Jointly learning word embeddings using a corpus and a knowledge base

Methods for representing the meaning of words in vector spaces purely using the information distributed in text corpora have proved to be very valuable in various text mining and natural language processing (NLP) tasks. However, these methods still disregard the valuable semantic relational structur...

Full description

Saved in:
Bibliographic Details
Published inPLOS ONE Vol. 13; no. 3; p. e0193094
Main Authors Alsuhaibani, Mohammed, Bollegala, Danushka, Maehara, Takanori, Kawarabayashi, Ken-ichi
Format Journal Article
LanguageEnglish
Published United States Public Library of Science (PLoS) 12.03.2018
Public Library of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Methods for representing the meaning of words in vector spaces purely using the information distributed in text corpora have proved to be very valuable in various text mining and natural language processing (NLP) tasks. However, these methods still disregard the valuable semantic relational structure between words in co-occurring contexts. These beneficial semantic relational structures are contained in manually-created knowledge bases (KBs) such as ontologies and semantic lexicons, where the meanings of words are represented by defining the various relationships that exist among those words. We combine the knowledge in both a corpus and a KB to learn better word embeddings. Specifically, we propose a joint word representation learning method that uses the knowledge in the KBs, and simultaneously predicts the co-occurrences of two words in a corpus context. In particular, we use the corpus to define our objective function subject to the relational constrains derived from the KB. We further utilise the corpus co-occurrence statistics to propose two novel approaches, Nearest Neighbour Expansion (NNE) and Hedged Nearest Neighbour Expansion (HNE), that dynamically expand the KB and therefore derive more constraints that guide the optimisation process. Our experimental results over a wide-range of benchmark tasks demonstrate that the proposed method statistically significantly improves the accuracy of the word embeddings learnt. It outperforms a corpus-only baseline and reports an improvement of a number of previously proposed methods that incorporate corpora and KBs in both semantic similarity prediction and word analogy detection tasks.
AbstractList Methods for representing the meaning of words in vector spaces purely using the information distributed in text corpora have proved to be very valuable in various text mining and natural language processing (NLP) tasks. However, these methods still disregard the valuable semantic relational structure between words in co-occurring contexts. These beneficial semantic relational structures are contained in manually-created knowledge bases (KBs) such as ontologies and semantic lexicons, where the meanings of words are represented by defining the various relationships that exist among those words. We combine the knowledge in both a corpus and a KB to learn better word embeddings. Specifically, we propose a joint word representation learning method that uses the knowledge in the KBs, and simultaneously predicts the co-occurrences of two words in a corpus context. In particular, we use the corpus to define our objective function subject to the relational constrains derived from the KB. We further utilise the corpus co-occurrence statistics to propose two novel approaches, Nearest Neighbour Expansion (NNE) and Hedged Nearest Neighbour Expansion (HNE), that dynamically expand the KB and therefore derive more constraints that guide the optimisation process. Our experimental results over a wide-range of benchmark tasks demonstrate that the proposed method statistically significantly improves the accuracy of the word embeddings learnt. It outperforms a corpus-only baseline and reports an improvement of a number of previously proposed methods that incorporate corpora and KBs in both semantic similarity prediction and word analogy detection tasks.
Methods for representing the meaning of words in vector spaces purely using the information distributed in text corpora have proved to be very valuable in various text mining and natural language processing (NLP) tasks. However, these methods still disregard the valuable semantic relational structure between words in co-occurring contexts. These beneficial semantic relational structures are contained in manually-created knowledge bases (KBs) such as ontologies and semantic lexicons, where the meanings of words are represented by defining the various relationships that exist among those words. We combine the knowledge in both a corpus and a KB to learn better word embeddings. Specifically, we propose a joint word representation learning method that uses the knowledge in the KBs, and simultaneously predicts the co-occurrences of two words in a corpus context. In particular, we use the corpus to define our objective function subject to the relational constrains derived from the KB. We further utilise the corpus co-occurrence statistics to propose two novel approaches, Nearest Neighbour Expansion (NNE) and Hedged Nearest Neighbour Expansion (HNE), that dynamically expand the KB and therefore derive more constraints that guide the optimisation process. Our experimental results over a wide-range of benchmark tasks demonstrate that the proposed method statistically significantly improves the accuracy of the word embeddings learnt. It outperforms a corpus-only baseline and reports an improvement of a number of previously proposed methods that incorporate corpora and KBs in both semantic similarity prediction and word analogy detection tasks.Methods for representing the meaning of words in vector spaces purely using the information distributed in text corpora have proved to be very valuable in various text mining and natural language processing (NLP) tasks. However, these methods still disregard the valuable semantic relational structure between words in co-occurring contexts. These beneficial semantic relational structures are contained in manually-created knowledge bases (KBs) such as ontologies and semantic lexicons, where the meanings of words are represented by defining the various relationships that exist among those words. We combine the knowledge in both a corpus and a KB to learn better word embeddings. Specifically, we propose a joint word representation learning method that uses the knowledge in the KBs, and simultaneously predicts the co-occurrences of two words in a corpus context. In particular, we use the corpus to define our objective function subject to the relational constrains derived from the KB. We further utilise the corpus co-occurrence statistics to propose two novel approaches, Nearest Neighbour Expansion (NNE) and Hedged Nearest Neighbour Expansion (HNE), that dynamically expand the KB and therefore derive more constraints that guide the optimisation process. Our experimental results over a wide-range of benchmark tasks demonstrate that the proposed method statistically significantly improves the accuracy of the word embeddings learnt. It outperforms a corpus-only baseline and reports an improvement of a number of previously proposed methods that incorporate corpora and KBs in both semantic similarity prediction and word analogy detection tasks.
Methods for representing the meaning of words in vector spaces purely using the information distributed in text corpora have proved to be very valuable in various text mining and natural language processing (NLP) tasks. However, these methods still disregard the valuable semantic relational structure between words in co-occurring contexts. These beneficial semantic relational structures are contained in manually-created knowledge bases (KBs) such as ontologies and semantic lexicons, where the meanings of words are represented by defining the various relationships that exist among those words. We combine the knowledge in both a corpus and a KB to learn better word embeddings. Specifically, we propose a joint word representation learning method that uses the knowledge in the KBs, and simultaneously predicts the co-occurrences of two words in a corpus context. In particular, we use the corpus to define our objective function subject to the relational constrains derived from the KB. We further utilise the corpus co-occurrence statistics to propose two novel approaches, Nearest Neighbour Expansion (NNE) and Hedged Nearest Neighbour Expansion (HNE), that dynamically expand the KB and therefore derive more constraints that guide the optimisation process. Our experimental results over a wide-range of benchmark tasks demonstrate that the proposed method statistically significantly improves the accuracy of the word embeddings learnt. It outperforms a corpus-only baseline and reports an improvement of a number of previously proposed methods that incorporate corpora and KBs in both semantic similarity prediction and word analogy detection tasks.
Audience Academic
Author Danushka Bollegala
Takanori Maehara
Mohammed Alsuhaibani
Ken-ichi Kawarabayashi
AuthorAffiliation 3 National Institute of Informatics, Tokyo, Japan
1 Department of Computer Science, University of Liverpool, Liverpool, United Kingdom
University of Lisbon, PORTUGAL
2 RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
4 Kawarabayashi ERATO Large Graph Project, Tokyo, Japan
AuthorAffiliation_xml – name: 1 Department of Computer Science, University of Liverpool, Liverpool, United Kingdom
– name: 3 National Institute of Informatics, Tokyo, Japan
– name: 2 RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
– name: 4 Kawarabayashi ERATO Large Graph Project, Tokyo, Japan
– name: University of Lisbon, PORTUGAL
Author_xml – sequence: 1
  givenname: Mohammed
  orcidid: 0000-0001-6567-6413
  surname: Alsuhaibani
  fullname: Alsuhaibani, Mohammed
– sequence: 2
  givenname: Danushka
  surname: Bollegala
  fullname: Bollegala, Danushka
– sequence: 3
  givenname: Takanori
  surname: Maehara
  fullname: Maehara, Takanori
– sequence: 4
  givenname: Ken-ichi
  surname: Kawarabayashi
  fullname: Kawarabayashi, Ken-ichi
BackLink https://cir.nii.ac.jp/crid/1872835443027342464$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/29529052$$D View this record in MEDLINE/PubMed
BookMark eNqNk2uL1DAUhousuOu4_0C0oIh-mDHXJvGDsKy3kYUFb19DmqSzWTPJ2LSu--9NnY5MlwWl0J6cPu97kkPO_eIgxGCL4iEEC4gZfHkZ-zYov9jk9AJAgYEgd4qjHKB5hQA-2IsPi-OUXA0IxZABCu4Vh0hQJABFR8Wbj9GFzl-X3qo2uLAqr2JrSruurTF5mco-DVlV6thu-lSqYPLie4hX3pqVLWuV7IPibqN8ssfjd1Z8fff2y-mH-dn5--XpydlcM866eaUYaagWTFCjMdJGmxwIAhsOqAaUU1jXjDaNwgwpBJBAtAKaGGO1pojiWfF467vxMcmxB0kiADEUkCGUieWWMFFdyk3r1qq9llE5-ScR25VUbee0t9I0wvKKAsyUIKbiXHEuGLa2MYqgWmSv12O1vl5bo23oWuUnptM_wV3IVfwpKScM58bPiuejQRt_9DZ1cu2Stt6rYGO_3TeFhEOe0Sc30NtPN1IrlQ_gQhNzXT2YyhOKQcUBYoPX4hYqP8aunc4XpnE5PxG8mAgy09lf3Ur1Kcnl50__z55_m7LP9tgLq3x3kaLvOxdDmoKP9jv9t8W7a5qBV1tAtzGl1jZSu04NPvlozksI5DAWu6bJYSzkOBZZTG6Id_7_kD3dyoJzudzwhpwhjikhOG8bE0Qqgn8DAvMZTA
CitedBy_id crossref_primary_10_1016_j_eswa_2024_123365
crossref_primary_10_1109_TVCG_2022_3206915
crossref_primary_10_1016_j_jksuci_2024_102263
crossref_primary_10_1109_TII_2021_3079521
crossref_primary_10_1109_TASLP_2022_3197316
crossref_primary_10_1016_j_knosys_2022_109298
crossref_primary_10_1177_1609406920984608
crossref_primary_10_1155_2023_2989791
crossref_primary_10_1016_j_jbi_2020_103581
crossref_primary_10_1093_bioinformatics_btaa674
crossref_primary_10_1016_j_infsof_2024_107490
crossref_primary_10_2478_amns_2024_3571
crossref_primary_10_1109_ACCESS_2023_3298672
crossref_primary_10_1007_s11042_020_10109_y
crossref_primary_10_1186_s13326_019_0212_6
Cites_doi 10.1145/2661829.2662038
10.1093/nar/gkh061
10.3115/v1/P14-2089
10.3115/991886.991938
10.18653/v1/P16-1158
10.3115/v1/P14-2131
10.1609/aaai.v30i1.10340
10.18653/v1/D15-1174
10.1080/01690969108406936
10.3115/v1/D14-1177
10.3115/1613715.1613847
10.1145/365628.365657
10.1145/503104.503110
10.1017/S1351324915000431
10.3115/v1/D14-1162
10.1145/2334801.2334805
10.3115/v1/E14-4022
10.1371/journal.pone.0171929
10.3115/v1/N15-1164
10.1609/aaai.v29i1.9494
10.3115/980845.980860
10.3115/v1/N15-1165
10.1145/219717.219748
10.3115/v1/N15-1184
10.3115/v1/P15-1145
ContentType Journal Article
Copyright COPYRIGHT 2018 Public Library of Science
2018 Alsuhaibani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 Alsuhaibani et al 2018 Alsuhaibani et al
Copyright_xml – notice: COPYRIGHT 2018 Public Library of Science
– notice: 2018 Alsuhaibani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 Alsuhaibani et al 2018 Alsuhaibani et al
DBID RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0193094
DatabaseName CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database


MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Sciences (General)
Computer Science
DocumentTitleAlternate Jointly learning word embeddings using a corpus and a knowledge base
EISSN 1932-6203
ExternalDocumentID 2013191722
oai_doaj_org_article_df9e865037a94d688a88973eefda42b9
PMC5847320
A530680278
29529052
10_1371_journal_pone_0193094
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom--UK
Japan
GeographicLocations_xml – name: United Kingdom--UK
– name: Japan
GrantInformation_xml – fundername: ;
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BBORY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RYH
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c787t-6a74f5c9795dc32cdcd5dc941f805c05851bb75ffa372a20292560c4ddecc5253
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:22:40 EST 2021
Wed Aug 27 01:32:49 EDT 2025
Thu Aug 21 18:04:51 EDT 2025
Mon Jul 21 11:39:14 EDT 2025
Fri Jul 25 11:18:30 EDT 2025
Tue Jun 17 21:17:17 EDT 2025
Tue Jun 10 20:41:46 EDT 2025
Fri Jun 27 05:05:58 EDT 2025
Fri Jun 27 04:00:04 EDT 2025
Thu May 22 21:19:06 EDT 2025
Thu Apr 03 07:04:10 EDT 2025
Thu Apr 24 23:02:36 EDT 2025
Tue Jul 01 02:25:54 EDT 2025
Thu Jun 26 23:43:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c787t-6a74f5c9795dc32cdcd5dc941f805c05851bb75ffa372a20292560c4ddecc5253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-6567-6413
0000-0003-4476-7003
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0193094
PMID 29529052
PQID 2013191722
PQPubID 1436336
PageCount e0193094
ParticipantIDs plos_journals_2013191722
doaj_primary_oai_doaj_org_article_df9e865037a94d688a88973eefda42b9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5847320
proquest_miscellaneous_2013514818
proquest_journals_2013191722
gale_infotracmisc_A530680278
gale_infotracacademiconefile_A530680278
gale_incontextgauss_ISR_A530680278
gale_incontextgauss_IOV_A530680278
gale_healthsolutions_A530680278
pubmed_primary_29529052
crossref_citationtrail_10_1371_journal_pone_0193094
crossref_primary_10_1371_journal_pone_0193094
nii_cinii_1872835443027342464
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-12
PublicationDateYYYYMMDD 2018-03-12
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLOS ONE
PublicationTitleAlternate PLoS One
PublicationYear 2018
Publisher Public Library of Science (PLoS)
Public Library of Science
Publisher_xml – name: Public Library of Science (PLoS)
– name: Public Library of Science
References M Baroni (ref7) 2014; 9
ref13
ref35
ref12
ref34
ref15
ref31
ref30
ref11
ref33
ref10
ref32
H Hakami (ref14) 2017; 23
ref2
ref1
ref16
O Levy (ref36) 2015
GA Miller (ref8) 1995; 38
O Bodenreider (ref17) 2004; 32
A Lamurias (ref18) 2017
L Finkelstein (ref38) 2002; 20
H Rubenstein (ref39) 1965; 8
ref24
ref46
ref23
ref45
ref26
ref25
ref47
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
R Collobert (ref19) 2011; 12
ref29
ref9
F Hill (ref44) 2016
ref4
ref3
G Miller (ref40) 1998; 6
ref6
ref5
J Duchi (ref37) 2011; 12
14681409 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D267-70
28263989 - PLoS One. 2017 Mar 6;12 (3):e0171929
References_xml – ident: ref22
  doi: 10.1145/2661829.2662038
– ident: ref1
– volume: 32
  start-page: D267
  year: 2004
  ident: ref17
  article-title: The unified medical language system (UMLS): integrating biomedical terminology
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkh061
– ident: ref21
  doi: 10.3115/v1/P14-2089
– ident: ref3
– ident: ref33
  doi: 10.3115/991886.991938
– ident: ref5
– ident: ref30
  doi: 10.18653/v1/P16-1158
– ident: ref20
– ident: ref43
– ident: ref45
– ident: ref29
– ident: ref6
  doi: 10.3115/v1/P14-2131
– ident: ref41
– volume: 12
  start-page: 2493
  year: 2011
  ident: ref19
  article-title: Natural Language Processing (almost) from Scratch
  publication-title: Journal of Machine Learning Research
– ident: ref24
– ident: ref9
  doi: 10.1609/aaai.v30i1.10340
– year: 2015
  ident: ref36
  article-title: Improving Distributional Similarity with Lessons Learned from Word Embeddings
  publication-title: Transactions of Association for Computational Linguistics
– ident: ref27
  doi: 10.18653/v1/D15-1174
– ident: ref32
– volume: 6
  start-page: 1
  issue: 1
  year: 1998
  ident: ref40
  article-title: Contextual correlates of semantic similarity
  publication-title: Language and Cognitive Processes
  doi: 10.1080/01690969108406936
– ident: ref34
– year: 2016
  ident: ref44
  article-title: Simlex-999: Evaluating semantic models with (genuine) similarity estimation
  publication-title: Computational Linguistics
– ident: ref16
  doi: 10.3115/v1/D14-1177
– ident: ref47
  doi: 10.3115/1613715.1613847
– volume: 8
  start-page: 627
  year: 1965
  ident: ref39
  article-title: Contextual Correlates of Synonymy
  publication-title: Communications of the ACM
  doi: 10.1145/365628.365657
– volume: 20
  start-page: 116
  year: 2002
  ident: ref38
  article-title: Placing Search in Context: The Concept Revisited
  publication-title: ACM Transactions on Information Systems
  doi: 10.1145/503104.503110
– volume: 23
  start-page: 31
  year: 2017
  ident: ref14
  article-title: A classification approach for detecting cross-lingual biomedical term translations
  publication-title: Journal of Natural Language Engineering
  doi: 10.1017/S1351324915000431
– ident: ref2
– ident: ref11
  doi: 10.3115/v1/D14-1162
– volume: 9
  year: 2014
  ident: ref7
  article-title: Frege in space: A program of compositional distributional semantics
  publication-title: LiLT (Linguistic Issues in Language Technology)
– ident: ref13
  doi: 10.1145/2334801.2334805
– ident: ref15
  doi: 10.3115/v1/E14-4022
– ident: ref46
– ident: ref28
– start-page: e0171929
  year: 2017
  ident: ref18
  article-title: Extracting microRNA-gene relations from biomedical literature using distant supervision
  publication-title: PloS one
  doi: 10.1371/journal.pone.0171929
– ident: ref25
  doi: 10.3115/v1/N15-1164
– ident: ref42
– volume: 12
  start-page: 2121
  year: 2011
  ident: ref37
  article-title: Adaptive Subgradient Methods for Online Learning and Stochastic Optimization
  publication-title: Journal of Machine Learning Research
– ident: ref4
  doi: 10.1609/aaai.v29i1.9494
– ident: ref31
  doi: 10.3115/980845.980860
– ident: ref26
  doi: 10.3115/v1/N15-1165
– volume: 38
  start-page: 39
  issue: 11
  year: 1995
  ident: ref8
  article-title: WordNet: A Lexical Database for English
  publication-title: Communications of the ACM
  doi: 10.1145/219717.219748
– ident: ref10
  doi: 10.3115/v1/N15-1184
– ident: ref23
  doi: 10.3115/v1/P15-1145
– ident: ref35
– ident: ref12
– reference: 28263989 - PLoS One. 2017 Mar 6;12 (3):e0171929
– reference: 14681409 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D267-70
SSID ssib045317050
ssib045318062
ssib045324867
ssib045316197
ssib045319074
ssib045319085
ssib045319086
ssib045316121
ssib045318733
ssib045316049
ssib045317797
ssib045315901
ssib045318737
ssib045317988
ssj0053866
Score 2.3975637
Snippet Methods for representing the meaning of words in vector spaces purely using the information distributed in text corpora have proved to be very valuable in...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e0193094
SubjectTerms Algorithms
Analysis
Biology and Life Sciences
Cats
Computer and Information Sciences
Computer science
Data Mining
Data Mining - methods
Distance learning
Humans
Knowledge base
Knowledge Bases
Knowledge bases (artificial intelligence)
Knowledge representation
Learning
Lexicology
Linguistics
Medicine
Methods
Natural Language Processing
Objective function
Physical Sciences
Q
R
Research and Analysis Methods
Research Article
Science
Semantics
Social Sciences
Texts
Vector spaces
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJy6I8upCCwYhAYe0ie34cSyPqvQAElDUWzRxnGWlJVmRXSH-PTOJN2pQpXLgssquJ9lkHvZMPPMNYy9AAGgPOgFf5omqvUoAJB4FayEta1sN2RYf9em5OrvILy61-qKcsAEeeGDcUVW7YNGNkAacqjRewVpnZAh1BUqUfekernnbYGqYg9GKtY6FctJkR1Euh6u2CYfo1MjUqclC1OP1j7PyzWaxILDTZdtd5Xj-nT95aUE6ucNuR0-SHw9PsMtuhOYu24222vFXEVD69T327qxdNOvlbx5bRMz5Lww5efhRhqrfeuKU_T7nwDEUXW06Dk2FX8bXbZyWuvvs_OT917enSeyekHg0wnWiwag69864vPJS-MpXeOBUVts09yltB5alyesapBEgUuHI-_EK5zvvc5HLB2ynQX7tMW5EjYFkAOWkVhhSgCkzqUCDBS0wwJoxuWVl4SO0OHW4WBb9fpnBEGPgSUECKKIAZiwZz1oN0BrX0L8hKY20BIzd_4DqUkR1Ka5Tlxl7SjIuhirT0byL41xSFxJh7Iw97ykIHKOh7Js5bLqu-PDp2z8Qffk8IXoZieoW2eEhVjzgMxHo1oRyf0KJJu4nwweokcha-sysIYw8pWQPTSSURs7ska5uudYVglCUMBAXAq-81d-rh5-Nw_SnlHHXhHYz0KAzjf7cjD0c1H3kPMpcuDTHs83EECaimY40i-89djntykuRPvofsnzMbuFd9hWimdhnO-ufm3CALuK6fNLPBn8ArSRhFg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZouXABWh4NtGAQEnBISWzHjxMqj6X0ABJQ1FvkOM6y0pIsza4Q_56ZxAkEVcAlctaT3c2MZzxjj78h5JFl1kpnZWxdkcWiciK2lkPLa22TotJln23xTh6fipOz7CwsuLUhrXKwiZ2hLhuHa-QQpKccYwvGnq--xVg1CndXQwmNLXI5hZkGU7r07M1giUGXpQzH5bhKnwXpHK6a2h-Ca8MTIybTUYfaP9rmrXqxQMjTZdNe5H7-mUX527Q0u06uBn-SHvUDYIdc8vUuuTbUaqBBdXfJTmi19ElAmn56g7w6aRb1evmDhtoRc_odYlHqvxa-7PakKKbFz6mlEKOuNi21dQk34zocxTnwJjmdvf708jgOZRViB9q5jqVVosqcUSYrHWeudCU0jEgrnWQuwX3ColBZVVmumGUJM-gWOQGG0LmMZfwW2a6BhXuEKlZBhOmtMFwKiDWsKlIurLTaSgaRV0T4wN3cBcxxLH2xzLuNNAWxR8-mHGWSB5lEJB6fWvWYG_-gf4GCG2kRMbv7oDmf50EB87IyXoM7ypU1opQwErU2intflVawwkTkPoo974-fjnqfH2Ucy5MwpSPysKNA1Iwa03LmdtO2-dv3n_-D6OOHCdHjQFQ1wA5nw1EIeCdE45pQ7k8oQffdpPsABimwFq-pVgieJwTvMIuYkMCZPRy-A9fa_JcWwTcPQ_ri7gdjN_4opuLVvtn0NOBlg6MXkdu9BoycB5kzk2TwtJroxkQ005568aUDNcftes6SO3__W3fJFbjpDoWmbJ9sr883_gC8wnVxr1P9ny7PXmQ
  priority: 102
  providerName: ProQuest
Title Jointly learning word embeddings using a corpus and a knowledge base
URI https://cir.nii.ac.jp/crid/1872835443027342464
https://www.ncbi.nlm.nih.gov/pubmed/29529052
https://www.proquest.com/docview/2013191722
https://www.proquest.com/docview/2013514818
https://pubmed.ncbi.nlm.nih.gov/PMC5847320
https://doaj.org/article/df9e865037a94d688a88973eefda42b9
http://dx.doi.org/10.1371/journal.pone.0193094
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfW7YUXxPhaYCsBIQEPqRLbsZMHhLaxMiYx0KCob5HjJKVSSUrTCvbfc-c4EUFFIF6spD63zX3Yd_H5d4Q8VVQpoZXwlE5Djxeae0oxuMqjSPlpEWVNtsWlOJ_wi2k43SFtzVbLwHpraIf1pCarxejHt-tXYPAvTdUGGbSDRsuqzEfgsjAIWQZkD9YmiTUN3vFuXwGsWwh7gO5PIxEeOA5p7Ie0t1YZSP9u4h6U8znioS6qeptv-nuK5S9r1vgWuWmdTfe40Y59spOXt8m-NefafW4xp1_cIa8vqnm5Xly7torEzP0OUambf03zzOxOuZggP3OVC9HqclO7qszgpnsj5-JqeJdMxmefTs89W2DB02Cna08oyYtQxzIOM82oznQGFzEPisgPtY87hmkqw6JQTFJFfRqjg6Q5TIlahzRk98huCaw7IK6kBcSaueIxExyiDiXTgHElVKQEsFM4hLWsTLRFH8ciGIvEbKlJiEIaniQoi8TKwiFeN2rZoG_8hf4EpdTRIna2-aBazRJriklWxHkEjimTKuaZAJ2MoliyPC8yxWkaO-QRyjhpDqJ2M0ByHDIsVEJl5JAnhgLxM0pM0JmpTV0nb99__geij1c9omeWqKiAHVrZQxHwTIjL1aM87FHCLKB73UegkcBabINIIowe58ygF1EugDMHqKst1-qEItASxOqUwje3-ru9-3HXjT-KSXllXm0aGvC3weVzyP1G3TvOtybkENkzhJ5o-j3l_IuBN8eNe0b9B_898iG5AX_NnBwN6CHZXa82-RG4jut0SAZyKqGNTgNsx2-GZO_k7PLD1dC8jBma2eInDQFwgw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGeIAXYONjhY0ZBAIeMhLbieMHhAZjtNsYEmxob8FxnFKpJGVphfZP8TdylziBoAl42Uvl1pe0vTv_fBffByGPNNM6MjrytElDT-RGeFpzGNk41n6ax1kTbXEYDY_F3kl4skR-tLkwGFbZYmIN1Flp8Bk5OOkBR9-CsZezbx52jcLT1baFRqMW-_bsO7hs1YvRDsj3MWO7b45eDz3XVcAzoJxzL9JS5KFRUoWZ4cxkJoOBEkEe-6Hx8ZgsTWWY55pLppnPFFoFRgAOGBMy7BIBkH9ZcNjJMTN9922L_IAdUeTS87gMnjtt2JqVhd0CU4r7SvS2v7pLQLcXXComEyyxOi2r88zdP6M2f9sGd2-Qa85-pduNwq2QJVuskuttbwjqoGKVrLhRRZ-6ytbPbpKdvXJSzKdn1PWqGFNkJLVfU5vVZ2AUw_DHVFPwiWeLiuoigzfdcz-Ke-4tcnwhDL9Nlgtg4RqhkuXg0VotFI8E-DZapgEXOtKxjhh4egPCW-4mxtU4x1Yb06Q-uJPg6zRsSlAmiZPJgHjdVbOmxsc_6F-h4DparNBdf1CejhO34JMsVzYG85dLrUQWgebHsZLc2jzTgqVqQDZR7EmT7trhTLIdcmyHwmQ8IA9rCqzSUWAY0FgvqioZvf_0H0QfP_SInjiivAR2GO1SL-A_YfWvHuV6jxKwxvSmN0BJgbX4GsQSi_UJwesaSUxEwJk1VN-Wa1Xya9XCnVuVPn_6QTeNX4qhf4UtFw0NWPVgWA7InWYFdJwHmTPlh3C17K2Nnmj6M8XkS11EHcMDOPPv_v1nbZIrw6N3B8nB6HD_HrkKE3VCasDWyfL8dGE3wCKdp_drGKDk80Xjzk99z5uE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAXoOXRhZYaBAIOaRPbiZ0DQqVL1W1RQdCi3oLjOMtKS7I0u0L9a_w6ZhInEFQBl15W3niyj3l8nonHM4Q80UzryOjI0yYNPZEb4WnNYWSV0n6aq6zJtjiK9k_EwWl4ukR-tGdhMK2yxcQaqLPS4DNyCNIDjrEFY9u5S4t4P9x7NfvmYQcp3Glt22k0KnJoz79D-Fa9HA1B1k8Z23tzvLvvuQ4DngFFnXuRliIPTSzjMDOcmcxkMIhFkCs_ND5umaWpDPNcc8k081mMHoIRgAnGhAw7RgD8X5VcKrQxtdullwCORJE7qsdlsO00Y2tWFnYL3Crux6K3FNYdA7p14UoxmWC51WlZXeT6_pnB-duSuHeL3HC-LN1plG-FLNlildxs-0RQBxurZMWNKvrcVbl-cZsMD8pJMZ-eU9e3YkyRkdR-TW1W74dRTMkfU00hPp4tKqqLDN50zwAprr93yMmlMPwuWS6AhWuESpZDdGu1iHkkIM7RMg240JFWOmIQ9Q0Ib7mbGFfvHNtuTJN6E09C3NOwKUGZJE4mA-J1d82aeh__oH-NgutosVp3faE8GyfO-JMsj60CV5hLHYssAitQKpbc2jzTgqXxgGyi2JPm6GuHOclOyLE1CpNqQB7XFFixo0DdH-tFVSWjd5_-g-jjhx7RM0eUl8AOo90xDPhPWAmsR7neowTcMb3pDVBSYC2-Bkpi4T4heF0viYkIOLOG6ttyrUp-WTB8cqvSF08_6qbxSzENsLDloqEBDx-czAG511hAx3mQOYv9EO6WPdvoiaY_U0y-1AXVMVWAM__-33_WJrkGiJO8HR0dPiDX4Xp9NjVg62R5frawG-CcztOHNQpQ8vmyYecngtWfhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jointly+learning+word+embeddings+using+a+corpus+and+a+knowledge+base&rft.jtitle=PloS+one&rft.au=Alsuhaibani%2C+Mohammed&rft.au=Bollegala%2C+Danushka&rft.au=Maehara%2C+Takanori&rft.au=Kawarabayashi%2C+Ken-ichi&rft.date=2018-03-12&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=13&rft.issue=3&rft_id=info:doi/10.1371%2Fjournal.pone.0193094&rft_id=info%3Apmid%2F29529052&rft.externalDocID=PMC5847320
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon