Digital Bioassays on the Slipchip Microfluidic Devices
The SlipChip, designed to achieve “simple, low‐cost, instrument‐free, and precise” biomarker analysis, has demonstrated significant potential in both biological research and clinical diagnostics. The technology utilizes the relative movement of two microfluidic plates with microstructures to manipul...
Saved in:
Published in | Advanced Sensor Research |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
23.06.2025
|
Online Access | Get full text |
ISSN | 2751-1219 2751-1219 |
DOI | 10.1002/adsr.202500030 |
Cover
Abstract | The SlipChip, designed to achieve “simple, low‐cost, instrument‐free, and precise” biomarker analysis, has demonstrated significant potential in both biological research and clinical diagnostics. The technology utilizes the relative movement of two microfluidic plates with microstructures to manipulate fluids. This review focuses specifically on digital bioassays performed on SlipChip microfluidic platforms, which eliminate the need for sophisticated fluidic systems by generating partitions through simple “load and slip” operations. For digital nucleic acid analysis including digital PCR, digital LAMP, and digital RPA the SlipChip can extend the dynamic range of analysis through multivolume, serial dilution, and digital‐analog strategies. It also enables real‐time digital PCR, digital melt curve analysis, and digital CRISPR‐based and Argonaute‐based analysis with parallel droplet manipulation. Additionally, the SlipChip method can be integrated with functionalized microbeads for digital protein analysis. Furthermore, the SlipChip has been applied in single‐bacterium separation and cultivation, active bacteriophage quantification, and single‐cell analysis. These developments will pave the way for broader applications in precision medicine, infectious disease detection, and personalized healthcare. |
---|---|
AbstractList | The SlipChip, designed to achieve “simple, low‐cost, instrument‐free, and precise” biomarker analysis, has demonstrated significant potential in both biological research and clinical diagnostics. The technology utilizes the relative movement of two microfluidic plates with microstructures to manipulate fluids. This review focuses specifically on digital bioassays performed on SlipChip microfluidic platforms, which eliminate the need for sophisticated fluidic systems by generating partitions through simple “load and slip” operations. For digital nucleic acid analysis including digital PCR, digital LAMP, and digital RPA the SlipChip can extend the dynamic range of analysis through multivolume, serial dilution, and digital‐analog strategies. It also enables real‐time digital PCR, digital melt curve analysis, and digital CRISPR‐based and Argonaute‐based analysis with parallel droplet manipulation. Additionally, the SlipChip method can be integrated with functionalized microbeads for digital protein analysis. Furthermore, the SlipChip has been applied in single‐bacterium separation and cultivation, active bacteriophage quantification, and single‐cell analysis. These developments will pave the way for broader applications in precision medicine, infectious disease detection, and personalized healthcare. |
Author | Shen, Feng Xu, Lei Yu, Ziqing Luo, Yang Luo, Qingqing Lyu, Weiyuan |
Author_xml | – sequence: 1 givenname: Qingqing surname: Luo fullname: Luo, Qingqing organization: School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030 China – sequence: 2 givenname: Ziqing surname: Yu fullname: Yu, Ziqing organization: Department of Biomedical Engineering Boston University Boston MA 02215 USA – sequence: 3 givenname: Weiyuan surname: Lyu fullname: Lyu, Weiyuan organization: School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030 China – sequence: 4 givenname: Yang surname: Luo fullname: Luo, Yang organization: School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030 China – sequence: 5 givenname: Lei surname: Xu fullname: Xu, Lei organization: School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030 China – sequence: 6 givenname: Feng orcidid: 0000-0002-4709-330X surname: Shen fullname: Shen, Feng organization: School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030 China, Zhengzhou Industrial Technology Research Institute of Shanghai Jiao Tong University Zhengzhou 450016 China |
BookMark | eNpNj8FOwzAQRC1UJErplbN_IGG9jmv7CC0UpCIO9B459poahSSKC1L_nlYgxGnmMHqad8kmXd8RY9cCSgGANy7ksURABQASztgUtRKFQGEn__oFm-f8fpygsUJWOGWLVXpLe9fyu9S7nN0h877j-x3x1zYNfpcG_pz82Mf2M4Xk-Yq-kqd8xc6jazPNf3PGtg_32-VjsXlZPy1vN4XXFooQBZIi1zhpcKEFWWMoVCi8AmsJG3TSNwaDUSipQi2rJjqlQJM0Kkg5Y-UP9vgg55FiPYzpw42HWkB98q5P3vWft_wG1uVMOw |
Cites_doi | 10.1016/j.bios.2020.112908 10.3390/bios13020274 10.1016/j.bios.2021.113218 10.1016/j.jhazmat.2018.12.029 10.1021/acsnano.2c04337 10.1038/s41596-019-0210-2 10.1016/j.talanta.2024.126782 10.1021/ac202578x 10.1038/nprot.2013.046 10.1038/s41467-023-36874-6 10.1039/D2LC00223J 10.1038/nrrheum.2015.171 10.1016/j.bios.2020.112107 10.3390/mi12080993 10.1016/j.cell.2023.01.002 10.1039/D1AN00495F 10.1021/acs.analchem.3c01066 10.1016/j.talanta.2023.124903 10.1038/s41586-022-05046-9 10.1002/smtd.202400454 10.1002/anie.201913924 10.1039/C4LC00669K 10.1016/j.snb.2016.01.074 10.1021/ac200247e 10.1016/j.bios.2019.04.003 10.1016/j.talanta.2020.121844 10.1146/annurev.biophys.050708.133630 10.1021/acs.analchem.4c05145 10.1021/acs.chemrev.8b00257 10.1021/acssensors.2c01776 10.1038/s41587-020-0480-9 10.1002/smll.202303398 10.1039/D2LC00284A 10.1039/c2lc40632b 10.1021/acs.nanolett.1c00715 10.1126/sciadv.abk0100 10.1021/acssensors.3c01727 10.1073/pnas.1404753111 10.1021/acs.analchem.9b01270 10.1039/C4LC00213J 10.1021/acs.analchem.4c05290 10.1038/ncomms14049 10.1021/acsnano.3c03044 10.1038/nbt.1641 10.1073/pnas.1521230113 10.1093/nar/gkad601 10.1039/C4LC00910J 10.1039/D4LC00420E 10.1016/j.aca.2024.342541 10.1089/cmb.2012.0021 10.1039/C2LC20744C 10.1021/acssensors.3c01309 10.1038/s41467-020-16224-6 10.1093/cid/ciaa1562 10.1039/b908978k 10.1021/ja507849b 10.1016/j.bios.2023.115752 10.1126/science.aaq0179 10.1126/science.abo7651 10.1039/C5LC00614G 10.1063/1.5109270 10.1039/b807855f 10.1021/ac3037206 10.1039/D1LC00361E 10.1002/advs.202406367 10.1039/C9LC00541B 10.1016/j.cell.2015.05.002 10.1039/D1TC05938F 10.1021/ja908555n 10.1021/ac100044c 10.1021/jacs.2c11450 10.1021/ja2060116 10.1039/D4LC00423J 10.1038/s41467-021-22801-0 10.1002/smtd.202402045 10.1038/nmeth.2633 10.1038/s41586-023-06130-4 10.1002/advs.202406668 10.1021/acs.analchem.6b04290 10.1038/s41586-024-07218-1 10.1021/ja908558m 10.1128/AEM.03588-15 10.1515/nanoph-2021-0689 10.1039/c004521g 10.1038/nbt.1495 10.1039/C4LC00248B 10.1007/s00216-022-04395-8 10.1039/D1AN01916C 10.1039/C4IB00109E |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1002/adsr.202500030 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2751-1219 |
ExternalDocumentID | 10_1002_adsr_202500030 |
GroupedDBID | 0R~ 24P AAMMB AAYXX ACCMX AEFGJ AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS AVUZU BENPR BGLVJ CCPQU CITATION EBS GROUPED_DOAJ HCIFZ K7- M~E PHGZM PHGZT PIMPY PQGLB WIN |
ID | FETCH-LOGICAL-c790-df12e5eaba382671e988ed421c5099e2b2a3cb82d8523e42734bfa5507e385d33 |
ISSN | 2751-1219 |
IngestDate | Tue Aug 12 03:10:02 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c790-df12e5eaba382671e988ed421c5099e2b2a3cb82d8523e42734bfa5507e385d33 |
ORCID | 0000-0002-4709-330X |
OpenAccessLink | https://doi.org/10.1002/adsr.202500030 |
ParticipantIDs | crossref_primary_10_1002_adsr_202500030 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-23 |
PublicationDateYYYYMMDD | 2025-06-23 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-23 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | Advanced Sensor Research |
PublicationYear | 2025 |
References | Li J. (e_1_2_10_65_1) 2022; 11 Cai G. (e_1_2_10_57_1) 2021; 146 Li J. (e_1_2_10_64_1) 2022; 10 Bankevich A. (e_1_2_10_14_1) 2012; 19 Yue H. (e_1_2_10_84_1) 2021; 21 Lyu W. (e_1_2_10_91_1) 2023; 17 Yin W. (e_1_2_10_36_1) 2023; 19 Wu Y. (e_1_2_10_4_1) 2023; 265 Zhang Y. (e_1_2_10_20_1) 2017; 89 Karlikow M. (e_1_2_10_86_1) 2023; 14 Zhao Y. (e_1_2_10_70_1) 2024; 96 Reed B. D. (e_1_2_10_12_1) 2022; 378 Sista R. S. (e_1_2_10_10_1) 2008; 8 Chen P. (e_1_2_10_67_1) 2021; 224 Gavish A. (e_1_2_10_27_1) 2023; 618 Yu Y. (e_1_2_10_81_1) 2022; 147 Ma P. (e_1_2_10_29_1) 2023; 186 Duffy D. (e_1_2_10_3_1) 2021; 73 Mazutis L. (e_1_2_10_17_1) 2013; 8 Wu F. (e_1_2_10_28_1) 2021; 12 Barlow J. T. (e_1_2_10_45_1) 2020; 11 Ding X. (e_1_2_10_85_1) 2021; 184 Song Y. (e_1_2_10_34_1) 2024; 24 Yang Y.‐J. (e_1_2_10_8_1) 2023; 51 Cui Y. (e_1_2_10_62_1) 2024; 24 Shen F. (e_1_2_10_42_1) 2011; 83 Liu F. (e_1_2_10_60_1) 2024; 11 Xu C. (e_1_2_10_46_1) 2021; 7 Li L. (e_1_2_10_38_1) 2010; 132 Li L. (e_1_2_10_40_1) 2010; 39 Yu M. (e_1_2_10_76_1) 2019; 91 Jiang C.‐Y. (e_1_2_10_63_1) 2016; 82 Luo Y. (e_1_2_10_90_1) 2025; 97 Wan C. (e_1_2_10_66_1) 2024; 8 Li L. (e_1_2_10_37_1) 2010; 132 Cai D. (e_1_2_10_52_1) 2014; 14 Catterton M. (e_1_2_10_72_1) 2021; 12 Lyu W. (e_1_2_10_92_1) 2024; 280 Kim S. H. (e_1_2_10_24_1) 2012; 12 Lyu W. (e_1_2_10_78_1) 2021; 21 Zheng G. X. Y. (e_1_2_10_13_1) 2017; 8 Gooding J. J. (e_1_2_10_23_1) 2016 Hu Q. (e_1_2_10_79_1) 2023; 8 Luo Y. (e_1_2_10_25_1) 2023; 145 Witters D. (e_1_2_10_35_1) 2014; 14 Li X. (e_1_2_10_61_1) 2023; 95 Morales R.‐T. T. (e_1_2_10_26_1) 2022; 16 Lyu W. (e_1_2_10_41_1) 2019; 13 Ma L. (e_1_2_10_59_1) 2014; 111 Chen W. (e_1_2_10_16_1) 2022; 608 Cohen L. (e_1_2_10_2_1) 2019; 119 Chen D. (e_1_2_10_55_1) 2019; 366 Yu Z. (e_1_2_10_89_1) 2022; 22 McInnes I. B. (e_1_2_10_1_1) 2016; 12 Pinheiro L. B. (e_1_2_10_6_1) 2012; 84 Cao J. (e_1_2_10_30_1) 2020; 38 Collins D. J. (e_1_2_10_19_1) 2015; 15 Branton D. (e_1_2_10_7_1) 2008; 26 Shen F. (e_1_2_10_43_1) 2011; 133 Son S. E. (e_1_2_10_50_1) 2024; 243 Kowal J. (e_1_2_10_31_1) 2016; 113 Hindson C. M. (e_1_2_10_5_1) 2013; 10 Ge S. (e_1_2_10_48_1) 2014; 136 Wang Q. (e_1_2_10_56_1) 2025; 9 Kan C. W. (e_1_2_10_11_1) 2012; 12 Farka Z. (e_1_2_10_21_1) 2020; 59 Xia Y. (e_1_2_10_53_1) 2016; 228 Bi X. (e_1_2_10_22_1) 2024; 628 Zhukov D. V. (e_1_2_10_44_1) 2019; 19 Liu W. (e_1_2_10_49_1) 2010; 82 Yu Z. (e_1_2_10_71_1) 2020; 155 Zhang J. (e_1_2_10_47_1) 2024; 9 Yi Q. (e_1_2_10_51_1) 2019; 135 Li J. (e_1_2_10_69_1) 2024; 96 Zhang J. (e_1_2_10_74_1) 2024; 11 Luo Y. (e_1_2_10_80_1) 2024; 1304 Noji H. (e_1_2_10_32_1) 2022; 22 Du W. (e_1_2_10_39_1) 2009; 9 Yang J. (e_1_2_10_77_1) 2023; 13 Rissin D. M. (e_1_2_10_9_1) 2010; 28 Kellner M. J. (e_1_2_10_87_1) 2019; 14 Xu L. (e_1_2_10_68_1) 2021; 175 Dong R. K. (e_1_2_10_18_1) 2024 Shen F. (e_1_2_10_75_1) 2010; 10 Macosko E. Z. (e_1_2_10_15_1) 2015; 161 Sun B. (e_1_2_10_83_1) 2013; 85 Fan W. (e_1_2_10_33_1) 2023; 415 Gootenberg J. S. (e_1_2_10_88_1) 2018; 360 Yu Y. (e_1_2_10_82_1) 2023; 8 Shen C. (e_1_2_10_54_1) 2014; 14 Ma L. (e_1_2_10_58_1) 2014; 6 Begolo S. (e_1_2_10_73_1) 2014; 14 |
References_xml | – volume: 175 year: 2021 ident: e_1_2_10_68_1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112908 – volume: 13 start-page: 274 year: 2023 ident: e_1_2_10_77_1 publication-title: Biosensors (Basel) doi: 10.3390/bios13020274 – volume: 184 year: 2021 ident: e_1_2_10_85_1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113218 – start-page: 47 year: 2016 ident: e_1_2_10_23_1 publication-title: Angew. Chem. – volume: 366 start-page: 512 year: 2019 ident: e_1_2_10_55_1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.12.029 – volume: 16 year: 2022 ident: e_1_2_10_26_1 publication-title: ACS Nano doi: 10.1021/acsnano.2c04337 – volume: 14 start-page: 2986 year: 2019 ident: e_1_2_10_87_1 publication-title: Nat. Protoc. doi: 10.1038/s41596-019-0210-2 – volume: 280 year: 2024 ident: e_1_2_10_92_1 publication-title: Talanta doi: 10.1016/j.talanta.2024.126782 – volume: 84 start-page: 1003 year: 2012 ident: e_1_2_10_6_1 publication-title: Anal. Chem. doi: 10.1021/ac202578x – volume: 8 start-page: 870 year: 2013 ident: e_1_2_10_17_1 publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.046 – volume: 14 start-page: 1505 year: 2023 ident: e_1_2_10_86_1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-36874-6 – volume: 22 start-page: 3092 year: 2022 ident: e_1_2_10_32_1 publication-title: Lab Chip doi: 10.1039/D2LC00223J – volume: 12 start-page: 63 year: 2016 ident: e_1_2_10_1_1 publication-title: Nat. Rev. Rheumatol. doi: 10.1038/nrrheum.2015.171 – volume: 155 year: 2020 ident: e_1_2_10_71_1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112107 – volume: 12 start-page: 993 year: 2021 ident: e_1_2_10_72_1 publication-title: Micromachines doi: 10.3390/mi12080993 – volume: 186 start-page: 877 year: 2023 ident: e_1_2_10_29_1 publication-title: Cell doi: 10.1016/j.cell.2023.01.002 – volume: 146 start-page: 4622 year: 2021 ident: e_1_2_10_57_1 publication-title: Analyst doi: 10.1039/D1AN00495F – volume: 95 start-page: 8632 year: 2023 ident: e_1_2_10_61_1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.3c01066 – volume: 265 year: 2023 ident: e_1_2_10_4_1 publication-title: Talanta doi: 10.1016/j.talanta.2023.124903 – volume: 608 start-page: 733 year: 2022 ident: e_1_2_10_16_1 publication-title: Nature doi: 10.1038/s41586-022-05046-9 – volume: 8 year: 2024 ident: e_1_2_10_66_1 publication-title: Small Methods doi: 10.1002/smtd.202400454 – volume: 59 year: 2020 ident: e_1_2_10_21_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201913924 – volume: 14 start-page: 3917 year: 2014 ident: e_1_2_10_52_1 publication-title: Lab Chip doi: 10.1039/C4LC00669K – volume: 228 start-page: 491 year: 2016 ident: e_1_2_10_53_1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2016.01.074 – volume: 83 start-page: 3533 year: 2011 ident: e_1_2_10_42_1 publication-title: Anal. Chem. doi: 10.1021/ac200247e – volume: 135 start-page: 200 year: 2019 ident: e_1_2_10_51_1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.04.003 – volume: 224 year: 2021 ident: e_1_2_10_67_1 publication-title: Talanta doi: 10.1016/j.talanta.2020.121844 – volume: 39 start-page: 139 year: 2010 ident: e_1_2_10_40_1 publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev.biophys.050708.133630 – volume: 97 start-page: 731 year: 2025 ident: e_1_2_10_90_1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.4c05145 – volume: 119 start-page: 293 year: 2019 ident: e_1_2_10_2_1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00257 – volume: 8 start-page: 114 year: 2023 ident: e_1_2_10_79_1 publication-title: ACS Sens. doi: 10.1021/acssensors.2c01776 – volume: 38 start-page: 980 year: 2020 ident: e_1_2_10_30_1 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0480-9 – volume: 19 year: 2023 ident: e_1_2_10_36_1 publication-title: Small doi: 10.1002/smll.202303398 – volume: 22 start-page: 2954 year: 2022 ident: e_1_2_10_89_1 publication-title: Lab Chip doi: 10.1039/D2LC00284A – volume: 12 start-page: 4986 year: 2012 ident: e_1_2_10_24_1 publication-title: Lab Chip doi: 10.1039/c2lc40632b – volume: 21 start-page: 4643 year: 2021 ident: e_1_2_10_84_1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c00715 – volume: 7 year: 2021 ident: e_1_2_10_46_1 publication-title: Sci. Adv. doi: 10.1126/sciadv.abk0100 – volume: 9 start-page: 646 year: 2024 ident: e_1_2_10_47_1 publication-title: ACS Sens. doi: 10.1021/acssensors.3c01727 – volume: 111 start-page: 9768 year: 2014 ident: e_1_2_10_59_1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1404753111 – volume: 91 start-page: 8751 year: 2019 ident: e_1_2_10_76_1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b01270 – volume: 14 start-page: 3074 year: 2014 ident: e_1_2_10_54_1 publication-title: Bacterial Chemot. SlipChip. Lab Chip doi: 10.1039/C4LC00213J – volume: 96 year: 2024 ident: e_1_2_10_70_1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.4c05290 – volume: 8 year: 2017 ident: e_1_2_10_13_1 publication-title: Nat. Commun. doi: 10.1038/ncomms14049 – volume: 17 year: 2023 ident: e_1_2_10_91_1 publication-title: ACS Nano doi: 10.1021/acsnano.3c03044 – volume: 28 start-page: 595 year: 2010 ident: e_1_2_10_9_1 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1641 – volume: 113 start-page: E968 year: 2016 ident: e_1_2_10_31_1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1521230113 – volume: 51 year: 2023 ident: e_1_2_10_8_1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad601 – volume: 14 start-page: 4616 year: 2014 ident: e_1_2_10_73_1 publication-title: Lab Chip doi: 10.1039/C4LC00910J – volume: 24 start-page: 4786 year: 2024 ident: e_1_2_10_62_1 publication-title: Lab Chip doi: 10.1039/D4LC00420E – volume: 1304 year: 2024 ident: e_1_2_10_80_1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2024.342541 – volume: 19 start-page: 455 year: 2012 ident: e_1_2_10_14_1 publication-title: J. Comput. Biol. doi: 10.1089/cmb.2012.0021 – volume: 12 start-page: 977 year: 2012 ident: e_1_2_10_11_1 publication-title: Lab Chip doi: 10.1039/C2LC20744C – volume: 8 start-page: 3595 year: 2023 ident: e_1_2_10_82_1 publication-title: ACS Sens. doi: 10.1021/acssensors.3c01309 – volume: 11 start-page: 2590 year: 2020 ident: e_1_2_10_45_1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16224-6 – volume: 73 year: 2021 ident: e_1_2_10_3_1 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciaa1562 – volume: 9 start-page: 2286 year: 2009 ident: e_1_2_10_39_1 publication-title: SlipChip. Lab Chip doi: 10.1039/b908978k – volume: 136 year: 2014 ident: e_1_2_10_48_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja507849b – volume: 243 year: 2024 ident: e_1_2_10_50_1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2023.115752 – volume: 360 start-page: 439 year: 2018 ident: e_1_2_10_88_1 publication-title: Science doi: 10.1126/science.aaq0179 – volume: 378 start-page: 186 year: 2022 ident: e_1_2_10_12_1 publication-title: Science doi: 10.1126/science.abo7651 – volume: 15 start-page: 3439 year: 2015 ident: e_1_2_10_19_1 publication-title: Lab Chip doi: 10.1039/C5LC00614G – volume: 13 year: 2019 ident: e_1_2_10_41_1 publication-title: Biomicrofluidics doi: 10.1063/1.5109270 – volume: 8 start-page: 2188 year: 2008 ident: e_1_2_10_10_1 publication-title: Lab Chip doi: 10.1039/b807855f – volume: 85 start-page: 1540 year: 2013 ident: e_1_2_10_83_1 publication-title: Anal. Chem. doi: 10.1021/ac3037206 – volume: 21 start-page: 3086 year: 2021 ident: e_1_2_10_78_1 publication-title: Lab Chip doi: 10.1039/D1LC00361E – volume: 11 year: 2024 ident: e_1_2_10_74_1 publication-title: Adv. Sci. doi: 10.1002/advs.202406367 – volume: 19 start-page: 3200 year: 2019 ident: e_1_2_10_44_1 publication-title: Lab Chip doi: 10.1039/C9LC00541B – volume: 161 start-page: 1202 year: 2015 ident: e_1_2_10_15_1 publication-title: Cell doi: 10.1016/j.cell.2015.05.002 – start-page: 270 year: 2024 ident: e_1_2_10_18_1 publication-title: Talanta – volume: 10 start-page: 7273 year: 2022 ident: e_1_2_10_64_1 publication-title: J. Mater. Chem. C doi: 10.1039/D1TC05938F – volume: 132 start-page: 106 year: 2010 ident: e_1_2_10_37_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja908555n – volume: 82 start-page: 3276 year: 2010 ident: e_1_2_10_49_1 publication-title: Anal. Chem. doi: 10.1021/ac100044c – volume: 145 start-page: 3276 year: 2023 ident: e_1_2_10_25_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c11450 – volume: 133 year: 2011 ident: e_1_2_10_43_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2060116 – volume: 24 start-page: 4483 year: 2024 ident: e_1_2_10_34_1 publication-title: Lab Chip doi: 10.1039/D4LC00423J – volume: 12 start-page: 2540 year: 2021 ident: e_1_2_10_28_1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22801-0 – volume: 9 year: 2025 ident: e_1_2_10_56_1 publication-title: Small Methods doi: 10.1002/smtd.202402045 – volume: 10 start-page: 1003 year: 2013 ident: e_1_2_10_5_1 publication-title: Nat. Methods doi: 10.1038/nmeth.2633 – volume: 618 start-page: 598 year: 2023 ident: e_1_2_10_27_1 publication-title: Nature doi: 10.1038/s41586-023-06130-4 – volume: 11 year: 2024 ident: e_1_2_10_60_1 publication-title: Adv. Sci. doi: 10.1002/advs.202406668 – volume: 89 start-page: 92 year: 2017 ident: e_1_2_10_20_1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b04290 – volume: 628 start-page: 771 year: 2024 ident: e_1_2_10_22_1 publication-title: Nature doi: 10.1038/s41586-024-07218-1 – volume: 132 start-page: 112 year: 2010 ident: e_1_2_10_38_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja908558m – volume: 82 start-page: 2210 year: 2016 ident: e_1_2_10_63_1 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.03588-15 – volume: 11 start-page: 1549 year: 2022 ident: e_1_2_10_65_1 publication-title: Nanophotonics doi: 10.1515/nanoph-2021-0689 – volume: 10 start-page: 2666 year: 2010 ident: e_1_2_10_75_1 publication-title: Digital PCR SlipChip. Lab Chip doi: 10.1039/c004521g – volume: 96 year: 2024 ident: e_1_2_10_69_1 publication-title: Anal. Chem. – volume: 26 start-page: 1146 year: 2008 ident: e_1_2_10_7_1 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1495 – volume: 14 start-page: 3225 year: 2014 ident: e_1_2_10_35_1 publication-title: Digital Biol. Chem. Lab Chip doi: 10.1039/C4LC00248B – volume: 415 start-page: 97 year: 2023 ident: e_1_2_10_33_1 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-022-04395-8 – volume: 147 start-page: 625 year: 2022 ident: e_1_2_10_81_1 publication-title: Analyst doi: 10.1039/D1AN01916C – volume: 6 start-page: 796 year: 2014 ident: e_1_2_10_58_1 publication-title: Integr. Biol. doi: 10.1039/C4IB00109E |
SSID | ssj0002891342 |
Score | 2.2944741 |
Snippet | The SlipChip, designed to achieve “simple, low‐cost, instrument‐free, and precise” biomarker analysis, has demonstrated significant potential in both... |
SourceID | crossref |
SourceType | Index Database |
Title | Digital Bioassays on the Slipchip Microfluidic Devices |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oXrwYjRqfpAcTD6babl_bIyqGGCEqGPFE9jGYJqQgwgF_vTt9UYUDetk0k92m7dfszs5-8w0hZ8oCsJQvTcYUmK5ADci-tE0OoZK-CJTrYnJys-U3Xtz7rted1ydMsksm4lJ-Lc0r-Q-q2qZxxSzZPyBb3FQb9LXGV7caYd2uhPFt9I41P7CgpPaB-SwP_V-0B9FIIg2riXy7_mAaqUgiQQinhbI_WsspAG29nR2OCyJewdOZJqHUJ73AfeSLXFLGKznUiMq2h1lifIVoNi0RfdIbvPGsYxZgoB4SodIc4HQeooFnm3Y-s8GibWEWTlVdufpEwVXqJfuu-XqTn7H_WoYKcmAqpEx7OL5XjF8nGzQI8CR-47reenwuAmkUD1qTIknFQ-XinBa9-vkQJeej5EV0tslW5v4btRTLHbIG8S7xMxyNAkdjGBsaRyPH0SjjaGQ47pHOXb1z0zCzehamDELLVH2bggdccEfv6QIbQsZAudSW2mkLgQrKHSkYVcyjDrioOyT6HPXmwGGecpx9UomHMRwQg1ngKwi4zUG6ylHMD5lEqUhpBYJS-5Cc5-_ZG6WqJb3ln_Vo5Z7HZHP-d5yQymQ8hVPtkE1ENYOkmgQ0vgEHtjU1 |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+Bioassays+on+the+Slipchip+Microfluidic+Devices&rft.jtitle=Advanced+Sensor+Research&rft.au=Luo%2C+Qingqing&rft.au=Yu%2C+Ziqing&rft.au=Lyu%2C+Weiyuan&rft.au=Luo%2C+Yang&rft.date=2025-06-23&rft.issn=2751-1219&rft.eissn=2751-1219&rft_id=info:doi/10.1002%2Fadsr.202500030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adsr_202500030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1219&client=summon |