Towards Electrosynthesis in Shewanella: Energetics of Reversing the Mtr Pathway for Reductive Metabolism
Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron f...
Saved in:
Published in | PloS one Vol. 6; no. 2; p. e16649 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
02.02.2011
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at -0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC, which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units. |
---|---|
AbstractList | Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at −0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC, which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units. Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at -0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC, which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units. Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at −0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC , which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units. Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at -0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC, which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units.Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at -0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC, which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units. |
Audience | Academic |
Author | Baron, Daniel B. Bond, Daniel R. Ross, Daniel E. Flynn, Jeffrey M. Gralnick, Jeffrey A. |
AuthorAffiliation | 1 The BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, United States of America 2 Department of Microbiology, University of Minnesota-Twin Cities, St. Paul, Minnesota, United States of America New England Biolabs, Inc., United States of America |
AuthorAffiliation_xml | – name: 1 The BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, United States of America – name: 2 Department of Microbiology, University of Minnesota-Twin Cities, St. Paul, Minnesota, United States of America – name: New England Biolabs, Inc., United States of America |
Author_xml | – sequence: 1 givenname: Daniel E. surname: Ross fullname: Ross, Daniel E. – sequence: 2 givenname: Jeffrey M. surname: Flynn fullname: Flynn, Jeffrey M. – sequence: 3 givenname: Daniel B. surname: Baron fullname: Baron, Daniel B. – sequence: 4 givenname: Jeffrey A. surname: Gralnick fullname: Gralnick, Jeffrey A. – sequence: 5 givenname: Daniel R. surname: Bond fullname: Bond, Daniel R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21311751$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk11v0zAUhiM0xD7gHyCIhATiosUfiR3vAmmaBlQaGtoGt5bjnDSeUruznZX9e9y1m9ppApQLR-c857XPa5_9bMc6C1n2GqMxphx_unKDt6ofz1N4jBBmrBDPsj0sKBkxgujOxv9uth_CFUIlrRh7ke0STDHmJd7Luku3UL4J-UkPOnoXbm3sIJiQG5tfdLBQFvpeHeYnFvwUotEhd21-Djfgg7HTPNH59-jzHyp2C3Wbt86nbDPoaG5SBqKqXW_C7GX2vFV9gFfr9SD7-eXk8vjb6PTs6-T46HSkeSXiCCgRBWCGaFkWTNecUNa0LaUalEAFB81qRQSvBaMFLxDHlFHGMKo54oIwepC9XenOexfk2qQgMREEc0IqnojJimicupJzb2bK30qnjLwLOD-VyqdGe5AlU6TRuq0VLwtc6apsVAtKM9wIVCFIWp_Xuw31DBoNNnrVb4luZ6zp5NTdSIoo4UwkgQ9rAe-uBwhRzkzQS8stuCFIkTosBEs2_IusSlzwit81-O4R-bQNa2qqUqfGti4dUC815VGRjoYY4VWixk9Q6WtgZnR6eq1J8a2Cj1sFiYnwO07VEIKcXJz_P3v2a5t9v8F2oPrYBdcP0TgbtsE3m1fycBf3bz4BxQrQ6bkHD-0DgpFcjta9XXI5WnI9Wqns8FGZNlEtt0-OmP7vxX8AQv8pIg |
CitedBy_id | crossref_primary_10_1016_j_energy_2018_06_171 crossref_primary_10_1016_j_bioelechem_2020_107498 crossref_primary_10_1016_j_jwpe_2024_105920 crossref_primary_10_1007_s41918_018_0020_1 crossref_primary_10_1039_D3NR00742A crossref_primary_10_1595_205651322X16548607638938 crossref_primary_10_1002_anie_201400463 crossref_primary_10_3389_fmicb_2015_00201 crossref_primary_10_3389_fmicb_2017_02481 crossref_primary_10_1186_s13068_014_0118_6 crossref_primary_10_1016_j_elecom_2016_12_002 crossref_primary_10_1039_C6EE02106A crossref_primary_10_1038_s41929_019_0408_2 crossref_primary_10_1073_pnas_1220074110 crossref_primary_10_1016_j_checat_2023_100561 crossref_primary_10_3389_fenrg_2018_00055 crossref_primary_10_1021_acssynbio_8b00498 crossref_primary_10_1016_j_xinn_2021_100104 crossref_primary_10_1016_j_jbiosc_2020_01_003 crossref_primary_10_1073_pnas_1305244110 crossref_primary_10_1016_j_cbpa_2018_06_007 crossref_primary_10_1007_s11431_019_9509_8 crossref_primary_10_1128_mBio_00420_12 crossref_primary_10_1002_bit_25723 crossref_primary_10_1016_j_jece_2024_112326 crossref_primary_10_1016_j_scitotenv_2024_177433 crossref_primary_10_1111_1751_7915_14175 crossref_primary_10_1039_D2CY01981G crossref_primary_10_1128_aem_00570_23 crossref_primary_10_1073_pnas_2418926122 crossref_primary_10_1016_j_biotechadv_2020_107682 crossref_primary_10_1016_j_ibiod_2020_105111 crossref_primary_10_1038_s43246_021_00173_8 crossref_primary_10_1002_bit_24628 crossref_primary_10_1016_j_watres_2016_05_028 crossref_primary_10_1016_j_bios_2014_12_035 crossref_primary_10_1038_s41598_017_08877_z crossref_primary_10_1038_s41396_020_0595_5 crossref_primary_10_1016_j_isci_2021_102294 crossref_primary_10_1016_j_scitotenv_2022_156501 crossref_primary_10_1038_ncomms4391 crossref_primary_10_1021_acs_analchem_6b03538 crossref_primary_10_1128_mBio_00496_15 crossref_primary_10_1038_s41570_017_0024 crossref_primary_10_1111_1751_7915_12400 crossref_primary_10_3389_fenrg_2019_00121 crossref_primary_10_1016_j_bios_2018_01_032 crossref_primary_10_1039_D3EM00224A crossref_primary_10_1073_pnas_2407987122 crossref_primary_10_1002_jctb_4657 crossref_primary_10_1109_MPOT_2016_2612478 crossref_primary_10_1073_pnas_1800869115 crossref_primary_10_1186_s40643_019_0245_9 crossref_primary_10_1039_c3ee00071k crossref_primary_10_1016_j_biortech_2013_02_072 crossref_primary_10_3389_fmicb_2015_00575 crossref_primary_10_1016_j_rser_2021_111367 crossref_primary_10_1039_C6CC02721K crossref_primary_10_3390_fermentation9070625 crossref_primary_10_1038_s41529_023_00416_8 crossref_primary_10_1002_celc_202200965 crossref_primary_10_1063_5_0154211 crossref_primary_10_1016_j_procbio_2018_04_019 crossref_primary_10_1038_s42004_020_0316_z crossref_primary_10_1016_j_cej_2024_156535 crossref_primary_10_3390_app14156733 crossref_primary_10_1016_j_ymben_2023_08_004 crossref_primary_10_1128_AEM_01460_12 crossref_primary_10_1128_AEM_01253_20 crossref_primary_10_1002_elsc_201600105 crossref_primary_10_1016_j_bios_2019_111571 crossref_primary_10_1128_mbio_02904_21 crossref_primary_10_1038_srep06961 crossref_primary_10_1016_j_envres_2023_115843 crossref_primary_10_1007_s10295_020_02309_0 crossref_primary_10_1016_j_ibiod_2019_104842 crossref_primary_10_1146_annurev_micro_092611_150104 crossref_primary_10_1039_D3CS00537B crossref_primary_10_1126_sciadv_aao5682 crossref_primary_10_1080_10643389_2020_1773728 crossref_primary_10_1098_rsbl_2019_0694 crossref_primary_10_1016_j_biortech_2017_05_077 crossref_primary_10_1016_j_copbio_2013_02_012 crossref_primary_10_1039_C6RA04734C crossref_primary_10_1111_mmi_14067 crossref_primary_10_3389_fbioe_2021_786416 crossref_primary_10_1016_j_biortech_2018_09_133 crossref_primary_10_1016_j_resconrec_2022_106687 crossref_primary_10_1016_j_joule_2024_10_005 crossref_primary_10_3389_fmicb_2019_00170 crossref_primary_10_1016_j_jwpe_2023_104580 crossref_primary_10_1128_aem_01865_24 crossref_primary_10_1016_j_watres_2022_118553 crossref_primary_10_1007_s11356_024_35321_3 crossref_primary_10_1021_acs_iecr_8b00519 crossref_primary_10_1002_elan_201900686 crossref_primary_10_1002_celc_201402168 crossref_primary_10_1093_femsec_fiy222 crossref_primary_10_1002_bit_27305 crossref_primary_10_1021_jacs_4c12311 crossref_primary_10_1007_s00253_011_3653_0 crossref_primary_10_1007_s11274_018_2576_7 crossref_primary_10_1038_s42003_021_02454_x crossref_primary_10_1016_j_chemosphere_2024_141505 crossref_primary_10_1002_jctb_5658 crossref_primary_10_1038_ismej_2014_264 crossref_primary_10_1128_AEM_02947_14 crossref_primary_10_3390_en14175389 crossref_primary_10_1128_AEM_02716_20 crossref_primary_10_1016_j_jhazmat_2020_122018 crossref_primary_10_1016_j_bioelechem_2017_07_013 crossref_primary_10_1021_jacs_2c00934 crossref_primary_10_1002_celc_201402194 crossref_primary_10_1128_aem_01387_23 crossref_primary_10_1016_j_colsurfb_2023_113383 crossref_primary_10_1042_BST20120098 crossref_primary_10_1016_j_procbio_2012_07_032 crossref_primary_10_1016_j_cbpa_2018_06_021 crossref_primary_10_3390_catal10121427 crossref_primary_10_1039_C7EE00282C crossref_primary_10_1039_D1EN01092A crossref_primary_10_1016_j_watres_2014_01_052 crossref_primary_10_1128_AEM_00790_18 crossref_primary_10_1016_j_aca_2023_341046 crossref_primary_10_1016_j_jbiosc_2023_05_001 crossref_primary_10_1111_1751_7915_14236 crossref_primary_10_1021_acssynbio_3c00684 crossref_primary_10_1186_s12866_015_0406_8 crossref_primary_10_1016_j_biortech_2016_03_052 crossref_primary_10_1002_aelm_202300019 crossref_primary_10_1002_aenm_201501535 crossref_primary_10_1007_s00253_014_6005_z crossref_primary_10_1016_j_biotechadv_2018_07_001 crossref_primary_10_1016_j_ymben_2025_02_002 crossref_primary_10_1038_ncomms13270 crossref_primary_10_1016_j_cej_2024_150850 crossref_primary_10_1128_mBio_02203_17 crossref_primary_10_3389_fmicb_2022_815366 crossref_primary_10_1111_febs_13269 crossref_primary_10_3389_fmicb_2019_00410 crossref_primary_10_1016_j_jece_2023_110708 crossref_primary_10_1021_acs_biochem_8b00937 crossref_primary_10_1002_ange_202305189 crossref_primary_10_1002_aic_16897 crossref_primary_10_1002_adfm_201404541 crossref_primary_10_1186_s13068_016_0426_0 crossref_primary_10_3389_fmicb_2018_01512 crossref_primary_10_1080_07388551_2023_2167065 crossref_primary_10_1016_j_ymben_2017_12_003 crossref_primary_10_1016_j_biortech_2021_126553 crossref_primary_10_1039_C9CS00496C crossref_primary_10_1128_mSystems_00002_17 crossref_primary_10_1360_SSC_2024_0203 crossref_primary_10_1016_j_bej_2022_108772 crossref_primary_10_1021_acscatal_0c03594 crossref_primary_10_1021_jacs_7b11135 crossref_primary_10_1186_s13036_019_0162_7 crossref_primary_10_3389_fmicb_2018_03029 crossref_primary_10_1016_j_biotechadv_2024_108372 crossref_primary_10_1111_1462_2920_16314 crossref_primary_10_1038_ismej_2014_82 crossref_primary_10_3389_fbioe_2019_00060 crossref_primary_10_1371_journal_pone_0184994 crossref_primary_10_1016_j_bioelechem_2024_108723 crossref_primary_10_1039_C4MB00386A crossref_primary_10_1016_j_pecs_2017_07_003 crossref_primary_10_1016_j_bej_2023_108928 crossref_primary_10_1007_s00253_013_5396_6 crossref_primary_10_1016_j_biortech_2020_123402 crossref_primary_10_1016_j_ymben_2018_03_015 crossref_primary_10_1002_anie_201407004 crossref_primary_10_1186_s12934_019_1067_3 crossref_primary_10_3389_fmicb_2022_852527 crossref_primary_10_1016_j_bios_2017_07_008 crossref_primary_10_1016_j_isci_2021_102682 crossref_primary_10_1016_j_electacta_2023_141924 crossref_primary_10_1038_s41467_023_43524_4 crossref_primary_10_1074_jbc_M112_348813 crossref_primary_10_1016_j_bioelechem_2017_10_001 crossref_primary_10_1128_AEM_01154_18 crossref_primary_10_1002_ange_201400463 crossref_primary_10_1016_j_envint_2020_106006 crossref_primary_10_1016_j_electacta_2019_134838 crossref_primary_10_1071_MA17037 crossref_primary_10_1007_s12566_012_0033_x crossref_primary_10_1016_j_tcb_2012_09_002 crossref_primary_10_1016_j_biotechadv_2023_108098 crossref_primary_10_1016_j_jclepro_2019_02_172 crossref_primary_10_1128_AEM_02134_18 crossref_primary_10_1016_j_jece_2021_106922 crossref_primary_10_1016_j_bbabio_2013_03_010 crossref_primary_10_1128_msystems_00038_23 crossref_primary_10_1016_j_biotechadv_2019_107468 crossref_primary_10_3389_fmicb_2021_714508 crossref_primary_10_1016_j_electacta_2024_143967 crossref_primary_10_1016_j_synbio_2020_08_004 crossref_primary_10_1021_acs_chemrev_0c00472 crossref_primary_10_1016_j_nanoen_2018_05_072 crossref_primary_10_1042_BST20120150 crossref_primary_10_1093_bbb_zbab088 crossref_primary_10_3389_fbioe_2020_00010 crossref_primary_10_1021_acs_analchem_2c01384 crossref_primary_10_1002_cbic_201600339 crossref_primary_10_1116_6_0000199 crossref_primary_10_1039_D4SC00864B crossref_primary_10_1016_j_jelechem_2022_116387 crossref_primary_10_1016_j_jes_2024_04_042 crossref_primary_10_1021_sb500331x crossref_primary_10_3390_microorganisms13030631 crossref_primary_10_1002_celc_202101423 crossref_primary_10_1039_C6EM00219F crossref_primary_10_1016_j_ibiod_2022_105439 crossref_primary_10_1021_acsabm_4c01276 crossref_primary_10_1016_j_watres_2024_122417 crossref_primary_10_1039_c2ee21594b crossref_primary_10_1073_pnas_1818003116 crossref_primary_10_1002_ange_201407004 crossref_primary_10_1186_s12859_014_0410_2 crossref_primary_10_1021_acsabm_4c00749 crossref_primary_10_1073_pnas_1617615114 crossref_primary_10_1099_ijsem_0_006044 crossref_primary_10_1002_adma_201707072 crossref_primary_10_1111_1462_2920_15942 crossref_primary_10_1371_journal_pone_0258380 crossref_primary_10_1002_anie_202305189 crossref_primary_10_1371_journal_pone_0138813 crossref_primary_10_1128_aem_00609_23 crossref_primary_10_1021_cb300605s crossref_primary_10_1039_C6CP07595A crossref_primary_10_1002_celc_201402239 crossref_primary_10_1016_j_bioelechem_2018_07_015 crossref_primary_10_3389_fbioe_2022_913077 crossref_primary_10_3389_fmicb_2018_03293 crossref_primary_10_1021_acsnano_2c10203 crossref_primary_10_1002_adma_202203480 crossref_primary_10_1021_ja405072z crossref_primary_10_1371_journal_pone_0154017 crossref_primary_10_1016_j_electacta_2023_143191 crossref_primary_10_1128_AEM_00852_19 crossref_primary_10_1134_S0003683817090034 crossref_primary_10_1016_j_xcrp_2023_101433 crossref_primary_10_1186_s40643_023_00685_w crossref_primary_10_1016_j_electacta_2019_05_012 crossref_primary_10_1039_c3cc42570c crossref_primary_10_1016_j_aca_2017_06_053 crossref_primary_10_1021_acs_jpcc_6b00349 crossref_primary_10_1016_j_bioelechem_2022_108054 crossref_primary_10_1007_s00216_022_03919_6 crossref_primary_10_1038_s41467_019_09377_6 crossref_primary_10_1016_j_biotechadv_2019_02_007 crossref_primary_10_1038_nrmicro_2016_93 crossref_primary_10_1098_rsif_2014_1117 crossref_primary_10_1016_j_bioelechem_2018_02_003 crossref_primary_10_1039_C7GC01801K crossref_primary_10_1021_pr3007914 crossref_primary_10_1016_j_bios_2015_08_035 crossref_primary_10_1042_BST20120129 crossref_primary_10_1016_j_biortech_2025_132324 |
Cites_doi | 10.1128/JB.130.3.1038-1046.1977 10.1128/AEM.00840-08 10.1074/jbc.M109.043455 10.1128/AEM.01087-07 10.1073/pnas.1009645107 10.1128/mBio.00103-10 10.1128/AEM.00961-08 10.1038/35011098 10.1042/bst0300658 10.1128/jb.179.4.1143-1152.1997 10.1128/JB.182.1.67-75.2000 10.1042/bj3020587 10.1002/bit.21671 10.1038/70051 10.1073/pnas.0900086106 10.1128/AEM.01387-07 10.1016/S0006-3495(00)76658-6 10.1128/AEM.00544-09 10.1007/s00775-008-0398-z 10.1038/nrmicro2422 10.1111/j.1472-4669.2009.00226.x 10.1073/pnas.0604517103 10.1126/science.240.4857.1319 10.1021/bi9826308 10.1111/j.1365-2958.2010.07266.x 10.1016/j.gca.2009.06.021 10.1021/es050457e 10.1039/b816647a 10.1128/AEM.01834-09 10.1073/pnas.0710525105 10.1128/AEM.00177-08 10.1002/jobm.200390034 10.1021/ja063526d 10.1128/jb.172.11.6232-6238.1990 10.1111/j.1462-2920.2004.00593.x 10.1007/s00775-007-0278-y 10.1128/AEM.00146-07 10.1128/jb.175.15.4917-4921.1993 10.1073/pnas.1834303100 10.1021/bi00018a018 10.1046/j.1365-2958.2001.02257.x 10.1016/j.bbabio.2008.11.007 10.1021/bi00065a041 10.1128/AEM.68.11.5585-5594.2002 10.1111/j.1365-2958.2007.05783.x 10.1128/JB.00925-09 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2011 Public Library of Science 2011 Ross et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Ross et al. 2011 |
Copyright_xml | – notice: COPYRIGHT 2011 Public Library of Science – notice: 2011 Ross et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Ross et al. 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0016649 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Opposing Viewpoints In Context Science in Context ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database Bacteriology Abstracts (Microbiology B) MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Chemistry Biology |
DocumentTitleAlternate | Reversibility of the Mtr Pathway in S. oneidensis |
EISSN | 1932-6203 |
ExternalDocumentID | 1292172287 oai_doaj_org_article_56a2dccfba75418c85dafeac61d9080e PMC3032769 2898404471 A476906278 21311751 10_1371_journal_pone_0016649 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Evaluation Study Journal Article |
GeographicLocations | United States--US Minnesota |
GeographicLocations_xml | – name: Minnesota – name: United States--US |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PYCSY RIG RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. BBORY CGR CUY CVF ECM EIF NPM PMFND 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 7X8 5PM PUEGO - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c789t-e3294e16035546cb7236dff33cea9047ec6ba297b9634740713636610b7079263 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:12:36 EST 2021 Wed Aug 27 00:58:35 EDT 2025 Thu Aug 21 14:09:11 EDT 2025 Fri Jul 11 16:02:49 EDT 2025 Thu Jul 10 23:29:40 EDT 2025 Fri Jul 25 12:14:31 EDT 2025 Tue Jun 17 20:57:20 EDT 2025 Tue Jun 10 20:27:28 EDT 2025 Fri Jun 27 05:04:45 EDT 2025 Fri Jun 27 03:55:15 EDT 2025 Thu May 22 21:20:45 EDT 2025 Wed Feb 19 02:30:56 EST 2025 Thu Apr 24 23:06:43 EDT 2025 Tue Jul 01 03:18:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c789t-e3294e16035546cb7236dff33cea9047ec6ba297b9634740713636610b7079263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 ObjectType-Feature-1 Conceived and designed the experiments: DER JMF JAG DRB. Performed the experiments: DER JMF DBB. Analyzed the data: DER JAG DRB. Contributed reagents/materials/analysis tools: JAG DRB. Wrote the paper: DER JAG DRB. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0016649 |
PMID | 21311751 |
PQID | 1292172287 |
PQPubID | 1436336 |
PageCount | e16649 |
ParticipantIDs | plos_journals_1292172287 doaj_primary_oai_doaj_org_article_56a2dccfba75418c85dafeac61d9080e pubmedcentral_primary_oai_pubmedcentral_nih_gov_3032769 proquest_miscellaneous_907149672 proquest_miscellaneous_851478787 proquest_journals_1292172287 gale_infotracmisc_A476906278 gale_infotracacademiconefile_A476906278 gale_incontextgauss_ISR_A476906278 gale_incontextgauss_IOV_A476906278 gale_healthsolutions_A476906278 pubmed_primary_21311751 crossref_primary_10_1371_journal_pone_0016649 crossref_citationtrail_10_1371_journal_pone_0016649 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-02 |
PublicationDateYYYYMMDD | 2011-02-02 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2011 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | LA Meitl (ref7) 2009; 73 YA Gorby (ref12) 2006; 103 RS Hartshorne (ref4) 2009; 106 DE Ross (ref5) 2007; 73 AS Beliaev (ref6) 2001; 39 HM Jensen (ref17) 2010 D Leys (ref24) 1999; 6 TM Maier (ref25) 2003; 43 CJ Morris (ref44) 1994; 302 SM Strycharz (ref45) 2010 CL Reardon (ref13) 2010; 8 CR Myers (ref31) 2002; 68 L Shi (ref3) 2007; 65 JR Guest (ref37) 1977; 130 C Schwalb (ref36) 2002; 30 CR Myers (ref1) 1988; 240 K Rabaey (ref18) 2010; 8 DK Newman (ref29) 2000; 405 E Marsili (ref40) 2008; 105 HH Hau (ref28) 2008; 74 CR Myers (ref34) 1997; 179 KB Gregory (ref21) 2005; 39 CW Saltikov (ref47) 2003; 100 KP Nevin (ref22) 2010 YJ Xiong (ref15) 2006; 128 RS Hartshorne (ref16) 2007; 12 SL Pealing (ref23) 1993; 32 H Richter (ref41) 2009; 2 O Bretschger (ref10) 2007; 73 CR Myers (ref2) 1990; 172 JN Butt (ref43) 2000; 78 D Baron (ref9) 2009; 284 D Coursolle (ref32) 2010; 77 M Firer-Sherwood (ref11) 2008; 13 B Schuetz (ref33) 2009; 75 SL Pealing (ref26) 1995; 34 E Marsili (ref30) 2008; 74 JM Myers (ref35) 2000; 182 DE Ross (ref14) 2009; 75 KB Gregory (ref19) 2004; 6 KL Turner (ref27) 1999; 38 SM Strycharz (ref20) 2008; 74 D Coursolle (ref8) 2010; 192 V Sharma (ref38) 1993; 175 S Srikanth (ref42) 2008; 99 H von Canstein (ref39) 2008; 74 M Pessanha (ref46) 2009; 1787 |
References_xml | – volume: 130 start-page: 1038 year: 1977 ident: ref37 article-title: Menaquinone biosynthesis: mutants of Escherichia coli K-12 requiring 2-succinylbenzoate. publication-title: J Bacteriol doi: 10.1128/JB.130.3.1038-1046.1977 – volume: 74 start-page: 6880 year: 2008 ident: ref28 article-title: Mechanism and consequences of anaerobic respiration of cobalt by Shewanella oneidensis strain MR-1. publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00840-08 – volume: 284 start-page: 28865 year: 2009 ident: ref9 article-title: Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. publication-title: J Biol Chem doi: 10.1074/jbc.M109.043455 – volume: 73 start-page: 7003 year: 2007 ident: ref10 article-title: Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01087-07 – year: 2010 ident: ref17 article-title: Engineering of a synthetic electron conduit in living cells. doi: 10.1073/pnas.1009645107 – year: 2010 ident: ref22 article-title: Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. doi: 10.1128/mBio.00103-10 – volume: 74 start-page: 5943 year: 2008 ident: ref20 article-title: Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00961-08 – volume: 405 start-page: 94 year: 2000 ident: ref29 article-title: A role for excreted quinones in extracellular electron transfer. publication-title: Nature doi: 10.1038/35011098 – volume: 30 start-page: 658 year: 2002 ident: ref36 article-title: The membrane-bound tetrahaem c-type cytochrome CymA interacts directly with the soluble fumarate reductase in Shewanella. publication-title: Biochem Soc Trans doi: 10.1042/bst0300658 – volume: 179 start-page: 1143 year: 1997 ident: ref34 article-title: Cloning and sequence of cymA a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. publication-title: J Bacteriol doi: 10.1128/jb.179.4.1143-1152.1997 – volume: 182 start-page: 67 year: 2000 ident: ref35 article-title: Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. publication-title: J Bacteriol doi: 10.1128/JB.182.1.67-75.2000 – volume: 302 start-page: 587 year: 1994 ident: ref44 article-title: Purification and properties of a novel cytochrome-flavocytochrome c from Shewanella putrefaciens. publication-title: Biochem J doi: 10.1042/bj3020587 – volume: 99 start-page: 1065 year: 2008 ident: ref42 article-title: Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes. publication-title: Biotechnol Bioeng doi: 10.1002/bit.21671 – volume: 6 start-page: 1113 year: 1999 ident: ref24 article-title: Structure and mechanism of the flavocytochrome c fumarate reductase of Shewanella putrefaciens MR-1. publication-title: Nat Struct Biol doi: 10.1038/70051 – volume: 106 start-page: 22169 year: 2009 ident: ref4 article-title: Characterization of an electron conduit between bacteria and the extracellular environment. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0900086106 – volume: 74 start-page: 615 year: 2008 ident: ref39 article-title: Secretion of flavins by Shewanella species and their role in extracellular electron transfer. publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01387-07 – volume: 78 start-page: 1001 year: 2000 ident: ref43 article-title: Voltammetry of a flavocytochrome c(3): The lowest potential heme modulates fumarate reduction rates. publication-title: Biophysical Journal doi: 10.1016/S0006-3495(00)76658-6 – volume: 75 start-page: 5218 year: 2009 ident: ref14 article-title: Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR-1. publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00544-09 – volume: 13 start-page: 849 year: 2008 ident: ref11 article-title: Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window. publication-title: J Biol Inorg Chem doi: 10.1007/s00775-008-0398-z – volume: 8 start-page: 706 year: 2010 ident: ref18 article-title: Microbial electrosynthesis - revisiting the electrical route for microbial production. publication-title: Nature Reviews Microbiology doi: 10.1038/nrmicro2422 – volume: 8 start-page: 56 year: 2010 ident: ref13 article-title: Role of outer-membrane cytochromes MtrC and OmcA in the biomineralization of ferrihydrite by Shewanella oneidensis MR-1. publication-title: Geobiol doi: 10.1111/j.1472-4669.2009.00226.x – volume: 103 start-page: 11358 year: 2006 ident: ref12 article-title: Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0604517103 – volume: 240 start-page: 1319 year: 1988 ident: ref1 article-title: Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. publication-title: Science doi: 10.1126/science.240.4857.1319 – volume: 38 start-page: 3302 year: 1999 ident: ref27 article-title: Redox properties of flavocytochrome c(3) from Shewanella frigidimarina NCIMB400. publication-title: Biochem doi: 10.1021/bi9826308 – volume: 77 start-page: 995 year: 2010 ident: ref32 article-title: Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1. publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2010.07266.x – volume: 73 start-page: 5292 year: 2009 ident: ref7 article-title: Electrochemical interaction of Shewanella oneidensis MR-1 and its outer membrane cytochromes OmcA and MtrC with hematite electrodes. publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2009.06.021 – volume: 39 start-page: 8943 year: 2005 ident: ref21 article-title: Remediation and recovery of uranium from contaminated subsurface environments with electrodes. publication-title: Environ Sci Technol doi: 10.1021/es050457e – volume: 2 start-page: 506 year: 2009 ident: ref41 article-title: Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. publication-title: Energy Env Sci doi: 10.1039/b816647a – year: 2010 ident: ref45 article-title: Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. – volume: 75 start-page: 7789 year: 2009 ident: ref33 article-title: Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1. publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01834-09 – volume: 105 start-page: 3968 year: 2008 ident: ref40 article-title: Shewanella secretes flavins that mediate extracellular electron transfer. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0710525105 – volume: 74 start-page: 7329 year: 2008 ident: ref30 article-title: Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms. publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00177-08 – volume: 43 start-page: 312 year: 2003 ident: ref25 article-title: Identification of the gene encoding the sole physiological fumarate reductase in Shewanella oneidensis MR-1. publication-title: J Basic Microbiol doi: 10.1002/jobm.200390034 – volume: 128 start-page: 13978 year: 2006 ident: ref15 article-title: High-affinity binding and direct electron transfer to solid metals by the Shewanella oneidensis MR-1 outer membrane c-type cytochrome OmcA. publication-title: J Amer Chem Soc doi: 10.1021/ja063526d – volume: 172 start-page: 6232 year: 1990 ident: ref2 article-title: Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1. publication-title: J Bacteriol doi: 10.1128/jb.172.11.6232-6238.1990 – volume: 6 start-page: 596 year: 2004 ident: ref19 article-title: Graphite electrodes as electron donors for anaerobic respiration. publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2004.00593.x – volume: 12 start-page: 1083 year: 2007 ident: ref16 article-title: Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors. publication-title: J Biol Inorg Chem doi: 10.1007/s00775-007-0278-y – volume: 73 start-page: 5797 year: 2007 ident: ref5 article-title: Characterization of protein-protein interactions involved in iron reduction by Shewanella oneidensis MR-1. publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00146-07 – volume: 175 start-page: 4917 year: 1993 ident: ref38 article-title: Menaquinone (Vitamin-K2) biosynthesis - cloning, nucleotide sequencing, and expression of the menC gene from Escherichia coli. publication-title: J Bacteriol doi: 10.1128/jb.175.15.4917-4921.1993 – volume: 100 start-page: 10983 year: 2003 ident: ref47 article-title: Genetic identification of a respiratory arsenate reductase. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1834303100 – volume: 34 start-page: 6153 year: 1995 ident: ref26 article-title: Spectroscopic and kinetic studies of the tetraheme flavocytochrome-c from Shewanella putrefaciens NCIMB400. publication-title: Biochem doi: 10.1021/bi00018a018 – volume: 39 start-page: 722 year: 2001 ident: ref6 article-title: MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2001.02257.x – volume: 1787 start-page: 113 year: 2009 ident: ref46 article-title: Tuning of functional heme reduction potentials in Shewanella fumarate reductases. publication-title: Biochimica Et Biophysica Acta-Bioenergetics doi: 10.1016/j.bbabio.2008.11.007 – volume: 32 start-page: 3829 year: 1993 ident: ref23 article-title: Sequence of the gene encoding flavocytochrome-c from Shewanella putrefaciens - a tetraheme flavoenzyme that is a soluble fumarate reductase related to the membrane-bound enzymes from other bacteria. publication-title: Biochemistry doi: 10.1021/bi00065a041 – volume: 68 start-page: 5585 year: 2002 ident: ref31 article-title: MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of Shewanella putrefaciens MR-1. publication-title: Appl Environ Microbiol doi: 10.1128/AEM.68.11.5585-5594.2002 – volume: 65 start-page: 12 year: 2007 ident: ref3 article-title: Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2007.05783.x – volume: 192 start-page: 467 year: 2010 ident: ref8 article-title: The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. publication-title: J Bacteriol doi: 10.1128/JB.00925-09 |
SSID | ssj0053866 |
Score | 2.5048397 |
Snippet | Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain... Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e16649 |
SubjectTerms | Anchoring ATP-Binding Cassette Transporters - metabolism ATP-Binding Cassette Transporters - physiology Bacterial Outer Membrane Proteins - metabolism Bacterial Outer Membrane Proteins - physiology Bacterial Proteins - metabolism Bacterial Proteins - physiology Biofilms Biofilms - growth & development Biology Biosensing Techniques Biosynthesis Biotechnology Biotechnology - methods Biotechnology - trends Cell Respiration - genetics Cell Respiration - physiology Chemical reactions Chemistry Cloning Cytochrome Cytochromes Disruption E coli Electricity Electrodes Electron density Electron flux Electron fluxes Electron transfer Electron transport Electron Transport - genetics Electron Transport - physiology Electrons Energy Metabolism - physiology Escherichia coli Feasibility Studies Flow Fuel cells Fumarates - metabolism Gene deletion Gene expression Geobacter Graphite Hydrogen Membrane proteins Menaquinones Metabolic Networks and Pathways - genetics Metabolic Networks and Pathways - physiology Metabolism Microorganisms Mutants Organisms, Genetically Modified Oxidation Oxidation-Reduction Physiological aspects Plasmids Protein interaction Protein-protein interactions Proteins Quinone Quinones Reductase Reduction Reversed flow Reversing Shewanella - genetics Shewanella - growth & development Shewanella - metabolism Shewanella - physiology Shewanella oneidensis Spacecraft components Structural proteins Voltammetry |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQn3hBjK8FBlgICXgIa2zHTngbiGkgARJsaG-W7Ti0UptUc6tp_z13iRs1aGI8IPWpPlfNffkuvvsdIS-NkRWcq9PUVyVLhfV1al2RpbkQlk2tFEXXSPvlqzw5E5_P8_OdUV9YE9bDA_eMO8ylYZVztTUqF1nhirwyNXgLmVUlRDsevS-cedtkqvfBYMVSxkY5rrLDKJe3q7bxePcgJWJn7hxEHV7_4JUnq0Ubrgs5_6yc3DmKju-SOzGGpEf9f98jt3xzj-xFKw30dYSSfnOfzE67qthA47SbcNVAwBfmgc4bGmb-0mCVi3lHcQc2nLlA25oirFP3EoECNV2uLygOLr40VxRCXFhFjFjwknTp16BDi3lYPiBnxx9PP5ykcbZC6lRRrlPPWSk8zpjGMjVnFeOyqmvOnTflVCjvpDWsVBYMVCjM-rjkcJZPLULqMckfkkkD3NwntFY1h6yFe-8z2DgtwaprJ8oqs947zhPCt4zWLgKP4_yLhe5u0xQkID3fNIpHR_EkJB12rXrgjRvo36MMB1qEze6-AGXSUZn0TcqUkOeoAbrvQR2MXx8J1QM6Fwl50VEgdEaDtTm_zCYE_enbz38g-vF9RPQqEtUtsMOZ2A8Bz4SQXCPKgxElOAA3Wt5Hfd1yJWgI4XDsGOTCsHOrw9cv02EZfxQ1rvHtJmiIwxG16W8kJba-lVKxhDzqjWLgPUMMJ5VnCVEjcxkJZ7zSzGcdtjlEVAwe7PH_kOYTcru_AWDwOSCT9cXGP4UQcm2fdd7iN290cp4 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegvPCCGF8LDLAQEvAQ1sSOnfCCBmoZSAW0D7Q3y3GctlJJSt1q2n_PXeKGBU0DqU_xOWrufB-2735HyEutRQF-dRjaIotDntsyzE0ahQnneTzMBU-bQtrJV3F4yr-cJWf-wM35tMqtTWwMdVEbPCPfB7-EvZQgwH-__BVi1yi8XfUtNG6SWxF4GkzpSseftpYYdFkIXy7HZLTvpfN2WVcWbyCEQATNS-6oQe3vbPNguajdVYHn3_mTlxzS-C654yNJetCKfofcsNU9suN11dHXHlD6zX0yO2lyYx0dtT1v3EUFYZ-bOzqv6PHMnmvMddHv6AgLAbGq0dG6pEe2SdmophSo6WS9ot8hXDzXFxQCXRhFpFiwlXRi17CSFnP38wE5HY9OPh6GvsNCaGSarUPL4oxb7DSNyWomlzETRVkyZqzOhlxaI3IdZzIHNeUS935MMPDowxyB9WLBHpJBBdzcJbSUJYO9C7PWRjBxmIFul4ZnRZRbaxgLCNsyWhkPP45dMBaquVOTsA1p-aZQPMqLJyBhN2vZwm_8g_4DyrCjRfDs5kG9miqviyoROi6MKXMtEx6lJk0KXYIDElGRQQBtA_IcV4BqK1E7E6AOuGxhndOAvGgoEECjwgydqd44pz5_-_EfRMdHPaJXnqisgR1G-6oI-CYE5upR7vUowQyY3vAurtctV5z6ozAwc7uGrx6m3TC-FFdcZeuNUxCNI3bTdSQZFsBlQsYBedQqRcf7GJGcZBIFRPbUpSec_kg1nzUI5xBXxfBhj6__40_I7faEP4bfHhmsVxv7FELEdf6ssQO_AZanZ4o priority: 102 providerName: ProQuest |
Title | Towards Electrosynthesis in Shewanella: Energetics of Reversing the Mtr Pathway for Reductive Metabolism |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21311751 https://www.proquest.com/docview/1292172287 https://www.proquest.com/docview/851478787 https://www.proquest.com/docview/907149672 https://pubmed.ncbi.nlm.nih.gov/PMC3032769 https://doaj.org/article/56a2dccfba75418c85dafeac61d9080e http://dx.doi.org/10.1371/journal.pone.0016649 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2TgheECsfK4xiISTgIVMTu3aChNBWtQykjqlbUd-ixHHaSiUpdavRF_527vIlgsqHkKo81HeVcr6zf67vfkfIiyAQEeyrHUtHnmPxUMdWqFzb6nIeOp1QcDcrpB1eiPMx_zjpTvZI2bO1MKDZebTDflLj1eLk29ftOwj4t1nXBmmXSifLNNF4syAE9_bJAexNEnsaDHl1rwDRLURRQPc7zYwemCGDpV3bqzJK_2rhbiwXqdmFSn9NrvxptxrcI3cLmElPc784JHs6aZJbeePJbZPc7pV93prksAhvQ18VHNSv75PZdZZOa2g_b5NjtgkgRTM3dJ7Qq5m-CTA9JnhD-1g7iIWQhqYxHeksyyOZUpCmw_WKXgLCvAm2FLAxjCK5LCyvdKjX4HyLufnygIwH_eveuVU0ZbCUdL21pZnjcY3NqTG_TYXSYSKKY8aUDrwOl1qJMHA8GUJkc4nHRSYYgIBOiFx8jmAPSSMBcx8RGsuYwXGHaa1tUOx4sBzEinuRHWqtGGsRVprfVwVjOTbOWPjZNZyEk0tuTR_nzy_mr0WsSmuZM3b8Rf4MZ7aSRb7t7It0NfWL8PW7InAipeIwkF1uu8rtRkEMe5awIw8wt26RZ-gXfl68Wq0a_imXORO02yLPMwnk3EgwqWcabIzxP3z6_A9CV6Oa0MtCKE7BHCooCingnZDLqyZ5XJMEx1K14SP04tIqxgfsh_3K4BANmqVn7x6m1TD-KHpcotON8QHAI93Tn0Q8rJnzhHRa5FEeKpXty8BrEVkLotrk1EeS-SwjRQco5sCLPf5vzSfkTn5f4MDnmDTWq41-CoBzHbbJvpxIeLo9G5-D921ycNa_uBy1s79w2tkag8_v_R-8K4fD |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeYAXxPhaYDALgYCHsMZO7AYJoQEtK1sH2jq0t5A4TlupJKVuVfWf4m_kLl8saBq8TOpTfY6a8_l35_rud4Q8C0MRg19t2zr2me1GOrEj1XFsz3Uj1o6E28kLaQdHYv_U_XzmnW2QX1UtDKZVVpiYA3WcKfyPfBf8EvZSggD_3eynjV2j8Ha1aqFRmMWBXq_gyGbe9j_C-j5nrNcdfti3y64CtpIdf2FrznxXY3dlTNBSkWRcxEnCudKh33alViIKmS8jME1X4nmHCw5erB0hmRwTHJ57jVx3OXhyrEzvfaqQH7BDiLI8j0tnt7SG17Ms1XjjIQQydp5zf3mXgNoXtGbTzFwU6P6dr3nOAfZuk1tl5Er3ClPbJBs6vUM2S2ww9GVJYP3qLhkP81xcQ7tFjx2zTiHMNBNDJyk9GetViLk14RvaxcJDrKI0NEvosc5TRNIRBWk6WMzpVwhPV-GaQmANo8hMC9hMB3oBljudmB_3yOmV6P4-aaWgzS1CE5lwOCtxrbUDE9s-YEmiXD92Iq0V5xbhlaIDVdKdY9eNaZDf4Uk49hR6C3B5gnJ5LGLXs2YF3cc_5N_jGtaySNadf5HNR0G59wNPhCxWKolC6blOR3W8OEzA4Qkn9iFg1xbZQQsIisrXGnKCPVcWNNIdizzNJZCwI8WMoFG4NCbof_n2H0Inxw2hF6VQkoE6VFhWYcA7IRFYQ3K7IQmwoxrDW2ivlVZM8GeDwszKhi8epvUwPhQtLtXZ0gQQ_SNX1GUiPhbc-UIyizwoNkWte4bMUdJzLCIb26WxOM2RdDLOGdUhjmPwYg8v_-E75Mb-cHAYHPaPDh6Rm8XtAoPPNmkt5kv9GMLTRfQkxwRKvl81CP0GSKWhXA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkRAviPG1wGAWAgEPWRs7sRMkhMbWamV0TPtAewuJ47SVSlLqVlP_Nf467pI0LGgavEzqU32OmvP5d-f67neEvIoikYBf7dg6CZjtxjq1Y-U7tue6MevEwvWLQtrBodg_cz-fe-dr5NeqFgbTKleYWAB1kiv8j7wNfgl7KUGA306rtIijvd7H6U8bO0jhTeuqnUZpIgd6eQHHN_Ohvwdr_ZqxXvd0d9-uOgzYSvrB3NacBa7GTsuYrKViybhI0pRzpaOg40qtRByxQMZgpq7Esw8XHDxaJ0ZiOSY4PPcWuS259HGP-bt1egngiBBVqR6XTruyjO1pnmm8_RAC2TsvucKiY0DtF1rTSW6uCnr_zt285Ax798m9KoqlO6XZrZM1nT0g6xVOGPq2IrN-95CMTou8XEO7Zb8ds8wg5DRjQ8cZPRnpiwjzbKL3tItFiFhRaWie0mNdpItkQwrSdDCf0SMIVS-iJYUgG0aRpRZwmg70HKx4MjY_HpGzG9H9Y9LKQJsbhKYy5XBu4lprByZ2AsCVVLlB4sRaK84twleKDlVFfY4dOCZhcZ8n4QhU6i3E5Qmr5bGIXc-altQf_5D_hGtYyyJxd_FFPhuGFQ6EnohYolQaR9JzHV_5XhKl4PyEkwQQvGuLbKEFhGUVbA0_4Y4rS0pp3yIvCwkk78hwGwyjhTFh_-u3_xA6OW4IvamE0hzUoaKqIgPeCUnBGpKbDUmAINUY3kB7XWnFhH82K8xc2fDVw7QexoeixWU6X5gQTgLIG3WdSIDFd4GQzCJPyk1R654hi5T0HIvIxnZpLE5zJBuPCnZ1iOkYvNjT63_4FrkD8BN-6R8ePCN3y4sGBp9N0prPFvo5RKrz-EUBCZR8v2kM-g11raVd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Electrosynthesis+in+Shewanella%3A+Energetics+of+Reversing+the+Mtr+Pathway+for+Reductive+Metabolism&rft.jtitle=PloS+one&rft.au=Ross%2C+Daniel+E.&rft.au=Flynn%2C+Jeffrey+M.&rft.au=Baron%2C+Daniel+B.&rft.au=Gralnick%2C+Jeffrey+A.&rft.date=2011-02-02&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=6&rft.issue=2&rft_id=info:doi/10.1371%2Fjournal.pone.0016649&rft_id=info%3Apmid%2F21311751&rft.externalDocID=PMC3032769 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |