On Hybrid Curves

In this paper, we first define the vector product in a special analog Minkowski Geometry (R^3,) which is identified with the space of spatial hybrids. Next, we derive the Frenet-Serret frame formulae for a three dimensional non-parabolic curve by using the spatial hybrids and the vector product. How...

Full description

Saved in:
Bibliographic Details
Published inJournal of Engineering Technology and Applied Sciences Vol. 8; no. 3; pp. 119 - 130
Main Author AKBIYIK, Mücahit
Format Journal Article
LanguageEnglish
Published 31.12.2023
Online AccessGet full text
ISSN2548-0391
2548-0391
DOI10.30931/jetas.1338660

Cover

Loading…
Abstract In this paper, we first define the vector product in a special analog Minkowski Geometry (R^3,) which is identified with the space of spatial hybrids. Next, we derive the Frenet-Serret frame formulae for a three dimensional non-parabolic curve by using the spatial hybrids and the vector product. However, we present the Frenet-Serret frame formulae of a non-lightlike hybrid curve in R^4 and an illustrative example for all theorems of the paper with MATLAB 2016a codes.
AbstractList In this paper, we first define the vector product in a special analog Minkowski Geometry (R^3,) which is identified with the space of spatial hybrids. Next, we derive the Frenet-Serret frame formulae for a three dimensional non-parabolic curve by using the spatial hybrids and the vector product. However, we present the Frenet-Serret frame formulae of a non-lightlike hybrid curve in R^4 and an illustrative example for all theorems of the paper with MATLAB 2016a codes.
Author AKBIYIK, Mücahit
Author_xml – sequence: 1
  givenname: Mücahit
  orcidid: 0000-0002-0256-1472
  surname: AKBIYIK
  fullname: AKBIYIK, Mücahit
BookMark eNpNj8FqAjEURYNYqLVCV137AzN9Ly_JJEsZ2ioIbtyHmeQFprSjJG3Bv1esi27uvZtz4TyI6XgYWYhnhJrAEb588HdXaiSyxsBEzKRWtgJyOP2378WilKEHQo1WaZyJp924XJ_6PMRl-5N_uTyKu9R9Fl7cei72b6_7dl1td--bdrWtQuPgEgqgg2isjCibKFUTQCuXkJoYbAgqsNXJKDSGZLTpAiD3hIHRKcs0F_XfbciHUjInf8zDV5dPHsFfjfzVyN-M6Ax9Hz6E
Cites_doi 10.3390/axioms10030213
10.1016/j.chaos.2019.109449
10.1007/s10711-012-9733-1
10.1002/mma.6580
10.1016/S0096-3003(03)00783-5
10.2298/FIL1904037D
10.7151/dmgaa.1287
10.1007/s00006-018-0833-3
10.1007/s00006-018-0919-y
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.30931/jetas.1338660
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2548-0391
EndPage 130
ExternalDocumentID 10_30931_jetas_1338660
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CITATION
EN8
ID FETCH-LOGICAL-c790-c7400a0d682d127d247c0549f137dc8cc4ce85f6416632d8fc741eb31ce1948e3
ISSN 2548-0391
IngestDate Tue Jul 01 02:24:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c790-c7400a0d682d127d247c0549f137dc8cc4ce85f6416632d8fc741eb31ce1948e3
ORCID 0000-0002-0256-1472
OpenAccessLink https://dergipark.org.tr/tr/pub/jetas/issue/82208/1338660
PageCount 12
ParticipantIDs crossref_primary_10_30931_jetas_1338660
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-31
PublicationDateYYYYMMDD 2023-12-31
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-31
  day: 31
PublicationDecade 2020
PublicationTitle Journal of Engineering Technology and Applied Sciences
PublicationYear 2023
References ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref10
ref2
ref1
References_xml – ident: ref8
  doi: 10.3390/axioms10030213
– ident: ref10
  doi: 10.1016/j.chaos.2019.109449
– ident: ref4
  doi: 10.1007/s10711-012-9733-1
– ident: ref1
– ident: ref7
  doi: 10.1002/mma.6580
– ident: ref2
  doi: 10.1016/S0096-3003(03)00783-5
– ident: ref3
  doi: 10.2298/FIL1904037D
– ident: ref9
  doi: 10.7151/dmgaa.1287
– ident: ref5
  doi: 10.1007/s00006-018-0833-3
– ident: ref6
  doi: 10.1007/s00006-018-0919-y
SSID ssib031518451
ssib048876987
Score 2.243212
Snippet In this paper, we first define the vector product in a special analog Minkowski Geometry (R^3,) which is identified with the space of spatial hybrids. Next, we...
SourceID crossref
SourceType Index Database
StartPage 119
Title On Hybrid Curves
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLCw8BIi3MiAxVC2JnSbO2FZFLVXpUqQyRfFLsARUpUgw8Ns520malg6FxYqs2IrzJV--8-XuELqhPlGuaOnwM8XBQGGikeAEAOFRpECPMGGqloweg_6T_zBtTRd19Ex0Scaa_GttXMl_UIU-wFVHyf4B2XJS6IBjwBdaQBjajTAep_X-pw65qnfns4_8b8DfSrOSc7CylW7cBoUIzV_xUmC3h53B82Botku1L73T5cnLa1bdI8CkyERYUAlYgTqQztbFaso1fTkX0grkpMJrXs5r9hPpWVfKKvtqp6qhX6mTQGrjN7C1ApbTXK98fsqfAsEcMTPEZnycj99GOxgsAF2cYvTdK6iCgFCh_sKhCTQUBpEph1iuy6boNFPeLV1SRYJUtMTkAO3l0Dhti-gh2pLpEdofp45F07FoHqPJfW_S7TfyehUNHkYuNMCHiSsCioWHQ4H9kIMgjpRHQsEp574uEasCkMABwYIqGOBJRjwuvcinkpygWvqWylPkSJqEIcNM-Vw7VlsRl0qB1nCl4IQF-AzdFiuI321Wknj97Tvf-MwLtLt4dC5RLZvN5RUIroxdm1v_A6cqJSk
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Hybrid+Curves&rft.jtitle=Journal+of+Engineering+Technology+and+Applied+Sciences&rft.au=AKBIYIK%2C+M%C3%BCcahit&rft.date=2023-12-31&rft.issn=2548-0391&rft.eissn=2548-0391&rft.volume=8&rft.issue=3&rft.spage=119&rft.epage=130&rft_id=info:doi/10.30931%2Fjetas.1338660&rft.externalDBID=n%2Fa&rft.externalDocID=10_30931_jetas_1338660
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2548-0391&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2548-0391&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2548-0391&client=summon