An Example-Based Multi-Atlas Approach to Automatic Labeling of White Matter Tracts
We present an example-based multi-atlas approach for classifying white matter (WM) tracts into anatomic bundles. Our approach exploits expert-provided example data to automatically classify the WM tracts of a subject. Multiple atlases are constructed to model the example data from multiple subjects...
Saved in:
Published in | PLOS ONE Vol. 10; no. 7; p. e0133337 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science (PLoS)
30.07.2015
Public Library of Science |
Subjects | |
Online Access | Get full text |
ISSN | 1932-6203 1932-6203 |
DOI | 10.1371/journal.pone.0133337 |
Cover
Loading…
Abstract | We present an example-based multi-atlas approach for classifying white matter (WM) tracts into anatomic bundles. Our approach exploits expert-provided example data to automatically classify the WM tracts of a subject. Multiple atlases are constructed to model the example data from multiple subjects in order to reflect the individual variability of bundle shapes and trajectories over subjects. For each example subject, an atlas is maintained to allow the example data of a subject to be added or deleted flexibly. A voting scheme is proposed to facilitate the multi-atlas exploitation of example data. For conceptual simplicity, we adopt the same metrics in both example data construction and WM tract labeling. Due to the huge number of WM tracts in a subject, it is time-consuming to label each WM tract individually. Thus, the WM tracts are grouped according to their shape similarity, and WM tracts within each group are labeled simultaneously. To further enhance the computational efficiency, we implemented our approach on the graphics processing unit (GPU). Through nested cross-validation we demonstrated that our approach yielded high classification performance. The average sensitivities for bundles in the left and right hemispheres were 89.5% and 91.0%, respectively, and their average false discovery rates were 14.9% and 14.2%, respectively. |
---|---|
AbstractList | We present an example-based multi-atlas approach for classifying white matter (WM) tracts into anatomic bundles. Our approach exploits expert-provided example data to automatically classify the WM tracts of a subject. Multiple atlases are constructed to model the example data from multiple subjects in order to reflect the individual variability of bundle shapes and trajectories over subjects. For each example subject, an atlas is maintained to allow the example data of a subject to be added or deleted flexibly. A voting scheme is proposed to facilitate the multi-atlas exploitation of example data. For conceptual simplicity, we adopt the same metrics in both example data construction and WM tract labeling. Due to the huge number of WM tracts in a subject, it is time-consuming to label each WM tract individually. Thus, the WM tracts are grouped according to their shape similarity, and WM tracts within each group are labeled simultaneously. To further enhance the computational efficiency, we implemented our approach on the graphics processing unit (GPU). Through nested cross-validation we demonstrated that our approach yielded high classification performance. The average sensitivities for bundles in the left and right hemispheres were 89.5% and 91.0%, respectively, and their average false discovery rates were 14.9% and 14.2%, respectively. We present an example-based multi-atlas approach for classifying white matter (WM) tracts into anatomic bundles. Our approach exploits expert-provided example data to automatically classify the WM tracts of a subject. Multiple atlases are constructed to model the example data from multiple subjects in order to reflect the individual variability of bundle shapes and trajectories over subjects. For each example subject, an atlas is maintained to allow the example data of a subject to be added or deleted flexibly. A voting scheme is proposed to facilitate the multi-atlas exploitation of example data. For conceptual simplicity, we adopt the same metrics in both example data construction and WM tract labeling. Due to the huge number of WM tracts in a subject, it is time-consuming to label each WM tract individually. Thus, the WM tracts are grouped according to their shape similarity, and WM tracts within each group are labeled simultaneously. To further enhance the computational efficiency, we implemented our approach on the graphics processing unit (GPU). Through nested cross-validation we demonstrated that our approach yielded high classification performance. The average sensitivities for bundles in the left and right hemispheres were 89.5% and 91.0%, respectively, and their average false discovery rates were 14.9% and 14.2%, respectively.We present an example-based multi-atlas approach for classifying white matter (WM) tracts into anatomic bundles. Our approach exploits expert-provided example data to automatically classify the WM tracts of a subject. Multiple atlases are constructed to model the example data from multiple subjects in order to reflect the individual variability of bundle shapes and trajectories over subjects. For each example subject, an atlas is maintained to allow the example data of a subject to be added or deleted flexibly. A voting scheme is proposed to facilitate the multi-atlas exploitation of example data. For conceptual simplicity, we adopt the same metrics in both example data construction and WM tract labeling. Due to the huge number of WM tracts in a subject, it is time-consuming to label each WM tract individually. Thus, the WM tracts are grouped according to their shape similarity, and WM tracts within each group are labeled simultaneously. To further enhance the computational efficiency, we implemented our approach on the graphics processing unit (GPU). Through nested cross-validation we demonstrated that our approach yielded high classification performance. The average sensitivities for bundles in the left and right hemispheres were 89.5% and 91.0%, respectively, and their average false discovery rates were 14.9% and 14.2%, respectively. |
Audience | Academic |
Author | Pamela Guevara Kwangsun Yoo Sang-Wook Yoo Joseph S. Shin Yong Jeong Joon Kyung Seong Jean Franc¸ois Mangin |
AuthorAffiliation | 4 Institut Fédératif de Recherche 49, Gif-sur-Yvette, France 5 University of Concepción, Concepción, Chile 2 Department of Computer Science, KAIST, Daejeon, Republic of Korea 3 I 2 BM, CEA, Gif-sur-Yvette, France 7 Handong Global University, Pohang, Republic of Korea 6 Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea Istituto Italiano di Tecnologia, ITALY 1 Department of Biomedical Engineering, Korea University, Seoul, Republic of Korea |
AuthorAffiliation_xml | – name: 2 Department of Computer Science, KAIST, Daejeon, Republic of Korea – name: 1 Department of Biomedical Engineering, Korea University, Seoul, Republic of Korea – name: Istituto Italiano di Tecnologia, ITALY – name: 3 I 2 BM, CEA, Gif-sur-Yvette, France – name: 4 Institut Fédératif de Recherche 49, Gif-sur-Yvette, France – name: 6 Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea – name: 7 Handong Global University, Pohang, Republic of Korea – name: 5 University of Concepción, Concepción, Chile |
Author_xml | – sequence: 1 givenname: Sang Wook surname: Yoo fullname: Yoo, Sang Wook – sequence: 2 givenname: Pamela surname: Guevara fullname: Guevara, Pamela – sequence: 3 givenname: Yong surname: Jeong fullname: Jeong, Yong – sequence: 4 givenname: Kwangsun surname: Yoo fullname: Yoo, Kwangsun – sequence: 5 givenname: Joseph S. surname: Shin fullname: Shin, Joseph S. – sequence: 6 givenname: Jean-Francois surname: Mangin fullname: Mangin, Jean-Francois – sequence: 7 givenname: Joon-Kyung surname: Seong fullname: Seong, Joon-Kyung |
BackLink | https://cir.nii.ac.jp/crid/1871428067671256704$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/26225419$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk_Fr1DAUx4tM3Dz3H4gWJqI_9EzatEn9Qahj6sGNwZz6Y3hN07uMtKlNKvO_N3fXk-sYaAtNef18v6_vJe9pcNSaVgbBc4zmOKH43a0Z-hb0vPPhOcKJv-ij4ATnSRxlMUqODt6Pg1NrVYlImmCKUvQkOI6zOE4Jzk-C66INL-6g6bSMPoKVVXg5aKeiwmmwYdF1vQGxDp0Ji8GZBpwS4RJKqVW7Ck0d_lgrJ8NLcE724U0PwtlnweMatJWn4zoLvn26uDn_Ei2vPi_Oi2UkKKMuygRGkBFU5qJmaUUlxjEtQYgKMsHKlBKS5EzGrKRCyCrBgChAziiWNQiSJbPg5c6308bysSOW-xpRkmQUEU8sdkRl4JZ3vWqg_80NKL4NmH7FofcVackppSIVKUmZqIkkZY4BEsawYLSCCtXe68OYbSgbWQnZuh70xHT6pVVrvjK_OEljRPLUG7wZDXrzc5DW8UZZIbWGVpph-9-Y5Yj6zZwFZ_fQh6sbqRX4AlRbG59XbEx5QeIkI3HOsKfmD1D-rmSjhD8-tfLxieDtROAZJ-_cCgZr-eLr9f-zV9-n7OsDdi1Bu7U1enDKtHYKvjjs9N8W7w-tB97vANEba3tZc6EcbHx8aUpzjPhmSPZN45sh4eOQeDG5J977_0P2aidrlfLpNk_sjyKJGcpoRnGcbvfkD27XHho |
CitedBy_id | crossref_primary_10_3233_JAD_150841 crossref_primary_10_1002_hbm_23352 crossref_primary_10_3389_fninf_2021_727859 crossref_primary_10_3389_fnins_2024_1376570 crossref_primary_10_1016_j_neuroimage_2016_11_027 crossref_primary_10_1038_s41598_021_95238_6 crossref_primary_10_1016_j_neuroimage_2020_117402 crossref_primary_10_1016_j_nicl_2022_103186 crossref_primary_10_1007_s11682_019_00100_z crossref_primary_10_1016_j_mri_2021_10_017 crossref_primary_10_1016_j_neuroimage_2021_118870 crossref_primary_10_1016_j_neuroimage_2020_117063 crossref_primary_10_3389_fninf_2017_00073 crossref_primary_10_1093_sleep_zsz247 crossref_primary_10_1016_j_neuroimage_2020_117070 crossref_primary_10_1016_j_neuroimage_2023_120086 crossref_primary_10_1002_hbm_26578 crossref_primary_10_1016_j_neuroimage_2018_06_027 crossref_primary_10_17241_smr_2022_01459 crossref_primary_10_3389_fnins_2016_00554 crossref_primary_10_3897_rio_3_e12394 crossref_primary_10_1016_j_neuroimage_2018_05_044 crossref_primary_10_1007_s12021_023_09636_4 crossref_primary_10_1016_j_neuroimage_2017_07_015 crossref_primary_10_1109_TCDS_2020_2968116 crossref_primary_10_3389_fnins_2017_00754 |
Cites_doi | 10.1109/TPAMI.2004.1262185 10.1006/nimg.2002.1136 10.1016/j.neuroimage.2012.02.071 10.2307/2529310 10.1007/978-3-642-15705-9_67 10.3389/fninf.2014.00087 10.1109/TMI.2007.906785 10.1016/j.neuroimage.2010.01.004 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 10.1016/j.jpsychires.2005.05.005 10.1002/mrm.21277 10.1016/j.neuroimage.2004.07.051 10.1016/j.neuroimage.2009.04.057 10.1016/j.neuroimage.2011.11.014 10.1002/jmri.10420 10.1177/1051228405283363 10.1109/EMBC.2014.6944099 10.1016/j.neuroimage.2007.07.053 10.1007/11505730_5 10.1006/nimg.2001.1052 10.1016/j.neuroimage.2011.06.020 10.1214/aoms/1177729694 10.1016/j.cortex.2008.05.004 10.1002/hbm.22051 10.1148/radiol.2301021640 10.1002/mrm.10308 10.1016/j.neuroimage.2010.10.028 10.1016/j.neuroimage.2005.05.018 10.1109/34.868688 10.1155/2008/368406 10.1073/pnas.96.18.10422 10.1016/j.neuroimage.2005.01.008 10.1007/978-3-642-04268-3_108 10.1214/aoms/1177729487 10.1007/BF02289588 10.1016/j.neuroimage.2007.02.049 10.1016/j.neuroimage.2008.10.060 10.1016/j.neuroimage.2010.07.050 10.1016/j.neuroimage.2014.04.048 10.1016/j.neuroimage.2010.07.038 10.1109/TMI.2008.2004424 10.3389/fninf.2011.00023 10.1016/S1474-4422(08)70163-7 10.1016/j.mri.2011.12.017 10.1016/j.neuroimage.2014.08.021 10.1016/j.media.2007.10.003 10.1016/j.neuroimage.2009.08.017 10.3389/fnins.2012.00175 10.1016/j.neuroimage.2010.05.049 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2015 Public Library of Science 2015 Yoo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2015 Yoo et al 2015 Yoo et al |
Copyright_xml | – notice: COPYRIGHT 2015 Public Library of Science – notice: 2015 Yoo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2015 Yoo et al 2015 Yoo et al |
DBID | RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0133337 |
DatabaseName | CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Sciences (General) Engineering Computer Science |
DocumentTitleAlternate | Multi-Atlas Approach to Automatic Tract Labeling |
EISSN | 1932-6203 |
ExternalDocumentID | 1700336704 oai_doaj_org_article_777c5c5458cf4e4b91aa3881c87dad0f PMC4520495 3764410901 A423642981 26225419 10_1371_journal_pone_0133337 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BBORY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RYH RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM AAYXX CITATION PJZUB PPXIY PQGLB 3V. CGR CUY CVF ECM EIF IPNFZ NPM RIG PMFND 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 5PM - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c787t-6c10a640b9cf85d7e1127baccda6c8b5744398e28b7cced31a07aa9871efac463 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:12:53 EST 2021 Wed Aug 27 01:30:38 EDT 2025 Thu Aug 21 18:22:42 EDT 2025 Sun Aug 24 04:00:00 EDT 2025 Sat Aug 23 13:31:36 EDT 2025 Tue Jun 17 21:35:31 EDT 2025 Tue Jun 10 20:44:23 EDT 2025 Fri Jun 27 04:36:20 EDT 2025 Fri Jun 27 05:01:27 EDT 2025 Thu May 22 21:15:24 EDT 2025 Wed Feb 19 02:08:26 EST 2025 Thu Apr 24 23:00:56 EDT 2025 Tue Aug 05 12:06:22 EDT 2025 Fri Jun 27 00:36:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c787t-6c10a640b9cf85d7e1127baccda6c8b5744398e28b7cced31a07aa9871efac463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors confirm that the affiliation to Samsung of the first author (Sang Wook Yoo) does not alter their adherence to PLOS ONE policies on sharing data and materials. Conceived and designed the experiments: SWY JKS JSS. Performed the experiments: SWY PG. Analyzed the data: SWY PG YJ KY. Contributed reagents/materials/analysis tools: JKS JFM. Wrote the paper: SWY JKS JSS. R&D Team, Health and Medical Equipment Business, Samsung Electronics, Suwon, Republic of Korea |
ORCID | 0000-0002-5213-4575 0000-0001-9988-400x |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0133337 |
PMID | 26225419 |
PQID | 1700336704 |
PQPubID | 1436336 |
ParticipantIDs | plos_journals_1700336704 doaj_primary_oai_doaj_org_article_777c5c5458cf4e4b91aa3881c87dad0f pubmedcentral_primary_oai_pubmedcentral_nih_gov_4520495 proquest_miscellaneous_1701890713 proquest_journals_1700336704 gale_infotracmisc_A423642981 gale_infotracacademiconefile_A423642981 gale_incontextgauss_ISR_A423642981 gale_incontextgauss_IOV_A423642981 gale_healthsolutions_A423642981 pubmed_primary_26225419 crossref_citationtrail_10_1371_journal_pone_0133337 crossref_primary_10_1371_journal_pone_0133337 nii_cinii_1871428067671256704 |
PublicationCentury | 2000 |
PublicationDate | 2015-07-30 |
PublicationDateYYYYMMDD | 2015-07-30 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLOS ONE |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2015 |
Publisher | Public Library of Science (PLoS) Public Library of Science |
Publisher_xml | – name: Public Library of Science (PLoS) – name: Public Library of Science |
References | S Wakana (ref6) 2004; 230 B Tunç (ref36) 2014; 102 OA Glenn (ref7) 2003; 18 SM Smith (ref45) 2004; 23 D Goldberg-Zimring (ref8) 2005; 15 M Maddah (ref15) 2008; 12 E Visser (ref27) 2011; 54 M Descoteaux (ref41) 2007; 58 S Mori (ref2) 1999; 45 E Garyfallidis (ref50) 2012; 6 MA Koch (ref4) 2002; 16 M Descoteaux (ref5) 2009; 28 ref42 S Kullback (ref54) 1952; 23 Y Zhang (ref21) 2010; 52 ref43 C Fowlkes (ref37) 2004; 26 CM Santos-Pereira (ref52) 2002 LJ O’Donnell (ref46) 2012; 60 CB Goodlett (ref14) 2009; 45 H Li (ref16) 2010; 49 K Hua (ref12) 2008; 39 L Dodero (ref29) 2015; 8 PJ Basser (ref3) 2000; 44 PL Bazin (ref22) 2011; 58 TG Reese (ref40) 2003; 49 J Schäfer (ref47) 2005; 4 S Johnson (ref48) 1967; 32 Y Jin (ref35) 2014; 100 P Guevara (ref25) 2011; 54 RO Duda (ref51) 2001 JI Berman (ref13) 2005; 27 M Kubicki (ref10) 2007; 41 M Perrin (ref44) 2008; 2008 A Yendiki (ref32) 2011; 5 ref39 ref38 S Wakana (ref18) 2007; 36 Q Wang (ref34) 2013; 34 C Ceritoglu (ref58) 2009; 47 O Ciccarelli (ref11) 2008; 7 X Wu (ref28) 2012; 30 ref24 X Wang (ref26) 2011; 54 RR Sokal (ref57) 1958; 28 D Wassermann (ref20) 2010; 51 M Catani (ref17) 2002; 17 M Catani (ref19) 2008; 44 J Shi (ref30) 2000; 22 E Pagani (ref9) 2005; 26 LJ O’Donnell (ref31) 2007; 26 C Nvidia (ref56) 2012; 4.2 JB MacQueen (ref49) 1967; 1 S Kullback (ref53) 1951; 22 L O’Donnell (ref23) 2006; 27 TE Conturo (ref1) 1999; 96 JR Landis (ref55) 1977; 33 P Guevara (ref33) 2012; 61 |
References_xml | – volume: 26 start-page: 214 issue: 2 year: 2004 ident: ref37 article-title: Spectral Grouping Using the Nyström Method publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2004.1262185 – volume: 17 start-page: 77 issue: 1 year: 2002 ident: ref17 article-title: Virtual in Vivo Interactive Dissection of White Matter Fasciculi in the Human Brain publication-title: NeuroImage doi: 10.1006/nimg.2002.1136 – volume: 61 start-page: 1083 issue: 4 year: 2012 ident: ref33 article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.02.071 – volume: 33 start-page: 159 issue: 1 year: 1977 ident: ref55 article-title: The Measurement of Observer Agreement for Categorical Data publication-title: Biometrics doi: 10.2307/2529310 – ident: ref24 doi: 10.1007/978-3-642-15705-9_67 – volume: 8 start-page: 87 year: 2015 ident: ref29 article-title: Automated multi-subject fiber clustering of mouse brain using dominant sets publication-title: Frontiers in Neuroinformatics doi: 10.3389/fninf.2014.00087 – volume: 26 start-page: 1562 issue: 11 year: 2007 ident: ref31 article-title: Automatic Tractography Segmentation Using a High-Dimensional White Matter Atlas publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2007.906785 – volume: 51 start-page: 228 issue: 1 year: 2010 ident: ref20 article-title: Unsupervised white matter fiber clustering and tract probability map generation: Applications of a Gaussian process framework for white matter fibers publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.01.004 – volume: 44 start-page: 625 issue: 4 year: 2000 ident: ref3 article-title: In vivo fiber tractography using DT-MRI data publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O – volume: 45 start-page: 265 issue: 2 year: 1999 ident: ref2 article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging publication-title: Annals of neurology doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 – volume: 41 start-page: 15 issue: 1–2 year: 2007 ident: ref10 article-title: A review of diffusion tensor imaging studies in schizophrenia publication-title: Journal of Psychiatric Research doi: 10.1016/j.jpsychires.2005.05.005 – volume: 58 start-page: 497 issue: 3 year: 2007 ident: ref41 article-title: Regularized, fast, and robust analytical Q-ball imaging publication-title: Magn Reson Med doi: 10.1002/mrm.21277 – volume: 23 start-page: S208 issue: Supplement 1(0) year: 2004 ident: ref45 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 47 start-page: 618 issue: 2 year: 2009 ident: ref58 article-title: Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.04.057 – volume: 60 start-page: 456 issue: 1 year: 2012 ident: ref46 article-title: fMRI-DTI modeling via landmark distance atlases for prediction and detection of fiber tracts publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.11.014 – volume: 18 start-page: 641 issue: 6 year: 2003 ident: ref7 article-title: DTI-based three-dimensional tractography detects differences in the pyramidal tracts of infants and children with congenital hemiparesis publication-title: Journal of Magnetic Resonance Imaging doi: 10.1002/jmri.10420 – volume: 15 start-page: 68S issue: 4 Suppl year: 2005 ident: ref8 article-title: Diffusion tensor magnetic resonance imaging in multiple sclerosis publication-title: J Neuroimaging doi: 10.1177/1051228405283363 – ident: ref38 doi: 10.1109/EMBC.2014.6944099 – volume: 39 start-page: 336 issue: 1 year: 2008 ident: ref12 article-title: Tract probability maps in stereotaxic spaces: Analyses of white matter anatomy and tract-specific quantification publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.07.053 – ident: ref43 doi: 10.1007/11505730_5 – volume: 16 start-page: 241 issue: 1 year: 2002 ident: ref4 article-title: An Investigation of Functional and Anatomical Connectivity Using Magnetic Resonance Imaging publication-title: NeuroImage doi: 10.1006/nimg.2001.1052 – volume: 58 start-page: 458 issue: 2 year: 2011 ident: ref22 article-title: Direct segmentation of the major white matter tracts in diffusion tensor images publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.06.020 – volume: 22 start-page: 79 issue: 1 year: 1951 ident: ref53 article-title: On Information and Sufficiency publication-title: Ann Math Statist doi: 10.1214/aoms/1177729694 – volume: 44 start-page: 1105 issue: 8 year: 2008 ident: ref19 article-title: A diffusion tensor imaging tractography atlas for virtual in vivo dissections publication-title: Cortex doi: 10.1016/j.cortex.2008.05.004 – year: 2001 ident: ref51 article-title: Pattern classification – volume: 34 start-page: 2089 issue: 9 year: 2013 ident: ref34 article-title: Application of neuroanatomical features to tractography clustering publication-title: Human brain mapping doi: 10.1002/hbm.22051 – volume: 230 start-page: 77 issue: 1 year: 2004 ident: ref6 article-title: Fiber Tract-based Atlas of Human White Matter Anatomy publication-title: Radiology doi: 10.1148/radiol.2301021640 – volume: 49 start-page: 177 issue: 1 year: 2003 ident: ref40 article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.10308 – volume: 54 start-page: 1975 issue: 3 year: 2011 ident: ref25 article-title: Robust clustering of massive tractography datasets publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.10.028 – volume: 27 start-page: 862 issue: 4 year: 2005 ident: ref13 article-title: Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.05.018 – volume: 22 start-page: 888 issue: 8 year: 2000 ident: ref30 article-title: Normalized Cuts and Image Segmentation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.868688 – volume: 4 issue: 1 year: 2005 ident: ref47 article-title: A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics – volume: 2008 start-page: 368406 issue: 3 year: 2008 ident: ref44 article-title: Connectivity-Based Parcellation of the Cortical Mantle Using q-Ball Diffusion Imaging publication-title: International Journal of Biomedical Imaging doi: 10.1155/2008/368406 – volume: 96 start-page: 10422 issue: 18 year: 1999 ident: ref1 article-title: Tracking neuronal fiber pathways in the living human brain publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.96.18.10422 – ident: ref39 – volume: 26 start-page: 258 issue: 1 year: 2005 ident: ref9 article-title: A method for obtaining tract-specific diffusion tensor MRI measurements in the presence of disease: application to patients with clinically isolated syndromes suggestive of multiple sclerosis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.01.008 – ident: ref42 doi: 10.1007/978-3-642-04268-3_108 – volume: 23 start-page: 88 issue: 1 year: 1952 ident: ref54 article-title: An Application of Information Theory to Multivariate Analysis publication-title: The Annals of Mathematical Statistics doi: 10.1214/aoms/1177729487 – volume: 1 start-page: 281 year: 1967 ident: ref49 article-title: Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Probability – volume: 32 start-page: 241 year: 1967 ident: ref48 article-title: Hierarchical clustering schemes publication-title: Psychometrika doi: 10.1007/BF02289588 – start-page: 291 year: 2002 ident: ref52 article-title: Proceedings in Computational Statistics – volume: 36 start-page: 630 issue: 3 year: 2007 ident: ref18 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.049 – volume: 45 start-page: S133 issue: 1, Supplement 1 year: 2009 ident: ref14 article-title: Group analysis of DTI fiber tract statistics with application to neurodevelopment publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.060 – volume: 54 start-page: 290 issue: 1 year: 2011 ident: ref26 article-title: Tractography segmentation using a hierarchical Dirichlet processes mixture model publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.07.050 – volume: 100 start-page: 75 year: 2014 ident: ref35 article-title: Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.04.048 – volume: 27 start-page: 1032 issue: 5 year: 2006 ident: ref23 article-title: A method for clustering white matter fiber tracts publication-title: American Journal of Neuroradiology – volume: 54 start-page: 303 issue: 1 year: 2011 ident: ref27 article-title: Partition-based mass clustering of tractography streamlines publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.07.038 – volume: 28 start-page: 269 issue: 2 year: 2009 ident: ref5 article-title: Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions publication-title: Medical Imaging, IEEE Transactions on doi: 10.1109/TMI.2008.2004424 – volume: 5 year: 2011 ident: ref32 article-title: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy publication-title: Frontiers in neuroinformatics doi: 10.3389/fninf.2011.00023 – volume: 7 start-page: 715 issue: 8 year: 2008 ident: ref11 article-title: Diffusion-based tractography in neurological disorders: concepts, applications, and future developments publication-title: The Lancet Neurology doi: 10.1016/S1474-4422(08)70163-7 – volume: 30 start-page: 485 issue: 4 year: 2012 ident: ref28 article-title: Globally optimized fiber tracking and hierarchical clustering—a unified framework publication-title: Magnetic resonance imaging doi: 10.1016/j.mri.2011.12.017 – volume: 102 start-page: 596 year: 2014 ident: ref36 article-title: Automated tract extraction via atlas based Adaptive Clustering publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.08.021 – volume: 4.2 start-page: 1 year: 2012 ident: ref56 article-title: NVIDIA CUDA C Programming Guide publication-title: NVIDIA Corporation – volume: 12 start-page: 191 issue: 2 year: 2008 ident: ref15 article-title: A unified framework for clustering and quantitative analysis of white matter fiber tracts publication-title: Medical Image Analysis doi: 10.1016/j.media.2007.10.003 – volume: 49 start-page: 1249 issue: 2 year: 2010 ident: ref16 article-title: A hybrid approach to automatic clustering of white matter fibers publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.08.017 – volume: 6 year: 2012 ident: ref50 article-title: Quickbundles, a method for tractography simplification publication-title: Frontiers in neuroscience doi: 10.3389/fnins.2012.00175 – volume: 28 start-page: 1409 year: 1958 ident: ref57 article-title: A statistical method for evaluating systematic relationships publication-title: University of Kansas Scientific Bulletin – volume: 52 start-page: 1289 issue: 4 year: 2010 ident: ref21 article-title: Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.05.049 |
SSID | ssib045317050 ssib045318062 ssib045324867 ssib045316197 ssib045319074 ssib045319085 ssib045319086 ssib045316121 ssib045318733 ssib045316049 ssib045317797 ssib045315901 ssib045318737 ssib045317988 ssj0053866 |
Score | 2.3439963 |
Snippet | We present an example-based multi-atlas approach for classifying white matter (WM) tracts into anatomic bundles. Our approach exploits expert-provided example... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref nii |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e0133337 |
SubjectTerms | Adult Algorithms Biomedical engineering Brain Bundles Bundling Classification Computer applications Computer Graphics Computer science Computing time Dietary fiber Diffusion Tensor Imaging Diffusion Tensor Imaging - methods Diffusion Tensor Imaging - statistics & numerical data Engineering Exploitation Graphics processing units Hemispheres Humans Imaging, Three-Dimensional Imaging, Three-Dimensional - methods Imaging, Three-Dimensional - statistics & numerical data Labeling Labelling Male Medicine Methods Models, Anatomic Models, Neurological Multivariate analysis Neural Pathways Neural Pathways - anatomy & histology Neuroimaging Neuroimaging - methods Neuroimaging - statistics & numerical data Q R Registration Research Article Science Scleroderma Studies Substantia alba White Matter White Matter - anatomy & histology Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJy6I8mpgCwYhAYe08fqVHFPUqiAKUmlRb5HtOLBSlVQkK_HzmXG8UYMqlQM57CEz0SrzzdgzseczIW9MjaRofJkWltdYoMg0t9qkheNaW65yG7pcT76o43Px6UJeXDvqC_eEjfTAo-H2tdZOOlzecY3wwhbMGJ7nzOW6NnXW4OgLc96mmBrHYIhipWKjHNdsP-Kyd9W1fg-SHrj0bCIKfP3TqHy3Xa2Q7PSy629KPP_eP3ltQjp6QO7HTJKW4xtskzu-fUi2Y6z29F0klH7_iJyWLT38bZAHOD2AWaumoe02LQdInWkZWcXp0NFyPXSBw5V-NjZ0qtOuoeEQPXoSmDjpGbZV9Y_J-dHh2YfjNJ6lkDoIySFVjmVGicwWrsllrT3kWdoa52qjXG6lFpCZ5H4JQDnna85Mpo0poJzyjXFC8SdkqwXr7RAqCwsGbjgD_IWRynjp4UEApPG8MVlC-MawlYtE43jexWUVVs80FByjhSqEo4pwJCSdnroaiTZu0T9AzCZdpMkON8B5qug81W3Ok5CXiHg19pxOwV6VAnn1l0XOEvI6aCBVRot7cX6Ydd9XH79-_welb6czpbdRqenAHM7E_gd4J6TgmmkuZpoQ8G4m3gX_BNPiLwOEBK6Oa6UhV1U6EwnZQc_dWK2vkIKR81G02HjzzeJXkxj_FPfftb5bBx2WF_hFIyFPR-efLL9UMCcIViREz8JiBs1c0q5-BiZzIZdQocpn_wPL5-QeJLMyfHfPFmRr-LX2u5AwDvZFGBv-AGCXZf0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Public Health Database dbid: 8C1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoucAB6PJooAWDkIBD2mRtx84JpVWrgihIpUW9RbbjlJWqZGmyEj-fGa83NKgC9rCHeLLJzstje-YbQl7rCkHR2DTODatwgSJiZaSOc8ukNCxTxle5Hn_Ojs74x3NxHjbcupBWufKJ3lFXrcU98l3EkWOINsbfz3_E2DUKT1dDC401cjsFH4zY-Wp_SPEAW86yUC7HZLobpLMzbxu3A6EPfORoOvKo_YNvXmtmM4Q8vWy7m8LPP7Mor01Lhw_IvRBP0mKpABvklmsm5P6qVwMNpjshd68BD07IRrje0bcBd_rdQ3JSNPTgp0a44HgPJreK-urcuOghwqZFAB-nfUuLRd96qFf6SRtf0E7bmvpee_TYA3bSU6y-6h6Rs8OD0_2jOLRciC1Ybh9nNk10xhOT21qJSjoIx6TR1lY6s8oIySGAUW4K8rTWVSzVidQ6h1WXq7XlGXtM1htg7yahIjcggZqloCZci0w74eBGq2TtWK2TiLAV50sb8MixLcZl6Q_ZJKxLliwsUV5lkFdE4uGu-RKP4x_0eyjUgRbRtP2F9uqiDMZZSimtsHiEaGvuuMlTrZlSKbxrpaukjsgLVIlyWZo6-ISy4Ai_P81VGpFXngIRNRpM2bnQi64rP3z59h9EX09GRG8CUd0CO6wOZRLwnxCpa0S5NaIEv2BHw9ugwMBa_E5BQhwP0WUmIaRFM4rIJqr2imtd-dvC4JdX6n7z8MthGB-KaXqNaxeeJlU5bnxE5MnSOgbOTzOYOniaR0SO7GYkmvFIM_vuAc-5mMJCVjz9-2s9I3cgmhV-4z3ZIuv91cJtQ8TYm-feLfwCjuhnaw priority: 102 providerName: ProQuest |
Title | An Example-Based Multi-Atlas Approach to Automatic Labeling of White Matter Tracts |
URI | https://cir.nii.ac.jp/crid/1871428067671256704 https://www.ncbi.nlm.nih.gov/pubmed/26225419 https://www.proquest.com/docview/1700336704 https://www.proquest.com/docview/1701890713 https://pubmed.ncbi.nlm.nih.gov/PMC4520495 https://doaj.org/article/777c5c5458cf4e4b91aa3881c87dad0f http://dx.doi.org/10.1371/journal.pone.0133337 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfW7YUXxPhaoCsGIQEPqZLaiZMHhNKpZSA6UFlR3yLHcUalKhlNKo3_njsnjRbUCfrgh945be7DPn_c7wh5LVMERWMjO0xYigsUzw4SIe1QMSES5geJyXKdXfjnC_556S0PyK5mayPAcu_SDutJLTbr4c2v3x_A4d-bqg3C3XUaXhe5HkJIAx_RI0cwNwks5jDj7bkCeLfvNwl0d_VEeGAfrJwj-M6tucpA-rcDdy9frRAPdV2U-2LTv69Y3pqzpg_I_SbYpFFtHcfkQOcPyXHjziV922BOv3tE5lFOJzcSoYLtMUxsKTWZuXZUQXRNowZ4nFYFjbZVYWBe6ReZmGR2WmTU1NmjMwPWSS8x86p8TBbTyeXZud2UW7AVeG1l-8p1pM-dJFRZ4KVCQygmEqlUKn0VJJ7gELwEegS6VEqnzJWOkDKEFZfOpOI-e0IOcxDkCaFemICsM-aCiXDp-VJ7GjqqQGSaZdKxCNsJNlYNFjmWxFjH5oBNwJqkllCMmokbzVjEbntd11gc_-Afo85aXkTSNl8Um6u4ccxYCKE8hceHKuOaJ6ErJQsCF_5rKlMns8gL1Hhcp6W240EccYTeH4WBa5FXhgPRNHK8rnMlt2UZf_r64z-Yvs87TG8apqwAcSjZpEjAOyFKV4ez3-GEMUF1yKdgnyBabF3QEMcDdOELCGd94XCLnKDl7qRWxojSyFhN6u-seT_5ZUvGH8UrerkutobHDULc9LDI09r4W8nvHMoiouMWHdV0KfnqpwE7594IFrHeszuf-ZzcgyDWM_vtTp8cVputPoVAsUoGpCeWAtrgzMV2-nFAjsaTi2_zgdl6GZix4Q8FrWey |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe28QA8ACsfC2zMIBDwkK2JnTh5QKgbm1rWDmnr0N6C4zij0pSUpRXwT_E3cuc6YUET8LI85CG-pO7d-e78cb8j5IXMEBSN-W6csgwnKIEbpUK6sWJCpCyMUpPlOjoM-yf8w2lwukR-1rkweKyytonGUGelwjXybcSRY4g2xt9Nv7pYNQp3V-sSGgu1ONA_vsGUrXo7eA_yfen7-3vj3b5rqwq4CpRz5obK68qQd9NY5VGQCQ0Rh0ilUpkMVZQGgoOPjrQPXVZKZ8yTXSElTM09nUvFQwbfXSY3OGMCsfqj3eZICdiOMLTpeUx421YbtqZlobcg1IJLtNyfqRLQ-ILlYjJBiNXzsroq3P3z1OYlN7h_j9yx8SvtLRRulSzpokPu1rUhqDUVHXL7EtBhh6za5xV9bXGu39wnR72C7n2XCE_s7oAzzajJBnZ7M4joac-CndNZSXvzWWmgZelQpiaBnpY5NbX96MgAhNIxZntVD8jJtQjjIVkpgL1rhAZxChLImQdqyWUQSh1oeFFFItcsl12HsJrzibL451iG4zwxm3oC5kELFiYor8TKyyFu89Z0gf_xD_odFGpDi-jd5kF5cZZYY5AIIVSgcMtS5VzzNPakZFHkQV8zmXVzh2yiSiSLVNjGBiU9jnD_fhx5DnluKBDBo8AjQmdyXlXJ4OOn_yA6PmoRvbJEeQnsUNKmZcB_QmSwFuV6ixLskGo1b4ACA2vx7oGEOG7ai1BACI3D1iFrqNo116rk94iGL9fqfnXzs6YZfxSPBRa6nBsaL4pxocUhjxajo-G8H4Kr4l7sENEaNy3RtFuKyRcDsM4DHybOweO_d2uT3OyPR8NkODg8eEJuQSQdmEX_7jpZmV3M9QZEq7P0qTERlHy-bpv0C2rNpas |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaIiE4AF0eDbTUIBBwSDeJkzg5IJTSVl36AJUW7S04jlNWqpKl2RXw1_h1zDhOaFAFXLqHPcSTbHZmPA_b8w0hz0SOoGjMs-OM5ZigBHaUcWHHknGesTDKdJXrwWG4e-K_GwfjBfKzrYXBY5WtTdSGOq8krpEPEUeOIdqYPyzMsYgPWztvpl9t7CCFO61tO41GRfbUj2-QvtWvR1sg6-eet7N9_HbXNh0GbAmKOrND6Toi9J0slkUU5FxB9MEzIWUuQhllAffBX0fKg9eXUuXMFQ4XAtJ0VxVC-iGD5y6Sa5yB24S5xMddsgd2JAxNqR7j7tBoxsa0KtUGhF3w4T1XqDsGdH5hsZxMEG71rKovC33_PMF5wSXu3CG3TCxLk0b5lsmCKgfkdtsnghqzMSA3L4AeDsiyuV7Tlwbz-tVdcpSUdPu7QKhiexMca051ZbCdzCC6p4kBPqeziibzWaVhZum-yHQxPa0Kqvv80QMNFkqPsfKrvkdOrkQY98lSCexdITSIM5BAwVxQUV8EoVCBghtlxAvFCuFYhLWcT6XBQseWHGep3uDjkBM1LExRXqmRl0Xs7q5pgwXyD_pNFGpHi0je-kJ1fpoaw5ByzmUgcftSFr7ys9gVgkWRC--ai9wpLLKOKpE2ZbGdPUoTH6H_vThyLfJUUyCaR4nz4lTM6zodvf_0H0Qfj3pELwxRUQE7pDAlGvCfECWsR7naowSbJHvDa6DAwFr8dkFCPm7g85BDOI1T2CIrqNot1-r09-yGJ7fqfvnwk24YfxSPCJaqmmsaN4px0cUiD5rZ0XHeC8Ft-W5sEd6bNz3R9EfKyRcNtu4HHiTRwcO_v9Y6uQ7WKN0fHe49IjcgqA70-r-zSpZm53O1BoHrLHusLQQln6_aJP0CtoSqDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Example-Based+Multi-Atlas+Approach+to+Automatic+Labeling+of+White+Matter+Tracts&rft.jtitle=PloS+one&rft.au=Yoo%2C+Sang+Wook&rft.au=Guevara%2C+Pamela&rft.au=Jeong%2C+Yong&rft.au=Yoo%2C+Kwangsun&rft.date=2015-07-30&rft.eissn=1932-6203&rft.volume=10&rft.issue=7&rft.spage=e0133337&rft_id=info:doi/10.1371%2Fjournal.pone.0133337&rft_id=info%3Apmid%2F26225419&rft.externalDocID=26225419 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |