Towards Electrosynthesis in Shewanella: Energetics of Reversing the Mtr Pathway for Reductive Metabolism

Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron f...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 6; no. 2; p. e16649
Main Authors Ross, Daniel E., Flynn, Jeffrey M., Baron, Daniel B., Gralnick, Jeffrey A., Bond, Daniel R.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 02.02.2011
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at -0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC, which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units.
AbstractList Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at −0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC, which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units.
Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at -0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC, which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units.
Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at −0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC , which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units.
Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at -0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC, which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units.Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at -0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC, which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units.
Audience Academic
Author Baron, Daniel B.
Bond, Daniel R.
Ross, Daniel E.
Flynn, Jeffrey M.
Gralnick, Jeffrey A.
AuthorAffiliation 1 The BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, United States of America
2 Department of Microbiology, University of Minnesota-Twin Cities, St. Paul, Minnesota, United States of America
New England Biolabs, Inc., United States of America
AuthorAffiliation_xml – name: 1 The BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, United States of America
– name: 2 Department of Microbiology, University of Minnesota-Twin Cities, St. Paul, Minnesota, United States of America
– name: New England Biolabs, Inc., United States of America
Author_xml – sequence: 1
  givenname: Daniel E.
  surname: Ross
  fullname: Ross, Daniel E.
– sequence: 2
  givenname: Jeffrey M.
  surname: Flynn
  fullname: Flynn, Jeffrey M.
– sequence: 3
  givenname: Daniel B.
  surname: Baron
  fullname: Baron, Daniel B.
– sequence: 4
  givenname: Jeffrey A.
  surname: Gralnick
  fullname: Gralnick, Jeffrey A.
– sequence: 5
  givenname: Daniel R.
  surname: Bond
  fullname: Bond, Daniel R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21311751$$D View this record in MEDLINE/PubMed
BookMark eNqNk11v0zAUhiM0xD7gHyCIhATiosUfiR3vAmmaBlQaGtoGt5bjnDSeUruznZX9e9y1m9ppApQLR-c857XPa5_9bMc6C1n2GqMxphx_unKDt6ofz1N4jBBmrBDPsj0sKBkxgujOxv9uth_CFUIlrRh7ke0STDHmJd7Luku3UL4J-UkPOnoXbm3sIJiQG5tfdLBQFvpeHeYnFvwUotEhd21-Djfgg7HTPNH59-jzHyp2C3Wbt86nbDPoaG5SBqKqXW_C7GX2vFV9gFfr9SD7-eXk8vjb6PTs6-T46HSkeSXiCCgRBWCGaFkWTNecUNa0LaUalEAFB81qRQSvBaMFLxDHlFHGMKo54oIwepC9XenOexfk2qQgMREEc0IqnojJimicupJzb2bK30qnjLwLOD-VyqdGe5AlU6TRuq0VLwtc6apsVAtKM9wIVCFIWp_Xuw31DBoNNnrVb4luZ6zp5NTdSIoo4UwkgQ9rAe-uBwhRzkzQS8stuCFIkTosBEs2_IusSlzwit81-O4R-bQNa2qqUqfGti4dUC815VGRjoYY4VWixk9Q6WtgZnR6eq1J8a2Cj1sFiYnwO07VEIKcXJz_P3v2a5t9v8F2oPrYBdcP0TgbtsE3m1fycBf3bz4BxQrQ6bkHD-0DgpFcjta9XXI5WnI9Wqns8FGZNlEtt0-OmP7vxX8AQv8pIg
CitedBy_id crossref_primary_10_1016_j_energy_2018_06_171
crossref_primary_10_1016_j_bioelechem_2020_107498
crossref_primary_10_1016_j_jwpe_2024_105920
crossref_primary_10_1007_s41918_018_0020_1
crossref_primary_10_1039_D3NR00742A
crossref_primary_10_1595_205651322X16548607638938
crossref_primary_10_1002_anie_201400463
crossref_primary_10_3389_fmicb_2015_00201
crossref_primary_10_3389_fmicb_2017_02481
crossref_primary_10_1186_s13068_014_0118_6
crossref_primary_10_1016_j_elecom_2016_12_002
crossref_primary_10_1039_C6EE02106A
crossref_primary_10_1038_s41929_019_0408_2
crossref_primary_10_1073_pnas_1220074110
crossref_primary_10_1016_j_checat_2023_100561
crossref_primary_10_3389_fenrg_2018_00055
crossref_primary_10_1021_acssynbio_8b00498
crossref_primary_10_1016_j_xinn_2021_100104
crossref_primary_10_1016_j_jbiosc_2020_01_003
crossref_primary_10_1073_pnas_1305244110
crossref_primary_10_1016_j_cbpa_2018_06_007
crossref_primary_10_1007_s11431_019_9509_8
crossref_primary_10_1128_mBio_00420_12
crossref_primary_10_1002_bit_25723
crossref_primary_10_1016_j_jece_2024_112326
crossref_primary_10_1016_j_scitotenv_2024_177433
crossref_primary_10_1111_1751_7915_14175
crossref_primary_10_1039_D2CY01981G
crossref_primary_10_1128_aem_00570_23
crossref_primary_10_1073_pnas_2418926122
crossref_primary_10_1016_j_biotechadv_2020_107682
crossref_primary_10_1016_j_ibiod_2020_105111
crossref_primary_10_1038_s43246_021_00173_8
crossref_primary_10_1002_bit_24628
crossref_primary_10_1016_j_watres_2016_05_028
crossref_primary_10_1016_j_bios_2014_12_035
crossref_primary_10_1038_s41598_017_08877_z
crossref_primary_10_1038_s41396_020_0595_5
crossref_primary_10_1016_j_isci_2021_102294
crossref_primary_10_1016_j_scitotenv_2022_156501
crossref_primary_10_1038_ncomms4391
crossref_primary_10_1021_acs_analchem_6b03538
crossref_primary_10_1128_mBio_00496_15
crossref_primary_10_1038_s41570_017_0024
crossref_primary_10_1111_1751_7915_12400
crossref_primary_10_3389_fenrg_2019_00121
crossref_primary_10_1016_j_bios_2018_01_032
crossref_primary_10_1039_D3EM00224A
crossref_primary_10_1073_pnas_2407987122
crossref_primary_10_1002_jctb_4657
crossref_primary_10_1109_MPOT_2016_2612478
crossref_primary_10_1073_pnas_1800869115
crossref_primary_10_1186_s40643_019_0245_9
crossref_primary_10_1039_c3ee00071k
crossref_primary_10_1016_j_biortech_2013_02_072
crossref_primary_10_3389_fmicb_2015_00575
crossref_primary_10_1016_j_rser_2021_111367
crossref_primary_10_1039_C6CC02721K
crossref_primary_10_3390_fermentation9070625
crossref_primary_10_1038_s41529_023_00416_8
crossref_primary_10_1002_celc_202200965
crossref_primary_10_1063_5_0154211
crossref_primary_10_1016_j_procbio_2018_04_019
crossref_primary_10_1038_s42004_020_0316_z
crossref_primary_10_1016_j_cej_2024_156535
crossref_primary_10_3390_app14156733
crossref_primary_10_1016_j_ymben_2023_08_004
crossref_primary_10_1128_AEM_01460_12
crossref_primary_10_1128_AEM_01253_20
crossref_primary_10_1002_elsc_201600105
crossref_primary_10_1016_j_bios_2019_111571
crossref_primary_10_1128_mbio_02904_21
crossref_primary_10_1038_srep06961
crossref_primary_10_1016_j_envres_2023_115843
crossref_primary_10_1007_s10295_020_02309_0
crossref_primary_10_1016_j_ibiod_2019_104842
crossref_primary_10_1146_annurev_micro_092611_150104
crossref_primary_10_1039_D3CS00537B
crossref_primary_10_1126_sciadv_aao5682
crossref_primary_10_1080_10643389_2020_1773728
crossref_primary_10_1098_rsbl_2019_0694
crossref_primary_10_1016_j_biortech_2017_05_077
crossref_primary_10_1016_j_copbio_2013_02_012
crossref_primary_10_1039_C6RA04734C
crossref_primary_10_1111_mmi_14067
crossref_primary_10_3389_fbioe_2021_786416
crossref_primary_10_1016_j_biortech_2018_09_133
crossref_primary_10_1016_j_resconrec_2022_106687
crossref_primary_10_1016_j_joule_2024_10_005
crossref_primary_10_3389_fmicb_2019_00170
crossref_primary_10_1016_j_jwpe_2023_104580
crossref_primary_10_1128_aem_01865_24
crossref_primary_10_1016_j_watres_2022_118553
crossref_primary_10_1007_s11356_024_35321_3
crossref_primary_10_1021_acs_iecr_8b00519
crossref_primary_10_1002_elan_201900686
crossref_primary_10_1002_celc_201402168
crossref_primary_10_1093_femsec_fiy222
crossref_primary_10_1002_bit_27305
crossref_primary_10_1021_jacs_4c12311
crossref_primary_10_1007_s00253_011_3653_0
crossref_primary_10_1007_s11274_018_2576_7
crossref_primary_10_1038_s42003_021_02454_x
crossref_primary_10_1016_j_chemosphere_2024_141505
crossref_primary_10_1002_jctb_5658
crossref_primary_10_1038_ismej_2014_264
crossref_primary_10_1128_AEM_02947_14
crossref_primary_10_3390_en14175389
crossref_primary_10_1128_AEM_02716_20
crossref_primary_10_1016_j_jhazmat_2020_122018
crossref_primary_10_1016_j_bioelechem_2017_07_013
crossref_primary_10_1021_jacs_2c00934
crossref_primary_10_1002_celc_201402194
crossref_primary_10_1128_aem_01387_23
crossref_primary_10_1016_j_colsurfb_2023_113383
crossref_primary_10_1042_BST20120098
crossref_primary_10_1016_j_procbio_2012_07_032
crossref_primary_10_1016_j_cbpa_2018_06_021
crossref_primary_10_3390_catal10121427
crossref_primary_10_1039_C7EE00282C
crossref_primary_10_1039_D1EN01092A
crossref_primary_10_1016_j_watres_2014_01_052
crossref_primary_10_1128_AEM_00790_18
crossref_primary_10_1016_j_aca_2023_341046
crossref_primary_10_1016_j_jbiosc_2023_05_001
crossref_primary_10_1111_1751_7915_14236
crossref_primary_10_1021_acssynbio_3c00684
crossref_primary_10_1186_s12866_015_0406_8
crossref_primary_10_1016_j_biortech_2016_03_052
crossref_primary_10_1002_aelm_202300019
crossref_primary_10_1002_aenm_201501535
crossref_primary_10_1007_s00253_014_6005_z
crossref_primary_10_1016_j_biotechadv_2018_07_001
crossref_primary_10_1016_j_ymben_2025_02_002
crossref_primary_10_1038_ncomms13270
crossref_primary_10_1016_j_cej_2024_150850
crossref_primary_10_1128_mBio_02203_17
crossref_primary_10_3389_fmicb_2022_815366
crossref_primary_10_1111_febs_13269
crossref_primary_10_3389_fmicb_2019_00410
crossref_primary_10_1016_j_jece_2023_110708
crossref_primary_10_1021_acs_biochem_8b00937
crossref_primary_10_1002_ange_202305189
crossref_primary_10_1002_aic_16897
crossref_primary_10_1002_adfm_201404541
crossref_primary_10_1186_s13068_016_0426_0
crossref_primary_10_3389_fmicb_2018_01512
crossref_primary_10_1080_07388551_2023_2167065
crossref_primary_10_1016_j_ymben_2017_12_003
crossref_primary_10_1016_j_biortech_2021_126553
crossref_primary_10_1039_C9CS00496C
crossref_primary_10_1128_mSystems_00002_17
crossref_primary_10_1360_SSC_2024_0203
crossref_primary_10_1016_j_bej_2022_108772
crossref_primary_10_1021_acscatal_0c03594
crossref_primary_10_1021_jacs_7b11135
crossref_primary_10_1186_s13036_019_0162_7
crossref_primary_10_3389_fmicb_2018_03029
crossref_primary_10_1016_j_biotechadv_2024_108372
crossref_primary_10_1111_1462_2920_16314
crossref_primary_10_1038_ismej_2014_82
crossref_primary_10_3389_fbioe_2019_00060
crossref_primary_10_1371_journal_pone_0184994
crossref_primary_10_1016_j_bioelechem_2024_108723
crossref_primary_10_1039_C4MB00386A
crossref_primary_10_1016_j_pecs_2017_07_003
crossref_primary_10_1016_j_bej_2023_108928
crossref_primary_10_1007_s00253_013_5396_6
crossref_primary_10_1016_j_biortech_2020_123402
crossref_primary_10_1016_j_ymben_2018_03_015
crossref_primary_10_1002_anie_201407004
crossref_primary_10_1186_s12934_019_1067_3
crossref_primary_10_3389_fmicb_2022_852527
crossref_primary_10_1016_j_bios_2017_07_008
crossref_primary_10_1016_j_isci_2021_102682
crossref_primary_10_1016_j_electacta_2023_141924
crossref_primary_10_1038_s41467_023_43524_4
crossref_primary_10_1074_jbc_M112_348813
crossref_primary_10_1016_j_bioelechem_2017_10_001
crossref_primary_10_1128_AEM_01154_18
crossref_primary_10_1002_ange_201400463
crossref_primary_10_1016_j_envint_2020_106006
crossref_primary_10_1016_j_electacta_2019_134838
crossref_primary_10_1071_MA17037
crossref_primary_10_1007_s12566_012_0033_x
crossref_primary_10_1016_j_tcb_2012_09_002
crossref_primary_10_1016_j_biotechadv_2023_108098
crossref_primary_10_1016_j_jclepro_2019_02_172
crossref_primary_10_1128_AEM_02134_18
crossref_primary_10_1016_j_jece_2021_106922
crossref_primary_10_1016_j_bbabio_2013_03_010
crossref_primary_10_1128_msystems_00038_23
crossref_primary_10_1016_j_biotechadv_2019_107468
crossref_primary_10_3389_fmicb_2021_714508
crossref_primary_10_1016_j_electacta_2024_143967
crossref_primary_10_1016_j_synbio_2020_08_004
crossref_primary_10_1021_acs_chemrev_0c00472
crossref_primary_10_1016_j_nanoen_2018_05_072
crossref_primary_10_1042_BST20120150
crossref_primary_10_1093_bbb_zbab088
crossref_primary_10_3389_fbioe_2020_00010
crossref_primary_10_1021_acs_analchem_2c01384
crossref_primary_10_1002_cbic_201600339
crossref_primary_10_1116_6_0000199
crossref_primary_10_1039_D4SC00864B
crossref_primary_10_1016_j_jelechem_2022_116387
crossref_primary_10_1016_j_jes_2024_04_042
crossref_primary_10_1021_sb500331x
crossref_primary_10_3390_microorganisms13030631
crossref_primary_10_1002_celc_202101423
crossref_primary_10_1039_C6EM00219F
crossref_primary_10_1016_j_ibiod_2022_105439
crossref_primary_10_1021_acsabm_4c01276
crossref_primary_10_1016_j_watres_2024_122417
crossref_primary_10_1039_c2ee21594b
crossref_primary_10_1073_pnas_1818003116
crossref_primary_10_1002_ange_201407004
crossref_primary_10_1186_s12859_014_0410_2
crossref_primary_10_1021_acsabm_4c00749
crossref_primary_10_1073_pnas_1617615114
crossref_primary_10_1099_ijsem_0_006044
crossref_primary_10_1002_adma_201707072
crossref_primary_10_1111_1462_2920_15942
crossref_primary_10_1371_journal_pone_0258380
crossref_primary_10_1002_anie_202305189
crossref_primary_10_1371_journal_pone_0138813
crossref_primary_10_1128_aem_00609_23
crossref_primary_10_1021_cb300605s
crossref_primary_10_1039_C6CP07595A
crossref_primary_10_1002_celc_201402239
crossref_primary_10_1016_j_bioelechem_2018_07_015
crossref_primary_10_3389_fbioe_2022_913077
crossref_primary_10_3389_fmicb_2018_03293
crossref_primary_10_1021_acsnano_2c10203
crossref_primary_10_1002_adma_202203480
crossref_primary_10_1021_ja405072z
crossref_primary_10_1371_journal_pone_0154017
crossref_primary_10_1016_j_electacta_2023_143191
crossref_primary_10_1128_AEM_00852_19
crossref_primary_10_1134_S0003683817090034
crossref_primary_10_1016_j_xcrp_2023_101433
crossref_primary_10_1186_s40643_023_00685_w
crossref_primary_10_1016_j_electacta_2019_05_012
crossref_primary_10_1039_c3cc42570c
crossref_primary_10_1016_j_aca_2017_06_053
crossref_primary_10_1021_acs_jpcc_6b00349
crossref_primary_10_1016_j_bioelechem_2022_108054
crossref_primary_10_1007_s00216_022_03919_6
crossref_primary_10_1038_s41467_019_09377_6
crossref_primary_10_1016_j_biotechadv_2019_02_007
crossref_primary_10_1038_nrmicro_2016_93
crossref_primary_10_1098_rsif_2014_1117
crossref_primary_10_1016_j_bioelechem_2018_02_003
crossref_primary_10_1039_C7GC01801K
crossref_primary_10_1021_pr3007914
crossref_primary_10_1016_j_bios_2015_08_035
crossref_primary_10_1042_BST20120129
crossref_primary_10_1016_j_biortech_2025_132324
Cites_doi 10.1128/JB.130.3.1038-1046.1977
10.1128/AEM.00840-08
10.1074/jbc.M109.043455
10.1128/AEM.01087-07
10.1073/pnas.1009645107
10.1128/mBio.00103-10
10.1128/AEM.00961-08
10.1038/35011098
10.1042/bst0300658
10.1128/jb.179.4.1143-1152.1997
10.1128/JB.182.1.67-75.2000
10.1042/bj3020587
10.1002/bit.21671
10.1038/70051
10.1073/pnas.0900086106
10.1128/AEM.01387-07
10.1016/S0006-3495(00)76658-6
10.1128/AEM.00544-09
10.1007/s00775-008-0398-z
10.1038/nrmicro2422
10.1111/j.1472-4669.2009.00226.x
10.1073/pnas.0604517103
10.1126/science.240.4857.1319
10.1021/bi9826308
10.1111/j.1365-2958.2010.07266.x
10.1016/j.gca.2009.06.021
10.1021/es050457e
10.1039/b816647a
10.1128/AEM.01834-09
10.1073/pnas.0710525105
10.1128/AEM.00177-08
10.1002/jobm.200390034
10.1021/ja063526d
10.1128/jb.172.11.6232-6238.1990
10.1111/j.1462-2920.2004.00593.x
10.1007/s00775-007-0278-y
10.1128/AEM.00146-07
10.1128/jb.175.15.4917-4921.1993
10.1073/pnas.1834303100
10.1021/bi00018a018
10.1046/j.1365-2958.2001.02257.x
10.1016/j.bbabio.2008.11.007
10.1021/bi00065a041
10.1128/AEM.68.11.5585-5594.2002
10.1111/j.1365-2958.2007.05783.x
10.1128/JB.00925-09
ContentType Journal Article
Copyright COPYRIGHT 2011 Public Library of Science
2011 Ross et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Ross et al. 2011
Copyright_xml – notice: COPYRIGHT 2011 Public Library of Science
– notice: 2011 Ross et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Ross et al. 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0016649
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Opposing Viewpoints In Context
Science in Context
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database



Bacteriology Abstracts (Microbiology B)
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Chemistry
Biology
DocumentTitleAlternate Reversibility of the Mtr Pathway in S. oneidensis
EISSN 1932-6203
ExternalDocumentID 1292172287
oai_doaj_org_article_56a2dccfba75418c85dafeac61d9080e
PMC3032769
2898404471
A476906278
21311751
10_1371_journal_pone_0016649
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
GeographicLocations United States--US
Minnesota
GeographicLocations_xml – name: Minnesota
– name: United States--US
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPNFZ
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
RIG
RNS
RPM
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
BBORY
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
7X8
5PM
PUEGO
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c789t-e3294e16035546cb7236dff33cea9047ec6ba297b9634740713636610b7079263
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:12:36 EST 2021
Wed Aug 27 00:58:35 EDT 2025
Thu Aug 21 14:09:11 EDT 2025
Fri Jul 11 16:02:49 EDT 2025
Thu Jul 10 23:29:40 EDT 2025
Fri Jul 25 12:14:31 EDT 2025
Tue Jun 17 20:57:20 EDT 2025
Tue Jun 10 20:27:28 EDT 2025
Fri Jun 27 05:04:45 EDT 2025
Fri Jun 27 03:55:15 EDT 2025
Thu May 22 21:20:45 EDT 2025
Wed Feb 19 02:30:56 EST 2025
Thu Apr 24 23:06:43 EDT 2025
Tue Jul 01 03:18:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c789t-e3294e16035546cb7236dff33cea9047ec6ba297b9634740713636610b7079263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ObjectType-Feature-1
Conceived and designed the experiments: DER JMF JAG DRB. Performed the experiments: DER JMF DBB. Analyzed the data: DER JAG DRB. Contributed reagents/materials/analysis tools: JAG DRB. Wrote the paper: DER JAG DRB.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0016649
PMID 21311751
PQID 1292172287
PQPubID 1436336
PageCount e16649
ParticipantIDs plos_journals_1292172287
doaj_primary_oai_doaj_org_article_56a2dccfba75418c85dafeac61d9080e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3032769
proquest_miscellaneous_907149672
proquest_miscellaneous_851478787
proquest_journals_1292172287
gale_infotracmisc_A476906278
gale_infotracacademiconefile_A476906278
gale_incontextgauss_ISR_A476906278
gale_incontextgauss_IOV_A476906278
gale_healthsolutions_A476906278
pubmed_primary_21311751
crossref_primary_10_1371_journal_pone_0016649
crossref_citationtrail_10_1371_journal_pone_0016649
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-02
PublicationDateYYYYMMDD 2011-02-02
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2011
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References LA Meitl (ref7) 2009; 73
YA Gorby (ref12) 2006; 103
RS Hartshorne (ref4) 2009; 106
DE Ross (ref5) 2007; 73
AS Beliaev (ref6) 2001; 39
HM Jensen (ref17) 2010
D Leys (ref24) 1999; 6
TM Maier (ref25) 2003; 43
CJ Morris (ref44) 1994; 302
SM Strycharz (ref45) 2010
CL Reardon (ref13) 2010; 8
CR Myers (ref31) 2002; 68
L Shi (ref3) 2007; 65
JR Guest (ref37) 1977; 130
C Schwalb (ref36) 2002; 30
CR Myers (ref1) 1988; 240
K Rabaey (ref18) 2010; 8
DK Newman (ref29) 2000; 405
E Marsili (ref40) 2008; 105
HH Hau (ref28) 2008; 74
CR Myers (ref34) 1997; 179
KB Gregory (ref21) 2005; 39
CW Saltikov (ref47) 2003; 100
KP Nevin (ref22) 2010
YJ Xiong (ref15) 2006; 128
RS Hartshorne (ref16) 2007; 12
SL Pealing (ref23) 1993; 32
H Richter (ref41) 2009; 2
O Bretschger (ref10) 2007; 73
CR Myers (ref2) 1990; 172
JN Butt (ref43) 2000; 78
D Baron (ref9) 2009; 284
D Coursolle (ref32) 2010; 77
M Firer-Sherwood (ref11) 2008; 13
B Schuetz (ref33) 2009; 75
SL Pealing (ref26) 1995; 34
E Marsili (ref30) 2008; 74
JM Myers (ref35) 2000; 182
DE Ross (ref14) 2009; 75
KB Gregory (ref19) 2004; 6
KL Turner (ref27) 1999; 38
SM Strycharz (ref20) 2008; 74
D Coursolle (ref8) 2010; 192
V Sharma (ref38) 1993; 175
S Srikanth (ref42) 2008; 99
H von Canstein (ref39) 2008; 74
M Pessanha (ref46) 2009; 1787
References_xml – volume: 130
  start-page: 1038
  year: 1977
  ident: ref37
  article-title: Menaquinone biosynthesis: mutants of Escherichia coli K-12 requiring 2-succinylbenzoate.
  publication-title: J Bacteriol
  doi: 10.1128/JB.130.3.1038-1046.1977
– volume: 74
  start-page: 6880
  year: 2008
  ident: ref28
  article-title: Mechanism and consequences of anaerobic respiration of cobalt by Shewanella oneidensis strain MR-1.
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00840-08
– volume: 284
  start-page: 28865
  year: 2009
  ident: ref9
  article-title: Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.043455
– volume: 73
  start-page: 7003
  year: 2007
  ident: ref10
  article-title: Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants.
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01087-07
– year: 2010
  ident: ref17
  article-title: Engineering of a synthetic electron conduit in living cells.
  doi: 10.1073/pnas.1009645107
– year: 2010
  ident: ref22
  article-title: Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds.
  doi: 10.1128/mBio.00103-10
– volume: 74
  start-page: 5943
  year: 2008
  ident: ref20
  article-title: Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi.
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00961-08
– volume: 405
  start-page: 94
  year: 2000
  ident: ref29
  article-title: A role for excreted quinones in extracellular electron transfer.
  publication-title: Nature
  doi: 10.1038/35011098
– volume: 30
  start-page: 658
  year: 2002
  ident: ref36
  article-title: The membrane-bound tetrahaem c-type cytochrome CymA interacts directly with the soluble fumarate reductase in Shewanella.
  publication-title: Biochem Soc Trans
  doi: 10.1042/bst0300658
– volume: 179
  start-page: 1143
  year: 1997
  ident: ref34
  article-title: Cloning and sequence of cymA a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1.
  publication-title: J Bacteriol
  doi: 10.1128/jb.179.4.1143-1152.1997
– volume: 182
  start-page: 67
  year: 2000
  ident: ref35
  article-title: Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone.
  publication-title: J Bacteriol
  doi: 10.1128/JB.182.1.67-75.2000
– volume: 302
  start-page: 587
  year: 1994
  ident: ref44
  article-title: Purification and properties of a novel cytochrome-flavocytochrome c from Shewanella putrefaciens.
  publication-title: Biochem J
  doi: 10.1042/bj3020587
– volume: 99
  start-page: 1065
  year: 2008
  ident: ref42
  article-title: Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes.
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.21671
– volume: 6
  start-page: 1113
  year: 1999
  ident: ref24
  article-title: Structure and mechanism of the flavocytochrome c fumarate reductase of Shewanella putrefaciens MR-1.
  publication-title: Nat Struct Biol
  doi: 10.1038/70051
– volume: 106
  start-page: 22169
  year: 2009
  ident: ref4
  article-title: Characterization of an electron conduit between bacteria and the extracellular environment.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0900086106
– volume: 74
  start-page: 615
  year: 2008
  ident: ref39
  article-title: Secretion of flavins by Shewanella species and their role in extracellular electron transfer.
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01387-07
– volume: 78
  start-page: 1001
  year: 2000
  ident: ref43
  article-title: Voltammetry of a flavocytochrome c(3): The lowest potential heme modulates fumarate reduction rates.
  publication-title: Biophysical Journal
  doi: 10.1016/S0006-3495(00)76658-6
– volume: 75
  start-page: 5218
  year: 2009
  ident: ref14
  article-title: Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR-1.
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00544-09
– volume: 13
  start-page: 849
  year: 2008
  ident: ref11
  article-title: Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window.
  publication-title: J Biol Inorg Chem
  doi: 10.1007/s00775-008-0398-z
– volume: 8
  start-page: 706
  year: 2010
  ident: ref18
  article-title: Microbial electrosynthesis - revisiting the electrical route for microbial production.
  publication-title: Nature Reviews Microbiology
  doi: 10.1038/nrmicro2422
– volume: 8
  start-page: 56
  year: 2010
  ident: ref13
  article-title: Role of outer-membrane cytochromes MtrC and OmcA in the biomineralization of ferrihydrite by Shewanella oneidensis MR-1.
  publication-title: Geobiol
  doi: 10.1111/j.1472-4669.2009.00226.x
– volume: 103
  start-page: 11358
  year: 2006
  ident: ref12
  article-title: Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0604517103
– volume: 240
  start-page: 1319
  year: 1988
  ident: ref1
  article-title: Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor.
  publication-title: Science
  doi: 10.1126/science.240.4857.1319
– volume: 38
  start-page: 3302
  year: 1999
  ident: ref27
  article-title: Redox properties of flavocytochrome c(3) from Shewanella frigidimarina NCIMB400.
  publication-title: Biochem
  doi: 10.1021/bi9826308
– volume: 77
  start-page: 995
  year: 2010
  ident: ref32
  article-title: Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1.
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2010.07266.x
– volume: 73
  start-page: 5292
  year: 2009
  ident: ref7
  article-title: Electrochemical interaction of Shewanella oneidensis MR-1 and its outer membrane cytochromes OmcA and MtrC with hematite electrodes.
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2009.06.021
– volume: 39
  start-page: 8943
  year: 2005
  ident: ref21
  article-title: Remediation and recovery of uranium from contaminated subsurface environments with electrodes.
  publication-title: Environ Sci Technol
  doi: 10.1021/es050457e
– volume: 2
  start-page: 506
  year: 2009
  ident: ref41
  article-title: Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer.
  publication-title: Energy Env Sci
  doi: 10.1039/b816647a
– year: 2010
  ident: ref45
  article-title: Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens.
– volume: 75
  start-page: 7789
  year: 2009
  ident: ref33
  article-title: Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1.
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01834-09
– volume: 105
  start-page: 3968
  year: 2008
  ident: ref40
  article-title: Shewanella secretes flavins that mediate extracellular electron transfer.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0710525105
– volume: 74
  start-page: 7329
  year: 2008
  ident: ref30
  article-title: Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms.
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00177-08
– volume: 43
  start-page: 312
  year: 2003
  ident: ref25
  article-title: Identification of the gene encoding the sole physiological fumarate reductase in Shewanella oneidensis MR-1.
  publication-title: J Basic Microbiol
  doi: 10.1002/jobm.200390034
– volume: 128
  start-page: 13978
  year: 2006
  ident: ref15
  article-title: High-affinity binding and direct electron transfer to solid metals by the Shewanella oneidensis MR-1 outer membrane c-type cytochrome OmcA.
  publication-title: J Amer Chem Soc
  doi: 10.1021/ja063526d
– volume: 172
  start-page: 6232
  year: 1990
  ident: ref2
  article-title: Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1.
  publication-title: J Bacteriol
  doi: 10.1128/jb.172.11.6232-6238.1990
– volume: 6
  start-page: 596
  year: 2004
  ident: ref19
  article-title: Graphite electrodes as electron donors for anaerobic respiration.
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2004.00593.x
– volume: 12
  start-page: 1083
  year: 2007
  ident: ref16
  article-title: Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors.
  publication-title: J Biol Inorg Chem
  doi: 10.1007/s00775-007-0278-y
– volume: 73
  start-page: 5797
  year: 2007
  ident: ref5
  article-title: Characterization of protein-protein interactions involved in iron reduction by Shewanella oneidensis MR-1.
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00146-07
– volume: 175
  start-page: 4917
  year: 1993
  ident: ref38
  article-title: Menaquinone (Vitamin-K2) biosynthesis - cloning, nucleotide sequencing, and expression of the menC gene from Escherichia coli.
  publication-title: J Bacteriol
  doi: 10.1128/jb.175.15.4917-4921.1993
– volume: 100
  start-page: 10983
  year: 2003
  ident: ref47
  article-title: Genetic identification of a respiratory arsenate reductase.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1834303100
– volume: 34
  start-page: 6153
  year: 1995
  ident: ref26
  article-title: Spectroscopic and kinetic studies of the tetraheme flavocytochrome-c from Shewanella putrefaciens NCIMB400.
  publication-title: Biochem
  doi: 10.1021/bi00018a018
– volume: 39
  start-page: 722
  year: 2001
  ident: ref6
  article-title: MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1.
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2001.02257.x
– volume: 1787
  start-page: 113
  year: 2009
  ident: ref46
  article-title: Tuning of functional heme reduction potentials in Shewanella fumarate reductases.
  publication-title: Biochimica Et Biophysica Acta-Bioenergetics
  doi: 10.1016/j.bbabio.2008.11.007
– volume: 32
  start-page: 3829
  year: 1993
  ident: ref23
  article-title: Sequence of the gene encoding flavocytochrome-c from Shewanella putrefaciens - a tetraheme flavoenzyme that is a soluble fumarate reductase related to the membrane-bound enzymes from other bacteria.
  publication-title: Biochemistry
  doi: 10.1021/bi00065a041
– volume: 68
  start-page: 5585
  year: 2002
  ident: ref31
  article-title: MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of Shewanella putrefaciens MR-1.
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.68.11.5585-5594.2002
– volume: 65
  start-page: 12
  year: 2007
  ident: ref3
  article-title: Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes.
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2007.05783.x
– volume: 192
  start-page: 467
  year: 2010
  ident: ref8
  article-title: The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis.
  publication-title: J Bacteriol
  doi: 10.1128/JB.00925-09
SSID ssj0053866
Score 2.5048397
Snippet Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain...
Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e16649
SubjectTerms Anchoring
ATP-Binding Cassette Transporters - metabolism
ATP-Binding Cassette Transporters - physiology
Bacterial Outer Membrane Proteins - metabolism
Bacterial Outer Membrane Proteins - physiology
Bacterial Proteins - metabolism
Bacterial Proteins - physiology
Biofilms
Biofilms - growth & development
Biology
Biosensing Techniques
Biosynthesis
Biotechnology
Biotechnology - methods
Biotechnology - trends
Cell Respiration - genetics
Cell Respiration - physiology
Chemical reactions
Chemistry
Cloning
Cytochrome
Cytochromes
Disruption
E coli
Electricity
Electrodes
Electron density
Electron flux
Electron fluxes
Electron transfer
Electron transport
Electron Transport - genetics
Electron Transport - physiology
Electrons
Energy Metabolism - physiology
Escherichia coli
Feasibility Studies
Flow
Fuel cells
Fumarates - metabolism
Gene deletion
Gene expression
Geobacter
Graphite
Hydrogen
Membrane proteins
Menaquinones
Metabolic Networks and Pathways - genetics
Metabolic Networks and Pathways - physiology
Metabolism
Microorganisms
Mutants
Organisms, Genetically Modified
Oxidation
Oxidation-Reduction
Physiological aspects
Plasmids
Protein interaction
Protein-protein interactions
Proteins
Quinone
Quinones
Reductase
Reduction
Reversed flow
Reversing
Shewanella - genetics
Shewanella - growth & development
Shewanella - metabolism
Shewanella - physiology
Shewanella oneidensis
Spacecraft components
Structural proteins
Voltammetry
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQn3hBjK8FBlgICXgIa2zHTngbiGkgARJsaG-W7Ti0UptUc6tp_z13iRs1aGI8IPWpPlfNffkuvvsdIS-NkRWcq9PUVyVLhfV1al2RpbkQlk2tFEXXSPvlqzw5E5_P8_OdUV9YE9bDA_eMO8ylYZVztTUqF1nhirwyNXgLmVUlRDsevS-cedtkqvfBYMVSxkY5rrLDKJe3q7bxePcgJWJn7hxEHV7_4JUnq0Ubrgs5_6yc3DmKju-SOzGGpEf9f98jt3xzj-xFKw30dYSSfnOfzE67qthA47SbcNVAwBfmgc4bGmb-0mCVi3lHcQc2nLlA25oirFP3EoECNV2uLygOLr40VxRCXFhFjFjwknTp16BDi3lYPiBnxx9PP5ykcbZC6lRRrlPPWSk8zpjGMjVnFeOyqmvOnTflVCjvpDWsVBYMVCjM-rjkcJZPLULqMckfkkkD3NwntFY1h6yFe-8z2DgtwaprJ8oqs947zhPCt4zWLgKP4_yLhe5u0xQkID3fNIpHR_EkJB12rXrgjRvo36MMB1qEze6-AGXSUZn0TcqUkOeoAbrvQR2MXx8J1QM6Fwl50VEgdEaDtTm_zCYE_enbz38g-vF9RPQqEtUtsMOZ2A8Bz4SQXCPKgxElOAA3Wt5Hfd1yJWgI4XDsGOTCsHOrw9cv02EZfxQ1rvHtJmiIwxG16W8kJba-lVKxhDzqjWLgPUMMJ5VnCVEjcxkJZ7zSzGcdtjlEVAwe7PH_kOYTcru_AWDwOSCT9cXGP4UQcm2fdd7iN290cp4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegvPCCGF8LDLAQEvAQ1sSOnfCCBmoZSAW0D7Q3y3GctlJJSt1q2n_PXeKGBU0DqU_xOWrufB-2735HyEutRQF-dRjaIotDntsyzE0ahQnneTzMBU-bQtrJV3F4yr-cJWf-wM35tMqtTWwMdVEbPCPfB7-EvZQgwH-__BVi1yi8XfUtNG6SWxF4GkzpSseftpYYdFkIXy7HZLTvpfN2WVcWbyCEQATNS-6oQe3vbPNguajdVYHn3_mTlxzS-C654yNJetCKfofcsNU9suN11dHXHlD6zX0yO2lyYx0dtT1v3EUFYZ-bOzqv6PHMnmvMddHv6AgLAbGq0dG6pEe2SdmophSo6WS9ot8hXDzXFxQCXRhFpFiwlXRi17CSFnP38wE5HY9OPh6GvsNCaGSarUPL4oxb7DSNyWomlzETRVkyZqzOhlxaI3IdZzIHNeUS935MMPDowxyB9WLBHpJBBdzcJbSUJYO9C7PWRjBxmIFul4ZnRZRbaxgLCNsyWhkPP45dMBaquVOTsA1p-aZQPMqLJyBhN2vZwm_8g_4DyrCjRfDs5kG9miqviyoROi6MKXMtEx6lJk0KXYIDElGRQQBtA_IcV4BqK1E7E6AOuGxhndOAvGgoEECjwgydqd44pz5_-_EfRMdHPaJXnqisgR1G-6oI-CYE5upR7vUowQyY3vAurtctV5z6ozAwc7uGrx6m3TC-FFdcZeuNUxCNI3bTdSQZFsBlQsYBedQqRcf7GJGcZBIFRPbUpSec_kg1nzUI5xBXxfBhj6__40_I7faEP4bfHhmsVxv7FELEdf6ssQO_AZanZ4o
  priority: 102
  providerName: ProQuest
Title Towards Electrosynthesis in Shewanella: Energetics of Reversing the Mtr Pathway for Reductive Metabolism
URI https://www.ncbi.nlm.nih.gov/pubmed/21311751
https://www.proquest.com/docview/1292172287
https://www.proquest.com/docview/851478787
https://www.proquest.com/docview/907149672
https://pubmed.ncbi.nlm.nih.gov/PMC3032769
https://doaj.org/article/56a2dccfba75418c85dafeac61d9080e
http://dx.doi.org/10.1371/journal.pone.0016649
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2TgheECsfK4xiISTgIVMTu3aChNBWtQykjqlbUd-ixHHaSiUpdavRF_527vIlgsqHkKo81HeVcr6zf67vfkfIiyAQEeyrHUtHnmPxUMdWqFzb6nIeOp1QcDcrpB1eiPMx_zjpTvZI2bO1MKDZebTDflLj1eLk29ftOwj4t1nXBmmXSifLNNF4syAE9_bJAexNEnsaDHl1rwDRLURRQPc7zYwemCGDpV3bqzJK_2rhbiwXqdmFSn9NrvxptxrcI3cLmElPc784JHs6aZJbeePJbZPc7pV93prksAhvQ18VHNSv75PZdZZOa2g_b5NjtgkgRTM3dJ7Qq5m-CTA9JnhD-1g7iIWQhqYxHeksyyOZUpCmw_WKXgLCvAm2FLAxjCK5LCyvdKjX4HyLufnygIwH_eveuVU0ZbCUdL21pZnjcY3NqTG_TYXSYSKKY8aUDrwOl1qJMHA8GUJkc4nHRSYYgIBOiFx8jmAPSSMBcx8RGsuYwXGHaa1tUOx4sBzEinuRHWqtGGsRVprfVwVjOTbOWPjZNZyEk0tuTR_nzy_mr0WsSmuZM3b8Rf4MZ7aSRb7t7It0NfWL8PW7InAipeIwkF1uu8rtRkEMe5awIw8wt26RZ-gXfl68Wq0a_imXORO02yLPMwnk3EgwqWcabIzxP3z6_A9CV6Oa0MtCKE7BHCooCingnZDLqyZ5XJMEx1K14SP04tIqxgfsh_3K4BANmqVn7x6m1TD-KHpcotON8QHAI93Tn0Q8rJnzhHRa5FEeKpXty8BrEVkLotrk1EeS-SwjRQco5sCLPf5vzSfkTn5f4MDnmDTWq41-CoBzHbbJvpxIeLo9G5-D921ycNa_uBy1s79w2tkag8_v_R-8K4fD
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeYAXxPhaYDALgYCHsMZO7AYJoQEtK1sH2jq0t5A4TlupJKVuVfWf4m_kLl8saBq8TOpTfY6a8_l35_rud4Q8C0MRg19t2zr2me1GOrEj1XFsz3Uj1o6E28kLaQdHYv_U_XzmnW2QX1UtDKZVVpiYA3WcKfyPfBf8EvZSggD_3eynjV2j8Ha1aqFRmMWBXq_gyGbe9j_C-j5nrNcdfti3y64CtpIdf2FrznxXY3dlTNBSkWRcxEnCudKh33alViIKmS8jME1X4nmHCw5erB0hmRwTHJ57jVx3OXhyrEzvfaqQH7BDiLI8j0tnt7SG17Ms1XjjIQQydp5zf3mXgNoXtGbTzFwU6P6dr3nOAfZuk1tl5Er3ClPbJBs6vUM2S2ww9GVJYP3qLhkP81xcQ7tFjx2zTiHMNBNDJyk9GetViLk14RvaxcJDrKI0NEvosc5TRNIRBWk6WMzpVwhPV-GaQmANo8hMC9hMB3oBljudmB_3yOmV6P4-aaWgzS1CE5lwOCtxrbUDE9s-YEmiXD92Iq0V5xbhlaIDVdKdY9eNaZDf4Uk49hR6C3B5gnJ5LGLXs2YF3cc_5N_jGtaySNadf5HNR0G59wNPhCxWKolC6blOR3W8OEzA4Qkn9iFg1xbZQQsIisrXGnKCPVcWNNIdizzNJZCwI8WMoFG4NCbof_n2H0Inxw2hF6VQkoE6VFhWYcA7IRFYQ3K7IQmwoxrDW2ivlVZM8GeDwszKhi8epvUwPhQtLtXZ0gQQ_SNX1GUiPhbc-UIyizwoNkWte4bMUdJzLCIb26WxOM2RdDLOGdUhjmPwYg8v_-E75Mb-cHAYHPaPDh6Rm8XtAoPPNmkt5kv9GMLTRfQkxwRKvl81CP0GSKWhXA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkRAviPG1wGAWAgEPWRs7sRMkhMbWamV0TPtAewuJ47SVSlLqVlP_Nf467pI0LGgavEzqU32OmvP5d-f67neEvIoikYBf7dg6CZjtxjq1Y-U7tue6MevEwvWLQtrBodg_cz-fe-dr5NeqFgbTKleYWAB1kiv8j7wNfgl7KUGA306rtIijvd7H6U8bO0jhTeuqnUZpIgd6eQHHN_Ohvwdr_ZqxXvd0d9-uOgzYSvrB3NacBa7GTsuYrKViybhI0pRzpaOg40qtRByxQMZgpq7Esw8XHDxaJ0ZiOSY4PPcWuS259HGP-bt1egngiBBVqR6XTruyjO1pnmm8_RAC2TsvucKiY0DtF1rTSW6uCnr_zt285Ax798m9KoqlO6XZrZM1nT0g6xVOGPq2IrN-95CMTou8XEO7Zb8ds8wg5DRjQ8cZPRnpiwjzbKL3tItFiFhRaWie0mNdpItkQwrSdDCf0SMIVS-iJYUgG0aRpRZwmg70HKx4MjY_HpGzG9H9Y9LKQJsbhKYy5XBu4lprByZ2AsCVVLlB4sRaK84twleKDlVFfY4dOCZhcZ8n4QhU6i3E5Qmr5bGIXc-altQf_5D_hGtYyyJxd_FFPhuGFQ6EnohYolQaR9JzHV_5XhKl4PyEkwQQvGuLbKEFhGUVbA0_4Y4rS0pp3yIvCwkk78hwGwyjhTFh_-u3_xA6OW4IvamE0hzUoaKqIgPeCUnBGpKbDUmAINUY3kB7XWnFhH82K8xc2fDVw7QexoeixWU6X5gQTgLIG3WdSIDFd4GQzCJPyk1R654hi5T0HIvIxnZpLE5zJBuPCnZ1iOkYvNjT63_4FrkD8BN-6R8ePCN3y4sGBp9N0prPFvo5RKrz-EUBCZR8v2kM-g11raVd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Electrosynthesis+in+Shewanella%3A+Energetics+of+Reversing+the+Mtr+Pathway+for+Reductive+Metabolism&rft.jtitle=PloS+one&rft.au=Ross%2C+Daniel+E.&rft.au=Flynn%2C+Jeffrey+M.&rft.au=Baron%2C+Daniel+B.&rft.au=Gralnick%2C+Jeffrey+A.&rft.date=2011-02-02&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=6&rft.issue=2&rft_id=info:doi/10.1371%2Fjournal.pone.0016649&rft_id=info%3Apmid%2F21311751&rft.externalDocID=PMC3032769
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon