS7R-TTlq2pmUmuuLb26TJ2yKmnuUiTxqQQiZo8QaWngoWzaXZrl-Ibgr0NQWI6uOlmpo9Rn5x_-3_27HKTff-AnYNpunn0Td-lKY6b4JuH7btvwN3SJCBfAWnyYwxQ3yME62E37-zSw27q9W4m2f4jmXWdGconR1zzd_Fv8Tc-Gw |
CitedBy_id | crossref_primary_10_18632_oncotarget_14391 crossref_primary_10_3233_JAD_220120 crossref_primary_10_1177_1099800416629209 crossref_primary_10_1371_journal_pone_0141452 crossref_primary_10_1371_journal_ppat_1003098 crossref_primary_10_1016_j_compbiolchem_2017_08_012 crossref_primary_10_1261_rna_060525_116 crossref_primary_10_1016_j_gene_2012_09_101 crossref_primary_10_1093_cvr_cvt164 crossref_primary_10_3390_ijms25189808 crossref_primary_10_1016_j_lwt_2017_06_051 crossref_primary_10_1007_s12031_014_0329_0 crossref_primary_10_1017_S0967199412000299 crossref_primary_10_1186_s12918_015_0243_2 crossref_primary_10_1016_j_compbiomed_2024_108434 crossref_primary_10_1016_j_transproceed_2016_04_023 crossref_primary_10_1186_s13040_020_00217_8 crossref_primary_10_1186_1471_2164_15_659 crossref_primary_10_1073_pnas_1613417113 crossref_primary_10_1186_s13059_017_1372_2 crossref_primary_10_3390_microarrays3040340 crossref_primary_10_1371_journal_pone_0269126 crossref_primary_10_1016_j_chembiol_2019_03_002 crossref_primary_10_1074_jbc_M115_644146 crossref_primary_10_3390_metabo11090627 crossref_primary_10_1371_journal_pone_0020041 crossref_primary_10_1371_journal_pone_0028320 crossref_primary_10_1371_journal_pone_0179364 crossref_primary_10_1016_j_compbiomed_2022_106413 crossref_primary_10_1016_j_compbiomed_2022_106133 crossref_primary_10_1109_JPROC_2016_2607121 crossref_primary_10_1038_s41598_017_06511_6 crossref_primary_10_1038_s41598_020_62664_x crossref_primary_10_1093_bib_bbs046 crossref_primary_10_1142_S0219720016500220 crossref_primary_10_1021_acs_jproteome_9b00496 crossref_primary_10_1038_ni_2244 crossref_primary_10_1186_1756_0381_6_9 crossref_primary_10_1371_journal_pgen_1006952 crossref_primary_10_1016_j_cmpb_2019_04_008 crossref_primary_10_1186_1752_0509_8_S4_S5 crossref_primary_10_6000_1929_6029_2017_06_01_1 crossref_primary_10_1016_j_cmpb_2021_106418 crossref_primary_10_4137_CIN_S30563 crossref_primary_10_1111_j_1755_148X_2012_01025_x crossref_primary_10_1016_j_fcij_2017_07_004 crossref_primary_10_1186_s12859_016_1393_y crossref_primary_10_1371_journal_pone_0062456 crossref_primary_10_1371_journal_pone_0217027 crossref_primary_10_1038_ncomms4775 crossref_primary_10_1186_1471_2350_15_29 crossref_primary_10_1016_j_ygeno_2013_02_012 crossref_primary_10_1371_journal_pone_0118198 crossref_primary_10_3389_fimmu_2023_1254948 crossref_primary_10_7717_peerj_1360 crossref_primary_10_1145_2188379_2188381 crossref_primary_10_1016_j_imlet_2016_08_011 crossref_primary_10_2217_pgs_14_3 crossref_primary_10_1016_j_jnutbio_2018_04_015 crossref_primary_10_1038_s41388_019_0914_3 crossref_primary_10_3389_fpsyt_2017_00271 crossref_primary_10_1049_iet_syb_2018_0012 crossref_primary_10_1093_nar_gkab827 crossref_primary_10_1515_sagmb_2015_0072 crossref_primary_10_1214_16_AOAS920 crossref_primary_10_1093_bib_bbac529 crossref_primary_10_1038_s41598_023_31537_4 crossref_primary_10_1016_j_taap_2024_116865 crossref_primary_10_3945_ajcn_110_008896 crossref_primary_10_1371_journal_pone_0020924 crossref_primary_10_3389_fpsyt_2023_1077415 crossref_primary_10_1161_CIRCRESAHA_119_316386 crossref_primary_10_1038_ncomms8953 crossref_primary_10_1371_journal_pone_0060175 crossref_primary_10_3390_cancers14215369 crossref_primary_10_1111_jgh_14529 crossref_primary_10_1186_s13073_021_00864_4 crossref_primary_10_1517_17460441_2011_557659 crossref_primary_10_1016_j_ygeno_2018_04_004 crossref_primary_10_1007_s40009_023_01301_3 crossref_primary_10_1016_j_atherosclerosis_2013_09_031 crossref_primary_10_1371_journal_pone_0055791 crossref_primary_10_1109_TCBB_2013_147 crossref_primary_10_3892_ol_2017_7508 crossref_primary_10_1371_journal_pone_0038650 crossref_primary_10_1016_j_sciaf_2023_e02012 crossref_primary_10_1371_journal_pgen_1004338 crossref_primary_10_3233_JAD_140075 crossref_primary_10_1093_bioinformatics_btz189 crossref_primary_10_3389_fimmu_2020_578505 crossref_primary_10_2174_1574893614666181126110008 crossref_primary_10_1016_j_compbiomed_2023_106867 crossref_primary_10_1016_j_toxlet_2012_12_005 crossref_primary_10_1371_journal_pone_0128845 crossref_primary_10_1371_journal_pone_0072669 crossref_primary_10_1186_1471_2164_14_911 crossref_primary_10_1186_1471_2105_14_S9_S1 |
Cites_doi | 10.1182/blood-2004-10-3900 10.1007/s10142-002-0066-2 10.1073/pnas.091062498 10.1186/1471-2105-7-359 10.1089/10665270050514954 10.1093/nar/gkn430 10.1111/j.2517-6161.1995.tb02031.x 10.1002/em.20290 10.1038/onc.2008.251 10.1186/1471-2105-8-230 10.1111/1541-0420.00016 10.1017/S0016672307008646 10.1093/bioinformatics/bti217 10.1093/bioinformatics/bti023 10.1093/bioinformatics/btp444 10.1182/blood-2006-06-028969 10.1093/bioinformatics/btg345 10.1038/nrg1749 10.1073/pnas.0932692100 10.1073/pnas.1530509100 10.1093/bioinformatics/btg264 10.1093/jnci/95.1.14 10.1038/415530a 10.1186/1471-2164-9-S1-S13 10.1002/hep.21467 10.1186/1471-2105-10-45 10.1002/sim.2109 10.1371/journal.pmed.0040090 10.2202/1544-6115.1027 10.1093/bioinformatics/bti665 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2010 Public Library of Science 2010 Jeanmougin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License Jeanmougin et al. 2010 |
Copyright_xml | – notice: COPYRIGHT 2010 Public Library of Science – notice: 2010 Jeanmougin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Jeanmougin et al. 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 1XC VOOES 5PM DOA |
DOI | 10.1371/journal.pone.0012336 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Statistics Mathematics |
DocumentTitleAlternate | Should We Abandon the t-Test? |
EISSN | 1932-6203 |
ExternalDocumentID | 1292835319 oai_doaj_org_article_3b18ae1cd7b5416bbcad79d6f87cfbe8 PMC2933223 oai_HAL_hal_00539115v1 2898386351 A473863877 20838429 10_1371_journal_pone_0012336 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | France |
GeographicLocations_xml | – name: France |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PYCSY RIG RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 1XC PV9 RZL VOOES 5PM PUEGO AAPBV ABPTK |
ID | FETCH-LOGICAL-c790t-49e11c56eefa39a80aa977c28fcb43b76b98e568d032d9242d1065e7209cf3753 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Oct 01 00:11:43 EDT 2023 Wed Aug 27 00:22:57 EDT 2025 Thu Aug 21 18:12:51 EDT 2025 Fri May 09 12:24:09 EDT 2025 Fri Jul 11 03:09:54 EDT 2025 Fri Jul 11 07:05:48 EDT 2025 Fri Jul 25 10:38:58 EDT 2025 Tue Jun 17 21:21:08 EDT 2025 Tue Jun 10 20:50:56 EDT 2025 Fri Jun 27 04:55:17 EDT 2025 Fri Jun 27 05:09:10 EDT 2025 Thu May 22 21:20:41 EDT 2025 Mon Jul 21 06:02:08 EDT 2025 Tue Jul 01 01:38:34 EDT 2025 Thu Apr 24 22:55:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c790t-49e11c56eefa39a80aa977c28fcb43b76b98e568d032d9242d1065e7209cf3753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Conceived and designed the experiments: MJ GN MG. Performed the experiments: MJ. Analyzed the data: MJ MG. Wrote the paper: MJ MG. Implemented tools in R: MJ, AdR. Significantly contributed to the paper: AdR, LM, CP, GN. |
ORCID | 0000-0001-6239-4357 0000-0001-9910-2354 0000-0001-5529-7217 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0012336 |
PMID | 20838429 |
PQID | 1292835319 |
PQPubID | 1436336 |
PageCount | e12336 |
ParticipantIDs | plos_journals_1292835319 doaj_primary_oai_doaj_org_article_3b18ae1cd7b5416bbcad79d6f87cfbe8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2933223 hal_primary_oai_HAL_hal_00539115v1 proquest_miscellaneous_954579894 proquest_miscellaneous_755179564 proquest_journals_1292835319 gale_infotracmisc_A473863877 gale_infotracacademiconefile_A473863877 gale_incontextgauss_ISR_A473863877 gale_incontextgauss_IOV_A473863877 gale_healthsolutions_A473863877 pubmed_primary_20838429 crossref_primary_10_1371_journal_pone_0012336 crossref_citationtrail_10_1371_journal_pone_0012336 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-09-03 |
PublicationDateYYYYMMDD | 2010-09-03 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2010 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | L Van 't Veer (ref8) 2002; 415 F Jaffrezic (ref6) 2007; 89 N Jain (ref22) 2003; 19 P Delmar (ref5) 2005; 21 P Bertheau (ref30) 2007; 4 M Pirooznia (ref16) 2008; 9 D Allison (ref9) 2006; 7 T Mary-Huard (ref15) 2006 D Chessel (ref25) 2004; 4 B Wu (ref32) 2005; 21 X Huang (ref23) 2002; 2 V Tusher (ref2) 2001; 98 R Simon (ref11) 2003; 95 D Rickman (ref28) 2008; 27 C Murie (ref12) 2009; 10 G Wright (ref3) 2003; 19 Y Benjamini (ref31) 1995; 57 C Yauk (ref17) 2007; 48 L Lamant (ref26) 2007; 109 S Dudoit (ref13) 2002 J Soulier (ref29) 2005; 106 G Marot (ref14) 2009; 25 M McCall (ref20) 2008; 36 M Sullivan Pepe (ref19) 2003; 59 I Jeffery (ref18) 2006; 7 JD Storey (ref21) 2003; 100 T Sorlie (ref7) 2003; 100 L Zhou (ref10) 2005; 21 S Boyault (ref27) 2007; 45 G Smyth (ref4) 2004; 3 M Kerr (ref1) 2000; 7 C Kooperberg (ref24) 2005; 24 S Zhang (ref33) 2007; 8 17603887 - BMC Bioinformatics. 2007;8:230 15598833 - Bioinformatics. 2005 Apr 15;21(8):1565-71 12762450 - Biometrics. 2003 Mar;59(1):133-42 15774621 - Blood. 2005 Jul 1;106(1):274-86 17187432 - Hepatology. 2007 Jan;45(1):42-52 16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3 17077326 - Blood. 2007 Mar 1;109(5):2156-64 12185460 - Funct Integr Genomics. 2002 Aug;2(3):126-33 17517156 - Genet Res. 2007 Feb;89(1):19-25 16159924 - Bioinformatics. 2005 Nov 1;21(21):3983-9 11823860 - Nature. 2002 Jan 31;415(6871):530-6 15889452 - Stat Med. 2005 Aug 15;24(15):2281-98 17370338 - Environ Mol Mutagen. 2007 Jun;48(5):380-94 19192265 - BMC Bioinformatics. 2009;10:45 12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 17388661 - PLoS Med. 2007 Mar;4(3):e90 18679425 - Oncogene. 2008 Nov 20;27(51):6607-22 14555628 - Bioinformatics. 2003 Oct 12;19(15):1945-51 12829800 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8418-23 11382364 - J Comput Biol. 2000;7(6):819-37 11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 18676452 - Nucleic Acids Res. 2008 Oct;36(17):e108 14668230 - Bioinformatics. 2003 Dec 12;19(18):2448-55 16369572 - Nat Rev Genet. 2006 Jan;7(1):55-65 16872483 - BMC Bioinformatics. 2006;7:359 12509396 - J Natl Cancer Inst. 2003 Jan 1;95(1):14-8 15374871 - Bioinformatics. 2005 Feb 15;21(4):502-8 19628502 - Bioinformatics. 2009 Oct 15;25(20):2692-9 18366602 - BMC Genomics. 2008;9 Suppl 1:S13 |
References_xml | – volume: 106 start-page: 274 year: 2005 ident: ref29 article-title: HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). publication-title: Blood doi: 10.1182/blood-2004-10-3900 – volume: 2 year: 2002 ident: ref23 article-title: Comparing three methods for variance estimation with duplicated high density oligonucleotide arrays. publication-title: Functional and Integrative Genomics doi: 10.1007/s10142-002-0066-2 – volume: 98 start-page: 5116 year: 2001 ident: ref2 article-title: Significance analysis of microarrays applied to the ionizing radiation response. publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.091062498 – year: 2002 ident: ref13 article-title: Multiple hypothesis testing in microarray experiments. UC Berkeley Division of Biostatistics Working Paper Series. – volume: 4 start-page: 5 year: 2004 ident: ref25 article-title: The ade4 package - I : One-table methods. publication-title: R News – volume: 7 start-page: 359 year: 2006 ident: ref18 article-title: Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data. publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-359 – volume: 7 start-page: 819 year: 2000 ident: ref1 article-title: Analysis of variance for gene expression microarray data. publication-title: Journal of Computational Biology doi: 10.1089/10665270050514954 – volume: 36 start-page: e108 year: 2008 ident: ref20 article-title: Consolidated strategy for the analysis of microarray spike-in data. publication-title: Nucleic Acids Research Advance doi: 10.1093/nar/gkn430 – volume: 57 start-page: 289 year: 1995 ident: ref31 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing. publication-title: Journal of the Royal Statistical Society Series B (Methodological) doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 48 start-page: 380 year: 2007 ident: ref17 article-title: Review of the literature examining the correlation among dna microarray technologies. publication-title: Environmental and Molecular Mutagenesis doi: 10.1002/em.20290 – volume: 27 start-page: 6607 year: 2008 ident: ref28 article-title: Prediction of future metastasis and molecular characterization of head and neck squamous-cell carcinoma based on transcriptome and genome analysis by microarrays. publication-title: Oncogene doi: 10.1038/onc.2008.251 – volume: 8 start-page: 230 year: 2007 ident: ref33 article-title: A comprehensive evaluation of SAM, the SAM R-package and a simple modification to improve its performance. publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-230 – volume: 59 start-page: 133 year: 2003 ident: ref19 article-title: Selecting differentially expressed genes from microarray experiments. publication-title: Biometrics doi: 10.1111/1541-0420.00016 – volume: 89 start-page: 19 year: 2007 ident: ref6 article-title: A structural mixed model for variances in differential gene expression studies. publication-title: Genetics Research doi: 10.1017/S0016672307008646 – volume: 21 start-page: 1565 year: 2005 ident: ref32 article-title: Differential gene expression detection using penalized linear regression models: the improved SAM statistics. publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti217 – volume: 21 start-page: 502 year: 2005 ident: ref5 article-title: Varmixt: efficient variance modelling for the differential analysis of replicated gene expression data. publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti023 – volume: 25 start-page: 2692 year: 2009 ident: ref14 article-title: Moderated effect size and P-value combinations for microarray meta-analyses. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp444 – volume: 109 start-page: 2156 year: 2007 ident: ref26 article-title: Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes. publication-title: Blood doi: 10.1182/blood-2006-06-028969 – volume: 19 start-page: 2448 year: 2003 ident: ref3 article-title: A random variance model for detection of differential gene expression in small microarray experiments. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg345 – volume: 7 start-page: 55 year: 2006 ident: ref9 article-title: Microarray data analysis: from disarray to consolidation and consensus. publication-title: Nature Reviews Genetics doi: 10.1038/nrg1749 – volume: 100 start-page: 8418 year: 2003 ident: ref7 article-title: Repeated observation of breast tumor subtypes in independent gene expression data sets. publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0932692100 – volume: 100 start-page: 9440 year: 2003 ident: ref21 article-title: Statistical significance for genomewide studies. publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1530509100 – volume: 19 start-page: 1945 year: 2003 ident: ref22 article-title: Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg264 – volume: 95 start-page: 14 year: 2003 ident: ref11 article-title: Pitfalls in the use of dna microarray data for diagnostic and prognostic classification. publication-title: Journal of the National Cancer Institute doi: 10.1093/jnci/95.1.14 – volume: 415 start-page: 530 year: 2002 ident: ref8 article-title: Gene expression profiling predicts clinical outcome of breast cancer. publication-title: Nature doi: 10.1038/415530a – volume: 9 start-page: S13 year: 2008 ident: ref16 article-title: A comparative study of different machine learning methods on microarray gene expression data. publication-title: BMC Genomics doi: 10.1186/1471-2164-9-S1-S13 – year: 2006 ident: ref15 – volume: 45 year: 2007 ident: ref27 article-title: Transcriptome classification of hcc is related to gene alterations and to new therapeutic targets. publication-title: Hepatology doi: 10.1002/hep.21467 – volume: 10 start-page: 45 year: 2009 ident: ref12 article-title: Comparison of small n statistical tests of differential expression applied to microarrays. publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-45 – volume: 24 start-page: 2281 year: 2005 ident: ref24 article-title: Significance testing for small microarray experiments. publication-title: Statistics in medicine doi: 10.1002/sim.2109 – volume: 4 start-page: e90 year: 2007 ident: ref30 article-title: Exquisite sensitivity of TP53 mutant and basal breast cancers to a dose-dense epirubicin-cyclophosphamide regimen. publication-title: PLoS Med doi: 10.1371/journal.pmed.0040090 – volume: 3 year: 2004 ident: ref4 article-title: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. publication-title: Statistical applications in genetics and molecular biology doi: 10.2202/1544-6115.1027 – volume: 21 start-page: 3983 year: 2005 ident: ref10 article-title: An expression index for Affymetrix GeneChips based on the generalized logarithm. publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti665 – reference: 11382364 - J Comput Biol. 2000;7(6):819-37 – reference: 15889452 - Stat Med. 2005 Aug 15;24(15):2281-98 – reference: 15598833 - Bioinformatics. 2005 Apr 15;21(8):1565-71 – reference: 17187432 - Hepatology. 2007 Jan;45(1):42-52 – reference: 12185460 - Funct Integr Genomics. 2002 Aug;2(3):126-33 – reference: 17077326 - Blood. 2007 Mar 1;109(5):2156-64 – reference: 15774621 - Blood. 2005 Jul 1;106(1):274-86 – reference: 14555628 - Bioinformatics. 2003 Oct 12;19(15):1945-51 – reference: 16872483 - BMC Bioinformatics. 2006;7:359 – reference: 18679425 - Oncogene. 2008 Nov 20;27(51):6607-22 – reference: 14668230 - Bioinformatics. 2003 Dec 12;19(18):2448-55 – reference: 17370338 - Environ Mol Mutagen. 2007 Jun;48(5):380-94 – reference: 17603887 - BMC Bioinformatics. 2007;8:230 – reference: 19192265 - BMC Bioinformatics. 2009;10:45 – reference: 16159924 - Bioinformatics. 2005 Nov 1;21(21):3983-9 – reference: 11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 – reference: 11823860 - Nature. 2002 Jan 31;415(6871):530-6 – reference: 12509396 - J Natl Cancer Inst. 2003 Jan 1;95(1):14-8 – reference: 16369572 - Nat Rev Genet. 2006 Jan;7(1):55-65 – reference: 15374871 - Bioinformatics. 2005 Feb 15;21(4):502-8 – reference: 19628502 - Bioinformatics. 2009 Oct 15;25(20):2692-9 – reference: 12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 – reference: 17517156 - Genet Res. 2007 Feb;89(1):19-25 – reference: 12829800 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8418-23 – reference: 18366602 - BMC Genomics. 2008;9 Suppl 1:S13 – reference: 17388661 - PLoS Med. 2007 Mar;4(3):e90 – reference: 12762450 - Biometrics. 2003 Mar;59(1):133-42 – reference: 16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3 – reference: 18676452 - Nucleic Acids Res. 2008 Oct;36(17):e108 |
SSID | ssj0053866 |
Score | 2.3591342 |
Snippet | High-throughput post-genomic studies are now routinely and promisingly investigated in biological and biomedical research. The main statistical approach to... |
SourceID | plos doaj pubmedcentral hal proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e12336 |
SubjectTerms | Analysis of Variance Applied mathematics Bioinformatics Breast cancer Cancer Comparative analysis Computer Simulation Control methods Data processing DNA microarrays Gene expression Gene Expression Profiling - statistics & numerical data Genes Genetics and Genomics/Bioinformatics Genetics and Genomics/Gene Expression Genomes Genomics Head & neck cancer Leukemia Lymphoma Mathematics Mathematics/Statistics Metastasis Modelling Models, Statistical Molecular Biology/Bioinformatics Oligonucleotide Array Sequence Analysis - statistics & numerical data Power Probability Statistics Student's t-test Studies Variance Variance analysis |
SummonAdditionalLinks | – databaseName: DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgT1wQ5dVAAQshAYe0SRzbCbcFUS2Ih0Qp6s2yHadbqWRXm7TAgf_OTOwNG1RUDtx2k8l67RnPfKOMvyHkSSXqrExzE5c8cXHO8CWhAyCn88xVXNeVJ3t-_0HMDvO3R_xoo9UX1oR5emC_cHvMpIV2qa2k4QAejLG6kiUMUUhbG9cf84WYt06mvA-GXSxEOCjHZLoX9LK7XDRut4cRPSXz70DU8_UPXvnqHIsiJ8vTRXsR8PyzfnIjIO3fINcDkqRTP4MtcsU1N8lW2KstfRYIpZ_fIj8P5tjImn5zVBuN7TsowD7axQAzO3riv-nATkIXNQWjctR9DzWyDf2KVXt6tdI_KFaUvqCa2qF_IT5wDh_RfGjfWAeiIW27NQfFbXK4__rzq1kc2i7EVpZJF-elS1PLhXO1ZqUuEq0BJNqsqK3JmZHClIXjoqgSllWQvmUVpJXcSVCDrRmkP3fIpIGF3iZUuERUDiBxIgwWshbc6hwSTpNK8CQyjwhb60DZwEmOrTFOVf-iTUJu4hdToeZU0FxE4uGppefkuET-Jap3kEVG7f4C2JkKdqYus7OIPELjUP546uAX1DTHtqmskDIij3sJZNVosGznWJ-1rXrz8cs_CB18Ggk9DUL1ApbD6nBUAuaEbF0jyZ2RJPgGOx5tjouxMfHZ9J3Ca7hJINDx8zQi22jp66VrFUBAZOED5ww_v7b-i2_T4TaOjPV6jVuctUpypH7jIv-7SAnYXSL9f0Tu-u00_M8M8oICgFJE5GijjSYyvtOczHtudECvEKLYvf-h8vvkmq8VKeOE7ZBJtzpzDwCCduZh721-AXkbhz8 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbocukF0fJooICFkIBD2iRO7IQLWkqrBVGQ6IO9WbbjdCtVybLZRXDgvzOTOGmDyuO2G0_i-DHjb-LxN4Q8y3kRZWGs_SwJrB8z3CS0AORUHNk8UUXekj0ffuSTk_j9NJm6D261C6vsbGJjqPPK4DfyXViXkBoMZszr-Vcfs0bh7qpLobFGbiJ1GYZ0iWnvcIEuc-6OyzER7rrR2ZlXpd1pwERDzHy5HDWs_b1tXpthaORoflHV18HP36MoryxLB7fJLYcn6bidABvkhi03yYbT2Jq-cLTSLzfJOuLKlpb5Dvl5NMPc1vSLpWOtMKMHBSRIl_4xVE7P238dYQmtCorPofvfXdhsSQ8xkE8tFuoHfauW6hUd070-pSHecAo_cUZRzLaGZ95pR4Rr67vk5GD_eG_iu0wMvhFZsPTjzIahSbi1hWKZSgOlADeaKC2MjpkWXGepTXiaByzKwaOLcvA0EyuiIDMFA4_oHhmV0OtbhHIb8NwCSg64xtjWNDEqBh9UhwKMi4g9wroBkcbRlGO2jAvZ7L0JcFfanpU4jNINo0f8_q55S9PxD_k3ONa9LJJsNxeqxZl0OiuZDlNlQ5MLnQBu1dqoXGQwu1NhCm1TjzzBmSLbE6u9qZDjGDOpslQIjzxtJJBoo8RInjO1qmv57tPpfwgdfR4IPXdCRQXdYZQ7PQFtQgKvgeT2QBLMhRnWNsPOuNLwyfiDxGuoMbD2Jd9Cj2zhtO-6rpaX2geP71Th-mLaF2PNGMJX2mpVS5EgG1zC4z-LZADnBWYE8Mj9Vrf694zAVUgBO3lEDLRu0JBhSXk-a-jSAdDCqsUe_P3FH5L1NjAk8wO2TUbLxco-Ary51I8bo_ILGIB_aA priority: 102 providerName: ProQuest |
Title | Should We Abandon the t-Test in the Analysis of Gene Expression Microarray Data: A Comparison of Variance Modeling Strategies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20838429 https://www.proquest.com/docview/1292835319 https://www.proquest.com/docview/755179564 https://www.proquest.com/docview/954579894 https://hal.science/hal-00539115 https://pubmed.ncbi.nlm.nih.gov/PMC2933223 https://doaj.org/article/3b18ae1cd7b5416bbcad79d6f87cfbe8 http://dx.doi.org/10.1371/journal.pone.0012336 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gUeEBsfC4xiISTgIVUSJ3GChFBXWgqiA23r6JtlJ846qUpL06LtAf527vLFgjqxF6uNz3H9ceef6_PvCHkZ-4kT2q4yQ8_SpsvwkFADkJOuo2NPJnFB9jw68odj9_PEm2yRKmZr2YHZxq0dxpMaL2edyx9X70Hh3-VRG7hdFeos5qnu5CCB-dtkB9Ymjqo6cutzBdDu_PQSUYvpOxYrL9Pd9BakCgaMErg5Av27buX0_rUR356iD2VrMZtnm3Dqv-6W19avwX1yrwSetFvMlF2ypdM9cndUs7Zme2S3VPSMvi7ZqN88IL9OphgFm37XtKskxv6gUISuzFOonV4U3ypqEzpPKBal_cvSwTalI3T5k8ulvKIf5Eq-pV3aq4MfYoEz-Ihzj2JcNrwdTyvKXJ09JONB_7Q3NMuYDWbEQ2tluqG27cjztU4kC2VgSQkIM3KCJFIuU9xXYaA9P4gt5sSw93Ni2JN6mjtWGCUM9k6PSCuFEdgn1NeWH2vA05av0As28CLpwm5V2RzMEHcNwqoREVFJaI5xNWYiP6XjsLEpulbgkIpySA1i1qUWBaHHf-QPcbBrWaTjzh_Ml-ei1G7BlB1IbUcxVx4gXKUiGfMQ9CDgUaJ0YJDnOFVEcbe1Niqi62LMVRZwbpAXuQRScqTo83Mu11kmPn09u4XQyXFD6FUplMyhOyJZ3rOANiHVV0PyoCEJhiVq1jbFzrjW8GH3i8BnqEmwSno_bYPs47yvui4TgB-Rwg8sO7y-0oXN2bTOxprR2S_V83UmuIe8cZ7v3iwSAvDnGDvAII8L5ap_Z6WwBuENtWs0pJmTXkxzYnWAvrC-sSe3afhTcqdwJAlNix2Q1mq51s8An65Um2zzCYc06NmYDj62yc5h_-jbcTv_x6edmyRMf_f_AN78kTs |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGeWAviI3LAoNZCAQ8ZMvdCRJCZRe1rB0S60bfjO0466QpKU0L7IG_xG_knNy2oHF52Vsbn8Sxfa7x8XcIeRYHiRPZnjQj39Km5-ImoQZHTniOjn2RxCXY8_Ag6B1578f-eIn8rM_CYFplrRMLRR1nCr-Rb4FdQmgw4Ji30y8mVo3C3dW6hEbJFvv6_BuEbPmb_g6s73PH2dsdbffMqqqAqVhkzU0v0rat_EDrRLiRCC0hwAdSTpgo6bmSBTIKtR-EseU6MUQnTgxRk6-ZY0UqcRlWiQCVfxMMr4USxcZNgAe6Iwiq43kus7cqbticZqneLJyXAgj6wvwVVQIaW3BjgqmYnelZll_l7v6etXnJDO7dIbcr_5V2S4ZbIUs6XSUrlYbI6csKxvrVKllGP7aEgb5LfhxOsJY2_aRpVwqsIELB86RzcwSd09PyXw2QQrOE4nPo7vcqTTelQ0wcFLOZOKc7Yi5e0y7dbkoo4g3H8BM5mGJ1NzxjT2vgXZ3fI0fXskb3SSeFWV8jNNBWEGvwyq1AYi5t6CvhQcwrbQbKjHkGcesF4aqCRcfqHGe82OtjEB6VM8txGXm1jAYxm7umJSzIP-jf4Vo3tAjqXVzIZie80hHclXYotK1iJn3wk6VUImYRSFPIVCJ1aJAN5BRenpBtVBPveli51Q0ZM8jTggKBPVLMHDoRizzn_Q_H_0F0-LFF9KIiSjKYDiWq0xowJgQMa1GutyhBPal2bxOcjEsD73UHHK-hxICt9b_aBllDtq-nLucX0g6Pr0Xh6mbaNGPPmDKY6myRc-Yj-pwfeH8miSB8YFiBwCAPStlq3tOB0CQEX80grCV1rYG0W9LTSQHPDg40WEn34d9ffIPc6o2GAz7oH-w_IstlUkpkWu466cxnC_0YfN25fFIoGEo-X7dG-wXtWrtz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKkVAviJalgUItBAIO6WR3goTQ0GnV0gVE15uxHadTqUqGyQzQA3-MX8d7iZM2qCyX3mbilzi23xo_f4-QZ2mUeYkbSDsJHW0HPm4SanDkRODpNBRZWoM97-xGGwfB--PweIb8bM7CYFploxMrRZ0WCr-R98AuITQYcEwvM2kRHwfrb0dfbKwghTutTTmNmkW29Pk3CN_KN5sDWOvnnre-tr-6YZsKA7ZiiTOxg0S7rgojrTPhJyJ2hAB_SHlxpmTgSxbJJNZhFKeO76UQqXgpRFChZp6TqMxnWDEC1P9N5ocuyhg7boM90CNRZI7q-cztGc5YGRW5XqkcmQoU-sIUVhUDWrtwY4hpmbOjs6K8yvX9PYPzkklcv0NuG1-W9mvmmyczOl8g80ZblPSlgbR-tUDm0KetIaHvkh97Q6yrTY807UuB1UQoeKF0Yu9D5_S0_teApdAio_gcuvbdpOzmdAeTCMV4LM7pQEzEa9qnq205RbzhEH4iN1Os9Ibn7WkDwqvLe-TgWtboPpnNYdYXCY20E6UaPHQnkphXG4dKBBD_SpeBYmOBRfxmQbgyEOlYqeOMV_t-DEKlemY5LiM3y2gRu71rVEOE_IP-Ha51S4sA39WFYnzCjb7gvnRjoV2VMhmCzyylEilLQLJipjKpY4ssI6fw-rRsq6Z4P8Aqrn7MmEWeVhQI8pGjuJyIaVnyzQ-H_0G096lD9MIQZQVMhxLm5AaMCcHDOpRLHUpQVarb2xAn49LAN_rbHK-hxIDdDb-6FllEtm-mruQXkg-Pb0Th6mbaNmPPmD6Y62JachYiEl0YBX8mSSCUYFiNwCIPatlq39ODMCUGv80irCN1nYF0W_LTYQXVDs40WEz_4d9ffJncAl3Gtzd3tx6RuTo_JbEdf4nMTsZT_Rjc3ol8UukXSj5ft0L7BenIv6k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Should+We+Abandon+the+t-Test+in+the+Analysis+of+Gene+Expression+Microarray+Data%3A+A+Comparison+of+Variance+Modeling+Strategies&rft.jtitle=PloS+one&rft.au=Jeanmougin%2C+Marine&rft.au=de+Reynies%2C+Aur%C3%A9lien&rft.au=Marisa%2C+Laetitia&rft.au=Paccard%2C+Caroline&rft.date=2010-09-03&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=5&rft_id=info:doi/10.1371%2Fjournal.pone.0012336&rft_id=info%3Apmid%2F20838429&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_00539115v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |