Jointly learning word embeddings using a corpus and a knowledge base
Methods for representing the meaning of words in vector spaces purely using the information distributed in text corpora have proved to be very valuable in various text mining and natural language processing (NLP) tasks. However, these methods still disregard the valuable semantic relational structur...
Saved in:
Published in | PLOS ONE Vol. 13; no. 3; p. e0193094 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science (PLoS)
12.03.2018
Public Library of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Methods for representing the meaning of words in vector spaces purely using the information distributed in text corpora have proved to be very valuable in various text mining and natural language processing (NLP) tasks. However, these methods still disregard the valuable semantic relational structure between words in co-occurring contexts. These beneficial semantic relational structures are contained in manually-created knowledge bases (KBs) such as ontologies and semantic lexicons, where the meanings of words are represented by defining the various relationships that exist among those words. We combine the knowledge in both a corpus and a KB to learn better word embeddings. Specifically, we propose a joint word representation learning method that uses the knowledge in the KBs, and simultaneously predicts the co-occurrences of two words in a corpus context. In particular, we use the corpus to define our objective function subject to the relational constrains derived from the KB. We further utilise the corpus co-occurrence statistics to propose two novel approaches, Nearest Neighbour Expansion (NNE) and Hedged Nearest Neighbour Expansion (HNE), that dynamically expand the KB and therefore derive more constraints that guide the optimisation process. Our experimental results over a wide-range of benchmark tasks demonstrate that the proposed method statistically significantly improves the accuracy of the word embeddings learnt. It outperforms a corpus-only baseline and reports an improvement of a number of previously proposed methods that incorporate corpora and KBs in both semantic similarity prediction and word analogy detection tasks. |
---|---|
AbstractList | Methods for representing the meaning of words in vector spaces purely using the information distributed in text corpora have proved to be very valuable in various text mining and natural language processing (NLP) tasks. However, these methods still disregard the valuable semantic relational structure between words in co-occurring contexts. These beneficial semantic relational structures are contained in manually-created knowledge bases (KBs) such as ontologies and semantic lexicons, where the meanings of words are represented by defining the various relationships that exist among those words. We combine the knowledge in both a corpus and a KB to learn better word embeddings. Specifically, we propose a joint word representation learning method that uses the knowledge in the KBs, and simultaneously predicts the co-occurrences of two words in a corpus context. In particular, we use the corpus to define our objective function subject to the relational constrains derived from the KB. We further utilise the corpus co-occurrence statistics to propose two novel approaches, Nearest Neighbour Expansion (NNE) and Hedged Nearest Neighbour Expansion (HNE), that dynamically expand the KB and therefore derive more constraints that guide the optimisation process. Our experimental results over a wide-range of benchmark tasks demonstrate that the proposed method statistically significantly improves the accuracy of the word embeddings learnt. It outperforms a corpus-only baseline and reports an improvement of a number of previously proposed methods that incorporate corpora and KBs in both semantic similarity prediction and word analogy detection tasks. Methods for representing the meaning of words in vector spaces purely using the information distributed in text corpora have proved to be very valuable in various text mining and natural language processing (NLP) tasks. However, these methods still disregard the valuable semantic relational structure between words in co-occurring contexts. These beneficial semantic relational structures are contained in manually-created knowledge bases (KBs) such as ontologies and semantic lexicons, where the meanings of words are represented by defining the various relationships that exist among those words. We combine the knowledge in both a corpus and a KB to learn better word embeddings. Specifically, we propose a joint word representation learning method that uses the knowledge in the KBs, and simultaneously predicts the co-occurrences of two words in a corpus context. In particular, we use the corpus to define our objective function subject to the relational constrains derived from the KB. We further utilise the corpus co-occurrence statistics to propose two novel approaches, Nearest Neighbour Expansion (NNE) and Hedged Nearest Neighbour Expansion (HNE), that dynamically expand the KB and therefore derive more constraints that guide the optimisation process. Our experimental results over a wide-range of benchmark tasks demonstrate that the proposed method statistically significantly improves the accuracy of the word embeddings learnt. It outperforms a corpus-only baseline and reports an improvement of a number of previously proposed methods that incorporate corpora and KBs in both semantic similarity prediction and word analogy detection tasks.Methods for representing the meaning of words in vector spaces purely using the information distributed in text corpora have proved to be very valuable in various text mining and natural language processing (NLP) tasks. However, these methods still disregard the valuable semantic relational structure between words in co-occurring contexts. These beneficial semantic relational structures are contained in manually-created knowledge bases (KBs) such as ontologies and semantic lexicons, where the meanings of words are represented by defining the various relationships that exist among those words. We combine the knowledge in both a corpus and a KB to learn better word embeddings. Specifically, we propose a joint word representation learning method that uses the knowledge in the KBs, and simultaneously predicts the co-occurrences of two words in a corpus context. In particular, we use the corpus to define our objective function subject to the relational constrains derived from the KB. We further utilise the corpus co-occurrence statistics to propose two novel approaches, Nearest Neighbour Expansion (NNE) and Hedged Nearest Neighbour Expansion (HNE), that dynamically expand the KB and therefore derive more constraints that guide the optimisation process. Our experimental results over a wide-range of benchmark tasks demonstrate that the proposed method statistically significantly improves the accuracy of the word embeddings learnt. It outperforms a corpus-only baseline and reports an improvement of a number of previously proposed methods that incorporate corpora and KBs in both semantic similarity prediction and word analogy detection tasks. Methods for representing the meaning of words in vector spaces purely using the information distributed in text corpora have proved to be very valuable in various text mining and natural language processing (NLP) tasks. However, these methods still disregard the valuable semantic relational structure between words in co-occurring contexts. These beneficial semantic relational structures are contained in manually-created knowledge bases (KBs) such as ontologies and semantic lexicons, where the meanings of words are represented by defining the various relationships that exist among those words. We combine the knowledge in both a corpus and a KB to learn better word embeddings. Specifically, we propose a joint word representation learning method that uses the knowledge in the KBs, and simultaneously predicts the co-occurrences of two words in a corpus context. In particular, we use the corpus to define our objective function subject to the relational constrains derived from the KB. We further utilise the corpus co-occurrence statistics to propose two novel approaches, Nearest Neighbour Expansion (NNE) and Hedged Nearest Neighbour Expansion (HNE), that dynamically expand the KB and therefore derive more constraints that guide the optimisation process. Our experimental results over a wide-range of benchmark tasks demonstrate that the proposed method statistically significantly improves the accuracy of the word embeddings learnt. It outperforms a corpus-only baseline and reports an improvement of a number of previously proposed methods that incorporate corpora and KBs in both semantic similarity prediction and word analogy detection tasks. |
Audience | Academic |
Author | Danushka Bollegala Takanori Maehara Mohammed Alsuhaibani Ken-ichi Kawarabayashi |
AuthorAffiliation | 3 National Institute of Informatics, Tokyo, Japan 1 Department of Computer Science, University of Liverpool, Liverpool, United Kingdom University of Lisbon, PORTUGAL 2 RIKEN Center for Advanced Intelligence Project, Tokyo, Japan 4 Kawarabayashi ERATO Large Graph Project, Tokyo, Japan |
AuthorAffiliation_xml | – name: 1 Department of Computer Science, University of Liverpool, Liverpool, United Kingdom – name: 3 National Institute of Informatics, Tokyo, Japan – name: 2 RIKEN Center for Advanced Intelligence Project, Tokyo, Japan – name: 4 Kawarabayashi ERATO Large Graph Project, Tokyo, Japan – name: University of Lisbon, PORTUGAL |
Author_xml | – sequence: 1 givenname: Mohammed orcidid: 0000-0001-6567-6413 surname: Alsuhaibani fullname: Alsuhaibani, Mohammed – sequence: 2 givenname: Danushka surname: Bollegala fullname: Bollegala, Danushka – sequence: 3 givenname: Takanori surname: Maehara fullname: Maehara, Takanori – sequence: 4 givenname: Ken-ichi surname: Kawarabayashi fullname: Kawarabayashi, Ken-ichi |
BackLink | https://cir.nii.ac.jp/crid/1872835443027342464$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/29529052$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk2uL1DAUhousuOu4_0C0oIh-mDHXJvGDsKy3kYUFb19DmqSzWTPJ2LSu--9NnY5MlwWl0J6cPu97kkPO_eIgxGCL4iEEC4gZfHkZ-zYov9jk9AJAgYEgd4qjHKB5hQA-2IsPi-OUXA0IxZABCu4Vh0hQJABFR8Wbj9GFzl-X3qo2uLAqr2JrSruurTF5mco-DVlV6thu-lSqYPLie4hX3pqVLWuV7IPibqN8ssfjd1Z8fff2y-mH-dn5--XpydlcM866eaUYaagWTFCjMdJGmxwIAhsOqAaUU1jXjDaNwgwpBJBAtAKaGGO1pojiWfF467vxMcmxB0kiADEUkCGUieWWMFFdyk3r1qq9llE5-ScR25VUbee0t9I0wvKKAsyUIKbiXHEuGLa2MYqgWmSv12O1vl5bo23oWuUnptM_wV3IVfwpKScM58bPiuejQRt_9DZ1cu2Stt6rYGO_3TeFhEOe0Sc30NtPN1IrlQ_gQhNzXT2YyhOKQcUBYoPX4hYqP8aunc4XpnE5PxG8mAgy09lf3Ur1Kcnl50__z55_m7LP9tgLq3x3kaLvOxdDmoKP9jv9t8W7a5qBV1tAtzGl1jZSu04NPvlozksI5DAWu6bJYSzkOBZZTG6Id_7_kD3dyoJzudzwhpwhjikhOG8bE0Qqgn8DAvMZTA |
CitedBy_id | crossref_primary_10_1016_j_eswa_2024_123365 crossref_primary_10_1109_TVCG_2022_3206915 crossref_primary_10_1016_j_jksuci_2024_102263 crossref_primary_10_1109_TII_2021_3079521 crossref_primary_10_1109_TASLP_2022_3197316 crossref_primary_10_1016_j_knosys_2022_109298 crossref_primary_10_1177_1609406920984608 crossref_primary_10_1155_2023_2989791 crossref_primary_10_1016_j_jbi_2020_103581 crossref_primary_10_1093_bioinformatics_btaa674 crossref_primary_10_1016_j_infsof_2024_107490 crossref_primary_10_2478_amns_2024_3571 crossref_primary_10_1109_ACCESS_2023_3298672 crossref_primary_10_1007_s11042_020_10109_y crossref_primary_10_1186_s13326_019_0212_6 |
Cites_doi | 10.1145/2661829.2662038 10.1093/nar/gkh061 10.3115/v1/P14-2089 10.3115/991886.991938 10.18653/v1/P16-1158 10.3115/v1/P14-2131 10.1609/aaai.v30i1.10340 10.18653/v1/D15-1174 10.1080/01690969108406936 10.3115/v1/D14-1177 10.3115/1613715.1613847 10.1145/365628.365657 10.1145/503104.503110 10.1017/S1351324915000431 10.3115/v1/D14-1162 10.1145/2334801.2334805 10.3115/v1/E14-4022 10.1371/journal.pone.0171929 10.3115/v1/N15-1164 10.1609/aaai.v29i1.9494 10.3115/980845.980860 10.3115/v1/N15-1165 10.1145/219717.219748 10.3115/v1/N15-1184 10.3115/v1/P15-1145 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 Public Library of Science 2018 Alsuhaibani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 Alsuhaibani et al 2018 Alsuhaibani et al |
Copyright_xml | – notice: COPYRIGHT 2018 Public Library of Science – notice: 2018 Alsuhaibani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 Alsuhaibani et al 2018 Alsuhaibani et al |
DBID | RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0193094 |
DatabaseName | CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Sciences (General) Computer Science |
DocumentTitleAlternate | Jointly learning word embeddings using a corpus and a knowledge base |
EISSN | 1932-6203 |
ExternalDocumentID | 2013191722 oai_doaj_org_article_df9e865037a94d688a88973eefda42b9 PMC5847320 A530680278 29529052 10_1371_journal_pone_0193094 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United Kingdom--UK Japan |
GeographicLocations_xml | – name: United Kingdom--UK – name: Japan |
GrantInformation_xml | – fundername: ; |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BBORY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RYH RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF IPNFZ NPM RIG PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c787t-6a74f5c9795dc32cdcd5dc941f805c05851bb75ffa372a20292560c4ddecc5253 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:22:40 EST 2021 Wed Aug 27 01:32:49 EDT 2025 Thu Aug 21 18:04:51 EDT 2025 Mon Jul 21 11:39:14 EDT 2025 Fri Jul 25 11:18:30 EDT 2025 Tue Jun 17 21:17:17 EDT 2025 Tue Jun 10 20:41:46 EDT 2025 Fri Jun 27 05:05:58 EDT 2025 Fri Jun 27 04:00:04 EDT 2025 Thu May 22 21:19:06 EDT 2025 Thu Apr 03 07:04:10 EDT 2025 Thu Apr 24 23:02:36 EDT 2025 Tue Jul 01 02:25:54 EDT 2025 Thu Jun 26 23:43:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c787t-6a74f5c9795dc32cdcd5dc941f805c05851bb75ffa372a20292560c4ddecc5253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0001-6567-6413 0000-0003-4476-7003 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0193094 |
PMID | 29529052 |
PQID | 2013191722 |
PQPubID | 1436336 |
PageCount | e0193094 |
ParticipantIDs | plos_journals_2013191722 doaj_primary_oai_doaj_org_article_df9e865037a94d688a88973eefda42b9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5847320 proquest_miscellaneous_2013514818 proquest_journals_2013191722 gale_infotracmisc_A530680278 gale_infotracacademiconefile_A530680278 gale_incontextgauss_ISR_A530680278 gale_incontextgauss_IOV_A530680278 gale_healthsolutions_A530680278 pubmed_primary_29529052 crossref_citationtrail_10_1371_journal_pone_0193094 crossref_primary_10_1371_journal_pone_0193094 nii_cinii_1872835443027342464 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-12 |
PublicationDateYYYYMMDD | 2018-03-12 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLOS ONE |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2018 |
Publisher | Public Library of Science (PLoS) Public Library of Science |
Publisher_xml | – name: Public Library of Science (PLoS) – name: Public Library of Science |
References | M Baroni (ref7) 2014; 9 ref13 ref35 ref12 ref34 ref15 ref31 ref30 ref11 ref33 ref10 ref32 H Hakami (ref14) 2017; 23 ref2 ref1 ref16 O Levy (ref36) 2015 GA Miller (ref8) 1995; 38 O Bodenreider (ref17) 2004; 32 A Lamurias (ref18) 2017 L Finkelstein (ref38) 2002; 20 H Rubenstein (ref39) 1965; 8 ref24 ref46 ref23 ref45 ref26 ref25 ref47 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 R Collobert (ref19) 2011; 12 ref29 ref9 F Hill (ref44) 2016 ref4 ref3 G Miller (ref40) 1998; 6 ref6 ref5 J Duchi (ref37) 2011; 12 14681409 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D267-70 28263989 - PLoS One. 2017 Mar 6;12 (3):e0171929 |
References_xml | – ident: ref22 doi: 10.1145/2661829.2662038 – ident: ref1 – volume: 32 start-page: D267 year: 2004 ident: ref17 article-title: The unified medical language system (UMLS): integrating biomedical terminology publication-title: Nucleic acids research doi: 10.1093/nar/gkh061 – ident: ref21 doi: 10.3115/v1/P14-2089 – ident: ref3 – ident: ref33 doi: 10.3115/991886.991938 – ident: ref5 – ident: ref30 doi: 10.18653/v1/P16-1158 – ident: ref20 – ident: ref43 – ident: ref45 – ident: ref29 – ident: ref6 doi: 10.3115/v1/P14-2131 – ident: ref41 – volume: 12 start-page: 2493 year: 2011 ident: ref19 article-title: Natural Language Processing (almost) from Scratch publication-title: Journal of Machine Learning Research – ident: ref24 – ident: ref9 doi: 10.1609/aaai.v30i1.10340 – year: 2015 ident: ref36 article-title: Improving Distributional Similarity with Lessons Learned from Word Embeddings publication-title: Transactions of Association for Computational Linguistics – ident: ref27 doi: 10.18653/v1/D15-1174 – ident: ref32 – volume: 6 start-page: 1 issue: 1 year: 1998 ident: ref40 article-title: Contextual correlates of semantic similarity publication-title: Language and Cognitive Processes doi: 10.1080/01690969108406936 – ident: ref34 – year: 2016 ident: ref44 article-title: Simlex-999: Evaluating semantic models with (genuine) similarity estimation publication-title: Computational Linguistics – ident: ref16 doi: 10.3115/v1/D14-1177 – ident: ref47 doi: 10.3115/1613715.1613847 – volume: 8 start-page: 627 year: 1965 ident: ref39 article-title: Contextual Correlates of Synonymy publication-title: Communications of the ACM doi: 10.1145/365628.365657 – volume: 20 start-page: 116 year: 2002 ident: ref38 article-title: Placing Search in Context: The Concept Revisited publication-title: ACM Transactions on Information Systems doi: 10.1145/503104.503110 – volume: 23 start-page: 31 year: 2017 ident: ref14 article-title: A classification approach for detecting cross-lingual biomedical term translations publication-title: Journal of Natural Language Engineering doi: 10.1017/S1351324915000431 – ident: ref2 – ident: ref11 doi: 10.3115/v1/D14-1162 – volume: 9 year: 2014 ident: ref7 article-title: Frege in space: A program of compositional distributional semantics publication-title: LiLT (Linguistic Issues in Language Technology) – ident: ref13 doi: 10.1145/2334801.2334805 – ident: ref15 doi: 10.3115/v1/E14-4022 – ident: ref46 – ident: ref28 – start-page: e0171929 year: 2017 ident: ref18 article-title: Extracting microRNA-gene relations from biomedical literature using distant supervision publication-title: PloS one doi: 10.1371/journal.pone.0171929 – ident: ref25 doi: 10.3115/v1/N15-1164 – ident: ref42 – volume: 12 start-page: 2121 year: 2011 ident: ref37 article-title: Adaptive Subgradient Methods for Online Learning and Stochastic Optimization publication-title: Journal of Machine Learning Research – ident: ref4 doi: 10.1609/aaai.v29i1.9494 – ident: ref31 doi: 10.3115/980845.980860 – ident: ref26 doi: 10.3115/v1/N15-1165 – volume: 38 start-page: 39 issue: 11 year: 1995 ident: ref8 article-title: WordNet: A Lexical Database for English publication-title: Communications of the ACM doi: 10.1145/219717.219748 – ident: ref10 doi: 10.3115/v1/N15-1184 – ident: ref23 doi: 10.3115/v1/P15-1145 – ident: ref35 – ident: ref12 – reference: 28263989 - PLoS One. 2017 Mar 6;12 (3):e0171929 – reference: 14681409 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D267-70 |
SSID | ssib045317050 ssib045318062 ssib045324867 ssib045316197 ssib045319074 ssib045319085 ssib045319086 ssib045316121 ssib045318733 ssib045316049 ssib045317797 ssib045315901 ssib045318737 ssib045317988 ssj0053866 |
Score | 2.3975637 |
Snippet | Methods for representing the meaning of words in vector spaces purely using the information distributed in text corpora have proved to be very valuable in... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref nii |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e0193094 |
SubjectTerms | Algorithms Analysis Biology and Life Sciences Cats Computer and Information Sciences Computer science Data Mining Data Mining - methods Distance learning Humans Knowledge base Knowledge Bases Knowledge bases (artificial intelligence) Knowledge representation Learning Lexicology Linguistics Medicine Methods Natural Language Processing Objective function Physical Sciences Q R Research and Analysis Methods Research Article Science Semantics Social Sciences Texts Vector spaces |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJy6I8upCCwYhAYe0ie34cSyPqvQAElDUWzRxnGWlJVmRXSH-PTOJN2pQpXLgssquJ9lkHvZMPPMNYy9AAGgPOgFf5omqvUoAJB4FayEta1sN2RYf9em5OrvILy61-qKcsAEeeGDcUVW7YNGNkAacqjRewVpnZAh1BUqUfekernnbYGqYg9GKtY6FctJkR1Euh6u2CYfo1MjUqclC1OP1j7PyzWaxILDTZdtd5Xj-nT95aUE6ucNuR0-SHw9PsMtuhOYu24222vFXEVD69T327qxdNOvlbx5bRMz5Lww5efhRhqrfeuKU_T7nwDEUXW06Dk2FX8bXbZyWuvvs_OT917enSeyekHg0wnWiwag69864vPJS-MpXeOBUVts09yltB5alyesapBEgUuHI-_EK5zvvc5HLB2ynQX7tMW5EjYFkAOWkVhhSgCkzqUCDBS0wwJoxuWVl4SO0OHW4WBb9fpnBEGPgSUECKKIAZiwZz1oN0BrX0L8hKY20BIzd_4DqUkR1Ka5Tlxl7SjIuhirT0byL41xSFxJh7Iw97ykIHKOh7Js5bLqu-PDp2z8Qffk8IXoZieoW2eEhVjzgMxHo1oRyf0KJJu4nwweokcha-sysIYw8pWQPTSSURs7ska5uudYVglCUMBAXAq-81d-rh5-Nw_SnlHHXhHYz0KAzjf7cjD0c1H3kPMpcuDTHs83EECaimY40i-89djntykuRPvofsnzMbuFd9hWimdhnO-ufm3CALuK6fNLPBn8ArSRhFg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZouXABWh4NtGAQEnBISWzHjxMqj6X0ABJQ1FvkOM6y0pIsza4Q_56ZxAkEVcAlctaT3c2MZzxjj78h5JFl1kpnZWxdkcWiciK2lkPLa22TotJln23xTh6fipOz7CwsuLUhrXKwiZ2hLhuHa-QQpKccYwvGnq--xVg1CndXQwmNLXI5hZkGU7r07M1giUGXpQzH5bhKnwXpHK6a2h-Ca8MTIybTUYfaP9rmrXqxQMjTZdNe5H7-mUX527Q0u06uBn-SHvUDYIdc8vUuuTbUaqBBdXfJTmi19ElAmn56g7w6aRb1evmDhtoRc_odYlHqvxa-7PakKKbFz6mlEKOuNi21dQk34zocxTnwJjmdvf708jgOZRViB9q5jqVVosqcUSYrHWeudCU0jEgrnWQuwX3ColBZVVmumGUJM-gWOQGG0LmMZfwW2a6BhXuEKlZBhOmtMFwKiDWsKlIurLTaSgaRV0T4wN3cBcxxLH2xzLuNNAWxR8-mHGWSB5lEJB6fWvWYG_-gf4GCG2kRMbv7oDmf50EB87IyXoM7ypU1opQwErU2intflVawwkTkPoo974-fjnqfH2Ucy5MwpSPysKNA1Iwa03LmdtO2-dv3n_-D6OOHCdHjQFQ1wA5nw1EIeCdE45pQ7k8oQffdpPsABimwFq-pVgieJwTvMIuYkMCZPRy-A9fa_JcWwTcPQ_ri7gdjN_4opuLVvtn0NOBlg6MXkdu9BoycB5kzk2TwtJroxkQ005568aUDNcftes6SO3__W3fJFbjpDoWmbJ9sr883_gC8wnVxr1P9ny7PXmQ priority: 102 providerName: ProQuest |
Title | Jointly learning word embeddings using a corpus and a knowledge base |
URI | https://cir.nii.ac.jp/crid/1872835443027342464 https://www.ncbi.nlm.nih.gov/pubmed/29529052 https://www.proquest.com/docview/2013191722 https://www.proquest.com/docview/2013514818 https://pubmed.ncbi.nlm.nih.gov/PMC5847320 https://doaj.org/article/df9e865037a94d688a88973eefda42b9 http://dx.doi.org/10.1371/journal.pone.0193094 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfW7YUXxPhaYCsBIQEPqRLbsZMHhLaxMiYx0KCob5HjJKVSSUrTCvbfc-c4EUFFIF6spD63zX3Yd_H5d4Q8VVQpoZXwlE5Djxeae0oxuMqjSPlpEWVNtsWlOJ_wi2k43SFtzVbLwHpraIf1pCarxejHt-tXYPAvTdUGGbSDRsuqzEfgsjAIWQZkD9YmiTUN3vFuXwGsWwh7gO5PIxEeOA5p7Ie0t1YZSP9u4h6U8znioS6qeptv-nuK5S9r1vgWuWmdTfe40Y59spOXt8m-NefafW4xp1_cIa8vqnm5Xly7torEzP0OUambf03zzOxOuZggP3OVC9HqclO7qszgpnsj5-JqeJdMxmefTs89W2DB02Cna08oyYtQxzIOM82oznQGFzEPisgPtY87hmkqw6JQTFJFfRqjg6Q5TIlahzRk98huCaw7IK6kBcSaueIxExyiDiXTgHElVKQEsFM4hLWsTLRFH8ciGIvEbKlJiEIaniQoi8TKwiFeN2rZoG_8hf4EpdTRIna2-aBazRJriklWxHkEjimTKuaZAJ2MoliyPC8yxWkaO-QRyjhpDqJ2M0ByHDIsVEJl5JAnhgLxM0pM0JmpTV0nb99__geij1c9omeWqKiAHVrZQxHwTIjL1aM87FHCLKB73UegkcBabINIIowe58ygF1EugDMHqKst1-qEItASxOqUwje3-ru9-3HXjT-KSXllXm0aGvC3weVzyP1G3TvOtybkENkzhJ5o-j3l_IuBN8eNe0b9B_898iG5AX_NnBwN6CHZXa82-RG4jut0SAZyKqGNTgNsx2-GZO_k7PLD1dC8jBma2eInDQFwgw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGeIAXYONjhY0ZBAIeMhLbieMHhAZjtNsYEmxob8FxnFKpJGVphfZP8TdylziBoAl42Uvl1pe0vTv_fBffByGPNNM6MjrytElDT-RGeFpzGNk41n6ax1kTbXEYDY_F3kl4skR-tLkwGFbZYmIN1Flp8Bk5OOkBR9-CsZezbx52jcLT1baFRqMW-_bsO7hs1YvRDsj3MWO7b45eDz3XVcAzoJxzL9JS5KFRUoWZ4cxkJoOBEkEe-6Hx8ZgsTWWY55pLppnPFFoFRgAOGBMy7BIBkH9ZcNjJMTN9922L_IAdUeTS87gMnjtt2JqVhd0CU4r7SvS2v7pLQLcXXComEyyxOi2r88zdP6M2f9sGd2-Qa85-pduNwq2QJVuskuttbwjqoGKVrLhRRZ-6ytbPbpKdvXJSzKdn1PWqGFNkJLVfU5vVZ2AUw_DHVFPwiWeLiuoigzfdcz-Ke-4tcnwhDL9Nlgtg4RqhkuXg0VotFI8E-DZapgEXOtKxjhh4egPCW-4mxtU4x1Yb06Q-uJPg6zRsSlAmiZPJgHjdVbOmxsc_6F-h4DparNBdf1CejhO34JMsVzYG85dLrUQWgebHsZLc2jzTgqVqQDZR7EmT7trhTLIdcmyHwmQ8IA9rCqzSUWAY0FgvqioZvf_0H0QfP_SInjiivAR2GO1SL-A_YfWvHuV6jxKwxvSmN0BJgbX4GsQSi_UJwesaSUxEwJk1VN-Wa1Xya9XCnVuVPn_6QTeNX4qhf4UtFw0NWPVgWA7InWYFdJwHmTPlh3C17K2Nnmj6M8XkS11EHcMDOPPv_v1nbZIrw6N3B8nB6HD_HrkKE3VCasDWyfL8dGE3wCKdp_drGKDk80Xjzk99z5uE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAXoOXRhZYaBAIOaRPbiZ0DQqVL1W1RQdCi3oLjOMtKS7I0u0L9a_w6ZhInEFQBl15W3niyj3l8nonHM4Q80UzryOjI0yYNPZEb4WnNYWSV0n6aq6zJtjiK9k_EwWl4ukR-tGdhMK2yxcQaqLPS4DNyCNIDjrEFY9u5S4t4P9x7NfvmYQcp3Glt22k0KnJoz79D-Fa9HA1B1k8Z23tzvLvvuQ4DngFFnXuRliIPTSzjMDOcmcxkMIhFkCs_ND5umaWpDPNcc8k081mMHoIRgAnGhAw7RgD8X5VcKrQxtdullwCORJE7qsdlsO00Y2tWFnYL3Crux6K3FNYdA7p14UoxmWC51WlZXeT6_pnB-duSuHeL3HC-LN1plG-FLNlildxs-0RQBxurZMWNKvrcVbl-cZsMD8pJMZ-eU9e3YkyRkdR-TW1W74dRTMkfU00hPp4tKqqLDN50zwAprr93yMmlMPwuWS6AhWuESpZDdGu1iHkkIM7RMg240JFWOmIQ9Q0Ib7mbGFfvHNtuTJN6E09C3NOwKUGZJE4mA-J1d82aeh__oH-NgutosVp3faE8GyfO-JMsj60CV5hLHYssAitQKpbc2jzTgqXxgGyi2JPm6GuHOclOyLE1CpNqQB7XFFixo0DdH-tFVSWjd5_-g-jjhx7RM0eUl8AOo90xDPhPWAmsR7neowTcMb3pDVBSYC2-Bkpi4T4heF0viYkIOLOG6ttyrUp-WTB8cqvSF08_6qbxSzENsLDloqEBDx-czAG511hAx3mQOYv9EO6WPdvoiaY_U0y-1AXVMVWAM__-33_WJrkGiJO8HR0dPiDX4Xp9NjVg62R5frawG-CcztOHNQpQ8vmyYecngtWfhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jointly+learning+word+embeddings+using+a+corpus+and+a+knowledge+base&rft.jtitle=PloS+one&rft.au=Alsuhaibani%2C+Mohammed&rft.au=Bollegala%2C+Danushka&rft.au=Maehara%2C+Takanori&rft.au=Kawarabayashi%2C+Ken-ichi&rft.date=2018-03-12&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=13&rft.issue=3&rft_id=info:doi/10.1371%2Fjournal.pone.0193094&rft_id=info%3Apmid%2F29529052&rft.externalDocID=PMC5847320 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |